2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
40 #include <asm/uaccess.h>
45 #define MAX_IO_MSRS 256
46 #define CR0_RESERVED_BITS \
47 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
48 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
49 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
50 #define CR4_RESERVED_BITS \
51 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
52 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
53 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
54 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 * - enable syscall per default because its emulated by KVM
59 * - enable LME and LMA per default on 64 bit KVM
62 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
64 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
67 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
68 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
71 struct kvm_cpuid_entry2 __user
*entries
);
72 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
73 u32 function
, u32 index
);
75 struct kvm_x86_ops
*kvm_x86_ops
;
76 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
78 struct kvm_stats_debugfs_item debugfs_entries
[] = {
79 { "pf_fixed", VCPU_STAT(pf_fixed
) },
80 { "pf_guest", VCPU_STAT(pf_guest
) },
81 { "tlb_flush", VCPU_STAT(tlb_flush
) },
82 { "invlpg", VCPU_STAT(invlpg
) },
83 { "exits", VCPU_STAT(exits
) },
84 { "io_exits", VCPU_STAT(io_exits
) },
85 { "mmio_exits", VCPU_STAT(mmio_exits
) },
86 { "signal_exits", VCPU_STAT(signal_exits
) },
87 { "irq_window", VCPU_STAT(irq_window_exits
) },
88 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
89 { "halt_exits", VCPU_STAT(halt_exits
) },
90 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
91 { "hypercalls", VCPU_STAT(hypercalls
) },
92 { "request_irq", VCPU_STAT(request_irq_exits
) },
93 { "request_nmi", VCPU_STAT(request_nmi_exits
) },
94 { "irq_exits", VCPU_STAT(irq_exits
) },
95 { "host_state_reload", VCPU_STAT(host_state_reload
) },
96 { "efer_reload", VCPU_STAT(efer_reload
) },
97 { "fpu_reload", VCPU_STAT(fpu_reload
) },
98 { "insn_emulation", VCPU_STAT(insn_emulation
) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
100 { "irq_injections", VCPU_STAT(irq_injections
) },
101 { "nmi_injections", VCPU_STAT(nmi_injections
) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
106 { "mmu_flooded", VM_STAT(mmu_flooded
) },
107 { "mmu_recycled", VM_STAT(mmu_recycled
) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
109 { "mmu_unsync", VM_STAT(mmu_unsync
) },
110 { "mmu_unsync_global", VM_STAT(mmu_unsync_global
) },
111 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
112 { "largepages", VM_STAT(lpages
) },
116 unsigned long segment_base(u16 selector
)
118 struct descriptor_table gdt
;
119 struct desc_struct
*d
;
120 unsigned long table_base
;
126 asm("sgdt %0" : "=m"(gdt
));
127 table_base
= gdt
.base
;
129 if (selector
& 4) { /* from ldt */
132 asm("sldt %0" : "=g"(ldt_selector
));
133 table_base
= segment_base(ldt_selector
);
135 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
136 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
137 ((unsigned long)d
->base2
<< 24);
139 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
140 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
144 EXPORT_SYMBOL_GPL(segment_base
);
146 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
148 if (irqchip_in_kernel(vcpu
->kvm
))
149 return vcpu
->arch
.apic_base
;
151 return vcpu
->arch
.apic_base
;
153 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
155 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
157 /* TODO: reserve bits check */
158 if (irqchip_in_kernel(vcpu
->kvm
))
159 kvm_lapic_set_base(vcpu
, data
);
161 vcpu
->arch
.apic_base
= data
;
163 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
165 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
167 WARN_ON(vcpu
->arch
.exception
.pending
);
168 vcpu
->arch
.exception
.pending
= true;
169 vcpu
->arch
.exception
.has_error_code
= false;
170 vcpu
->arch
.exception
.nr
= nr
;
172 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
174 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
177 ++vcpu
->stat
.pf_guest
;
179 if (vcpu
->arch
.exception
.pending
) {
180 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
181 printk(KERN_DEBUG
"kvm: inject_page_fault:"
182 " double fault 0x%lx\n", addr
);
183 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
184 vcpu
->arch
.exception
.error_code
= 0;
185 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
186 /* triple fault -> shutdown */
187 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
191 vcpu
->arch
.cr2
= addr
;
192 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
195 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
197 vcpu
->arch
.nmi_pending
= 1;
199 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
201 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
203 WARN_ON(vcpu
->arch
.exception
.pending
);
204 vcpu
->arch
.exception
.pending
= true;
205 vcpu
->arch
.exception
.has_error_code
= true;
206 vcpu
->arch
.exception
.nr
= nr
;
207 vcpu
->arch
.exception
.error_code
= error_code
;
209 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
211 static void __queue_exception(struct kvm_vcpu
*vcpu
)
213 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
214 vcpu
->arch
.exception
.has_error_code
,
215 vcpu
->arch
.exception
.error_code
);
219 * Load the pae pdptrs. Return true is they are all valid.
221 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
223 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
224 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
227 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
229 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
230 offset
* sizeof(u64
), sizeof(pdpte
));
235 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
236 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
243 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
248 EXPORT_SYMBOL_GPL(load_pdptrs
);
250 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
252 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
256 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
259 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
262 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
268 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
270 if (cr0
& CR0_RESERVED_BITS
) {
271 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0
, vcpu
->arch
.cr0
);
273 kvm_inject_gp(vcpu
, 0);
277 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
278 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu
, 0);
283 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
284 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu
, 0);
290 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
292 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
296 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu
, 0);
301 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
303 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu
, 0);
311 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
312 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
314 kvm_inject_gp(vcpu
, 0);
320 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
321 vcpu
->arch
.cr0
= cr0
;
323 kvm_mmu_sync_global(vcpu
);
324 kvm_mmu_reset_context(vcpu
);
327 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
329 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
331 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
332 KVMTRACE_1D(LMSW
, vcpu
,
333 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
336 EXPORT_SYMBOL_GPL(kvm_lmsw
);
338 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
340 if (cr4
& CR4_RESERVED_BITS
) {
341 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
342 kvm_inject_gp(vcpu
, 0);
346 if (is_long_mode(vcpu
)) {
347 if (!(cr4
& X86_CR4_PAE
)) {
348 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
350 kvm_inject_gp(vcpu
, 0);
353 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
354 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
355 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
356 kvm_inject_gp(vcpu
, 0);
360 if (cr4
& X86_CR4_VMXE
) {
361 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
362 kvm_inject_gp(vcpu
, 0);
365 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
366 vcpu
->arch
.cr4
= cr4
;
367 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
368 kvm_mmu_sync_global(vcpu
);
369 kvm_mmu_reset_context(vcpu
);
371 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
373 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
375 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
376 kvm_mmu_sync_roots(vcpu
);
377 kvm_mmu_flush_tlb(vcpu
);
381 if (is_long_mode(vcpu
)) {
382 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
383 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
384 kvm_inject_gp(vcpu
, 0);
389 if (cr3
& CR3_PAE_RESERVED_BITS
) {
391 "set_cr3: #GP, reserved bits\n");
392 kvm_inject_gp(vcpu
, 0);
395 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
396 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
398 kvm_inject_gp(vcpu
, 0);
403 * We don't check reserved bits in nonpae mode, because
404 * this isn't enforced, and VMware depends on this.
409 * Does the new cr3 value map to physical memory? (Note, we
410 * catch an invalid cr3 even in real-mode, because it would
411 * cause trouble later on when we turn on paging anyway.)
413 * A real CPU would silently accept an invalid cr3 and would
414 * attempt to use it - with largely undefined (and often hard
415 * to debug) behavior on the guest side.
417 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
418 kvm_inject_gp(vcpu
, 0);
420 vcpu
->arch
.cr3
= cr3
;
421 vcpu
->arch
.mmu
.new_cr3(vcpu
);
424 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
426 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
428 if (cr8
& CR8_RESERVED_BITS
) {
429 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
430 kvm_inject_gp(vcpu
, 0);
433 if (irqchip_in_kernel(vcpu
->kvm
))
434 kvm_lapic_set_tpr(vcpu
, cr8
);
436 vcpu
->arch
.cr8
= cr8
;
438 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
440 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
442 if (irqchip_in_kernel(vcpu
->kvm
))
443 return kvm_lapic_get_cr8(vcpu
);
445 return vcpu
->arch
.cr8
;
447 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
449 static inline u32
bit(int bitno
)
451 return 1 << (bitno
& 31);
455 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
456 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
458 * This list is modified at module load time to reflect the
459 * capabilities of the host cpu.
461 static u32 msrs_to_save
[] = {
462 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
465 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
467 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
468 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
471 static unsigned num_msrs_to_save
;
473 static u32 emulated_msrs
[] = {
474 MSR_IA32_MISC_ENABLE
,
477 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
479 if (efer
& efer_reserved_bits
) {
480 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
482 kvm_inject_gp(vcpu
, 0);
487 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
488 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
489 kvm_inject_gp(vcpu
, 0);
493 if (efer
& EFER_SVME
) {
494 struct kvm_cpuid_entry2
*feat
;
496 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
497 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
498 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
499 kvm_inject_gp(vcpu
, 0);
504 kvm_x86_ops
->set_efer(vcpu
, efer
);
507 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
509 vcpu
->arch
.shadow_efer
= efer
;
512 void kvm_enable_efer_bits(u64 mask
)
514 efer_reserved_bits
&= ~mask
;
516 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
520 * Writes msr value into into the appropriate "register".
521 * Returns 0 on success, non-0 otherwise.
522 * Assumes vcpu_load() was already called.
524 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
526 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
530 * Adapt set_msr() to msr_io()'s calling convention
532 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
534 return kvm_set_msr(vcpu
, index
, *data
);
537 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
540 struct pvclock_wall_clock wc
;
541 struct timespec now
, sys
, boot
;
548 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
551 * The guest calculates current wall clock time by adding
552 * system time (updated by kvm_write_guest_time below) to the
553 * wall clock specified here. guest system time equals host
554 * system time for us, thus we must fill in host boot time here.
556 now
= current_kernel_time();
558 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
560 wc
.sec
= boot
.tv_sec
;
561 wc
.nsec
= boot
.tv_nsec
;
562 wc
.version
= version
;
564 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
567 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
570 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
572 uint32_t quotient
, remainder
;
574 /* Don't try to replace with do_div(), this one calculates
575 * "(dividend << 32) / divisor" */
577 : "=a" (quotient
), "=d" (remainder
)
578 : "0" (0), "1" (dividend
), "r" (divisor
) );
582 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
584 uint64_t nsecs
= 1000000000LL;
589 tps64
= tsc_khz
* 1000LL;
590 while (tps64
> nsecs
*2) {
595 tps32
= (uint32_t)tps64
;
596 while (tps32
<= (uint32_t)nsecs
) {
601 hv_clock
->tsc_shift
= shift
;
602 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
604 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
605 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
606 hv_clock
->tsc_to_system_mul
);
609 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
613 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
616 if ((!vcpu
->time_page
))
619 if (unlikely(vcpu
->hv_clock_tsc_khz
!= tsc_khz
)) {
620 kvm_set_time_scale(tsc_khz
, &vcpu
->hv_clock
);
621 vcpu
->hv_clock_tsc_khz
= tsc_khz
;
624 /* Keep irq disabled to prevent changes to the clock */
625 local_irq_save(flags
);
626 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
627 &vcpu
->hv_clock
.tsc_timestamp
);
629 local_irq_restore(flags
);
631 /* With all the info we got, fill in the values */
633 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
634 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
636 * The interface expects us to write an even number signaling that the
637 * update is finished. Since the guest won't see the intermediate
638 * state, we just increase by 2 at the end.
640 vcpu
->hv_clock
.version
+= 2;
642 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
644 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
645 sizeof(vcpu
->hv_clock
));
647 kunmap_atomic(shared_kaddr
, KM_USER0
);
649 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
652 static bool msr_mtrr_valid(unsigned msr
)
655 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
656 case MSR_MTRRfix64K_00000
:
657 case MSR_MTRRfix16K_80000
:
658 case MSR_MTRRfix16K_A0000
:
659 case MSR_MTRRfix4K_C0000
:
660 case MSR_MTRRfix4K_C8000
:
661 case MSR_MTRRfix4K_D0000
:
662 case MSR_MTRRfix4K_D8000
:
663 case MSR_MTRRfix4K_E0000
:
664 case MSR_MTRRfix4K_E8000
:
665 case MSR_MTRRfix4K_F0000
:
666 case MSR_MTRRfix4K_F8000
:
667 case MSR_MTRRdefType
:
668 case MSR_IA32_CR_PAT
:
676 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
678 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
680 if (!msr_mtrr_valid(msr
))
683 if (msr
== MSR_MTRRdefType
) {
684 vcpu
->arch
.mtrr_state
.def_type
= data
;
685 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
686 } else if (msr
== MSR_MTRRfix64K_00000
)
688 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
689 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
690 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
691 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
692 else if (msr
== MSR_IA32_CR_PAT
)
693 vcpu
->arch
.pat
= data
;
694 else { /* Variable MTRRs */
695 int idx
, is_mtrr_mask
;
698 idx
= (msr
- 0x200) / 2;
699 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
702 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
705 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
709 kvm_mmu_reset_context(vcpu
);
713 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
717 set_efer(vcpu
, data
);
719 case MSR_IA32_MC0_STATUS
:
720 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
723 case MSR_IA32_MCG_STATUS
:
724 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
727 case MSR_IA32_MCG_CTL
:
728 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
731 case MSR_IA32_DEBUGCTLMSR
:
733 /* We support the non-activated case already */
735 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
736 /* Values other than LBR and BTF are vendor-specific,
737 thus reserved and should throw a #GP */
740 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
743 case MSR_IA32_UCODE_REV
:
744 case MSR_IA32_UCODE_WRITE
:
745 case MSR_VM_HSAVE_PA
:
747 case 0x200 ... 0x2ff:
748 return set_msr_mtrr(vcpu
, msr
, data
);
749 case MSR_IA32_APICBASE
:
750 kvm_set_apic_base(vcpu
, data
);
752 case MSR_IA32_MISC_ENABLE
:
753 vcpu
->arch
.ia32_misc_enable_msr
= data
;
755 case MSR_KVM_WALL_CLOCK
:
756 vcpu
->kvm
->arch
.wall_clock
= data
;
757 kvm_write_wall_clock(vcpu
->kvm
, data
);
759 case MSR_KVM_SYSTEM_TIME
: {
760 if (vcpu
->arch
.time_page
) {
761 kvm_release_page_dirty(vcpu
->arch
.time_page
);
762 vcpu
->arch
.time_page
= NULL
;
765 vcpu
->arch
.time
= data
;
767 /* we verify if the enable bit is set... */
771 /* ...but clean it before doing the actual write */
772 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
774 vcpu
->arch
.time_page
=
775 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
777 if (is_error_page(vcpu
->arch
.time_page
)) {
778 kvm_release_page_clean(vcpu
->arch
.time_page
);
779 vcpu
->arch
.time_page
= NULL
;
782 kvm_write_guest_time(vcpu
);
786 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
791 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
795 * Reads an msr value (of 'msr_index') into 'pdata'.
796 * Returns 0 on success, non-0 otherwise.
797 * Assumes vcpu_load() was already called.
799 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
801 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
804 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
806 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
808 if (!msr_mtrr_valid(msr
))
811 if (msr
== MSR_MTRRdefType
)
812 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
813 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
814 else if (msr
== MSR_MTRRfix64K_00000
)
816 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
817 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
818 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
819 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
820 else if (msr
== MSR_IA32_CR_PAT
)
821 *pdata
= vcpu
->arch
.pat
;
822 else { /* Variable MTRRs */
823 int idx
, is_mtrr_mask
;
826 idx
= (msr
- 0x200) / 2;
827 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
830 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
833 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
840 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
845 case 0xc0010010: /* SYSCFG */
846 case 0xc0010015: /* HWCR */
847 case MSR_IA32_PLATFORM_ID
:
848 case MSR_IA32_P5_MC_ADDR
:
849 case MSR_IA32_P5_MC_TYPE
:
850 case MSR_IA32_MC0_CTL
:
851 case MSR_IA32_MCG_STATUS
:
852 case MSR_IA32_MCG_CAP
:
853 case MSR_IA32_MCG_CTL
:
854 case MSR_IA32_MC0_MISC
:
855 case MSR_IA32_MC0_MISC
+4:
856 case MSR_IA32_MC0_MISC
+8:
857 case MSR_IA32_MC0_MISC
+12:
858 case MSR_IA32_MC0_MISC
+16:
859 case MSR_IA32_MC0_MISC
+20:
860 case MSR_IA32_UCODE_REV
:
861 case MSR_IA32_EBL_CR_POWERON
:
862 case MSR_IA32_DEBUGCTLMSR
:
863 case MSR_IA32_LASTBRANCHFROMIP
:
864 case MSR_IA32_LASTBRANCHTOIP
:
865 case MSR_IA32_LASTINTFROMIP
:
866 case MSR_IA32_LASTINTTOIP
:
867 case MSR_VM_HSAVE_PA
:
871 data
= 0x500 | KVM_NR_VAR_MTRR
;
873 case 0x200 ... 0x2ff:
874 return get_msr_mtrr(vcpu
, msr
, pdata
);
875 case 0xcd: /* fsb frequency */
878 case MSR_IA32_APICBASE
:
879 data
= kvm_get_apic_base(vcpu
);
881 case MSR_IA32_MISC_ENABLE
:
882 data
= vcpu
->arch
.ia32_misc_enable_msr
;
884 case MSR_IA32_PERF_STATUS
:
885 /* TSC increment by tick */
888 data
|= (((uint64_t)4ULL) << 40);
891 data
= vcpu
->arch
.shadow_efer
;
893 case MSR_KVM_WALL_CLOCK
:
894 data
= vcpu
->kvm
->arch
.wall_clock
;
896 case MSR_KVM_SYSTEM_TIME
:
897 data
= vcpu
->arch
.time
;
900 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
906 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
909 * Read or write a bunch of msrs. All parameters are kernel addresses.
911 * @return number of msrs set successfully.
913 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
914 struct kvm_msr_entry
*entries
,
915 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
916 unsigned index
, u64
*data
))
922 down_read(&vcpu
->kvm
->slots_lock
);
923 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
924 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
926 up_read(&vcpu
->kvm
->slots_lock
);
934 * Read or write a bunch of msrs. Parameters are user addresses.
936 * @return number of msrs set successfully.
938 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
939 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
940 unsigned index
, u64
*data
),
943 struct kvm_msrs msrs
;
944 struct kvm_msr_entry
*entries
;
949 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
953 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
957 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
958 entries
= vmalloc(size
);
963 if (copy_from_user(entries
, user_msrs
->entries
, size
))
966 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
971 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
982 int kvm_dev_ioctl_check_extension(long ext
)
987 case KVM_CAP_IRQCHIP
:
989 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
990 case KVM_CAP_SET_TSS_ADDR
:
991 case KVM_CAP_EXT_CPUID
:
993 case KVM_CAP_NOP_IO_DELAY
:
994 case KVM_CAP_MP_STATE
:
995 case KVM_CAP_SYNC_MMU
:
996 case KVM_CAP_REINJECT_CONTROL
:
999 case KVM_CAP_COALESCED_MMIO
:
1000 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1003 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1005 case KVM_CAP_NR_VCPUS
:
1008 case KVM_CAP_NR_MEMSLOTS
:
1009 r
= KVM_MEMORY_SLOTS
;
1011 case KVM_CAP_PV_MMU
:
1017 case KVM_CAP_CLOCKSOURCE
:
1018 r
= boot_cpu_has(X86_FEATURE_CONSTANT_TSC
);
1028 long kvm_arch_dev_ioctl(struct file
*filp
,
1029 unsigned int ioctl
, unsigned long arg
)
1031 void __user
*argp
= (void __user
*)arg
;
1035 case KVM_GET_MSR_INDEX_LIST
: {
1036 struct kvm_msr_list __user
*user_msr_list
= argp
;
1037 struct kvm_msr_list msr_list
;
1041 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1044 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1045 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1048 if (n
< num_msrs_to_save
)
1051 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1052 num_msrs_to_save
* sizeof(u32
)))
1054 if (copy_to_user(user_msr_list
->indices
1055 + num_msrs_to_save
* sizeof(u32
),
1057 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1062 case KVM_GET_SUPPORTED_CPUID
: {
1063 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1064 struct kvm_cpuid2 cpuid
;
1067 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1069 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1070 cpuid_arg
->entries
);
1075 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1087 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1089 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1090 kvm_write_guest_time(vcpu
);
1093 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1095 kvm_x86_ops
->vcpu_put(vcpu
);
1096 kvm_put_guest_fpu(vcpu
);
1099 static int is_efer_nx(void)
1103 rdmsrl(MSR_EFER
, efer
);
1104 return efer
& EFER_NX
;
1107 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1110 struct kvm_cpuid_entry2
*e
, *entry
;
1113 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1114 e
= &vcpu
->arch
.cpuid_entries
[i
];
1115 if (e
->function
== 0x80000001) {
1120 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1121 entry
->edx
&= ~(1 << 20);
1122 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1126 /* when an old userspace process fills a new kernel module */
1127 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1128 struct kvm_cpuid
*cpuid
,
1129 struct kvm_cpuid_entry __user
*entries
)
1132 struct kvm_cpuid_entry
*cpuid_entries
;
1135 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1138 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1142 if (copy_from_user(cpuid_entries
, entries
,
1143 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1145 for (i
= 0; i
< cpuid
->nent
; i
++) {
1146 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1147 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1148 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1149 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1150 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1151 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1152 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1153 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1154 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1155 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1157 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1158 cpuid_fix_nx_cap(vcpu
);
1162 vfree(cpuid_entries
);
1167 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1168 struct kvm_cpuid2
*cpuid
,
1169 struct kvm_cpuid_entry2 __user
*entries
)
1174 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1177 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1178 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1180 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1187 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1188 struct kvm_cpuid2
*cpuid
,
1189 struct kvm_cpuid_entry2 __user
*entries
)
1194 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1197 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1198 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1203 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1207 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1210 entry
->function
= function
;
1211 entry
->index
= index
;
1212 cpuid_count(entry
->function
, entry
->index
,
1213 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1217 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1218 u32 index
, int *nent
, int maxnent
)
1220 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
1221 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1222 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1223 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1224 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1225 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_PGE
) |
1226 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1227 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
1228 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
1229 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
1230 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
1231 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1232 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1233 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1234 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1235 bit(X86_FEATURE_PGE
) |
1236 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1237 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
1238 bit(X86_FEATURE_SYSCALL
) |
1239 (bit(X86_FEATURE_NX
) && is_efer_nx()) |
1240 #ifdef CONFIG_X86_64
1241 bit(X86_FEATURE_LM
) |
1243 bit(X86_FEATURE_MMXEXT
) |
1244 bit(X86_FEATURE_3DNOWEXT
) |
1245 bit(X86_FEATURE_3DNOW
);
1246 const u32 kvm_supported_word3_x86_features
=
1247 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
1248 const u32 kvm_supported_word6_x86_features
=
1249 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
) |
1250 bit(X86_FEATURE_SVM
);
1252 /* all func 2 cpuid_count() should be called on the same cpu */
1254 do_cpuid_1_ent(entry
, function
, index
);
1259 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1262 entry
->edx
&= kvm_supported_word0_x86_features
;
1263 entry
->ecx
&= kvm_supported_word3_x86_features
;
1265 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1266 * may return different values. This forces us to get_cpu() before
1267 * issuing the first command, and also to emulate this annoying behavior
1268 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1270 int t
, times
= entry
->eax
& 0xff;
1272 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1273 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1274 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1275 do_cpuid_1_ent(&entry
[t
], function
, 0);
1276 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1281 /* function 4 and 0xb have additional index. */
1285 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1286 /* read more entries until cache_type is zero */
1287 for (i
= 1; *nent
< maxnent
; ++i
) {
1288 cache_type
= entry
[i
- 1].eax
& 0x1f;
1291 do_cpuid_1_ent(&entry
[i
], function
, i
);
1293 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1301 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1302 /* read more entries until level_type is zero */
1303 for (i
= 1; *nent
< maxnent
; ++i
) {
1304 level_type
= entry
[i
- 1].ecx
& 0xff00;
1307 do_cpuid_1_ent(&entry
[i
], function
, i
);
1309 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1315 entry
->eax
= min(entry
->eax
, 0x8000001a);
1318 entry
->edx
&= kvm_supported_word1_x86_features
;
1319 entry
->ecx
&= kvm_supported_word6_x86_features
;
1325 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1326 struct kvm_cpuid_entry2 __user
*entries
)
1328 struct kvm_cpuid_entry2
*cpuid_entries
;
1329 int limit
, nent
= 0, r
= -E2BIG
;
1332 if (cpuid
->nent
< 1)
1335 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1339 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1340 limit
= cpuid_entries
[0].eax
;
1341 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1342 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1343 &nent
, cpuid
->nent
);
1345 if (nent
>= cpuid
->nent
)
1348 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1349 limit
= cpuid_entries
[nent
- 1].eax
;
1350 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1351 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1352 &nent
, cpuid
->nent
);
1354 if (copy_to_user(entries
, cpuid_entries
,
1355 nent
* sizeof(struct kvm_cpuid_entry2
)))
1361 vfree(cpuid_entries
);
1366 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1367 struct kvm_lapic_state
*s
)
1370 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1376 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1377 struct kvm_lapic_state
*s
)
1380 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1381 kvm_apic_post_state_restore(vcpu
);
1387 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1388 struct kvm_interrupt
*irq
)
1390 if (irq
->irq
< 0 || irq
->irq
>= 256)
1392 if (irqchip_in_kernel(vcpu
->kvm
))
1396 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1397 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1404 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1407 kvm_inject_nmi(vcpu
);
1413 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1414 struct kvm_tpr_access_ctl
*tac
)
1418 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1422 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1423 unsigned int ioctl
, unsigned long arg
)
1425 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1426 void __user
*argp
= (void __user
*)arg
;
1428 struct kvm_lapic_state
*lapic
= NULL
;
1431 case KVM_GET_LAPIC
: {
1432 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1437 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1441 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1446 case KVM_SET_LAPIC
: {
1447 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1452 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1454 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1460 case KVM_INTERRUPT
: {
1461 struct kvm_interrupt irq
;
1464 if (copy_from_user(&irq
, argp
, sizeof irq
))
1466 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1473 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1479 case KVM_SET_CPUID
: {
1480 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1481 struct kvm_cpuid cpuid
;
1484 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1486 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1491 case KVM_SET_CPUID2
: {
1492 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1493 struct kvm_cpuid2 cpuid
;
1496 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1498 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1499 cpuid_arg
->entries
);
1504 case KVM_GET_CPUID2
: {
1505 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1506 struct kvm_cpuid2 cpuid
;
1509 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1511 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1512 cpuid_arg
->entries
);
1516 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1522 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1525 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1527 case KVM_TPR_ACCESS_REPORTING
: {
1528 struct kvm_tpr_access_ctl tac
;
1531 if (copy_from_user(&tac
, argp
, sizeof tac
))
1533 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1537 if (copy_to_user(argp
, &tac
, sizeof tac
))
1542 case KVM_SET_VAPIC_ADDR
: {
1543 struct kvm_vapic_addr va
;
1546 if (!irqchip_in_kernel(vcpu
->kvm
))
1549 if (copy_from_user(&va
, argp
, sizeof va
))
1552 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1564 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1568 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1570 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1574 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1575 u32 kvm_nr_mmu_pages
)
1577 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1580 down_write(&kvm
->slots_lock
);
1582 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1583 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1585 up_write(&kvm
->slots_lock
);
1589 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1591 return kvm
->arch
.n_alloc_mmu_pages
;
1594 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1597 struct kvm_mem_alias
*alias
;
1599 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1600 alias
= &kvm
->arch
.aliases
[i
];
1601 if (gfn
>= alias
->base_gfn
1602 && gfn
< alias
->base_gfn
+ alias
->npages
)
1603 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1609 * Set a new alias region. Aliases map a portion of physical memory into
1610 * another portion. This is useful for memory windows, for example the PC
1613 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1614 struct kvm_memory_alias
*alias
)
1617 struct kvm_mem_alias
*p
;
1620 /* General sanity checks */
1621 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1623 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1625 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1627 if (alias
->guest_phys_addr
+ alias
->memory_size
1628 < alias
->guest_phys_addr
)
1630 if (alias
->target_phys_addr
+ alias
->memory_size
1631 < alias
->target_phys_addr
)
1634 down_write(&kvm
->slots_lock
);
1635 spin_lock(&kvm
->mmu_lock
);
1637 p
= &kvm
->arch
.aliases
[alias
->slot
];
1638 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1639 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1640 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1642 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1643 if (kvm
->arch
.aliases
[n
- 1].npages
)
1645 kvm
->arch
.naliases
= n
;
1647 spin_unlock(&kvm
->mmu_lock
);
1648 kvm_mmu_zap_all(kvm
);
1650 up_write(&kvm
->slots_lock
);
1658 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1663 switch (chip
->chip_id
) {
1664 case KVM_IRQCHIP_PIC_MASTER
:
1665 memcpy(&chip
->chip
.pic
,
1666 &pic_irqchip(kvm
)->pics
[0],
1667 sizeof(struct kvm_pic_state
));
1669 case KVM_IRQCHIP_PIC_SLAVE
:
1670 memcpy(&chip
->chip
.pic
,
1671 &pic_irqchip(kvm
)->pics
[1],
1672 sizeof(struct kvm_pic_state
));
1674 case KVM_IRQCHIP_IOAPIC
:
1675 memcpy(&chip
->chip
.ioapic
,
1676 ioapic_irqchip(kvm
),
1677 sizeof(struct kvm_ioapic_state
));
1686 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1691 switch (chip
->chip_id
) {
1692 case KVM_IRQCHIP_PIC_MASTER
:
1693 memcpy(&pic_irqchip(kvm
)->pics
[0],
1695 sizeof(struct kvm_pic_state
));
1697 case KVM_IRQCHIP_PIC_SLAVE
:
1698 memcpy(&pic_irqchip(kvm
)->pics
[1],
1700 sizeof(struct kvm_pic_state
));
1702 case KVM_IRQCHIP_IOAPIC
:
1703 memcpy(ioapic_irqchip(kvm
),
1705 sizeof(struct kvm_ioapic_state
));
1711 kvm_pic_update_irq(pic_irqchip(kvm
));
1715 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1719 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1723 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1727 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1728 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1732 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
1733 struct kvm_reinject_control
*control
)
1735 if (!kvm
->arch
.vpit
)
1737 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
1742 * Get (and clear) the dirty memory log for a memory slot.
1744 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1745 struct kvm_dirty_log
*log
)
1749 struct kvm_memory_slot
*memslot
;
1752 down_write(&kvm
->slots_lock
);
1754 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1758 /* If nothing is dirty, don't bother messing with page tables. */
1760 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1761 kvm_flush_remote_tlbs(kvm
);
1762 memslot
= &kvm
->memslots
[log
->slot
];
1763 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1764 memset(memslot
->dirty_bitmap
, 0, n
);
1768 up_write(&kvm
->slots_lock
);
1772 long kvm_arch_vm_ioctl(struct file
*filp
,
1773 unsigned int ioctl
, unsigned long arg
)
1775 struct kvm
*kvm
= filp
->private_data
;
1776 void __user
*argp
= (void __user
*)arg
;
1779 * This union makes it completely explicit to gcc-3.x
1780 * that these two variables' stack usage should be
1781 * combined, not added together.
1784 struct kvm_pit_state ps
;
1785 struct kvm_memory_alias alias
;
1789 case KVM_SET_TSS_ADDR
:
1790 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1794 case KVM_SET_MEMORY_REGION
: {
1795 struct kvm_memory_region kvm_mem
;
1796 struct kvm_userspace_memory_region kvm_userspace_mem
;
1799 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1801 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1802 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1803 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1804 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1805 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1810 case KVM_SET_NR_MMU_PAGES
:
1811 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1815 case KVM_GET_NR_MMU_PAGES
:
1816 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1818 case KVM_SET_MEMORY_ALIAS
:
1820 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
1822 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
1826 case KVM_CREATE_IRQCHIP
:
1828 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1829 if (kvm
->arch
.vpic
) {
1830 r
= kvm_ioapic_init(kvm
);
1832 kfree(kvm
->arch
.vpic
);
1833 kvm
->arch
.vpic
= NULL
;
1839 case KVM_CREATE_PIT
:
1840 mutex_lock(&kvm
->lock
);
1843 goto create_pit_unlock
;
1845 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1849 mutex_unlock(&kvm
->lock
);
1851 case KVM_IRQ_LINE
: {
1852 struct kvm_irq_level irq_event
;
1855 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1857 if (irqchip_in_kernel(kvm
)) {
1858 mutex_lock(&kvm
->lock
);
1859 kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
1860 irq_event
.irq
, irq_event
.level
);
1861 mutex_unlock(&kvm
->lock
);
1866 case KVM_GET_IRQCHIP
: {
1867 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1868 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1874 if (copy_from_user(chip
, argp
, sizeof *chip
))
1875 goto get_irqchip_out
;
1877 if (!irqchip_in_kernel(kvm
))
1878 goto get_irqchip_out
;
1879 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
1881 goto get_irqchip_out
;
1883 if (copy_to_user(argp
, chip
, sizeof *chip
))
1884 goto get_irqchip_out
;
1892 case KVM_SET_IRQCHIP
: {
1893 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1894 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1900 if (copy_from_user(chip
, argp
, sizeof *chip
))
1901 goto set_irqchip_out
;
1903 if (!irqchip_in_kernel(kvm
))
1904 goto set_irqchip_out
;
1905 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
1907 goto set_irqchip_out
;
1917 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
1920 if (!kvm
->arch
.vpit
)
1922 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
1926 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
1933 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
1936 if (!kvm
->arch
.vpit
)
1938 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
1944 case KVM_REINJECT_CONTROL
: {
1945 struct kvm_reinject_control control
;
1947 if (copy_from_user(&control
, argp
, sizeof(control
)))
1949 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
1962 static void kvm_init_msr_list(void)
1967 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
1968 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
1971 msrs_to_save
[j
] = msrs_to_save
[i
];
1974 num_msrs_to_save
= j
;
1978 * Only apic need an MMIO device hook, so shortcut now..
1980 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1981 gpa_t addr
, int len
,
1984 struct kvm_io_device
*dev
;
1986 if (vcpu
->arch
.apic
) {
1987 dev
= &vcpu
->arch
.apic
->dev
;
1988 if (dev
->in_range(dev
, addr
, len
, is_write
))
1995 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1996 gpa_t addr
, int len
,
1999 struct kvm_io_device
*dev
;
2001 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
2003 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
2008 int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2009 struct kvm_vcpu
*vcpu
)
2012 int r
= X86EMUL_CONTINUE
;
2015 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2016 unsigned offset
= addr
& (PAGE_SIZE
-1);
2017 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2020 if (gpa
== UNMAPPED_GVA
) {
2021 r
= X86EMUL_PROPAGATE_FAULT
;
2024 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2026 r
= X86EMUL_UNHANDLEABLE
;
2038 int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2039 struct kvm_vcpu
*vcpu
)
2042 int r
= X86EMUL_CONTINUE
;
2045 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2046 unsigned offset
= addr
& (PAGE_SIZE
-1);
2047 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2050 if (gpa
== UNMAPPED_GVA
) {
2051 r
= X86EMUL_PROPAGATE_FAULT
;
2054 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2056 r
= X86EMUL_UNHANDLEABLE
;
2069 static int emulator_read_emulated(unsigned long addr
,
2072 struct kvm_vcpu
*vcpu
)
2074 struct kvm_io_device
*mmio_dev
;
2077 if (vcpu
->mmio_read_completed
) {
2078 memcpy(val
, vcpu
->mmio_data
, bytes
);
2079 vcpu
->mmio_read_completed
= 0;
2080 return X86EMUL_CONTINUE
;
2083 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2085 /* For APIC access vmexit */
2086 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2089 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2090 == X86EMUL_CONTINUE
)
2091 return X86EMUL_CONTINUE
;
2092 if (gpa
== UNMAPPED_GVA
)
2093 return X86EMUL_PROPAGATE_FAULT
;
2097 * Is this MMIO handled locally?
2099 mutex_lock(&vcpu
->kvm
->lock
);
2100 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
2102 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
2103 mutex_unlock(&vcpu
->kvm
->lock
);
2104 return X86EMUL_CONTINUE
;
2106 mutex_unlock(&vcpu
->kvm
->lock
);
2108 vcpu
->mmio_needed
= 1;
2109 vcpu
->mmio_phys_addr
= gpa
;
2110 vcpu
->mmio_size
= bytes
;
2111 vcpu
->mmio_is_write
= 0;
2113 return X86EMUL_UNHANDLEABLE
;
2116 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2117 const void *val
, int bytes
)
2121 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2124 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2128 static int emulator_write_emulated_onepage(unsigned long addr
,
2131 struct kvm_vcpu
*vcpu
)
2133 struct kvm_io_device
*mmio_dev
;
2136 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2138 if (gpa
== UNMAPPED_GVA
) {
2139 kvm_inject_page_fault(vcpu
, addr
, 2);
2140 return X86EMUL_PROPAGATE_FAULT
;
2143 /* For APIC access vmexit */
2144 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2147 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2148 return X86EMUL_CONTINUE
;
2152 * Is this MMIO handled locally?
2154 mutex_lock(&vcpu
->kvm
->lock
);
2155 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
2157 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
2158 mutex_unlock(&vcpu
->kvm
->lock
);
2159 return X86EMUL_CONTINUE
;
2161 mutex_unlock(&vcpu
->kvm
->lock
);
2163 vcpu
->mmio_needed
= 1;
2164 vcpu
->mmio_phys_addr
= gpa
;
2165 vcpu
->mmio_size
= bytes
;
2166 vcpu
->mmio_is_write
= 1;
2167 memcpy(vcpu
->mmio_data
, val
, bytes
);
2169 return X86EMUL_CONTINUE
;
2172 int emulator_write_emulated(unsigned long addr
,
2175 struct kvm_vcpu
*vcpu
)
2177 /* Crossing a page boundary? */
2178 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2181 now
= -addr
& ~PAGE_MASK
;
2182 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2183 if (rc
!= X86EMUL_CONTINUE
)
2189 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2191 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2193 static int emulator_cmpxchg_emulated(unsigned long addr
,
2197 struct kvm_vcpu
*vcpu
)
2199 static int reported
;
2203 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2205 #ifndef CONFIG_X86_64
2206 /* guests cmpxchg8b have to be emulated atomically */
2213 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2215 if (gpa
== UNMAPPED_GVA
||
2216 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2219 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2224 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2226 kaddr
= kmap_atomic(page
, KM_USER0
);
2227 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2228 kunmap_atomic(kaddr
, KM_USER0
);
2229 kvm_release_page_dirty(page
);
2234 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2237 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2239 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2242 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2244 kvm_mmu_invlpg(vcpu
, address
);
2245 return X86EMUL_CONTINUE
;
2248 int emulate_clts(struct kvm_vcpu
*vcpu
)
2250 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2251 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2252 return X86EMUL_CONTINUE
;
2255 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2257 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2261 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2262 return X86EMUL_CONTINUE
;
2264 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2265 return X86EMUL_UNHANDLEABLE
;
2269 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2271 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2274 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2276 /* FIXME: better handling */
2277 return X86EMUL_UNHANDLEABLE
;
2279 return X86EMUL_CONTINUE
;
2282 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2285 unsigned long rip
= kvm_rip_read(vcpu
);
2286 unsigned long rip_linear
;
2288 if (!printk_ratelimit())
2291 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2293 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2295 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2296 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2298 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2300 static struct x86_emulate_ops emulate_ops
= {
2301 .read_std
= kvm_read_guest_virt
,
2302 .read_emulated
= emulator_read_emulated
,
2303 .write_emulated
= emulator_write_emulated
,
2304 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2307 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2309 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2310 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2311 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2312 vcpu
->arch
.regs_dirty
= ~0;
2315 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2316 struct kvm_run
*run
,
2322 struct decode_cache
*c
;
2324 kvm_clear_exception_queue(vcpu
);
2325 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2327 * TODO: fix x86_emulate.c to use guest_read/write_register
2328 * instead of direct ->regs accesses, can save hundred cycles
2329 * on Intel for instructions that don't read/change RSP, for
2332 cache_all_regs(vcpu
);
2334 vcpu
->mmio_is_write
= 0;
2335 vcpu
->arch
.pio
.string
= 0;
2337 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2339 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2341 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2342 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2343 vcpu
->arch
.emulate_ctxt
.mode
=
2344 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2345 ? X86EMUL_MODE_REAL
: cs_l
2346 ? X86EMUL_MODE_PROT64
: cs_db
2347 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2349 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2351 /* Reject the instructions other than VMCALL/VMMCALL when
2352 * try to emulate invalid opcode */
2353 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2354 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2355 (!(c
->twobyte
&& c
->b
== 0x01 &&
2356 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2357 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2358 return EMULATE_FAIL
;
2360 ++vcpu
->stat
.insn_emulation
;
2362 ++vcpu
->stat
.insn_emulation_fail
;
2363 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2364 return EMULATE_DONE
;
2365 return EMULATE_FAIL
;
2369 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2371 if (vcpu
->arch
.pio
.string
)
2372 return EMULATE_DO_MMIO
;
2374 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2375 run
->exit_reason
= KVM_EXIT_MMIO
;
2376 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2377 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2378 run
->mmio
.len
= vcpu
->mmio_size
;
2379 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2383 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2384 return EMULATE_DONE
;
2385 if (!vcpu
->mmio_needed
) {
2386 kvm_report_emulation_failure(vcpu
, "mmio");
2387 return EMULATE_FAIL
;
2389 return EMULATE_DO_MMIO
;
2392 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2394 if (vcpu
->mmio_is_write
) {
2395 vcpu
->mmio_needed
= 0;
2396 return EMULATE_DO_MMIO
;
2399 return EMULATE_DONE
;
2401 EXPORT_SYMBOL_GPL(emulate_instruction
);
2403 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2405 void *p
= vcpu
->arch
.pio_data
;
2406 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2410 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2411 if (vcpu
->arch
.pio
.in
)
2412 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2414 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2418 int complete_pio(struct kvm_vcpu
*vcpu
)
2420 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2427 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2428 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2429 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2433 r
= pio_copy_data(vcpu
);
2440 delta
*= io
->cur_count
;
2442 * The size of the register should really depend on
2443 * current address size.
2445 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2447 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2453 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2455 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2457 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2459 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2463 io
->count
-= io
->cur_count
;
2469 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2470 struct kvm_vcpu
*vcpu
,
2473 /* TODO: String I/O for in kernel device */
2475 mutex_lock(&vcpu
->kvm
->lock
);
2476 if (vcpu
->arch
.pio
.in
)
2477 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2478 vcpu
->arch
.pio
.size
,
2481 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2482 vcpu
->arch
.pio
.size
,
2484 mutex_unlock(&vcpu
->kvm
->lock
);
2487 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2488 struct kvm_vcpu
*vcpu
)
2490 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2491 void *pd
= vcpu
->arch
.pio_data
;
2494 mutex_lock(&vcpu
->kvm
->lock
);
2495 for (i
= 0; i
< io
->cur_count
; i
++) {
2496 kvm_iodevice_write(pio_dev
, io
->port
,
2501 mutex_unlock(&vcpu
->kvm
->lock
);
2504 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2505 gpa_t addr
, int len
,
2508 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2511 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2512 int size
, unsigned port
)
2514 struct kvm_io_device
*pio_dev
;
2517 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2518 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2519 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2520 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2521 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2522 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2523 vcpu
->arch
.pio
.in
= in
;
2524 vcpu
->arch
.pio
.string
= 0;
2525 vcpu
->arch
.pio
.down
= 0;
2526 vcpu
->arch
.pio
.rep
= 0;
2528 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2529 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2532 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2535 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2536 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2538 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2540 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2546 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2548 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2549 int size
, unsigned long count
, int down
,
2550 gva_t address
, int rep
, unsigned port
)
2552 unsigned now
, in_page
;
2554 struct kvm_io_device
*pio_dev
;
2556 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2557 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2558 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2559 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2560 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2561 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2562 vcpu
->arch
.pio
.in
= in
;
2563 vcpu
->arch
.pio
.string
= 1;
2564 vcpu
->arch
.pio
.down
= down
;
2565 vcpu
->arch
.pio
.rep
= rep
;
2567 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2568 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2571 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2575 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2580 in_page
= PAGE_SIZE
- offset_in_page(address
);
2582 in_page
= offset_in_page(address
) + size
;
2583 now
= min(count
, (unsigned long)in_page
/ size
);
2588 * String I/O in reverse. Yuck. Kill the guest, fix later.
2590 pr_unimpl(vcpu
, "guest string pio down\n");
2591 kvm_inject_gp(vcpu
, 0);
2594 vcpu
->run
->io
.count
= now
;
2595 vcpu
->arch
.pio
.cur_count
= now
;
2597 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2598 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2600 vcpu
->arch
.pio
.guest_gva
= address
;
2602 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2603 vcpu
->arch
.pio
.cur_count
,
2604 !vcpu
->arch
.pio
.in
);
2605 if (!vcpu
->arch
.pio
.in
) {
2606 /* string PIO write */
2607 ret
= pio_copy_data(vcpu
);
2608 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
2609 kvm_inject_gp(vcpu
, 0);
2612 if (ret
== 0 && pio_dev
) {
2613 pio_string_write(pio_dev
, vcpu
);
2615 if (vcpu
->arch
.pio
.count
== 0)
2619 pr_unimpl(vcpu
, "no string pio read support yet, "
2620 "port %x size %d count %ld\n",
2625 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2627 int kvm_arch_init(void *opaque
)
2630 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2633 printk(KERN_ERR
"kvm: already loaded the other module\n");
2638 if (!ops
->cpu_has_kvm_support()) {
2639 printk(KERN_ERR
"kvm: no hardware support\n");
2643 if (ops
->disabled_by_bios()) {
2644 printk(KERN_ERR
"kvm: disabled by bios\n");
2649 r
= kvm_mmu_module_init();
2653 kvm_init_msr_list();
2656 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2657 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
2658 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
2659 PT_DIRTY_MASK
, PT64_NX_MASK
, 0, 0);
2666 void kvm_arch_exit(void)
2669 kvm_mmu_module_exit();
2672 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2674 ++vcpu
->stat
.halt_exits
;
2675 KVMTRACE_0D(HLT
, vcpu
, handler
);
2676 if (irqchip_in_kernel(vcpu
->kvm
)) {
2677 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2680 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2684 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2686 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2689 if (is_long_mode(vcpu
))
2692 return a0
| ((gpa_t
)a1
<< 32);
2695 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2697 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2700 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2701 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
2702 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2703 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
2704 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2706 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2708 if (!is_long_mode(vcpu
)) {
2717 case KVM_HC_VAPIC_POLL_IRQ
:
2721 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2727 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
2728 ++vcpu
->stat
.hypercalls
;
2731 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2733 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2735 char instruction
[3];
2737 unsigned long rip
= kvm_rip_read(vcpu
);
2741 * Blow out the MMU to ensure that no other VCPU has an active mapping
2742 * to ensure that the updated hypercall appears atomically across all
2745 kvm_mmu_zap_all(vcpu
->kvm
);
2747 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2748 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
2749 != X86EMUL_CONTINUE
)
2755 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2757 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2760 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2762 struct descriptor_table dt
= { limit
, base
};
2764 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2767 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2769 struct descriptor_table dt
= { limit
, base
};
2771 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2774 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2775 unsigned long *rflags
)
2777 kvm_lmsw(vcpu
, msw
);
2778 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2781 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2783 unsigned long value
;
2785 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2788 value
= vcpu
->arch
.cr0
;
2791 value
= vcpu
->arch
.cr2
;
2794 value
= vcpu
->arch
.cr3
;
2797 value
= vcpu
->arch
.cr4
;
2800 value
= kvm_get_cr8(vcpu
);
2803 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2806 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
, (u32
)value
,
2807 (u32
)((u64
)value
>> 32), handler
);
2812 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2813 unsigned long *rflags
)
2815 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)val
,
2816 (u32
)((u64
)val
>> 32), handler
);
2820 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2821 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2824 vcpu
->arch
.cr2
= val
;
2827 kvm_set_cr3(vcpu
, val
);
2830 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2833 kvm_set_cr8(vcpu
, val
& 0xfUL
);
2836 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2840 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2842 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2843 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2845 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2846 /* when no next entry is found, the current entry[i] is reselected */
2847 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
2848 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2849 if (ej
->function
== e
->function
) {
2850 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2854 return 0; /* silence gcc, even though control never reaches here */
2857 /* find an entry with matching function, matching index (if needed), and that
2858 * should be read next (if it's stateful) */
2859 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
2860 u32 function
, u32 index
)
2862 if (e
->function
!= function
)
2864 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
2866 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
2867 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
2872 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
2873 u32 function
, u32 index
)
2876 struct kvm_cpuid_entry2
*best
= NULL
;
2878 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2879 struct kvm_cpuid_entry2
*e
;
2881 e
= &vcpu
->arch
.cpuid_entries
[i
];
2882 if (is_matching_cpuid_entry(e
, function
, index
)) {
2883 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
2884 move_to_next_stateful_cpuid_entry(vcpu
, i
);
2889 * Both basic or both extended?
2891 if (((e
->function
^ function
) & 0x80000000) == 0)
2892 if (!best
|| e
->function
> best
->function
)
2899 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
2901 u32 function
, index
;
2902 struct kvm_cpuid_entry2
*best
;
2904 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2905 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2906 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
2907 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
2908 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
2909 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
2910 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
2912 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
2913 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
2914 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
2915 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
2917 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2918 KVMTRACE_5D(CPUID
, vcpu
, function
,
2919 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RAX
),
2920 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RBX
),
2921 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RCX
),
2922 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RDX
), handler
);
2924 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
2927 * Check if userspace requested an interrupt window, and that the
2928 * interrupt window is open.
2930 * No need to exit to userspace if we already have an interrupt queued.
2932 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
2933 struct kvm_run
*kvm_run
)
2935 return (!vcpu
->arch
.irq_summary
&&
2936 kvm_run
->request_interrupt_window
&&
2937 vcpu
->arch
.interrupt_window_open
&&
2938 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
2941 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
2942 struct kvm_run
*kvm_run
)
2944 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
2945 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
2946 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
2947 if (irqchip_in_kernel(vcpu
->kvm
))
2948 kvm_run
->ready_for_interrupt_injection
= 1;
2950 kvm_run
->ready_for_interrupt_injection
=
2951 (vcpu
->arch
.interrupt_window_open
&&
2952 vcpu
->arch
.irq_summary
== 0);
2955 static void vapic_enter(struct kvm_vcpu
*vcpu
)
2957 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2960 if (!apic
|| !apic
->vapic_addr
)
2963 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2965 vcpu
->arch
.apic
->vapic_page
= page
;
2968 static void vapic_exit(struct kvm_vcpu
*vcpu
)
2970 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2972 if (!apic
|| !apic
->vapic_addr
)
2975 down_read(&vcpu
->kvm
->slots_lock
);
2976 kvm_release_page_dirty(apic
->vapic_page
);
2977 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
2978 up_read(&vcpu
->kvm
->slots_lock
);
2981 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2986 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
2987 kvm_mmu_unload(vcpu
);
2989 r
= kvm_mmu_reload(vcpu
);
2993 if (vcpu
->requests
) {
2994 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
2995 __kvm_migrate_timers(vcpu
);
2996 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
2997 kvm_mmu_sync_roots(vcpu
);
2998 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
2999 kvm_x86_ops
->tlb_flush(vcpu
);
3000 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3002 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3006 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3007 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3013 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3014 kvm_inject_pending_timer_irqs(vcpu
);
3018 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3019 kvm_load_guest_fpu(vcpu
);
3021 local_irq_disable();
3023 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3030 vcpu
->guest_mode
= 1;
3032 * Make sure that guest_mode assignment won't happen after
3033 * testing the pending IRQ vector bitmap.
3037 if (vcpu
->arch
.exception
.pending
)
3038 __queue_exception(vcpu
);
3039 else if (irqchip_in_kernel(vcpu
->kvm
))
3040 kvm_x86_ops
->inject_pending_irq(vcpu
);
3042 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
3044 kvm_lapic_sync_to_vapic(vcpu
);
3046 up_read(&vcpu
->kvm
->slots_lock
);
3050 get_debugreg(vcpu
->arch
.host_dr6
, 6);
3051 get_debugreg(vcpu
->arch
.host_dr7
, 7);
3052 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3053 get_debugreg(vcpu
->arch
.host_db
[0], 0);
3054 get_debugreg(vcpu
->arch
.host_db
[1], 1);
3055 get_debugreg(vcpu
->arch
.host_db
[2], 2);
3056 get_debugreg(vcpu
->arch
.host_db
[3], 3);
3059 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3060 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3061 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3062 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3065 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
3066 kvm_x86_ops
->run(vcpu
, kvm_run
);
3068 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3070 set_debugreg(vcpu
->arch
.host_db
[0], 0);
3071 set_debugreg(vcpu
->arch
.host_db
[1], 1);
3072 set_debugreg(vcpu
->arch
.host_db
[2], 2);
3073 set_debugreg(vcpu
->arch
.host_db
[3], 3);
3075 set_debugreg(vcpu
->arch
.host_dr6
, 6);
3076 set_debugreg(vcpu
->arch
.host_dr7
, 7);
3078 vcpu
->guest_mode
= 0;
3084 * We must have an instruction between local_irq_enable() and
3085 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3086 * the interrupt shadow. The stat.exits increment will do nicely.
3087 * But we need to prevent reordering, hence this barrier():
3095 down_read(&vcpu
->kvm
->slots_lock
);
3098 * Profile KVM exit RIPs:
3100 if (unlikely(prof_on
== KVM_PROFILING
)) {
3101 unsigned long rip
= kvm_rip_read(vcpu
);
3102 profile_hit(KVM_PROFILING
, (void *)rip
);
3105 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
3106 vcpu
->arch
.exception
.pending
= false;
3108 kvm_lapic_sync_from_vapic(vcpu
);
3110 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3115 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3119 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3120 pr_debug("vcpu %d received sipi with vector # %x\n",
3121 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3122 kvm_lapic_reset(vcpu
);
3123 r
= kvm_arch_vcpu_reset(vcpu
);
3126 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3129 down_read(&vcpu
->kvm
->slots_lock
);
3134 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3135 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3137 up_read(&vcpu
->kvm
->slots_lock
);
3138 kvm_vcpu_block(vcpu
);
3139 down_read(&vcpu
->kvm
->slots_lock
);
3140 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3141 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
3142 vcpu
->arch
.mp_state
=
3143 KVM_MP_STATE_RUNNABLE
;
3144 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_RUNNABLE
)
3149 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3151 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3152 ++vcpu
->stat
.request_irq_exits
;
3154 if (signal_pending(current
)) {
3156 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3157 ++vcpu
->stat
.signal_exits
;
3159 if (need_resched()) {
3160 up_read(&vcpu
->kvm
->slots_lock
);
3162 down_read(&vcpu
->kvm
->slots_lock
);
3167 up_read(&vcpu
->kvm
->slots_lock
);
3168 post_kvm_run_save(vcpu
, kvm_run
);
3175 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3182 if (vcpu
->sigset_active
)
3183 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3185 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3186 kvm_vcpu_block(vcpu
);
3187 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3192 /* re-sync apic's tpr */
3193 if (!irqchip_in_kernel(vcpu
->kvm
))
3194 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3196 if (vcpu
->arch
.pio
.cur_count
) {
3197 r
= complete_pio(vcpu
);
3201 #if CONFIG_HAS_IOMEM
3202 if (vcpu
->mmio_needed
) {
3203 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3204 vcpu
->mmio_read_completed
= 1;
3205 vcpu
->mmio_needed
= 0;
3207 down_read(&vcpu
->kvm
->slots_lock
);
3208 r
= emulate_instruction(vcpu
, kvm_run
,
3209 vcpu
->arch
.mmio_fault_cr2
, 0,
3210 EMULTYPE_NO_DECODE
);
3211 up_read(&vcpu
->kvm
->slots_lock
);
3212 if (r
== EMULATE_DO_MMIO
) {
3214 * Read-modify-write. Back to userspace.
3221 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3222 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3223 kvm_run
->hypercall
.ret
);
3225 r
= __vcpu_run(vcpu
, kvm_run
);
3228 if (vcpu
->sigset_active
)
3229 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3235 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3239 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3240 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3241 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3242 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3243 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3244 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3245 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3246 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3247 #ifdef CONFIG_X86_64
3248 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3249 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3250 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3251 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3252 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3253 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3254 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3255 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3258 regs
->rip
= kvm_rip_read(vcpu
);
3259 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3262 * Don't leak debug flags in case they were set for guest debugging
3264 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3265 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3272 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3276 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3277 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3278 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3279 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3280 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3281 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3282 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3283 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3284 #ifdef CONFIG_X86_64
3285 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3286 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3287 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3288 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3289 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3290 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3291 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3292 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3296 kvm_rip_write(vcpu
, regs
->rip
);
3297 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3300 vcpu
->arch
.exception
.pending
= false;
3307 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3308 struct kvm_segment
*var
, int seg
)
3310 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3313 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3315 struct kvm_segment cs
;
3317 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3321 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3323 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3324 struct kvm_sregs
*sregs
)
3326 struct descriptor_table dt
;
3331 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3332 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3333 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3334 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3335 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3336 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3338 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3339 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3341 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3342 sregs
->idt
.limit
= dt
.limit
;
3343 sregs
->idt
.base
= dt
.base
;
3344 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3345 sregs
->gdt
.limit
= dt
.limit
;
3346 sregs
->gdt
.base
= dt
.base
;
3348 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3349 sregs
->cr0
= vcpu
->arch
.cr0
;
3350 sregs
->cr2
= vcpu
->arch
.cr2
;
3351 sregs
->cr3
= vcpu
->arch
.cr3
;
3352 sregs
->cr4
= vcpu
->arch
.cr4
;
3353 sregs
->cr8
= kvm_get_cr8(vcpu
);
3354 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3355 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3357 if (irqchip_in_kernel(vcpu
->kvm
)) {
3358 memset(sregs
->interrupt_bitmap
, 0,
3359 sizeof sregs
->interrupt_bitmap
);
3360 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
3361 if (pending_vec
>= 0)
3362 set_bit(pending_vec
,
3363 (unsigned long *)sregs
->interrupt_bitmap
);
3365 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
3366 sizeof sregs
->interrupt_bitmap
);
3373 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3374 struct kvm_mp_state
*mp_state
)
3377 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3383 struct kvm_mp_state
*mp_state
)
3386 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3391 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3392 struct kvm_segment
*var
, int seg
)
3394 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3397 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3398 struct kvm_segment
*kvm_desct
)
3400 kvm_desct
->base
= seg_desc
->base0
;
3401 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3402 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3403 kvm_desct
->limit
= seg_desc
->limit0
;
3404 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3406 kvm_desct
->limit
<<= 12;
3407 kvm_desct
->limit
|= 0xfff;
3409 kvm_desct
->selector
= selector
;
3410 kvm_desct
->type
= seg_desc
->type
;
3411 kvm_desct
->present
= seg_desc
->p
;
3412 kvm_desct
->dpl
= seg_desc
->dpl
;
3413 kvm_desct
->db
= seg_desc
->d
;
3414 kvm_desct
->s
= seg_desc
->s
;
3415 kvm_desct
->l
= seg_desc
->l
;
3416 kvm_desct
->g
= seg_desc
->g
;
3417 kvm_desct
->avl
= seg_desc
->avl
;
3419 kvm_desct
->unusable
= 1;
3421 kvm_desct
->unusable
= 0;
3422 kvm_desct
->padding
= 0;
3425 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3427 struct descriptor_table
*dtable
)
3429 if (selector
& 1 << 2) {
3430 struct kvm_segment kvm_seg
;
3432 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3434 if (kvm_seg
.unusable
)
3437 dtable
->limit
= kvm_seg
.limit
;
3438 dtable
->base
= kvm_seg
.base
;
3441 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3444 /* allowed just for 8 bytes segments */
3445 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3446 struct desc_struct
*seg_desc
)
3449 struct descriptor_table dtable
;
3450 u16 index
= selector
>> 3;
3452 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3454 if (dtable
.limit
< index
* 8 + 7) {
3455 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3458 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3460 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3463 /* allowed just for 8 bytes segments */
3464 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3465 struct desc_struct
*seg_desc
)
3468 struct descriptor_table dtable
;
3469 u16 index
= selector
>> 3;
3471 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3473 if (dtable
.limit
< index
* 8 + 7)
3475 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3477 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3480 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3481 struct desc_struct
*seg_desc
)
3485 base_addr
= seg_desc
->base0
;
3486 base_addr
|= (seg_desc
->base1
<< 16);
3487 base_addr
|= (seg_desc
->base2
<< 24);
3489 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3492 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3494 struct kvm_segment kvm_seg
;
3496 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3497 return kvm_seg
.selector
;
3500 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3502 struct kvm_segment
*kvm_seg
)
3504 struct desc_struct seg_desc
;
3506 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3508 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3512 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
3514 struct kvm_segment segvar
= {
3515 .base
= selector
<< 4,
3517 .selector
= selector
,
3528 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
3532 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3533 int type_bits
, int seg
)
3535 struct kvm_segment kvm_seg
;
3537 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
3538 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
3539 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3541 kvm_seg
.type
|= type_bits
;
3543 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3544 seg
!= VCPU_SREG_LDTR
)
3546 kvm_seg
.unusable
= 1;
3548 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3552 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3553 struct tss_segment_32
*tss
)
3555 tss
->cr3
= vcpu
->arch
.cr3
;
3556 tss
->eip
= kvm_rip_read(vcpu
);
3557 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3558 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3559 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3560 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3561 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3562 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3563 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3564 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3565 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3566 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3567 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3568 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3569 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3570 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3571 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3572 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3573 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3576 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3577 struct tss_segment_32
*tss
)
3579 kvm_set_cr3(vcpu
, tss
->cr3
);
3581 kvm_rip_write(vcpu
, tss
->eip
);
3582 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3584 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
3585 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
3586 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
3587 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
3588 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
3589 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
3590 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
3591 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
3593 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3596 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3599 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3602 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3605 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3608 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3611 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3616 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3617 struct tss_segment_16
*tss
)
3619 tss
->ip
= kvm_rip_read(vcpu
);
3620 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3621 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3622 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3623 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3624 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3625 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3626 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3627 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3628 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3630 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3631 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3632 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3633 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3634 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3635 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3638 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3639 struct tss_segment_16
*tss
)
3641 kvm_rip_write(vcpu
, tss
->ip
);
3642 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3643 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
3644 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
3645 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
3646 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
3647 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
3648 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
3649 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
3650 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
3652 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3655 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3658 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3661 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3664 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3669 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3671 struct desc_struct
*nseg_desc
)
3673 struct tss_segment_16 tss_segment_16
;
3676 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3677 sizeof tss_segment_16
))
3680 save_state_to_tss16(vcpu
, &tss_segment_16
);
3682 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3683 sizeof tss_segment_16
))
3686 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3687 &tss_segment_16
, sizeof tss_segment_16
))
3690 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3698 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3700 struct desc_struct
*nseg_desc
)
3702 struct tss_segment_32 tss_segment_32
;
3705 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3706 sizeof tss_segment_32
))
3709 save_state_to_tss32(vcpu
, &tss_segment_32
);
3711 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3712 sizeof tss_segment_32
))
3715 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3716 &tss_segment_32
, sizeof tss_segment_32
))
3719 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3727 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3729 struct kvm_segment tr_seg
;
3730 struct desc_struct cseg_desc
;
3731 struct desc_struct nseg_desc
;
3733 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
3734 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3736 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
3738 /* FIXME: Handle errors. Failure to read either TSS or their
3739 * descriptors should generate a pagefault.
3741 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3744 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
3747 if (reason
!= TASK_SWITCH_IRET
) {
3750 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3751 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3752 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3757 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3758 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
3762 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
3763 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
3764 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
3767 if (reason
== TASK_SWITCH_IRET
) {
3768 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3769 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
3772 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3774 if (nseg_desc
.type
& 8)
3775 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_base
,
3778 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_base
,
3781 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
3782 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3783 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
3786 if (reason
!= TASK_SWITCH_IRET
) {
3787 nseg_desc
.type
|= (1 << 1);
3788 save_guest_segment_descriptor(vcpu
, tss_selector
,
3792 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
3793 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
3795 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
3799 EXPORT_SYMBOL_GPL(kvm_task_switch
);
3801 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
3802 struct kvm_sregs
*sregs
)
3804 int mmu_reset_needed
= 0;
3805 int i
, pending_vec
, max_bits
;
3806 struct descriptor_table dt
;
3810 dt
.limit
= sregs
->idt
.limit
;
3811 dt
.base
= sregs
->idt
.base
;
3812 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3813 dt
.limit
= sregs
->gdt
.limit
;
3814 dt
.base
= sregs
->gdt
.base
;
3815 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3817 vcpu
->arch
.cr2
= sregs
->cr2
;
3818 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
3819 vcpu
->arch
.cr3
= sregs
->cr3
;
3821 kvm_set_cr8(vcpu
, sregs
->cr8
);
3823 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
3824 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
3825 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
3827 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3829 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
3830 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
3831 vcpu
->arch
.cr0
= sregs
->cr0
;
3833 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
3834 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
3835 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
3836 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
3838 if (mmu_reset_needed
)
3839 kvm_mmu_reset_context(vcpu
);
3841 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3842 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
3843 sizeof vcpu
->arch
.irq_pending
);
3844 vcpu
->arch
.irq_summary
= 0;
3845 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
3846 if (vcpu
->arch
.irq_pending
[i
])
3847 __set_bit(i
, &vcpu
->arch
.irq_summary
);
3849 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
3850 pending_vec
= find_first_bit(
3851 (const unsigned long *)sregs
->interrupt_bitmap
,
3853 /* Only pending external irq is handled here */
3854 if (pending_vec
< max_bits
) {
3855 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
3856 pr_debug("Set back pending irq %d\n",
3859 kvm_pic_clear_isr_ack(vcpu
->kvm
);
3862 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3863 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3864 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3865 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3866 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3867 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3869 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3870 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3872 /* Older userspace won't unhalt the vcpu on reset. */
3873 if (vcpu
->vcpu_id
== 0 && kvm_rip_read(vcpu
) == 0xfff0 &&
3874 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
3875 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
3876 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3883 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
3884 struct kvm_guest_debug
*dbg
)
3890 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
3891 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
3892 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
3893 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
3894 vcpu
->arch
.switch_db_regs
=
3895 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
3897 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
3898 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
3899 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
3902 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
3904 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
3905 kvm_queue_exception(vcpu
, DB_VECTOR
);
3906 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
3907 kvm_queue_exception(vcpu
, BP_VECTOR
);
3915 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3916 * we have asm/x86/processor.h
3927 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3928 #ifdef CONFIG_X86_64
3929 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3931 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3936 * Translate a guest virtual address to a guest physical address.
3938 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
3939 struct kvm_translation
*tr
)
3941 unsigned long vaddr
= tr
->linear_address
;
3945 down_read(&vcpu
->kvm
->slots_lock
);
3946 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
3947 up_read(&vcpu
->kvm
->slots_lock
);
3948 tr
->physical_address
= gpa
;
3949 tr
->valid
= gpa
!= UNMAPPED_GVA
;
3957 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3959 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3963 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
3964 fpu
->fcw
= fxsave
->cwd
;
3965 fpu
->fsw
= fxsave
->swd
;
3966 fpu
->ftwx
= fxsave
->twd
;
3967 fpu
->last_opcode
= fxsave
->fop
;
3968 fpu
->last_ip
= fxsave
->rip
;
3969 fpu
->last_dp
= fxsave
->rdp
;
3970 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
3977 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
3979 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
3983 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
3984 fxsave
->cwd
= fpu
->fcw
;
3985 fxsave
->swd
= fpu
->fsw
;
3986 fxsave
->twd
= fpu
->ftwx
;
3987 fxsave
->fop
= fpu
->last_opcode
;
3988 fxsave
->rip
= fpu
->last_ip
;
3989 fxsave
->rdp
= fpu
->last_dp
;
3990 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
3997 void fx_init(struct kvm_vcpu
*vcpu
)
3999 unsigned after_mxcsr_mask
;
4002 * Touch the fpu the first time in non atomic context as if
4003 * this is the first fpu instruction the exception handler
4004 * will fire before the instruction returns and it'll have to
4005 * allocate ram with GFP_KERNEL.
4008 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4010 /* Initialize guest FPU by resetting ours and saving into guest's */
4012 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4014 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4015 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4018 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4019 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4020 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4021 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4022 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4024 EXPORT_SYMBOL_GPL(fx_init
);
4026 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4028 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4031 vcpu
->guest_fpu_loaded
= 1;
4032 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4033 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4035 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4037 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4039 if (!vcpu
->guest_fpu_loaded
)
4042 vcpu
->guest_fpu_loaded
= 0;
4043 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4044 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4045 ++vcpu
->stat
.fpu_reload
;
4047 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4049 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4051 kvm_x86_ops
->vcpu_free(vcpu
);
4054 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4057 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4060 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4064 /* We do fxsave: this must be aligned. */
4065 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4067 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4069 r
= kvm_arch_vcpu_reset(vcpu
);
4071 r
= kvm_mmu_setup(vcpu
);
4078 kvm_x86_ops
->vcpu_free(vcpu
);
4082 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4085 kvm_mmu_unload(vcpu
);
4088 kvm_x86_ops
->vcpu_free(vcpu
);
4091 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4093 vcpu
->arch
.nmi_pending
= false;
4094 vcpu
->arch
.nmi_injected
= false;
4096 vcpu
->arch
.switch_db_regs
= 0;
4097 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4098 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4099 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4101 return kvm_x86_ops
->vcpu_reset(vcpu
);
4104 void kvm_arch_hardware_enable(void *garbage
)
4106 kvm_x86_ops
->hardware_enable(garbage
);
4109 void kvm_arch_hardware_disable(void *garbage
)
4111 kvm_x86_ops
->hardware_disable(garbage
);
4114 int kvm_arch_hardware_setup(void)
4116 return kvm_x86_ops
->hardware_setup();
4119 void kvm_arch_hardware_unsetup(void)
4121 kvm_x86_ops
->hardware_unsetup();
4124 void kvm_arch_check_processor_compat(void *rtn
)
4126 kvm_x86_ops
->check_processor_compatibility(rtn
);
4129 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4135 BUG_ON(vcpu
->kvm
== NULL
);
4138 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4139 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
4140 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4142 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4144 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4149 vcpu
->arch
.pio_data
= page_address(page
);
4151 r
= kvm_mmu_create(vcpu
);
4153 goto fail_free_pio_data
;
4155 if (irqchip_in_kernel(kvm
)) {
4156 r
= kvm_create_lapic(vcpu
);
4158 goto fail_mmu_destroy
;
4164 kvm_mmu_destroy(vcpu
);
4166 free_page((unsigned long)vcpu
->arch
.pio_data
);
4171 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4173 kvm_free_lapic(vcpu
);
4174 down_read(&vcpu
->kvm
->slots_lock
);
4175 kvm_mmu_destroy(vcpu
);
4176 up_read(&vcpu
->kvm
->slots_lock
);
4177 free_page((unsigned long)vcpu
->arch
.pio_data
);
4180 struct kvm
*kvm_arch_create_vm(void)
4182 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4185 return ERR_PTR(-ENOMEM
);
4187 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4188 INIT_LIST_HEAD(&kvm
->arch
.oos_global_pages
);
4189 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4191 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4192 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4194 rdtscll(kvm
->arch
.vm_init_tsc
);
4199 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4202 kvm_mmu_unload(vcpu
);
4206 static void kvm_free_vcpus(struct kvm
*kvm
)
4211 * Unpin any mmu pages first.
4213 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
4215 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
4216 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
4217 if (kvm
->vcpus
[i
]) {
4218 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
4219 kvm
->vcpus
[i
] = NULL
;
4225 void kvm_arch_sync_events(struct kvm
*kvm
)
4227 kvm_free_all_assigned_devices(kvm
);
4230 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4232 kvm_iommu_unmap_guest(kvm
);
4234 kfree(kvm
->arch
.vpic
);
4235 kfree(kvm
->arch
.vioapic
);
4236 kvm_free_vcpus(kvm
);
4237 kvm_free_physmem(kvm
);
4238 if (kvm
->arch
.apic_access_page
)
4239 put_page(kvm
->arch
.apic_access_page
);
4240 if (kvm
->arch
.ept_identity_pagetable
)
4241 put_page(kvm
->arch
.ept_identity_pagetable
);
4245 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4246 struct kvm_userspace_memory_region
*mem
,
4247 struct kvm_memory_slot old
,
4250 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4251 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4253 /*To keep backward compatibility with older userspace,
4254 *x86 needs to hanlde !user_alloc case.
4257 if (npages
&& !old
.rmap
) {
4258 unsigned long userspace_addr
;
4260 down_write(¤t
->mm
->mmap_sem
);
4261 userspace_addr
= do_mmap(NULL
, 0,
4263 PROT_READ
| PROT_WRITE
,
4264 MAP_PRIVATE
| MAP_ANONYMOUS
,
4266 up_write(¤t
->mm
->mmap_sem
);
4268 if (IS_ERR((void *)userspace_addr
))
4269 return PTR_ERR((void *)userspace_addr
);
4271 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4272 spin_lock(&kvm
->mmu_lock
);
4273 memslot
->userspace_addr
= userspace_addr
;
4274 spin_unlock(&kvm
->mmu_lock
);
4276 if (!old
.user_alloc
&& old
.rmap
) {
4279 down_write(¤t
->mm
->mmap_sem
);
4280 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4281 old
.npages
* PAGE_SIZE
);
4282 up_write(¤t
->mm
->mmap_sem
);
4285 "kvm_vm_ioctl_set_memory_region: "
4286 "failed to munmap memory\n");
4291 if (!kvm
->arch
.n_requested_mmu_pages
) {
4292 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4293 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4296 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4297 kvm_flush_remote_tlbs(kvm
);
4302 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4304 kvm_mmu_zap_all(kvm
);
4307 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4309 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4310 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4311 || vcpu
->arch
.nmi_pending
;
4314 static void vcpu_kick_intr(void *info
)
4317 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
4318 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
4322 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4324 int ipi_pcpu
= vcpu
->cpu
;
4325 int cpu
= get_cpu();
4327 if (waitqueue_active(&vcpu
->wq
)) {
4328 wake_up_interruptible(&vcpu
->wq
);
4329 ++vcpu
->stat
.halt_wakeup
;
4332 * We may be called synchronously with irqs disabled in guest mode,
4333 * So need not to call smp_call_function_single() in that case.
4335 if (vcpu
->guest_mode
&& vcpu
->cpu
!= cpu
)
4336 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0);