HID: usbhid, use usb_endpoint_xfer_int
[linux-2.6/verdex.git] / drivers / ata / libata-core.c
blobfecca4223f8ee92adfe4e4824ef6114def00baa2
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
66 #include "libata.h"
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
98 struct workqueue_struct *ata_aux_wq;
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 MODULE_AUTHOR("Jeff Garzik");
161 MODULE_DESCRIPTION("Library module for ATA devices");
162 MODULE_LICENSE("GPL");
163 MODULE_VERSION(DRV_VERSION);
167 * ata_link_next - link iteration helper
168 * @link: the previous link, NULL to start
169 * @ap: ATA port containing links to iterate
170 * @mode: iteration mode, one of ATA_LITER_*
172 * LOCKING:
173 * Host lock or EH context.
175 * RETURNS:
176 * Pointer to the next link.
178 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
179 enum ata_link_iter_mode mode)
181 BUG_ON(mode != ATA_LITER_EDGE &&
182 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
184 /* NULL link indicates start of iteration */
185 if (!link)
186 switch (mode) {
187 case ATA_LITER_EDGE:
188 case ATA_LITER_PMP_FIRST:
189 if (sata_pmp_attached(ap))
190 return ap->pmp_link;
191 /* fall through */
192 case ATA_LITER_HOST_FIRST:
193 return &ap->link;
196 /* we just iterated over the host link, what's next? */
197 if (link == &ap->link)
198 switch (mode) {
199 case ATA_LITER_HOST_FIRST:
200 if (sata_pmp_attached(ap))
201 return ap->pmp_link;
202 /* fall through */
203 case ATA_LITER_PMP_FIRST:
204 if (unlikely(ap->slave_link))
205 return ap->slave_link;
206 /* fall through */
207 case ATA_LITER_EDGE:
208 return NULL;
211 /* slave_link excludes PMP */
212 if (unlikely(link == ap->slave_link))
213 return NULL;
215 /* we were over a PMP link */
216 if (++link < ap->pmp_link + ap->nr_pmp_links)
217 return link;
219 if (mode == ATA_LITER_PMP_FIRST)
220 return &ap->link;
222 return NULL;
226 * ata_dev_next - device iteration helper
227 * @dev: the previous device, NULL to start
228 * @link: ATA link containing devices to iterate
229 * @mode: iteration mode, one of ATA_DITER_*
231 * LOCKING:
232 * Host lock or EH context.
234 * RETURNS:
235 * Pointer to the next device.
237 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
238 enum ata_dev_iter_mode mode)
240 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
241 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
243 /* NULL dev indicates start of iteration */
244 if (!dev)
245 switch (mode) {
246 case ATA_DITER_ENABLED:
247 case ATA_DITER_ALL:
248 dev = link->device;
249 goto check;
250 case ATA_DITER_ENABLED_REVERSE:
251 case ATA_DITER_ALL_REVERSE:
252 dev = link->device + ata_link_max_devices(link) - 1;
253 goto check;
256 next:
257 /* move to the next one */
258 switch (mode) {
259 case ATA_DITER_ENABLED:
260 case ATA_DITER_ALL:
261 if (++dev < link->device + ata_link_max_devices(link))
262 goto check;
263 return NULL;
264 case ATA_DITER_ENABLED_REVERSE:
265 case ATA_DITER_ALL_REVERSE:
266 if (--dev >= link->device)
267 goto check;
268 return NULL;
271 check:
272 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
273 !ata_dev_enabled(dev))
274 goto next;
275 return dev;
279 * ata_dev_phys_link - find physical link for a device
280 * @dev: ATA device to look up physical link for
282 * Look up physical link which @dev is attached to. Note that
283 * this is different from @dev->link only when @dev is on slave
284 * link. For all other cases, it's the same as @dev->link.
286 * LOCKING:
287 * Don't care.
289 * RETURNS:
290 * Pointer to the found physical link.
292 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
294 struct ata_port *ap = dev->link->ap;
296 if (!ap->slave_link)
297 return dev->link;
298 if (!dev->devno)
299 return &ap->link;
300 return ap->slave_link;
304 * ata_force_cbl - force cable type according to libata.force
305 * @ap: ATA port of interest
307 * Force cable type according to libata.force and whine about it.
308 * The last entry which has matching port number is used, so it
309 * can be specified as part of device force parameters. For
310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311 * same effect.
313 * LOCKING:
314 * EH context.
316 void ata_force_cbl(struct ata_port *ap)
318 int i;
320 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 const struct ata_force_ent *fe = &ata_force_tbl[i];
323 if (fe->port != -1 && fe->port != ap->print_id)
324 continue;
326 if (fe->param.cbl == ATA_CBL_NONE)
327 continue;
329 ap->cbl = fe->param.cbl;
330 ata_port_printk(ap, KERN_NOTICE,
331 "FORCE: cable set to %s\n", fe->param.name);
332 return;
337 * ata_force_link_limits - force link limits according to libata.force
338 * @link: ATA link of interest
340 * Force link flags and SATA spd limit according to libata.force
341 * and whine about it. When only the port part is specified
342 * (e.g. 1:), the limit applies to all links connected to both
343 * the host link and all fan-out ports connected via PMP. If the
344 * device part is specified as 0 (e.g. 1.00:), it specifies the
345 * first fan-out link not the host link. Device number 15 always
346 * points to the host link whether PMP is attached or not. If the
347 * controller has slave link, device number 16 points to it.
349 * LOCKING:
350 * EH context.
352 static void ata_force_link_limits(struct ata_link *link)
354 bool did_spd = false;
355 int linkno = link->pmp;
356 int i;
358 if (ata_is_host_link(link))
359 linkno += 15;
361 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
362 const struct ata_force_ent *fe = &ata_force_tbl[i];
364 if (fe->port != -1 && fe->port != link->ap->print_id)
365 continue;
367 if (fe->device != -1 && fe->device != linkno)
368 continue;
370 /* only honor the first spd limit */
371 if (!did_spd && fe->param.spd_limit) {
372 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
373 ata_link_printk(link, KERN_NOTICE,
374 "FORCE: PHY spd limit set to %s\n",
375 fe->param.name);
376 did_spd = true;
379 /* let lflags stack */
380 if (fe->param.lflags) {
381 link->flags |= fe->param.lflags;
382 ata_link_printk(link, KERN_NOTICE,
383 "FORCE: link flag 0x%x forced -> 0x%x\n",
384 fe->param.lflags, link->flags);
390 * ata_force_xfermask - force xfermask according to libata.force
391 * @dev: ATA device of interest
393 * Force xfer_mask according to libata.force and whine about it.
394 * For consistency with link selection, device number 15 selects
395 * the first device connected to the host link.
397 * LOCKING:
398 * EH context.
400 static void ata_force_xfermask(struct ata_device *dev)
402 int devno = dev->link->pmp + dev->devno;
403 int alt_devno = devno;
404 int i;
406 /* allow n.15/16 for devices attached to host port */
407 if (ata_is_host_link(dev->link))
408 alt_devno += 15;
410 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
411 const struct ata_force_ent *fe = &ata_force_tbl[i];
412 unsigned long pio_mask, mwdma_mask, udma_mask;
414 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
415 continue;
417 if (fe->device != -1 && fe->device != devno &&
418 fe->device != alt_devno)
419 continue;
421 if (!fe->param.xfer_mask)
422 continue;
424 ata_unpack_xfermask(fe->param.xfer_mask,
425 &pio_mask, &mwdma_mask, &udma_mask);
426 if (udma_mask)
427 dev->udma_mask = udma_mask;
428 else if (mwdma_mask) {
429 dev->udma_mask = 0;
430 dev->mwdma_mask = mwdma_mask;
431 } else {
432 dev->udma_mask = 0;
433 dev->mwdma_mask = 0;
434 dev->pio_mask = pio_mask;
437 ata_dev_printk(dev, KERN_NOTICE,
438 "FORCE: xfer_mask set to %s\n", fe->param.name);
439 return;
444 * ata_force_horkage - force horkage according to libata.force
445 * @dev: ATA device of interest
447 * Force horkage according to libata.force and whine about it.
448 * For consistency with link selection, device number 15 selects
449 * the first device connected to the host link.
451 * LOCKING:
452 * EH context.
454 static void ata_force_horkage(struct ata_device *dev)
456 int devno = dev->link->pmp + dev->devno;
457 int alt_devno = devno;
458 int i;
460 /* allow n.15/16 for devices attached to host port */
461 if (ata_is_host_link(dev->link))
462 alt_devno += 15;
464 for (i = 0; i < ata_force_tbl_size; i++) {
465 const struct ata_force_ent *fe = &ata_force_tbl[i];
467 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
468 continue;
470 if (fe->device != -1 && fe->device != devno &&
471 fe->device != alt_devno)
472 continue;
474 if (!(~dev->horkage & fe->param.horkage_on) &&
475 !(dev->horkage & fe->param.horkage_off))
476 continue;
478 dev->horkage |= fe->param.horkage_on;
479 dev->horkage &= ~fe->param.horkage_off;
481 ata_dev_printk(dev, KERN_NOTICE,
482 "FORCE: horkage modified (%s)\n", fe->param.name);
487 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
488 * @opcode: SCSI opcode
490 * Determine ATAPI command type from @opcode.
492 * LOCKING:
493 * None.
495 * RETURNS:
496 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
498 int atapi_cmd_type(u8 opcode)
500 switch (opcode) {
501 case GPCMD_READ_10:
502 case GPCMD_READ_12:
503 return ATAPI_READ;
505 case GPCMD_WRITE_10:
506 case GPCMD_WRITE_12:
507 case GPCMD_WRITE_AND_VERIFY_10:
508 return ATAPI_WRITE;
510 case GPCMD_READ_CD:
511 case GPCMD_READ_CD_MSF:
512 return ATAPI_READ_CD;
514 case ATA_16:
515 case ATA_12:
516 if (atapi_passthru16)
517 return ATAPI_PASS_THRU;
518 /* fall thru */
519 default:
520 return ATAPI_MISC;
525 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
526 * @tf: Taskfile to convert
527 * @pmp: Port multiplier port
528 * @is_cmd: This FIS is for command
529 * @fis: Buffer into which data will output
531 * Converts a standard ATA taskfile to a Serial ATA
532 * FIS structure (Register - Host to Device).
534 * LOCKING:
535 * Inherited from caller.
537 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
539 fis[0] = 0x27; /* Register - Host to Device FIS */
540 fis[1] = pmp & 0xf; /* Port multiplier number*/
541 if (is_cmd)
542 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
544 fis[2] = tf->command;
545 fis[3] = tf->feature;
547 fis[4] = tf->lbal;
548 fis[5] = tf->lbam;
549 fis[6] = tf->lbah;
550 fis[7] = tf->device;
552 fis[8] = tf->hob_lbal;
553 fis[9] = tf->hob_lbam;
554 fis[10] = tf->hob_lbah;
555 fis[11] = tf->hob_feature;
557 fis[12] = tf->nsect;
558 fis[13] = tf->hob_nsect;
559 fis[14] = 0;
560 fis[15] = tf->ctl;
562 fis[16] = 0;
563 fis[17] = 0;
564 fis[18] = 0;
565 fis[19] = 0;
569 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
570 * @fis: Buffer from which data will be input
571 * @tf: Taskfile to output
573 * Converts a serial ATA FIS structure to a standard ATA taskfile.
575 * LOCKING:
576 * Inherited from caller.
579 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
581 tf->command = fis[2]; /* status */
582 tf->feature = fis[3]; /* error */
584 tf->lbal = fis[4];
585 tf->lbam = fis[5];
586 tf->lbah = fis[6];
587 tf->device = fis[7];
589 tf->hob_lbal = fis[8];
590 tf->hob_lbam = fis[9];
591 tf->hob_lbah = fis[10];
593 tf->nsect = fis[12];
594 tf->hob_nsect = fis[13];
597 static const u8 ata_rw_cmds[] = {
598 /* pio multi */
599 ATA_CMD_READ_MULTI,
600 ATA_CMD_WRITE_MULTI,
601 ATA_CMD_READ_MULTI_EXT,
602 ATA_CMD_WRITE_MULTI_EXT,
606 ATA_CMD_WRITE_MULTI_FUA_EXT,
607 /* pio */
608 ATA_CMD_PIO_READ,
609 ATA_CMD_PIO_WRITE,
610 ATA_CMD_PIO_READ_EXT,
611 ATA_CMD_PIO_WRITE_EXT,
616 /* dma */
617 ATA_CMD_READ,
618 ATA_CMD_WRITE,
619 ATA_CMD_READ_EXT,
620 ATA_CMD_WRITE_EXT,
624 ATA_CMD_WRITE_FUA_EXT
628 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
629 * @tf: command to examine and configure
630 * @dev: device tf belongs to
632 * Examine the device configuration and tf->flags to calculate
633 * the proper read/write commands and protocol to use.
635 * LOCKING:
636 * caller.
638 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
640 u8 cmd;
642 int index, fua, lba48, write;
644 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
645 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
646 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
648 if (dev->flags & ATA_DFLAG_PIO) {
649 tf->protocol = ATA_PROT_PIO;
650 index = dev->multi_count ? 0 : 8;
651 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
652 /* Unable to use DMA due to host limitation */
653 tf->protocol = ATA_PROT_PIO;
654 index = dev->multi_count ? 0 : 8;
655 } else {
656 tf->protocol = ATA_PROT_DMA;
657 index = 16;
660 cmd = ata_rw_cmds[index + fua + lba48 + write];
661 if (cmd) {
662 tf->command = cmd;
663 return 0;
665 return -1;
669 * ata_tf_read_block - Read block address from ATA taskfile
670 * @tf: ATA taskfile of interest
671 * @dev: ATA device @tf belongs to
673 * LOCKING:
674 * None.
676 * Read block address from @tf. This function can handle all
677 * three address formats - LBA, LBA48 and CHS. tf->protocol and
678 * flags select the address format to use.
680 * RETURNS:
681 * Block address read from @tf.
683 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
685 u64 block = 0;
687 if (tf->flags & ATA_TFLAG_LBA) {
688 if (tf->flags & ATA_TFLAG_LBA48) {
689 block |= (u64)tf->hob_lbah << 40;
690 block |= (u64)tf->hob_lbam << 32;
691 block |= (u64)tf->hob_lbal << 24;
692 } else
693 block |= (tf->device & 0xf) << 24;
695 block |= tf->lbah << 16;
696 block |= tf->lbam << 8;
697 block |= tf->lbal;
698 } else {
699 u32 cyl, head, sect;
701 cyl = tf->lbam | (tf->lbah << 8);
702 head = tf->device & 0xf;
703 sect = tf->lbal;
705 block = (cyl * dev->heads + head) * dev->sectors + sect;
708 return block;
712 * ata_build_rw_tf - Build ATA taskfile for given read/write request
713 * @tf: Target ATA taskfile
714 * @dev: ATA device @tf belongs to
715 * @block: Block address
716 * @n_block: Number of blocks
717 * @tf_flags: RW/FUA etc...
718 * @tag: tag
720 * LOCKING:
721 * None.
723 * Build ATA taskfile @tf for read/write request described by
724 * @block, @n_block, @tf_flags and @tag on @dev.
726 * RETURNS:
728 * 0 on success, -ERANGE if the request is too large for @dev,
729 * -EINVAL if the request is invalid.
731 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
732 u64 block, u32 n_block, unsigned int tf_flags,
733 unsigned int tag)
735 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
736 tf->flags |= tf_flags;
738 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
739 /* yay, NCQ */
740 if (!lba_48_ok(block, n_block))
741 return -ERANGE;
743 tf->protocol = ATA_PROT_NCQ;
744 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
746 if (tf->flags & ATA_TFLAG_WRITE)
747 tf->command = ATA_CMD_FPDMA_WRITE;
748 else
749 tf->command = ATA_CMD_FPDMA_READ;
751 tf->nsect = tag << 3;
752 tf->hob_feature = (n_block >> 8) & 0xff;
753 tf->feature = n_block & 0xff;
755 tf->hob_lbah = (block >> 40) & 0xff;
756 tf->hob_lbam = (block >> 32) & 0xff;
757 tf->hob_lbal = (block >> 24) & 0xff;
758 tf->lbah = (block >> 16) & 0xff;
759 tf->lbam = (block >> 8) & 0xff;
760 tf->lbal = block & 0xff;
762 tf->device = 1 << 6;
763 if (tf->flags & ATA_TFLAG_FUA)
764 tf->device |= 1 << 7;
765 } else if (dev->flags & ATA_DFLAG_LBA) {
766 tf->flags |= ATA_TFLAG_LBA;
768 if (lba_28_ok(block, n_block)) {
769 /* use LBA28 */
770 tf->device |= (block >> 24) & 0xf;
771 } else if (lba_48_ok(block, n_block)) {
772 if (!(dev->flags & ATA_DFLAG_LBA48))
773 return -ERANGE;
775 /* use LBA48 */
776 tf->flags |= ATA_TFLAG_LBA48;
778 tf->hob_nsect = (n_block >> 8) & 0xff;
780 tf->hob_lbah = (block >> 40) & 0xff;
781 tf->hob_lbam = (block >> 32) & 0xff;
782 tf->hob_lbal = (block >> 24) & 0xff;
783 } else
784 /* request too large even for LBA48 */
785 return -ERANGE;
787 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
788 return -EINVAL;
790 tf->nsect = n_block & 0xff;
792 tf->lbah = (block >> 16) & 0xff;
793 tf->lbam = (block >> 8) & 0xff;
794 tf->lbal = block & 0xff;
796 tf->device |= ATA_LBA;
797 } else {
798 /* CHS */
799 u32 sect, head, cyl, track;
801 /* The request -may- be too large for CHS addressing. */
802 if (!lba_28_ok(block, n_block))
803 return -ERANGE;
805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
806 return -EINVAL;
808 /* Convert LBA to CHS */
809 track = (u32)block / dev->sectors;
810 cyl = track / dev->heads;
811 head = track % dev->heads;
812 sect = (u32)block % dev->sectors + 1;
814 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
815 (u32)block, track, cyl, head, sect);
817 /* Check whether the converted CHS can fit.
818 Cylinder: 0-65535
819 Head: 0-15
820 Sector: 1-255*/
821 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
822 return -ERANGE;
824 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
825 tf->lbal = sect;
826 tf->lbam = cyl;
827 tf->lbah = cyl >> 8;
828 tf->device |= head;
831 return 0;
835 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
836 * @pio_mask: pio_mask
837 * @mwdma_mask: mwdma_mask
838 * @udma_mask: udma_mask
840 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
841 * unsigned int xfer_mask.
843 * LOCKING:
844 * None.
846 * RETURNS:
847 * Packed xfer_mask.
849 unsigned long ata_pack_xfermask(unsigned long pio_mask,
850 unsigned long mwdma_mask,
851 unsigned long udma_mask)
853 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
854 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
855 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
859 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
860 * @xfer_mask: xfer_mask to unpack
861 * @pio_mask: resulting pio_mask
862 * @mwdma_mask: resulting mwdma_mask
863 * @udma_mask: resulting udma_mask
865 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
866 * Any NULL distination masks will be ignored.
868 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
869 unsigned long *mwdma_mask, unsigned long *udma_mask)
871 if (pio_mask)
872 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
873 if (mwdma_mask)
874 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
875 if (udma_mask)
876 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
879 static const struct ata_xfer_ent {
880 int shift, bits;
881 u8 base;
882 } ata_xfer_tbl[] = {
883 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
884 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
885 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
886 { -1, },
890 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
891 * @xfer_mask: xfer_mask of interest
893 * Return matching XFER_* value for @xfer_mask. Only the highest
894 * bit of @xfer_mask is considered.
896 * LOCKING:
897 * None.
899 * RETURNS:
900 * Matching XFER_* value, 0xff if no match found.
902 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
904 int highbit = fls(xfer_mask) - 1;
905 const struct ata_xfer_ent *ent;
907 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
908 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
909 return ent->base + highbit - ent->shift;
910 return 0xff;
914 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
915 * @xfer_mode: XFER_* of interest
917 * Return matching xfer_mask for @xfer_mode.
919 * LOCKING:
920 * None.
922 * RETURNS:
923 * Matching xfer_mask, 0 if no match found.
925 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
927 const struct ata_xfer_ent *ent;
929 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
930 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
931 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
932 & ~((1 << ent->shift) - 1);
933 return 0;
937 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
938 * @xfer_mode: XFER_* of interest
940 * Return matching xfer_shift for @xfer_mode.
942 * LOCKING:
943 * None.
945 * RETURNS:
946 * Matching xfer_shift, -1 if no match found.
948 int ata_xfer_mode2shift(unsigned long xfer_mode)
950 const struct ata_xfer_ent *ent;
952 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
953 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
954 return ent->shift;
955 return -1;
959 * ata_mode_string - convert xfer_mask to string
960 * @xfer_mask: mask of bits supported; only highest bit counts.
962 * Determine string which represents the highest speed
963 * (highest bit in @modemask).
965 * LOCKING:
966 * None.
968 * RETURNS:
969 * Constant C string representing highest speed listed in
970 * @mode_mask, or the constant C string "<n/a>".
972 const char *ata_mode_string(unsigned long xfer_mask)
974 static const char * const xfer_mode_str[] = {
975 "PIO0",
976 "PIO1",
977 "PIO2",
978 "PIO3",
979 "PIO4",
980 "PIO5",
981 "PIO6",
982 "MWDMA0",
983 "MWDMA1",
984 "MWDMA2",
985 "MWDMA3",
986 "MWDMA4",
987 "UDMA/16",
988 "UDMA/25",
989 "UDMA/33",
990 "UDMA/44",
991 "UDMA/66",
992 "UDMA/100",
993 "UDMA/133",
994 "UDMA7",
996 int highbit;
998 highbit = fls(xfer_mask) - 1;
999 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1000 return xfer_mode_str[highbit];
1001 return "<n/a>";
1004 static const char *sata_spd_string(unsigned int spd)
1006 static const char * const spd_str[] = {
1007 "1.5 Gbps",
1008 "3.0 Gbps",
1011 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1012 return "<unknown>";
1013 return spd_str[spd - 1];
1016 void ata_dev_disable(struct ata_device *dev)
1018 if (ata_dev_enabled(dev)) {
1019 if (ata_msg_drv(dev->link->ap))
1020 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
1021 ata_acpi_on_disable(dev);
1022 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
1023 ATA_DNXFER_QUIET);
1024 dev->class++;
1028 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1030 struct ata_link *link = dev->link;
1031 struct ata_port *ap = link->ap;
1032 u32 scontrol;
1033 unsigned int err_mask;
1034 int rc;
1037 * disallow DIPM for drivers which haven't set
1038 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1039 * phy ready will be set in the interrupt status on
1040 * state changes, which will cause some drivers to
1041 * think there are errors - additionally drivers will
1042 * need to disable hot plug.
1044 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1045 ap->pm_policy = NOT_AVAILABLE;
1046 return -EINVAL;
1050 * For DIPM, we will only enable it for the
1051 * min_power setting.
1053 * Why? Because Disks are too stupid to know that
1054 * If the host rejects a request to go to SLUMBER
1055 * they should retry at PARTIAL, and instead it
1056 * just would give up. So, for medium_power to
1057 * work at all, we need to only allow HIPM.
1059 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1060 if (rc)
1061 return rc;
1063 switch (policy) {
1064 case MIN_POWER:
1065 /* no restrictions on IPM transitions */
1066 scontrol &= ~(0x3 << 8);
1067 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1068 if (rc)
1069 return rc;
1071 /* enable DIPM */
1072 if (dev->flags & ATA_DFLAG_DIPM)
1073 err_mask = ata_dev_set_feature(dev,
1074 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1075 break;
1076 case MEDIUM_POWER:
1077 /* allow IPM to PARTIAL */
1078 scontrol &= ~(0x1 << 8);
1079 scontrol |= (0x2 << 8);
1080 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1081 if (rc)
1082 return rc;
1085 * we don't have to disable DIPM since IPM flags
1086 * disallow transitions to SLUMBER, which effectively
1087 * disable DIPM if it does not support PARTIAL
1089 break;
1090 case NOT_AVAILABLE:
1091 case MAX_PERFORMANCE:
1092 /* disable all IPM transitions */
1093 scontrol |= (0x3 << 8);
1094 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1095 if (rc)
1096 return rc;
1099 * we don't have to disable DIPM since IPM flags
1100 * disallow all transitions which effectively
1101 * disable DIPM anyway.
1103 break;
1106 /* FIXME: handle SET FEATURES failure */
1107 (void) err_mask;
1109 return 0;
1113 * ata_dev_enable_pm - enable SATA interface power management
1114 * @dev: device to enable power management
1115 * @policy: the link power management policy
1117 * Enable SATA Interface power management. This will enable
1118 * Device Interface Power Management (DIPM) for min_power
1119 * policy, and then call driver specific callbacks for
1120 * enabling Host Initiated Power management.
1122 * Locking: Caller.
1123 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1125 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1127 int rc = 0;
1128 struct ata_port *ap = dev->link->ap;
1130 /* set HIPM first, then DIPM */
1131 if (ap->ops->enable_pm)
1132 rc = ap->ops->enable_pm(ap, policy);
1133 if (rc)
1134 goto enable_pm_out;
1135 rc = ata_dev_set_dipm(dev, policy);
1137 enable_pm_out:
1138 if (rc)
1139 ap->pm_policy = MAX_PERFORMANCE;
1140 else
1141 ap->pm_policy = policy;
1142 return /* rc */; /* hopefully we can use 'rc' eventually */
1145 #ifdef CONFIG_PM
1147 * ata_dev_disable_pm - disable SATA interface power management
1148 * @dev: device to disable power management
1150 * Disable SATA Interface power management. This will disable
1151 * Device Interface Power Management (DIPM) without changing
1152 * policy, call driver specific callbacks for disabling Host
1153 * Initiated Power management.
1155 * Locking: Caller.
1156 * Returns: void
1158 static void ata_dev_disable_pm(struct ata_device *dev)
1160 struct ata_port *ap = dev->link->ap;
1162 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1163 if (ap->ops->disable_pm)
1164 ap->ops->disable_pm(ap);
1166 #endif /* CONFIG_PM */
1168 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1170 ap->pm_policy = policy;
1171 ap->link.eh_info.action |= ATA_EH_LPM;
1172 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1173 ata_port_schedule_eh(ap);
1176 #ifdef CONFIG_PM
1177 static void ata_lpm_enable(struct ata_host *host)
1179 struct ata_link *link;
1180 struct ata_port *ap;
1181 struct ata_device *dev;
1182 int i;
1184 for (i = 0; i < host->n_ports; i++) {
1185 ap = host->ports[i];
1186 ata_for_each_link(link, ap, EDGE) {
1187 ata_for_each_dev(dev, link, ALL)
1188 ata_dev_disable_pm(dev);
1193 static void ata_lpm_disable(struct ata_host *host)
1195 int i;
1197 for (i = 0; i < host->n_ports; i++) {
1198 struct ata_port *ap = host->ports[i];
1199 ata_lpm_schedule(ap, ap->pm_policy);
1202 #endif /* CONFIG_PM */
1205 * ata_dev_classify - determine device type based on ATA-spec signature
1206 * @tf: ATA taskfile register set for device to be identified
1208 * Determine from taskfile register contents whether a device is
1209 * ATA or ATAPI, as per "Signature and persistence" section
1210 * of ATA/PI spec (volume 1, sect 5.14).
1212 * LOCKING:
1213 * None.
1215 * RETURNS:
1216 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1217 * %ATA_DEV_UNKNOWN the event of failure.
1219 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1221 /* Apple's open source Darwin code hints that some devices only
1222 * put a proper signature into the LBA mid/high registers,
1223 * So, we only check those. It's sufficient for uniqueness.
1225 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1226 * signatures for ATA and ATAPI devices attached on SerialATA,
1227 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1228 * spec has never mentioned about using different signatures
1229 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1230 * Multiplier specification began to use 0x69/0x96 to identify
1231 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1232 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1233 * 0x69/0x96 shortly and described them as reserved for
1234 * SerialATA.
1236 * We follow the current spec and consider that 0x69/0x96
1237 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1239 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1240 DPRINTK("found ATA device by sig\n");
1241 return ATA_DEV_ATA;
1244 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1245 DPRINTK("found ATAPI device by sig\n");
1246 return ATA_DEV_ATAPI;
1249 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1250 DPRINTK("found PMP device by sig\n");
1251 return ATA_DEV_PMP;
1254 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1255 printk(KERN_INFO "ata: SEMB device ignored\n");
1256 return ATA_DEV_SEMB_UNSUP; /* not yet */
1259 DPRINTK("unknown device\n");
1260 return ATA_DEV_UNKNOWN;
1264 * ata_id_string - Convert IDENTIFY DEVICE page into string
1265 * @id: IDENTIFY DEVICE results we will examine
1266 * @s: string into which data is output
1267 * @ofs: offset into identify device page
1268 * @len: length of string to return. must be an even number.
1270 * The strings in the IDENTIFY DEVICE page are broken up into
1271 * 16-bit chunks. Run through the string, and output each
1272 * 8-bit chunk linearly, regardless of platform.
1274 * LOCKING:
1275 * caller.
1278 void ata_id_string(const u16 *id, unsigned char *s,
1279 unsigned int ofs, unsigned int len)
1281 unsigned int c;
1283 BUG_ON(len & 1);
1285 while (len > 0) {
1286 c = id[ofs] >> 8;
1287 *s = c;
1288 s++;
1290 c = id[ofs] & 0xff;
1291 *s = c;
1292 s++;
1294 ofs++;
1295 len -= 2;
1300 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1301 * @id: IDENTIFY DEVICE results we will examine
1302 * @s: string into which data is output
1303 * @ofs: offset into identify device page
1304 * @len: length of string to return. must be an odd number.
1306 * This function is identical to ata_id_string except that it
1307 * trims trailing spaces and terminates the resulting string with
1308 * null. @len must be actual maximum length (even number) + 1.
1310 * LOCKING:
1311 * caller.
1313 void ata_id_c_string(const u16 *id, unsigned char *s,
1314 unsigned int ofs, unsigned int len)
1316 unsigned char *p;
1318 ata_id_string(id, s, ofs, len - 1);
1320 p = s + strnlen(s, len - 1);
1321 while (p > s && p[-1] == ' ')
1322 p--;
1323 *p = '\0';
1326 static u64 ata_id_n_sectors(const u16 *id)
1328 if (ata_id_has_lba(id)) {
1329 if (ata_id_has_lba48(id))
1330 return ata_id_u64(id, 100);
1331 else
1332 return ata_id_u32(id, 60);
1333 } else {
1334 if (ata_id_current_chs_valid(id))
1335 return ata_id_u32(id, 57);
1336 else
1337 return id[1] * id[3] * id[6];
1341 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1343 u64 sectors = 0;
1345 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1346 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1347 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1348 sectors |= (tf->lbah & 0xff) << 16;
1349 sectors |= (tf->lbam & 0xff) << 8;
1350 sectors |= (tf->lbal & 0xff);
1352 return sectors;
1355 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1357 u64 sectors = 0;
1359 sectors |= (tf->device & 0x0f) << 24;
1360 sectors |= (tf->lbah & 0xff) << 16;
1361 sectors |= (tf->lbam & 0xff) << 8;
1362 sectors |= (tf->lbal & 0xff);
1364 return sectors;
1368 * ata_read_native_max_address - Read native max address
1369 * @dev: target device
1370 * @max_sectors: out parameter for the result native max address
1372 * Perform an LBA48 or LBA28 native size query upon the device in
1373 * question.
1375 * RETURNS:
1376 * 0 on success, -EACCES if command is aborted by the drive.
1377 * -EIO on other errors.
1379 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1381 unsigned int err_mask;
1382 struct ata_taskfile tf;
1383 int lba48 = ata_id_has_lba48(dev->id);
1385 ata_tf_init(dev, &tf);
1387 /* always clear all address registers */
1388 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1390 if (lba48) {
1391 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1392 tf.flags |= ATA_TFLAG_LBA48;
1393 } else
1394 tf.command = ATA_CMD_READ_NATIVE_MAX;
1396 tf.protocol |= ATA_PROT_NODATA;
1397 tf.device |= ATA_LBA;
1399 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1400 if (err_mask) {
1401 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1402 "max address (err_mask=0x%x)\n", err_mask);
1403 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1404 return -EACCES;
1405 return -EIO;
1408 if (lba48)
1409 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1410 else
1411 *max_sectors = ata_tf_to_lba(&tf) + 1;
1412 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1413 (*max_sectors)--;
1414 return 0;
1418 * ata_set_max_sectors - Set max sectors
1419 * @dev: target device
1420 * @new_sectors: new max sectors value to set for the device
1422 * Set max sectors of @dev to @new_sectors.
1424 * RETURNS:
1425 * 0 on success, -EACCES if command is aborted or denied (due to
1426 * previous non-volatile SET_MAX) by the drive. -EIO on other
1427 * errors.
1429 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1431 unsigned int err_mask;
1432 struct ata_taskfile tf;
1433 int lba48 = ata_id_has_lba48(dev->id);
1435 new_sectors--;
1437 ata_tf_init(dev, &tf);
1439 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1441 if (lba48) {
1442 tf.command = ATA_CMD_SET_MAX_EXT;
1443 tf.flags |= ATA_TFLAG_LBA48;
1445 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1446 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1447 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1448 } else {
1449 tf.command = ATA_CMD_SET_MAX;
1451 tf.device |= (new_sectors >> 24) & 0xf;
1454 tf.protocol |= ATA_PROT_NODATA;
1455 tf.device |= ATA_LBA;
1457 tf.lbal = (new_sectors >> 0) & 0xff;
1458 tf.lbam = (new_sectors >> 8) & 0xff;
1459 tf.lbah = (new_sectors >> 16) & 0xff;
1461 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1462 if (err_mask) {
1463 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1464 "max address (err_mask=0x%x)\n", err_mask);
1465 if (err_mask == AC_ERR_DEV &&
1466 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1467 return -EACCES;
1468 return -EIO;
1471 return 0;
1475 * ata_hpa_resize - Resize a device with an HPA set
1476 * @dev: Device to resize
1478 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1479 * it if required to the full size of the media. The caller must check
1480 * the drive has the HPA feature set enabled.
1482 * RETURNS:
1483 * 0 on success, -errno on failure.
1485 static int ata_hpa_resize(struct ata_device *dev)
1487 struct ata_eh_context *ehc = &dev->link->eh_context;
1488 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1489 u64 sectors = ata_id_n_sectors(dev->id);
1490 u64 native_sectors;
1491 int rc;
1493 /* do we need to do it? */
1494 if (dev->class != ATA_DEV_ATA ||
1495 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1496 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1497 return 0;
1499 /* read native max address */
1500 rc = ata_read_native_max_address(dev, &native_sectors);
1501 if (rc) {
1502 /* If device aborted the command or HPA isn't going to
1503 * be unlocked, skip HPA resizing.
1505 if (rc == -EACCES || !ata_ignore_hpa) {
1506 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1507 "broken, skipping HPA handling\n");
1508 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1510 /* we can continue if device aborted the command */
1511 if (rc == -EACCES)
1512 rc = 0;
1515 return rc;
1518 /* nothing to do? */
1519 if (native_sectors <= sectors || !ata_ignore_hpa) {
1520 if (!print_info || native_sectors == sectors)
1521 return 0;
1523 if (native_sectors > sectors)
1524 ata_dev_printk(dev, KERN_INFO,
1525 "HPA detected: current %llu, native %llu\n",
1526 (unsigned long long)sectors,
1527 (unsigned long long)native_sectors);
1528 else if (native_sectors < sectors)
1529 ata_dev_printk(dev, KERN_WARNING,
1530 "native sectors (%llu) is smaller than "
1531 "sectors (%llu)\n",
1532 (unsigned long long)native_sectors,
1533 (unsigned long long)sectors);
1534 return 0;
1537 /* let's unlock HPA */
1538 rc = ata_set_max_sectors(dev, native_sectors);
1539 if (rc == -EACCES) {
1540 /* if device aborted the command, skip HPA resizing */
1541 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1542 "(%llu -> %llu), skipping HPA handling\n",
1543 (unsigned long long)sectors,
1544 (unsigned long long)native_sectors);
1545 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1546 return 0;
1547 } else if (rc)
1548 return rc;
1550 /* re-read IDENTIFY data */
1551 rc = ata_dev_reread_id(dev, 0);
1552 if (rc) {
1553 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1554 "data after HPA resizing\n");
1555 return rc;
1558 if (print_info) {
1559 u64 new_sectors = ata_id_n_sectors(dev->id);
1560 ata_dev_printk(dev, KERN_INFO,
1561 "HPA unlocked: %llu -> %llu, native %llu\n",
1562 (unsigned long long)sectors,
1563 (unsigned long long)new_sectors,
1564 (unsigned long long)native_sectors);
1567 return 0;
1571 * ata_dump_id - IDENTIFY DEVICE info debugging output
1572 * @id: IDENTIFY DEVICE page to dump
1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1575 * page.
1577 * LOCKING:
1578 * caller.
1581 static inline void ata_dump_id(const u16 *id)
1583 DPRINTK("49==0x%04x "
1584 "53==0x%04x "
1585 "63==0x%04x "
1586 "64==0x%04x "
1587 "75==0x%04x \n",
1588 id[49],
1589 id[53],
1590 id[63],
1591 id[64],
1592 id[75]);
1593 DPRINTK("80==0x%04x "
1594 "81==0x%04x "
1595 "82==0x%04x "
1596 "83==0x%04x "
1597 "84==0x%04x \n",
1598 id[80],
1599 id[81],
1600 id[82],
1601 id[83],
1602 id[84]);
1603 DPRINTK("88==0x%04x "
1604 "93==0x%04x\n",
1605 id[88],
1606 id[93]);
1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1611 * @id: IDENTIFY data to compute xfer mask from
1613 * Compute the xfermask for this device. This is not as trivial
1614 * as it seems if we must consider early devices correctly.
1616 * FIXME: pre IDE drive timing (do we care ?).
1618 * LOCKING:
1619 * None.
1621 * RETURNS:
1622 * Computed xfermask
1624 unsigned long ata_id_xfermask(const u16 *id)
1626 unsigned long pio_mask, mwdma_mask, udma_mask;
1628 /* Usual case. Word 53 indicates word 64 is valid */
1629 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1630 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1631 pio_mask <<= 3;
1632 pio_mask |= 0x7;
1633 } else {
1634 /* If word 64 isn't valid then Word 51 high byte holds
1635 * the PIO timing number for the maximum. Turn it into
1636 * a mask.
1638 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1639 if (mode < 5) /* Valid PIO range */
1640 pio_mask = (2 << mode) - 1;
1641 else
1642 pio_mask = 1;
1644 /* But wait.. there's more. Design your standards by
1645 * committee and you too can get a free iordy field to
1646 * process. However its the speeds not the modes that
1647 * are supported... Note drivers using the timing API
1648 * will get this right anyway
1652 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1654 if (ata_id_is_cfa(id)) {
1656 * Process compact flash extended modes
1658 int pio = id[163] & 0x7;
1659 int dma = (id[163] >> 3) & 7;
1661 if (pio)
1662 pio_mask |= (1 << 5);
1663 if (pio > 1)
1664 pio_mask |= (1 << 6);
1665 if (dma)
1666 mwdma_mask |= (1 << 3);
1667 if (dma > 1)
1668 mwdma_mask |= (1 << 4);
1671 udma_mask = 0;
1672 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1673 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1675 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1679 * ata_pio_queue_task - Queue port_task
1680 * @ap: The ata_port to queue port_task for
1681 * @data: data for @fn to use
1682 * @delay: delay time in msecs for workqueue function
1684 * Schedule @fn(@data) for execution after @delay jiffies using
1685 * port_task. There is one port_task per port and it's the
1686 * user(low level driver)'s responsibility to make sure that only
1687 * one task is active at any given time.
1689 * libata core layer takes care of synchronization between
1690 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1691 * synchronization.
1693 * LOCKING:
1694 * Inherited from caller.
1696 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1698 ap->port_task_data = data;
1700 /* may fail if ata_port_flush_task() in progress */
1701 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1705 * ata_port_flush_task - Flush port_task
1706 * @ap: The ata_port to flush port_task for
1708 * After this function completes, port_task is guranteed not to
1709 * be running or scheduled.
1711 * LOCKING:
1712 * Kernel thread context (may sleep)
1714 void ata_port_flush_task(struct ata_port *ap)
1716 DPRINTK("ENTER\n");
1718 cancel_rearming_delayed_work(&ap->port_task);
1720 if (ata_msg_ctl(ap))
1721 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1724 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1726 struct completion *waiting = qc->private_data;
1728 complete(waiting);
1732 * ata_exec_internal_sg - execute libata internal command
1733 * @dev: Device to which the command is sent
1734 * @tf: Taskfile registers for the command and the result
1735 * @cdb: CDB for packet command
1736 * @dma_dir: Data tranfer direction of the command
1737 * @sgl: sg list for the data buffer of the command
1738 * @n_elem: Number of sg entries
1739 * @timeout: Timeout in msecs (0 for default)
1741 * Executes libata internal command with timeout. @tf contains
1742 * command on entry and result on return. Timeout and error
1743 * conditions are reported via return value. No recovery action
1744 * is taken after a command times out. It's caller's duty to
1745 * clean up after timeout.
1747 * LOCKING:
1748 * None. Should be called with kernel context, might sleep.
1750 * RETURNS:
1751 * Zero on success, AC_ERR_* mask on failure
1753 unsigned ata_exec_internal_sg(struct ata_device *dev,
1754 struct ata_taskfile *tf, const u8 *cdb,
1755 int dma_dir, struct scatterlist *sgl,
1756 unsigned int n_elem, unsigned long timeout)
1758 struct ata_link *link = dev->link;
1759 struct ata_port *ap = link->ap;
1760 u8 command = tf->command;
1761 int auto_timeout = 0;
1762 struct ata_queued_cmd *qc;
1763 unsigned int tag, preempted_tag;
1764 u32 preempted_sactive, preempted_qc_active;
1765 int preempted_nr_active_links;
1766 DECLARE_COMPLETION_ONSTACK(wait);
1767 unsigned long flags;
1768 unsigned int err_mask;
1769 int rc;
1771 spin_lock_irqsave(ap->lock, flags);
1773 /* no internal command while frozen */
1774 if (ap->pflags & ATA_PFLAG_FROZEN) {
1775 spin_unlock_irqrestore(ap->lock, flags);
1776 return AC_ERR_SYSTEM;
1779 /* initialize internal qc */
1781 /* XXX: Tag 0 is used for drivers with legacy EH as some
1782 * drivers choke if any other tag is given. This breaks
1783 * ata_tag_internal() test for those drivers. Don't use new
1784 * EH stuff without converting to it.
1786 if (ap->ops->error_handler)
1787 tag = ATA_TAG_INTERNAL;
1788 else
1789 tag = 0;
1791 if (test_and_set_bit(tag, &ap->qc_allocated))
1792 BUG();
1793 qc = __ata_qc_from_tag(ap, tag);
1795 qc->tag = tag;
1796 qc->scsicmd = NULL;
1797 qc->ap = ap;
1798 qc->dev = dev;
1799 ata_qc_reinit(qc);
1801 preempted_tag = link->active_tag;
1802 preempted_sactive = link->sactive;
1803 preempted_qc_active = ap->qc_active;
1804 preempted_nr_active_links = ap->nr_active_links;
1805 link->active_tag = ATA_TAG_POISON;
1806 link->sactive = 0;
1807 ap->qc_active = 0;
1808 ap->nr_active_links = 0;
1810 /* prepare & issue qc */
1811 qc->tf = *tf;
1812 if (cdb)
1813 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1814 qc->flags |= ATA_QCFLAG_RESULT_TF;
1815 qc->dma_dir = dma_dir;
1816 if (dma_dir != DMA_NONE) {
1817 unsigned int i, buflen = 0;
1818 struct scatterlist *sg;
1820 for_each_sg(sgl, sg, n_elem, i)
1821 buflen += sg->length;
1823 ata_sg_init(qc, sgl, n_elem);
1824 qc->nbytes = buflen;
1827 qc->private_data = &wait;
1828 qc->complete_fn = ata_qc_complete_internal;
1830 ata_qc_issue(qc);
1832 spin_unlock_irqrestore(ap->lock, flags);
1834 if (!timeout) {
1835 if (ata_probe_timeout)
1836 timeout = ata_probe_timeout * 1000;
1837 else {
1838 timeout = ata_internal_cmd_timeout(dev, command);
1839 auto_timeout = 1;
1843 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1845 ata_port_flush_task(ap);
1847 if (!rc) {
1848 spin_lock_irqsave(ap->lock, flags);
1850 /* We're racing with irq here. If we lose, the
1851 * following test prevents us from completing the qc
1852 * twice. If we win, the port is frozen and will be
1853 * cleaned up by ->post_internal_cmd().
1855 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1856 qc->err_mask |= AC_ERR_TIMEOUT;
1858 if (ap->ops->error_handler)
1859 ata_port_freeze(ap);
1860 else
1861 ata_qc_complete(qc);
1863 if (ata_msg_warn(ap))
1864 ata_dev_printk(dev, KERN_WARNING,
1865 "qc timeout (cmd 0x%x)\n", command);
1868 spin_unlock_irqrestore(ap->lock, flags);
1871 /* do post_internal_cmd */
1872 if (ap->ops->post_internal_cmd)
1873 ap->ops->post_internal_cmd(qc);
1875 /* perform minimal error analysis */
1876 if (qc->flags & ATA_QCFLAG_FAILED) {
1877 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1878 qc->err_mask |= AC_ERR_DEV;
1880 if (!qc->err_mask)
1881 qc->err_mask |= AC_ERR_OTHER;
1883 if (qc->err_mask & ~AC_ERR_OTHER)
1884 qc->err_mask &= ~AC_ERR_OTHER;
1887 /* finish up */
1888 spin_lock_irqsave(ap->lock, flags);
1890 *tf = qc->result_tf;
1891 err_mask = qc->err_mask;
1893 ata_qc_free(qc);
1894 link->active_tag = preempted_tag;
1895 link->sactive = preempted_sactive;
1896 ap->qc_active = preempted_qc_active;
1897 ap->nr_active_links = preempted_nr_active_links;
1899 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1900 * Until those drivers are fixed, we detect the condition
1901 * here, fail the command with AC_ERR_SYSTEM and reenable the
1902 * port.
1904 * Note that this doesn't change any behavior as internal
1905 * command failure results in disabling the device in the
1906 * higher layer for LLDDs without new reset/EH callbacks.
1908 * Kill the following code as soon as those drivers are fixed.
1910 if (ap->flags & ATA_FLAG_DISABLED) {
1911 err_mask |= AC_ERR_SYSTEM;
1912 ata_port_probe(ap);
1915 spin_unlock_irqrestore(ap->lock, flags);
1917 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1918 ata_internal_cmd_timed_out(dev, command);
1920 return err_mask;
1924 * ata_exec_internal - execute libata internal command
1925 * @dev: Device to which the command is sent
1926 * @tf: Taskfile registers for the command and the result
1927 * @cdb: CDB for packet command
1928 * @dma_dir: Data tranfer direction of the command
1929 * @buf: Data buffer of the command
1930 * @buflen: Length of data buffer
1931 * @timeout: Timeout in msecs (0 for default)
1933 * Wrapper around ata_exec_internal_sg() which takes simple
1934 * buffer instead of sg list.
1936 * LOCKING:
1937 * None. Should be called with kernel context, might sleep.
1939 * RETURNS:
1940 * Zero on success, AC_ERR_* mask on failure
1942 unsigned ata_exec_internal(struct ata_device *dev,
1943 struct ata_taskfile *tf, const u8 *cdb,
1944 int dma_dir, void *buf, unsigned int buflen,
1945 unsigned long timeout)
1947 struct scatterlist *psg = NULL, sg;
1948 unsigned int n_elem = 0;
1950 if (dma_dir != DMA_NONE) {
1951 WARN_ON(!buf);
1952 sg_init_one(&sg, buf, buflen);
1953 psg = &sg;
1954 n_elem++;
1957 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1958 timeout);
1962 * ata_do_simple_cmd - execute simple internal command
1963 * @dev: Device to which the command is sent
1964 * @cmd: Opcode to execute
1966 * Execute a 'simple' command, that only consists of the opcode
1967 * 'cmd' itself, without filling any other registers
1969 * LOCKING:
1970 * Kernel thread context (may sleep).
1972 * RETURNS:
1973 * Zero on success, AC_ERR_* mask on failure
1975 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1977 struct ata_taskfile tf;
1979 ata_tf_init(dev, &tf);
1981 tf.command = cmd;
1982 tf.flags |= ATA_TFLAG_DEVICE;
1983 tf.protocol = ATA_PROT_NODATA;
1985 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 * ata_pio_need_iordy - check if iordy needed
1990 * @adev: ATA device
1992 * Check if the current speed of the device requires IORDY. Used
1993 * by various controllers for chip configuration.
1996 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1998 /* Controller doesn't support IORDY. Probably a pointless check
1999 as the caller should know this */
2000 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2001 return 0;
2002 /* PIO3 and higher it is mandatory */
2003 if (adev->pio_mode > XFER_PIO_2)
2004 return 1;
2005 /* We turn it on when possible */
2006 if (ata_id_has_iordy(adev->id))
2007 return 1;
2008 return 0;
2012 * ata_pio_mask_no_iordy - Return the non IORDY mask
2013 * @adev: ATA device
2015 * Compute the highest mode possible if we are not using iordy. Return
2016 * -1 if no iordy mode is available.
2019 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2021 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2022 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2023 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2024 /* Is the speed faster than the drive allows non IORDY ? */
2025 if (pio) {
2026 /* This is cycle times not frequency - watch the logic! */
2027 if (pio > 240) /* PIO2 is 240nS per cycle */
2028 return 3 << ATA_SHIFT_PIO;
2029 return 7 << ATA_SHIFT_PIO;
2032 return 3 << ATA_SHIFT_PIO;
2036 * ata_do_dev_read_id - default ID read method
2037 * @dev: device
2038 * @tf: proposed taskfile
2039 * @id: data buffer
2041 * Issue the identify taskfile and hand back the buffer containing
2042 * identify data. For some RAID controllers and for pre ATA devices
2043 * this function is wrapped or replaced by the driver
2045 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2046 struct ata_taskfile *tf, u16 *id)
2048 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2049 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2053 * ata_dev_read_id - Read ID data from the specified device
2054 * @dev: target device
2055 * @p_class: pointer to class of the target device (may be changed)
2056 * @flags: ATA_READID_* flags
2057 * @id: buffer to read IDENTIFY data into
2059 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2060 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2061 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2062 * for pre-ATA4 drives.
2064 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2065 * now we abort if we hit that case.
2067 * LOCKING:
2068 * Kernel thread context (may sleep)
2070 * RETURNS:
2071 * 0 on success, -errno otherwise.
2073 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2074 unsigned int flags, u16 *id)
2076 struct ata_port *ap = dev->link->ap;
2077 unsigned int class = *p_class;
2078 struct ata_taskfile tf;
2079 unsigned int err_mask = 0;
2080 const char *reason;
2081 int may_fallback = 1, tried_spinup = 0;
2082 int rc;
2084 if (ata_msg_ctl(ap))
2085 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2087 retry:
2088 ata_tf_init(dev, &tf);
2090 switch (class) {
2091 case ATA_DEV_ATA:
2092 tf.command = ATA_CMD_ID_ATA;
2093 break;
2094 case ATA_DEV_ATAPI:
2095 tf.command = ATA_CMD_ID_ATAPI;
2096 break;
2097 default:
2098 rc = -ENODEV;
2099 reason = "unsupported class";
2100 goto err_out;
2103 tf.protocol = ATA_PROT_PIO;
2105 /* Some devices choke if TF registers contain garbage. Make
2106 * sure those are properly initialized.
2108 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2110 /* Device presence detection is unreliable on some
2111 * controllers. Always poll IDENTIFY if available.
2113 tf.flags |= ATA_TFLAG_POLLING;
2115 if (ap->ops->read_id)
2116 err_mask = ap->ops->read_id(dev, &tf, id);
2117 else
2118 err_mask = ata_do_dev_read_id(dev, &tf, id);
2120 if (err_mask) {
2121 if (err_mask & AC_ERR_NODEV_HINT) {
2122 ata_dev_printk(dev, KERN_DEBUG,
2123 "NODEV after polling detection\n");
2124 return -ENOENT;
2127 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2128 /* Device or controller might have reported
2129 * the wrong device class. Give a shot at the
2130 * other IDENTIFY if the current one is
2131 * aborted by the device.
2133 if (may_fallback) {
2134 may_fallback = 0;
2136 if (class == ATA_DEV_ATA)
2137 class = ATA_DEV_ATAPI;
2138 else
2139 class = ATA_DEV_ATA;
2140 goto retry;
2143 /* Control reaches here iff the device aborted
2144 * both flavors of IDENTIFYs which happens
2145 * sometimes with phantom devices.
2147 ata_dev_printk(dev, KERN_DEBUG,
2148 "both IDENTIFYs aborted, assuming NODEV\n");
2149 return -ENOENT;
2152 rc = -EIO;
2153 reason = "I/O error";
2154 goto err_out;
2157 /* Falling back doesn't make sense if ID data was read
2158 * successfully at least once.
2160 may_fallback = 0;
2162 swap_buf_le16(id, ATA_ID_WORDS);
2164 /* sanity check */
2165 rc = -EINVAL;
2166 reason = "device reports invalid type";
2168 if (class == ATA_DEV_ATA) {
2169 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2170 goto err_out;
2171 } else {
2172 if (ata_id_is_ata(id))
2173 goto err_out;
2176 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2177 tried_spinup = 1;
2179 * Drive powered-up in standby mode, and requires a specific
2180 * SET_FEATURES spin-up subcommand before it will accept
2181 * anything other than the original IDENTIFY command.
2183 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2184 if (err_mask && id[2] != 0x738c) {
2185 rc = -EIO;
2186 reason = "SPINUP failed";
2187 goto err_out;
2190 * If the drive initially returned incomplete IDENTIFY info,
2191 * we now must reissue the IDENTIFY command.
2193 if (id[2] == 0x37c8)
2194 goto retry;
2197 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2199 * The exact sequence expected by certain pre-ATA4 drives is:
2200 * SRST RESET
2201 * IDENTIFY (optional in early ATA)
2202 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2203 * anything else..
2204 * Some drives were very specific about that exact sequence.
2206 * Note that ATA4 says lba is mandatory so the second check
2207 * shoud never trigger.
2209 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2210 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2211 if (err_mask) {
2212 rc = -EIO;
2213 reason = "INIT_DEV_PARAMS failed";
2214 goto err_out;
2217 /* current CHS translation info (id[53-58]) might be
2218 * changed. reread the identify device info.
2220 flags &= ~ATA_READID_POSTRESET;
2221 goto retry;
2225 *p_class = class;
2227 return 0;
2229 err_out:
2230 if (ata_msg_warn(ap))
2231 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2232 "(%s, err_mask=0x%x)\n", reason, err_mask);
2233 return rc;
2236 static inline u8 ata_dev_knobble(struct ata_device *dev)
2238 struct ata_port *ap = dev->link->ap;
2240 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2241 return 0;
2243 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2246 static void ata_dev_config_ncq(struct ata_device *dev,
2247 char *desc, size_t desc_sz)
2249 struct ata_port *ap = dev->link->ap;
2250 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2252 if (!ata_id_has_ncq(dev->id)) {
2253 desc[0] = '\0';
2254 return;
2256 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2257 snprintf(desc, desc_sz, "NCQ (not used)");
2258 return;
2260 if (ap->flags & ATA_FLAG_NCQ) {
2261 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2262 dev->flags |= ATA_DFLAG_NCQ;
2265 if (hdepth >= ddepth)
2266 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2267 else
2268 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2272 * ata_dev_configure - Configure the specified ATA/ATAPI device
2273 * @dev: Target device to configure
2275 * Configure @dev according to @dev->id. Generic and low-level
2276 * driver specific fixups are also applied.
2278 * LOCKING:
2279 * Kernel thread context (may sleep)
2281 * RETURNS:
2282 * 0 on success, -errno otherwise
2284 int ata_dev_configure(struct ata_device *dev)
2286 struct ata_port *ap = dev->link->ap;
2287 struct ata_eh_context *ehc = &dev->link->eh_context;
2288 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2289 const u16 *id = dev->id;
2290 unsigned long xfer_mask;
2291 char revbuf[7]; /* XYZ-99\0 */
2292 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2293 char modelbuf[ATA_ID_PROD_LEN+1];
2294 int rc;
2296 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2297 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2298 __func__);
2299 return 0;
2302 if (ata_msg_probe(ap))
2303 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2305 /* set horkage */
2306 dev->horkage |= ata_dev_blacklisted(dev);
2307 ata_force_horkage(dev);
2309 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2310 ata_dev_printk(dev, KERN_INFO,
2311 "unsupported device, disabling\n");
2312 ata_dev_disable(dev);
2313 return 0;
2316 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2317 dev->class == ATA_DEV_ATAPI) {
2318 ata_dev_printk(dev, KERN_WARNING,
2319 "WARNING: ATAPI is %s, device ignored.\n",
2320 atapi_enabled ? "not supported with this driver"
2321 : "disabled");
2322 ata_dev_disable(dev);
2323 return 0;
2326 /* let ACPI work its magic */
2327 rc = ata_acpi_on_devcfg(dev);
2328 if (rc)
2329 return rc;
2331 /* massage HPA, do it early as it might change IDENTIFY data */
2332 rc = ata_hpa_resize(dev);
2333 if (rc)
2334 return rc;
2336 /* print device capabilities */
2337 if (ata_msg_probe(ap))
2338 ata_dev_printk(dev, KERN_DEBUG,
2339 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2340 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2341 __func__,
2342 id[49], id[82], id[83], id[84],
2343 id[85], id[86], id[87], id[88]);
2345 /* initialize to-be-configured parameters */
2346 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2347 dev->max_sectors = 0;
2348 dev->cdb_len = 0;
2349 dev->n_sectors = 0;
2350 dev->cylinders = 0;
2351 dev->heads = 0;
2352 dev->sectors = 0;
2355 * common ATA, ATAPI feature tests
2358 /* find max transfer mode; for printk only */
2359 xfer_mask = ata_id_xfermask(id);
2361 if (ata_msg_probe(ap))
2362 ata_dump_id(id);
2364 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2365 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2366 sizeof(fwrevbuf));
2368 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2369 sizeof(modelbuf));
2371 /* ATA-specific feature tests */
2372 if (dev->class == ATA_DEV_ATA) {
2373 if (ata_id_is_cfa(id)) {
2374 if (id[162] & 1) /* CPRM may make this media unusable */
2375 ata_dev_printk(dev, KERN_WARNING,
2376 "supports DRM functions and may "
2377 "not be fully accessable.\n");
2378 snprintf(revbuf, 7, "CFA");
2379 } else {
2380 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2381 /* Warn the user if the device has TPM extensions */
2382 if (ata_id_has_tpm(id))
2383 ata_dev_printk(dev, KERN_WARNING,
2384 "supports DRM functions and may "
2385 "not be fully accessable.\n");
2388 dev->n_sectors = ata_id_n_sectors(id);
2390 if (dev->id[59] & 0x100)
2391 dev->multi_count = dev->id[59] & 0xff;
2393 if (ata_id_has_lba(id)) {
2394 const char *lba_desc;
2395 char ncq_desc[20];
2397 lba_desc = "LBA";
2398 dev->flags |= ATA_DFLAG_LBA;
2399 if (ata_id_has_lba48(id)) {
2400 dev->flags |= ATA_DFLAG_LBA48;
2401 lba_desc = "LBA48";
2403 if (dev->n_sectors >= (1UL << 28) &&
2404 ata_id_has_flush_ext(id))
2405 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2408 /* config NCQ */
2409 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2411 /* print device info to dmesg */
2412 if (ata_msg_drv(ap) && print_info) {
2413 ata_dev_printk(dev, KERN_INFO,
2414 "%s: %s, %s, max %s\n",
2415 revbuf, modelbuf, fwrevbuf,
2416 ata_mode_string(xfer_mask));
2417 ata_dev_printk(dev, KERN_INFO,
2418 "%Lu sectors, multi %u: %s %s\n",
2419 (unsigned long long)dev->n_sectors,
2420 dev->multi_count, lba_desc, ncq_desc);
2422 } else {
2423 /* CHS */
2425 /* Default translation */
2426 dev->cylinders = id[1];
2427 dev->heads = id[3];
2428 dev->sectors = id[6];
2430 if (ata_id_current_chs_valid(id)) {
2431 /* Current CHS translation is valid. */
2432 dev->cylinders = id[54];
2433 dev->heads = id[55];
2434 dev->sectors = id[56];
2437 /* print device info to dmesg */
2438 if (ata_msg_drv(ap) && print_info) {
2439 ata_dev_printk(dev, KERN_INFO,
2440 "%s: %s, %s, max %s\n",
2441 revbuf, modelbuf, fwrevbuf,
2442 ata_mode_string(xfer_mask));
2443 ata_dev_printk(dev, KERN_INFO,
2444 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2445 (unsigned long long)dev->n_sectors,
2446 dev->multi_count, dev->cylinders,
2447 dev->heads, dev->sectors);
2451 dev->cdb_len = 16;
2454 /* ATAPI-specific feature tests */
2455 else if (dev->class == ATA_DEV_ATAPI) {
2456 const char *cdb_intr_string = "";
2457 const char *atapi_an_string = "";
2458 const char *dma_dir_string = "";
2459 u32 sntf;
2461 rc = atapi_cdb_len(id);
2462 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2463 if (ata_msg_warn(ap))
2464 ata_dev_printk(dev, KERN_WARNING,
2465 "unsupported CDB len\n");
2466 rc = -EINVAL;
2467 goto err_out_nosup;
2469 dev->cdb_len = (unsigned int) rc;
2471 /* Enable ATAPI AN if both the host and device have
2472 * the support. If PMP is attached, SNTF is required
2473 * to enable ATAPI AN to discern between PHY status
2474 * changed notifications and ATAPI ANs.
2476 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2477 (!sata_pmp_attached(ap) ||
2478 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2479 unsigned int err_mask;
2481 /* issue SET feature command to turn this on */
2482 err_mask = ata_dev_set_feature(dev,
2483 SETFEATURES_SATA_ENABLE, SATA_AN);
2484 if (err_mask)
2485 ata_dev_printk(dev, KERN_ERR,
2486 "failed to enable ATAPI AN "
2487 "(err_mask=0x%x)\n", err_mask);
2488 else {
2489 dev->flags |= ATA_DFLAG_AN;
2490 atapi_an_string = ", ATAPI AN";
2494 if (ata_id_cdb_intr(dev->id)) {
2495 dev->flags |= ATA_DFLAG_CDB_INTR;
2496 cdb_intr_string = ", CDB intr";
2499 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2500 dev->flags |= ATA_DFLAG_DMADIR;
2501 dma_dir_string = ", DMADIR";
2504 /* print device info to dmesg */
2505 if (ata_msg_drv(ap) && print_info)
2506 ata_dev_printk(dev, KERN_INFO,
2507 "ATAPI: %s, %s, max %s%s%s%s\n",
2508 modelbuf, fwrevbuf,
2509 ata_mode_string(xfer_mask),
2510 cdb_intr_string, atapi_an_string,
2511 dma_dir_string);
2514 /* determine max_sectors */
2515 dev->max_sectors = ATA_MAX_SECTORS;
2516 if (dev->flags & ATA_DFLAG_LBA48)
2517 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2519 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2520 if (ata_id_has_hipm(dev->id))
2521 dev->flags |= ATA_DFLAG_HIPM;
2522 if (ata_id_has_dipm(dev->id))
2523 dev->flags |= ATA_DFLAG_DIPM;
2526 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2527 200 sectors */
2528 if (ata_dev_knobble(dev)) {
2529 if (ata_msg_drv(ap) && print_info)
2530 ata_dev_printk(dev, KERN_INFO,
2531 "applying bridge limits\n");
2532 dev->udma_mask &= ATA_UDMA5;
2533 dev->max_sectors = ATA_MAX_SECTORS;
2536 if ((dev->class == ATA_DEV_ATAPI) &&
2537 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2538 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2539 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2542 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2543 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2544 dev->max_sectors);
2546 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2547 dev->horkage |= ATA_HORKAGE_IPM;
2549 /* reset link pm_policy for this port to no pm */
2550 ap->pm_policy = MAX_PERFORMANCE;
2553 if (ap->ops->dev_config)
2554 ap->ops->dev_config(dev);
2556 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2557 /* Let the user know. We don't want to disallow opens for
2558 rescue purposes, or in case the vendor is just a blithering
2559 idiot. Do this after the dev_config call as some controllers
2560 with buggy firmware may want to avoid reporting false device
2561 bugs */
2563 if (print_info) {
2564 ata_dev_printk(dev, KERN_WARNING,
2565 "Drive reports diagnostics failure. This may indicate a drive\n");
2566 ata_dev_printk(dev, KERN_WARNING,
2567 "fault or invalid emulation. Contact drive vendor for information.\n");
2571 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2572 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2573 "firmware update to be fully functional.\n");
2574 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2575 "or visit http://ata.wiki.kernel.org.\n");
2578 return 0;
2580 err_out_nosup:
2581 if (ata_msg_probe(ap))
2582 ata_dev_printk(dev, KERN_DEBUG,
2583 "%s: EXIT, err\n", __func__);
2584 return rc;
2588 * ata_cable_40wire - return 40 wire cable type
2589 * @ap: port
2591 * Helper method for drivers which want to hardwire 40 wire cable
2592 * detection.
2595 int ata_cable_40wire(struct ata_port *ap)
2597 return ATA_CBL_PATA40;
2601 * ata_cable_80wire - return 80 wire cable type
2602 * @ap: port
2604 * Helper method for drivers which want to hardwire 80 wire cable
2605 * detection.
2608 int ata_cable_80wire(struct ata_port *ap)
2610 return ATA_CBL_PATA80;
2614 * ata_cable_unknown - return unknown PATA cable.
2615 * @ap: port
2617 * Helper method for drivers which have no PATA cable detection.
2620 int ata_cable_unknown(struct ata_port *ap)
2622 return ATA_CBL_PATA_UNK;
2626 * ata_cable_ignore - return ignored PATA cable.
2627 * @ap: port
2629 * Helper method for drivers which don't use cable type to limit
2630 * transfer mode.
2632 int ata_cable_ignore(struct ata_port *ap)
2634 return ATA_CBL_PATA_IGN;
2638 * ata_cable_sata - return SATA cable type
2639 * @ap: port
2641 * Helper method for drivers which have SATA cables
2644 int ata_cable_sata(struct ata_port *ap)
2646 return ATA_CBL_SATA;
2650 * ata_bus_probe - Reset and probe ATA bus
2651 * @ap: Bus to probe
2653 * Master ATA bus probing function. Initiates a hardware-dependent
2654 * bus reset, then attempts to identify any devices found on
2655 * the bus.
2657 * LOCKING:
2658 * PCI/etc. bus probe sem.
2660 * RETURNS:
2661 * Zero on success, negative errno otherwise.
2664 int ata_bus_probe(struct ata_port *ap)
2666 unsigned int classes[ATA_MAX_DEVICES];
2667 int tries[ATA_MAX_DEVICES];
2668 int rc;
2669 struct ata_device *dev;
2671 ata_port_probe(ap);
2673 ata_for_each_dev(dev, &ap->link, ALL)
2674 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2676 retry:
2677 ata_for_each_dev(dev, &ap->link, ALL) {
2678 /* If we issue an SRST then an ATA drive (not ATAPI)
2679 * may change configuration and be in PIO0 timing. If
2680 * we do a hard reset (or are coming from power on)
2681 * this is true for ATA or ATAPI. Until we've set a
2682 * suitable controller mode we should not touch the
2683 * bus as we may be talking too fast.
2685 dev->pio_mode = XFER_PIO_0;
2687 /* If the controller has a pio mode setup function
2688 * then use it to set the chipset to rights. Don't
2689 * touch the DMA setup as that will be dealt with when
2690 * configuring devices.
2692 if (ap->ops->set_piomode)
2693 ap->ops->set_piomode(ap, dev);
2696 /* reset and determine device classes */
2697 ap->ops->phy_reset(ap);
2699 ata_for_each_dev(dev, &ap->link, ALL) {
2700 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2701 dev->class != ATA_DEV_UNKNOWN)
2702 classes[dev->devno] = dev->class;
2703 else
2704 classes[dev->devno] = ATA_DEV_NONE;
2706 dev->class = ATA_DEV_UNKNOWN;
2709 ata_port_probe(ap);
2711 /* read IDENTIFY page and configure devices. We have to do the identify
2712 specific sequence bass-ackwards so that PDIAG- is released by
2713 the slave device */
2715 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2716 if (tries[dev->devno])
2717 dev->class = classes[dev->devno];
2719 if (!ata_dev_enabled(dev))
2720 continue;
2722 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2723 dev->id);
2724 if (rc)
2725 goto fail;
2728 /* Now ask for the cable type as PDIAG- should have been released */
2729 if (ap->ops->cable_detect)
2730 ap->cbl = ap->ops->cable_detect(ap);
2732 /* We may have SATA bridge glue hiding here irrespective of
2733 * the reported cable types and sensed types. When SATA
2734 * drives indicate we have a bridge, we don't know which end
2735 * of the link the bridge is which is a problem.
2737 ata_for_each_dev(dev, &ap->link, ENABLED)
2738 if (ata_id_is_sata(dev->id))
2739 ap->cbl = ATA_CBL_SATA;
2741 /* After the identify sequence we can now set up the devices. We do
2742 this in the normal order so that the user doesn't get confused */
2744 ata_for_each_dev(dev, &ap->link, ENABLED) {
2745 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2746 rc = ata_dev_configure(dev);
2747 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2748 if (rc)
2749 goto fail;
2752 /* configure transfer mode */
2753 rc = ata_set_mode(&ap->link, &dev);
2754 if (rc)
2755 goto fail;
2757 ata_for_each_dev(dev, &ap->link, ENABLED)
2758 return 0;
2760 /* no device present, disable port */
2761 ata_port_disable(ap);
2762 return -ENODEV;
2764 fail:
2765 tries[dev->devno]--;
2767 switch (rc) {
2768 case -EINVAL:
2769 /* eeek, something went very wrong, give up */
2770 tries[dev->devno] = 0;
2771 break;
2773 case -ENODEV:
2774 /* give it just one more chance */
2775 tries[dev->devno] = min(tries[dev->devno], 1);
2776 case -EIO:
2777 if (tries[dev->devno] == 1) {
2778 /* This is the last chance, better to slow
2779 * down than lose it.
2781 sata_down_spd_limit(&ap->link);
2782 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2786 if (!tries[dev->devno])
2787 ata_dev_disable(dev);
2789 goto retry;
2793 * ata_port_probe - Mark port as enabled
2794 * @ap: Port for which we indicate enablement
2796 * Modify @ap data structure such that the system
2797 * thinks that the entire port is enabled.
2799 * LOCKING: host lock, or some other form of
2800 * serialization.
2803 void ata_port_probe(struct ata_port *ap)
2805 ap->flags &= ~ATA_FLAG_DISABLED;
2809 * sata_print_link_status - Print SATA link status
2810 * @link: SATA link to printk link status about
2812 * This function prints link speed and status of a SATA link.
2814 * LOCKING:
2815 * None.
2817 static void sata_print_link_status(struct ata_link *link)
2819 u32 sstatus, scontrol, tmp;
2821 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2822 return;
2823 sata_scr_read(link, SCR_CONTROL, &scontrol);
2825 if (ata_phys_link_online(link)) {
2826 tmp = (sstatus >> 4) & 0xf;
2827 ata_link_printk(link, KERN_INFO,
2828 "SATA link up %s (SStatus %X SControl %X)\n",
2829 sata_spd_string(tmp), sstatus, scontrol);
2830 } else {
2831 ata_link_printk(link, KERN_INFO,
2832 "SATA link down (SStatus %X SControl %X)\n",
2833 sstatus, scontrol);
2838 * ata_dev_pair - return other device on cable
2839 * @adev: device
2841 * Obtain the other device on the same cable, or if none is
2842 * present NULL is returned
2845 struct ata_device *ata_dev_pair(struct ata_device *adev)
2847 struct ata_link *link = adev->link;
2848 struct ata_device *pair = &link->device[1 - adev->devno];
2849 if (!ata_dev_enabled(pair))
2850 return NULL;
2851 return pair;
2855 * ata_port_disable - Disable port.
2856 * @ap: Port to be disabled.
2858 * Modify @ap data structure such that the system
2859 * thinks that the entire port is disabled, and should
2860 * never attempt to probe or communicate with devices
2861 * on this port.
2863 * LOCKING: host lock, or some other form of
2864 * serialization.
2867 void ata_port_disable(struct ata_port *ap)
2869 ap->link.device[0].class = ATA_DEV_NONE;
2870 ap->link.device[1].class = ATA_DEV_NONE;
2871 ap->flags |= ATA_FLAG_DISABLED;
2875 * sata_down_spd_limit - adjust SATA spd limit downward
2876 * @link: Link to adjust SATA spd limit for
2878 * Adjust SATA spd limit of @link downward. Note that this
2879 * function only adjusts the limit. The change must be applied
2880 * using sata_set_spd().
2882 * LOCKING:
2883 * Inherited from caller.
2885 * RETURNS:
2886 * 0 on success, negative errno on failure
2888 int sata_down_spd_limit(struct ata_link *link)
2890 u32 sstatus, spd, mask;
2891 int rc, highbit;
2893 if (!sata_scr_valid(link))
2894 return -EOPNOTSUPP;
2896 /* If SCR can be read, use it to determine the current SPD.
2897 * If not, use cached value in link->sata_spd.
2899 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2900 if (rc == 0)
2901 spd = (sstatus >> 4) & 0xf;
2902 else
2903 spd = link->sata_spd;
2905 mask = link->sata_spd_limit;
2906 if (mask <= 1)
2907 return -EINVAL;
2909 /* unconditionally mask off the highest bit */
2910 highbit = fls(mask) - 1;
2911 mask &= ~(1 << highbit);
2913 /* Mask off all speeds higher than or equal to the current
2914 * one. Force 1.5Gbps if current SPD is not available.
2916 if (spd > 1)
2917 mask &= (1 << (spd - 1)) - 1;
2918 else
2919 mask &= 1;
2921 /* were we already at the bottom? */
2922 if (!mask)
2923 return -EINVAL;
2925 link->sata_spd_limit = mask;
2927 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2928 sata_spd_string(fls(mask)));
2930 return 0;
2933 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2935 struct ata_link *host_link = &link->ap->link;
2936 u32 limit, target, spd;
2938 limit = link->sata_spd_limit;
2940 /* Don't configure downstream link faster than upstream link.
2941 * It doesn't speed up anything and some PMPs choke on such
2942 * configuration.
2944 if (!ata_is_host_link(link) && host_link->sata_spd)
2945 limit &= (1 << host_link->sata_spd) - 1;
2947 if (limit == UINT_MAX)
2948 target = 0;
2949 else
2950 target = fls(limit);
2952 spd = (*scontrol >> 4) & 0xf;
2953 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2955 return spd != target;
2959 * sata_set_spd_needed - is SATA spd configuration needed
2960 * @link: Link in question
2962 * Test whether the spd limit in SControl matches
2963 * @link->sata_spd_limit. This function is used to determine
2964 * whether hardreset is necessary to apply SATA spd
2965 * configuration.
2967 * LOCKING:
2968 * Inherited from caller.
2970 * RETURNS:
2971 * 1 if SATA spd configuration is needed, 0 otherwise.
2973 static int sata_set_spd_needed(struct ata_link *link)
2975 u32 scontrol;
2977 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2978 return 1;
2980 return __sata_set_spd_needed(link, &scontrol);
2984 * sata_set_spd - set SATA spd according to spd limit
2985 * @link: Link to set SATA spd for
2987 * Set SATA spd of @link according to sata_spd_limit.
2989 * LOCKING:
2990 * Inherited from caller.
2992 * RETURNS:
2993 * 0 if spd doesn't need to be changed, 1 if spd has been
2994 * changed. Negative errno if SCR registers are inaccessible.
2996 int sata_set_spd(struct ata_link *link)
2998 u32 scontrol;
2999 int rc;
3001 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3002 return rc;
3004 if (!__sata_set_spd_needed(link, &scontrol))
3005 return 0;
3007 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3008 return rc;
3010 return 1;
3014 * This mode timing computation functionality is ported over from
3015 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3018 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3019 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3020 * for UDMA6, which is currently supported only by Maxtor drives.
3022 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3025 static const struct ata_timing ata_timing[] = {
3026 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
3027 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
3028 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
3029 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
3030 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
3031 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
3032 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
3033 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
3035 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
3036 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
3037 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
3039 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
3040 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
3041 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
3042 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
3043 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
3045 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3046 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
3047 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
3048 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
3049 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
3050 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
3051 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
3052 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
3054 { 0xFF }
3057 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3058 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3060 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3062 q->setup = EZ(t->setup * 1000, T);
3063 q->act8b = EZ(t->act8b * 1000, T);
3064 q->rec8b = EZ(t->rec8b * 1000, T);
3065 q->cyc8b = EZ(t->cyc8b * 1000, T);
3066 q->active = EZ(t->active * 1000, T);
3067 q->recover = EZ(t->recover * 1000, T);
3068 q->cycle = EZ(t->cycle * 1000, T);
3069 q->udma = EZ(t->udma * 1000, UT);
3072 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3073 struct ata_timing *m, unsigned int what)
3075 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3076 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3077 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3078 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3079 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3080 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3081 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3082 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3085 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3087 const struct ata_timing *t = ata_timing;
3089 while (xfer_mode > t->mode)
3090 t++;
3092 if (xfer_mode == t->mode)
3093 return t;
3094 return NULL;
3097 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3098 struct ata_timing *t, int T, int UT)
3100 const struct ata_timing *s;
3101 struct ata_timing p;
3104 * Find the mode.
3107 if (!(s = ata_timing_find_mode(speed)))
3108 return -EINVAL;
3110 memcpy(t, s, sizeof(*s));
3113 * If the drive is an EIDE drive, it can tell us it needs extended
3114 * PIO/MW_DMA cycle timing.
3117 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3118 memset(&p, 0, sizeof(p));
3119 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3120 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3121 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3122 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3123 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3125 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3129 * Convert the timing to bus clock counts.
3132 ata_timing_quantize(t, t, T, UT);
3135 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3136 * S.M.A.R.T * and some other commands. We have to ensure that the
3137 * DMA cycle timing is slower/equal than the fastest PIO timing.
3140 if (speed > XFER_PIO_6) {
3141 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3142 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3146 * Lengthen active & recovery time so that cycle time is correct.
3149 if (t->act8b + t->rec8b < t->cyc8b) {
3150 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3151 t->rec8b = t->cyc8b - t->act8b;
3154 if (t->active + t->recover < t->cycle) {
3155 t->active += (t->cycle - (t->active + t->recover)) / 2;
3156 t->recover = t->cycle - t->active;
3159 /* In a few cases quantisation may produce enough errors to
3160 leave t->cycle too low for the sum of active and recovery
3161 if so we must correct this */
3162 if (t->active + t->recover > t->cycle)
3163 t->cycle = t->active + t->recover;
3165 return 0;
3169 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3170 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3171 * @cycle: cycle duration in ns
3173 * Return matching xfer mode for @cycle. The returned mode is of
3174 * the transfer type specified by @xfer_shift. If @cycle is too
3175 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3176 * than the fastest known mode, the fasted mode is returned.
3178 * LOCKING:
3179 * None.
3181 * RETURNS:
3182 * Matching xfer_mode, 0xff if no match found.
3184 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3186 u8 base_mode = 0xff, last_mode = 0xff;
3187 const struct ata_xfer_ent *ent;
3188 const struct ata_timing *t;
3190 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3191 if (ent->shift == xfer_shift)
3192 base_mode = ent->base;
3194 for (t = ata_timing_find_mode(base_mode);
3195 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3196 unsigned short this_cycle;
3198 switch (xfer_shift) {
3199 case ATA_SHIFT_PIO:
3200 case ATA_SHIFT_MWDMA:
3201 this_cycle = t->cycle;
3202 break;
3203 case ATA_SHIFT_UDMA:
3204 this_cycle = t->udma;
3205 break;
3206 default:
3207 return 0xff;
3210 if (cycle > this_cycle)
3211 break;
3213 last_mode = t->mode;
3216 return last_mode;
3220 * ata_down_xfermask_limit - adjust dev xfer masks downward
3221 * @dev: Device to adjust xfer masks
3222 * @sel: ATA_DNXFER_* selector
3224 * Adjust xfer masks of @dev downward. Note that this function
3225 * does not apply the change. Invoking ata_set_mode() afterwards
3226 * will apply the limit.
3228 * LOCKING:
3229 * Inherited from caller.
3231 * RETURNS:
3232 * 0 on success, negative errno on failure
3234 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3236 char buf[32];
3237 unsigned long orig_mask, xfer_mask;
3238 unsigned long pio_mask, mwdma_mask, udma_mask;
3239 int quiet, highbit;
3241 quiet = !!(sel & ATA_DNXFER_QUIET);
3242 sel &= ~ATA_DNXFER_QUIET;
3244 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3245 dev->mwdma_mask,
3246 dev->udma_mask);
3247 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3249 switch (sel) {
3250 case ATA_DNXFER_PIO:
3251 highbit = fls(pio_mask) - 1;
3252 pio_mask &= ~(1 << highbit);
3253 break;
3255 case ATA_DNXFER_DMA:
3256 if (udma_mask) {
3257 highbit = fls(udma_mask) - 1;
3258 udma_mask &= ~(1 << highbit);
3259 if (!udma_mask)
3260 return -ENOENT;
3261 } else if (mwdma_mask) {
3262 highbit = fls(mwdma_mask) - 1;
3263 mwdma_mask &= ~(1 << highbit);
3264 if (!mwdma_mask)
3265 return -ENOENT;
3267 break;
3269 case ATA_DNXFER_40C:
3270 udma_mask &= ATA_UDMA_MASK_40C;
3271 break;
3273 case ATA_DNXFER_FORCE_PIO0:
3274 pio_mask &= 1;
3275 case ATA_DNXFER_FORCE_PIO:
3276 mwdma_mask = 0;
3277 udma_mask = 0;
3278 break;
3280 default:
3281 BUG();
3284 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3286 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3287 return -ENOENT;
3289 if (!quiet) {
3290 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3291 snprintf(buf, sizeof(buf), "%s:%s",
3292 ata_mode_string(xfer_mask),
3293 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3294 else
3295 snprintf(buf, sizeof(buf), "%s",
3296 ata_mode_string(xfer_mask));
3298 ata_dev_printk(dev, KERN_WARNING,
3299 "limiting speed to %s\n", buf);
3302 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3303 &dev->udma_mask);
3305 return 0;
3308 static int ata_dev_set_mode(struct ata_device *dev)
3310 struct ata_eh_context *ehc = &dev->link->eh_context;
3311 const char *dev_err_whine = "";
3312 int ign_dev_err = 0;
3313 unsigned int err_mask;
3314 int rc;
3316 dev->flags &= ~ATA_DFLAG_PIO;
3317 if (dev->xfer_shift == ATA_SHIFT_PIO)
3318 dev->flags |= ATA_DFLAG_PIO;
3320 err_mask = ata_dev_set_xfermode(dev);
3322 if (err_mask & ~AC_ERR_DEV)
3323 goto fail;
3325 /* revalidate */
3326 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3327 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3328 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3329 if (rc)
3330 return rc;
3332 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3333 /* Old CFA may refuse this command, which is just fine */
3334 if (ata_id_is_cfa(dev->id))
3335 ign_dev_err = 1;
3336 /* Catch several broken garbage emulations plus some pre
3337 ATA devices */
3338 if (ata_id_major_version(dev->id) == 0 &&
3339 dev->pio_mode <= XFER_PIO_2)
3340 ign_dev_err = 1;
3341 /* Some very old devices and some bad newer ones fail
3342 any kind of SET_XFERMODE request but support PIO0-2
3343 timings and no IORDY */
3344 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3345 ign_dev_err = 1;
3347 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3348 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3349 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3350 dev->dma_mode == XFER_MW_DMA_0 &&
3351 (dev->id[63] >> 8) & 1)
3352 ign_dev_err = 1;
3354 /* if the device is actually configured correctly, ignore dev err */
3355 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3356 ign_dev_err = 1;
3358 if (err_mask & AC_ERR_DEV) {
3359 if (!ign_dev_err)
3360 goto fail;
3361 else
3362 dev_err_whine = " (device error ignored)";
3365 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3366 dev->xfer_shift, (int)dev->xfer_mode);
3368 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3369 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3370 dev_err_whine);
3372 return 0;
3374 fail:
3375 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3376 "(err_mask=0x%x)\n", err_mask);
3377 return -EIO;
3381 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3382 * @link: link on which timings will be programmed
3383 * @r_failed_dev: out parameter for failed device
3385 * Standard implementation of the function used to tune and set
3386 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3387 * ata_dev_set_mode() fails, pointer to the failing device is
3388 * returned in @r_failed_dev.
3390 * LOCKING:
3391 * PCI/etc. bus probe sem.
3393 * RETURNS:
3394 * 0 on success, negative errno otherwise
3397 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3399 struct ata_port *ap = link->ap;
3400 struct ata_device *dev;
3401 int rc = 0, used_dma = 0, found = 0;
3403 /* step 1: calculate xfer_mask */
3404 ata_for_each_dev(dev, link, ENABLED) {
3405 unsigned long pio_mask, dma_mask;
3406 unsigned int mode_mask;
3408 mode_mask = ATA_DMA_MASK_ATA;
3409 if (dev->class == ATA_DEV_ATAPI)
3410 mode_mask = ATA_DMA_MASK_ATAPI;
3411 else if (ata_id_is_cfa(dev->id))
3412 mode_mask = ATA_DMA_MASK_CFA;
3414 ata_dev_xfermask(dev);
3415 ata_force_xfermask(dev);
3417 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3418 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3420 if (libata_dma_mask & mode_mask)
3421 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3422 else
3423 dma_mask = 0;
3425 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3426 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3428 found = 1;
3429 if (ata_dma_enabled(dev))
3430 used_dma = 1;
3432 if (!found)
3433 goto out;
3435 /* step 2: always set host PIO timings */
3436 ata_for_each_dev(dev, link, ENABLED) {
3437 if (dev->pio_mode == 0xff) {
3438 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3439 rc = -EINVAL;
3440 goto out;
3443 dev->xfer_mode = dev->pio_mode;
3444 dev->xfer_shift = ATA_SHIFT_PIO;
3445 if (ap->ops->set_piomode)
3446 ap->ops->set_piomode(ap, dev);
3449 /* step 3: set host DMA timings */
3450 ata_for_each_dev(dev, link, ENABLED) {
3451 if (!ata_dma_enabled(dev))
3452 continue;
3454 dev->xfer_mode = dev->dma_mode;
3455 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3456 if (ap->ops->set_dmamode)
3457 ap->ops->set_dmamode(ap, dev);
3460 /* step 4: update devices' xfer mode */
3461 ata_for_each_dev(dev, link, ENABLED) {
3462 rc = ata_dev_set_mode(dev);
3463 if (rc)
3464 goto out;
3467 /* Record simplex status. If we selected DMA then the other
3468 * host channels are not permitted to do so.
3470 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3471 ap->host->simplex_claimed = ap;
3473 out:
3474 if (rc)
3475 *r_failed_dev = dev;
3476 return rc;
3480 * ata_wait_ready - wait for link to become ready
3481 * @link: link to be waited on
3482 * @deadline: deadline jiffies for the operation
3483 * @check_ready: callback to check link readiness
3485 * Wait for @link to become ready. @check_ready should return
3486 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3487 * link doesn't seem to be occupied, other errno for other error
3488 * conditions.
3490 * Transient -ENODEV conditions are allowed for
3491 * ATA_TMOUT_FF_WAIT.
3493 * LOCKING:
3494 * EH context.
3496 * RETURNS:
3497 * 0 if @linke is ready before @deadline; otherwise, -errno.
3499 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3500 int (*check_ready)(struct ata_link *link))
3502 unsigned long start = jiffies;
3503 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3504 int warned = 0;
3506 /* Slave readiness can't be tested separately from master. On
3507 * M/S emulation configuration, this function should be called
3508 * only on the master and it will handle both master and slave.
3510 WARN_ON(link == link->ap->slave_link);
3512 if (time_after(nodev_deadline, deadline))
3513 nodev_deadline = deadline;
3515 while (1) {
3516 unsigned long now = jiffies;
3517 int ready, tmp;
3519 ready = tmp = check_ready(link);
3520 if (ready > 0)
3521 return 0;
3523 /* -ENODEV could be transient. Ignore -ENODEV if link
3524 * is online. Also, some SATA devices take a long
3525 * time to clear 0xff after reset. For example,
3526 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3527 * GoVault needs even more than that. Wait for
3528 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3530 * Note that some PATA controllers (pata_ali) explode
3531 * if status register is read more than once when
3532 * there's no device attached.
3534 if (ready == -ENODEV) {
3535 if (ata_link_online(link))
3536 ready = 0;
3537 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3538 !ata_link_offline(link) &&
3539 time_before(now, nodev_deadline))
3540 ready = 0;
3543 if (ready)
3544 return ready;
3545 if (time_after(now, deadline))
3546 return -EBUSY;
3548 if (!warned && time_after(now, start + 5 * HZ) &&
3549 (deadline - now > 3 * HZ)) {
3550 ata_link_printk(link, KERN_WARNING,
3551 "link is slow to respond, please be patient "
3552 "(ready=%d)\n", tmp);
3553 warned = 1;
3556 msleep(50);
3561 * ata_wait_after_reset - wait for link to become ready after reset
3562 * @link: link to be waited on
3563 * @deadline: deadline jiffies for the operation
3564 * @check_ready: callback to check link readiness
3566 * Wait for @link to become ready after reset.
3568 * LOCKING:
3569 * EH context.
3571 * RETURNS:
3572 * 0 if @linke is ready before @deadline; otherwise, -errno.
3574 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3575 int (*check_ready)(struct ata_link *link))
3577 msleep(ATA_WAIT_AFTER_RESET);
3579 return ata_wait_ready(link, deadline, check_ready);
3583 * sata_link_debounce - debounce SATA phy status
3584 * @link: ATA link to debounce SATA phy status for
3585 * @params: timing parameters { interval, duratinon, timeout } in msec
3586 * @deadline: deadline jiffies for the operation
3588 * Make sure SStatus of @link reaches stable state, determined by
3589 * holding the same value where DET is not 1 for @duration polled
3590 * every @interval, before @timeout. Timeout constraints the
3591 * beginning of the stable state. Because DET gets stuck at 1 on
3592 * some controllers after hot unplugging, this functions waits
3593 * until timeout then returns 0 if DET is stable at 1.
3595 * @timeout is further limited by @deadline. The sooner of the
3596 * two is used.
3598 * LOCKING:
3599 * Kernel thread context (may sleep)
3601 * RETURNS:
3602 * 0 on success, -errno on failure.
3604 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3605 unsigned long deadline)
3607 unsigned long interval = params[0];
3608 unsigned long duration = params[1];
3609 unsigned long last_jiffies, t;
3610 u32 last, cur;
3611 int rc;
3613 t = ata_deadline(jiffies, params[2]);
3614 if (time_before(t, deadline))
3615 deadline = t;
3617 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3618 return rc;
3619 cur &= 0xf;
3621 last = cur;
3622 last_jiffies = jiffies;
3624 while (1) {
3625 msleep(interval);
3626 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3627 return rc;
3628 cur &= 0xf;
3630 /* DET stable? */
3631 if (cur == last) {
3632 if (cur == 1 && time_before(jiffies, deadline))
3633 continue;
3634 if (time_after(jiffies,
3635 ata_deadline(last_jiffies, duration)))
3636 return 0;
3637 continue;
3640 /* unstable, start over */
3641 last = cur;
3642 last_jiffies = jiffies;
3644 /* Check deadline. If debouncing failed, return
3645 * -EPIPE to tell upper layer to lower link speed.
3647 if (time_after(jiffies, deadline))
3648 return -EPIPE;
3653 * sata_link_resume - resume SATA link
3654 * @link: ATA link to resume SATA
3655 * @params: timing parameters { interval, duratinon, timeout } in msec
3656 * @deadline: deadline jiffies for the operation
3658 * Resume SATA phy @link and debounce it.
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3663 * RETURNS:
3664 * 0 on success, -errno on failure.
3666 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3667 unsigned long deadline)
3669 u32 scontrol, serror;
3670 int rc;
3672 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3673 return rc;
3675 scontrol = (scontrol & 0x0f0) | 0x300;
3677 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3678 return rc;
3680 /* Some PHYs react badly if SStatus is pounded immediately
3681 * after resuming. Delay 200ms before debouncing.
3683 msleep(200);
3685 if ((rc = sata_link_debounce(link, params, deadline)))
3686 return rc;
3688 /* clear SError, some PHYs require this even for SRST to work */
3689 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3690 rc = sata_scr_write(link, SCR_ERROR, serror);
3692 return rc != -EINVAL ? rc : 0;
3696 * ata_std_prereset - prepare for reset
3697 * @link: ATA link to be reset
3698 * @deadline: deadline jiffies for the operation
3700 * @link is about to be reset. Initialize it. Failure from
3701 * prereset makes libata abort whole reset sequence and give up
3702 * that port, so prereset should be best-effort. It does its
3703 * best to prepare for reset sequence but if things go wrong, it
3704 * should just whine, not fail.
3706 * LOCKING:
3707 * Kernel thread context (may sleep)
3709 * RETURNS:
3710 * 0 on success, -errno otherwise.
3712 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3714 struct ata_port *ap = link->ap;
3715 struct ata_eh_context *ehc = &link->eh_context;
3716 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3717 int rc;
3719 /* if we're about to do hardreset, nothing more to do */
3720 if (ehc->i.action & ATA_EH_HARDRESET)
3721 return 0;
3723 /* if SATA, resume link */
3724 if (ap->flags & ATA_FLAG_SATA) {
3725 rc = sata_link_resume(link, timing, deadline);
3726 /* whine about phy resume failure but proceed */
3727 if (rc && rc != -EOPNOTSUPP)
3728 ata_link_printk(link, KERN_WARNING, "failed to resume "
3729 "link for reset (errno=%d)\n", rc);
3732 /* no point in trying softreset on offline link */
3733 if (ata_phys_link_offline(link))
3734 ehc->i.action &= ~ATA_EH_SOFTRESET;
3736 return 0;
3740 * sata_link_hardreset - reset link via SATA phy reset
3741 * @link: link to reset
3742 * @timing: timing parameters { interval, duratinon, timeout } in msec
3743 * @deadline: deadline jiffies for the operation
3744 * @online: optional out parameter indicating link onlineness
3745 * @check_ready: optional callback to check link readiness
3747 * SATA phy-reset @link using DET bits of SControl register.
3748 * After hardreset, link readiness is waited upon using
3749 * ata_wait_ready() if @check_ready is specified. LLDs are
3750 * allowed to not specify @check_ready and wait itself after this
3751 * function returns. Device classification is LLD's
3752 * responsibility.
3754 * *@online is set to one iff reset succeeded and @link is online
3755 * after reset.
3757 * LOCKING:
3758 * Kernel thread context (may sleep)
3760 * RETURNS:
3761 * 0 on success, -errno otherwise.
3763 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3764 unsigned long deadline,
3765 bool *online, int (*check_ready)(struct ata_link *))
3767 u32 scontrol;
3768 int rc;
3770 DPRINTK("ENTER\n");
3772 if (online)
3773 *online = false;
3775 if (sata_set_spd_needed(link)) {
3776 /* SATA spec says nothing about how to reconfigure
3777 * spd. To be on the safe side, turn off phy during
3778 * reconfiguration. This works for at least ICH7 AHCI
3779 * and Sil3124.
3781 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3782 goto out;
3784 scontrol = (scontrol & 0x0f0) | 0x304;
3786 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3787 goto out;
3789 sata_set_spd(link);
3792 /* issue phy wake/reset */
3793 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3794 goto out;
3796 scontrol = (scontrol & 0x0f0) | 0x301;
3798 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3799 goto out;
3801 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3802 * 10.4.2 says at least 1 ms.
3804 msleep(1);
3806 /* bring link back */
3807 rc = sata_link_resume(link, timing, deadline);
3808 if (rc)
3809 goto out;
3810 /* if link is offline nothing more to do */
3811 if (ata_phys_link_offline(link))
3812 goto out;
3814 /* Link is online. From this point, -ENODEV too is an error. */
3815 if (online)
3816 *online = true;
3818 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3819 /* If PMP is supported, we have to do follow-up SRST.
3820 * Some PMPs don't send D2H Reg FIS after hardreset if
3821 * the first port is empty. Wait only for
3822 * ATA_TMOUT_PMP_SRST_WAIT.
3824 if (check_ready) {
3825 unsigned long pmp_deadline;
3827 pmp_deadline = ata_deadline(jiffies,
3828 ATA_TMOUT_PMP_SRST_WAIT);
3829 if (time_after(pmp_deadline, deadline))
3830 pmp_deadline = deadline;
3831 ata_wait_ready(link, pmp_deadline, check_ready);
3833 rc = -EAGAIN;
3834 goto out;
3837 rc = 0;
3838 if (check_ready)
3839 rc = ata_wait_ready(link, deadline, check_ready);
3840 out:
3841 if (rc && rc != -EAGAIN) {
3842 /* online is set iff link is online && reset succeeded */
3843 if (online)
3844 *online = false;
3845 ata_link_printk(link, KERN_ERR,
3846 "COMRESET failed (errno=%d)\n", rc);
3848 DPRINTK("EXIT, rc=%d\n", rc);
3849 return rc;
3853 * sata_std_hardreset - COMRESET w/o waiting or classification
3854 * @link: link to reset
3855 * @class: resulting class of attached device
3856 * @deadline: deadline jiffies for the operation
3858 * Standard SATA COMRESET w/o waiting or classification.
3860 * LOCKING:
3861 * Kernel thread context (may sleep)
3863 * RETURNS:
3864 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3866 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3867 unsigned long deadline)
3869 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3870 bool online;
3871 int rc;
3873 /* do hardreset */
3874 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3875 return online ? -EAGAIN : rc;
3879 * ata_std_postreset - standard postreset callback
3880 * @link: the target ata_link
3881 * @classes: classes of attached devices
3883 * This function is invoked after a successful reset. Note that
3884 * the device might have been reset more than once using
3885 * different reset methods before postreset is invoked.
3887 * LOCKING:
3888 * Kernel thread context (may sleep)
3890 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3892 u32 serror;
3894 DPRINTK("ENTER\n");
3896 /* reset complete, clear SError */
3897 if (!sata_scr_read(link, SCR_ERROR, &serror))
3898 sata_scr_write(link, SCR_ERROR, serror);
3900 /* print link status */
3901 sata_print_link_status(link);
3903 DPRINTK("EXIT\n");
3907 * ata_dev_same_device - Determine whether new ID matches configured device
3908 * @dev: device to compare against
3909 * @new_class: class of the new device
3910 * @new_id: IDENTIFY page of the new device
3912 * Compare @new_class and @new_id against @dev and determine
3913 * whether @dev is the device indicated by @new_class and
3914 * @new_id.
3916 * LOCKING:
3917 * None.
3919 * RETURNS:
3920 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3922 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3923 const u16 *new_id)
3925 const u16 *old_id = dev->id;
3926 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3927 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3929 if (dev->class != new_class) {
3930 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3931 dev->class, new_class);
3932 return 0;
3935 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3936 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3937 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3938 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3940 if (strcmp(model[0], model[1])) {
3941 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3942 "'%s' != '%s'\n", model[0], model[1]);
3943 return 0;
3946 if (strcmp(serial[0], serial[1])) {
3947 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3948 "'%s' != '%s'\n", serial[0], serial[1]);
3949 return 0;
3952 return 1;
3956 * ata_dev_reread_id - Re-read IDENTIFY data
3957 * @dev: target ATA device
3958 * @readid_flags: read ID flags
3960 * Re-read IDENTIFY page and make sure @dev is still attached to
3961 * the port.
3963 * LOCKING:
3964 * Kernel thread context (may sleep)
3966 * RETURNS:
3967 * 0 on success, negative errno otherwise
3969 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3971 unsigned int class = dev->class;
3972 u16 *id = (void *)dev->link->ap->sector_buf;
3973 int rc;
3975 /* read ID data */
3976 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3977 if (rc)
3978 return rc;
3980 /* is the device still there? */
3981 if (!ata_dev_same_device(dev, class, id))
3982 return -ENODEV;
3984 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3985 return 0;
3989 * ata_dev_revalidate - Revalidate ATA device
3990 * @dev: device to revalidate
3991 * @new_class: new class code
3992 * @readid_flags: read ID flags
3994 * Re-read IDENTIFY page, make sure @dev is still attached to the
3995 * port and reconfigure it according to the new IDENTIFY page.
3997 * LOCKING:
3998 * Kernel thread context (may sleep)
4000 * RETURNS:
4001 * 0 on success, negative errno otherwise
4003 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4004 unsigned int readid_flags)
4006 u64 n_sectors = dev->n_sectors;
4007 int rc;
4009 if (!ata_dev_enabled(dev))
4010 return -ENODEV;
4012 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4013 if (ata_class_enabled(new_class) &&
4014 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4015 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4016 dev->class, new_class);
4017 rc = -ENODEV;
4018 goto fail;
4021 /* re-read ID */
4022 rc = ata_dev_reread_id(dev, readid_flags);
4023 if (rc)
4024 goto fail;
4026 /* configure device according to the new ID */
4027 rc = ata_dev_configure(dev);
4028 if (rc)
4029 goto fail;
4031 /* verify n_sectors hasn't changed */
4032 if (dev->class == ATA_DEV_ATA && n_sectors &&
4033 dev->n_sectors != n_sectors) {
4034 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4035 "%llu != %llu\n",
4036 (unsigned long long)n_sectors,
4037 (unsigned long long)dev->n_sectors);
4039 /* restore original n_sectors */
4040 dev->n_sectors = n_sectors;
4042 rc = -ENODEV;
4043 goto fail;
4046 return 0;
4048 fail:
4049 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4050 return rc;
4053 struct ata_blacklist_entry {
4054 const char *model_num;
4055 const char *model_rev;
4056 unsigned long horkage;
4059 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4060 /* Devices with DMA related problems under Linux */
4061 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4062 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4063 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4064 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4065 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4066 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4067 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4068 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4069 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4070 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4071 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4072 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4073 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4074 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4075 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4076 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4077 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4078 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4079 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4080 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4081 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4082 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4083 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4084 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4085 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4086 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4087 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4088 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4089 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4090 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4091 /* Odd clown on sil3726/4726 PMPs */
4092 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4094 /* Weird ATAPI devices */
4095 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4096 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4098 /* Devices we expect to fail diagnostics */
4100 /* Devices where NCQ should be avoided */
4101 /* NCQ is slow */
4102 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4103 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4104 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4105 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4106 /* NCQ is broken */
4107 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4108 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4109 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4110 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4111 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4113 /* Seagate NCQ + FLUSH CACHE firmware bug */
4114 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4115 ATA_HORKAGE_FIRMWARE_WARN },
4116 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4117 ATA_HORKAGE_FIRMWARE_WARN },
4118 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4119 ATA_HORKAGE_FIRMWARE_WARN },
4120 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4121 ATA_HORKAGE_FIRMWARE_WARN },
4122 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4123 ATA_HORKAGE_FIRMWARE_WARN },
4125 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4126 ATA_HORKAGE_FIRMWARE_WARN },
4127 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4128 ATA_HORKAGE_FIRMWARE_WARN },
4129 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4130 ATA_HORKAGE_FIRMWARE_WARN },
4131 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4132 ATA_HORKAGE_FIRMWARE_WARN },
4133 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4134 ATA_HORKAGE_FIRMWARE_WARN },
4136 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4137 ATA_HORKAGE_FIRMWARE_WARN },
4138 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4139 ATA_HORKAGE_FIRMWARE_WARN },
4140 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4141 ATA_HORKAGE_FIRMWARE_WARN },
4142 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4143 ATA_HORKAGE_FIRMWARE_WARN },
4144 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4145 ATA_HORKAGE_FIRMWARE_WARN },
4147 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4148 ATA_HORKAGE_FIRMWARE_WARN },
4149 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4150 ATA_HORKAGE_FIRMWARE_WARN },
4151 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4152 ATA_HORKAGE_FIRMWARE_WARN },
4153 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4154 ATA_HORKAGE_FIRMWARE_WARN },
4155 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4156 ATA_HORKAGE_FIRMWARE_WARN },
4158 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4159 ATA_HORKAGE_FIRMWARE_WARN },
4160 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4161 ATA_HORKAGE_FIRMWARE_WARN },
4162 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4163 ATA_HORKAGE_FIRMWARE_WARN },
4164 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4165 ATA_HORKAGE_FIRMWARE_WARN },
4166 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4167 ATA_HORKAGE_FIRMWARE_WARN },
4169 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4170 ATA_HORKAGE_FIRMWARE_WARN },
4171 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4172 ATA_HORKAGE_FIRMWARE_WARN },
4173 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4174 ATA_HORKAGE_FIRMWARE_WARN },
4175 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4176 ATA_HORKAGE_FIRMWARE_WARN },
4177 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4178 ATA_HORKAGE_FIRMWARE_WARN },
4180 /* Blacklist entries taken from Silicon Image 3124/3132
4181 Windows driver .inf file - also several Linux problem reports */
4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4186 /* devices which puke on READ_NATIVE_MAX */
4187 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4188 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4189 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4190 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4192 /* Devices which report 1 sector over size HPA */
4193 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4194 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4195 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4197 /* Devices which get the IVB wrong */
4198 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4199 /* Maybe we should just blacklist TSSTcorp... */
4200 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4201 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4202 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4203 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4204 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4205 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4207 /* Devices that do not need bridging limits applied */
4208 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4210 /* End Marker */
4214 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4216 const char *p;
4217 int len;
4220 * check for trailing wildcard: *\0
4222 p = strchr(patt, wildchar);
4223 if (p && ((*(p + 1)) == 0))
4224 len = p - patt;
4225 else {
4226 len = strlen(name);
4227 if (!len) {
4228 if (!*patt)
4229 return 0;
4230 return -1;
4234 return strncmp(patt, name, len);
4237 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4239 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4240 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4241 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4243 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4244 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4246 while (ad->model_num) {
4247 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4248 if (ad->model_rev == NULL)
4249 return ad->horkage;
4250 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4251 return ad->horkage;
4253 ad++;
4255 return 0;
4258 static int ata_dma_blacklisted(const struct ata_device *dev)
4260 /* We don't support polling DMA.
4261 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4262 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4264 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4265 (dev->flags & ATA_DFLAG_CDB_INTR))
4266 return 1;
4267 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4271 * ata_is_40wire - check drive side detection
4272 * @dev: device
4274 * Perform drive side detection decoding, allowing for device vendors
4275 * who can't follow the documentation.
4278 static int ata_is_40wire(struct ata_device *dev)
4280 if (dev->horkage & ATA_HORKAGE_IVB)
4281 return ata_drive_40wire_relaxed(dev->id);
4282 return ata_drive_40wire(dev->id);
4286 * cable_is_40wire - 40/80/SATA decider
4287 * @ap: port to consider
4289 * This function encapsulates the policy for speed management
4290 * in one place. At the moment we don't cache the result but
4291 * there is a good case for setting ap->cbl to the result when
4292 * we are called with unknown cables (and figuring out if it
4293 * impacts hotplug at all).
4295 * Return 1 if the cable appears to be 40 wire.
4298 static int cable_is_40wire(struct ata_port *ap)
4300 struct ata_link *link;
4301 struct ata_device *dev;
4303 /* If the controller thinks we are 40 wire, we are. */
4304 if (ap->cbl == ATA_CBL_PATA40)
4305 return 1;
4307 /* If the controller thinks we are 80 wire, we are. */
4308 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4309 return 0;
4311 /* If the system is known to be 40 wire short cable (eg
4312 * laptop), then we allow 80 wire modes even if the drive
4313 * isn't sure.
4315 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4316 return 0;
4318 /* If the controller doesn't know, we scan.
4320 * Note: We look for all 40 wire detects at this point. Any
4321 * 80 wire detect is taken to be 80 wire cable because
4322 * - in many setups only the one drive (slave if present) will
4323 * give a valid detect
4324 * - if you have a non detect capable drive you don't want it
4325 * to colour the choice
4327 ata_for_each_link(link, ap, EDGE) {
4328 ata_for_each_dev(dev, link, ENABLED) {
4329 if (!ata_is_40wire(dev))
4330 return 0;
4333 return 1;
4337 * ata_dev_xfermask - Compute supported xfermask of the given device
4338 * @dev: Device to compute xfermask for
4340 * Compute supported xfermask of @dev and store it in
4341 * dev->*_mask. This function is responsible for applying all
4342 * known limits including host controller limits, device
4343 * blacklist, etc...
4345 * LOCKING:
4346 * None.
4348 static void ata_dev_xfermask(struct ata_device *dev)
4350 struct ata_link *link = dev->link;
4351 struct ata_port *ap = link->ap;
4352 struct ata_host *host = ap->host;
4353 unsigned long xfer_mask;
4355 /* controller modes available */
4356 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4357 ap->mwdma_mask, ap->udma_mask);
4359 /* drive modes available */
4360 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4361 dev->mwdma_mask, dev->udma_mask);
4362 xfer_mask &= ata_id_xfermask(dev->id);
4365 * CFA Advanced TrueIDE timings are not allowed on a shared
4366 * cable
4368 if (ata_dev_pair(dev)) {
4369 /* No PIO5 or PIO6 */
4370 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4371 /* No MWDMA3 or MWDMA 4 */
4372 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4375 if (ata_dma_blacklisted(dev)) {
4376 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4377 ata_dev_printk(dev, KERN_WARNING,
4378 "device is on DMA blacklist, disabling DMA\n");
4381 if ((host->flags & ATA_HOST_SIMPLEX) &&
4382 host->simplex_claimed && host->simplex_claimed != ap) {
4383 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4384 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4385 "other device, disabling DMA\n");
4388 if (ap->flags & ATA_FLAG_NO_IORDY)
4389 xfer_mask &= ata_pio_mask_no_iordy(dev);
4391 if (ap->ops->mode_filter)
4392 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4394 /* Apply cable rule here. Don't apply it early because when
4395 * we handle hot plug the cable type can itself change.
4396 * Check this last so that we know if the transfer rate was
4397 * solely limited by the cable.
4398 * Unknown or 80 wire cables reported host side are checked
4399 * drive side as well. Cases where we know a 40wire cable
4400 * is used safely for 80 are not checked here.
4402 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4403 /* UDMA/44 or higher would be available */
4404 if (cable_is_40wire(ap)) {
4405 ata_dev_printk(dev, KERN_WARNING,
4406 "limited to UDMA/33 due to 40-wire cable\n");
4407 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4410 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4411 &dev->mwdma_mask, &dev->udma_mask);
4415 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4416 * @dev: Device to which command will be sent
4418 * Issue SET FEATURES - XFER MODE command to device @dev
4419 * on port @ap.
4421 * LOCKING:
4422 * PCI/etc. bus probe sem.
4424 * RETURNS:
4425 * 0 on success, AC_ERR_* mask otherwise.
4428 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4430 struct ata_taskfile tf;
4431 unsigned int err_mask;
4433 /* set up set-features taskfile */
4434 DPRINTK("set features - xfer mode\n");
4436 /* Some controllers and ATAPI devices show flaky interrupt
4437 * behavior after setting xfer mode. Use polling instead.
4439 ata_tf_init(dev, &tf);
4440 tf.command = ATA_CMD_SET_FEATURES;
4441 tf.feature = SETFEATURES_XFER;
4442 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4443 tf.protocol = ATA_PROT_NODATA;
4444 /* If we are using IORDY we must send the mode setting command */
4445 if (ata_pio_need_iordy(dev))
4446 tf.nsect = dev->xfer_mode;
4447 /* If the device has IORDY and the controller does not - turn it off */
4448 else if (ata_id_has_iordy(dev->id))
4449 tf.nsect = 0x01;
4450 else /* In the ancient relic department - skip all of this */
4451 return 0;
4453 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4455 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4456 return err_mask;
4459 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4460 * @dev: Device to which command will be sent
4461 * @enable: Whether to enable or disable the feature
4462 * @feature: The sector count represents the feature to set
4464 * Issue SET FEATURES - SATA FEATURES command to device @dev
4465 * on port @ap with sector count
4467 * LOCKING:
4468 * PCI/etc. bus probe sem.
4470 * RETURNS:
4471 * 0 on success, AC_ERR_* mask otherwise.
4473 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4474 u8 feature)
4476 struct ata_taskfile tf;
4477 unsigned int err_mask;
4479 /* set up set-features taskfile */
4480 DPRINTK("set features - SATA features\n");
4482 ata_tf_init(dev, &tf);
4483 tf.command = ATA_CMD_SET_FEATURES;
4484 tf.feature = enable;
4485 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4486 tf.protocol = ATA_PROT_NODATA;
4487 tf.nsect = feature;
4489 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4491 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4492 return err_mask;
4496 * ata_dev_init_params - Issue INIT DEV PARAMS command
4497 * @dev: Device to which command will be sent
4498 * @heads: Number of heads (taskfile parameter)
4499 * @sectors: Number of sectors (taskfile parameter)
4501 * LOCKING:
4502 * Kernel thread context (may sleep)
4504 * RETURNS:
4505 * 0 on success, AC_ERR_* mask otherwise.
4507 static unsigned int ata_dev_init_params(struct ata_device *dev,
4508 u16 heads, u16 sectors)
4510 struct ata_taskfile tf;
4511 unsigned int err_mask;
4513 /* Number of sectors per track 1-255. Number of heads 1-16 */
4514 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4515 return AC_ERR_INVALID;
4517 /* set up init dev params taskfile */
4518 DPRINTK("init dev params \n");
4520 ata_tf_init(dev, &tf);
4521 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4522 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4523 tf.protocol = ATA_PROT_NODATA;
4524 tf.nsect = sectors;
4525 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4527 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4528 /* A clean abort indicates an original or just out of spec drive
4529 and we should continue as we issue the setup based on the
4530 drive reported working geometry */
4531 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4532 err_mask = 0;
4534 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4535 return err_mask;
4539 * ata_sg_clean - Unmap DMA memory associated with command
4540 * @qc: Command containing DMA memory to be released
4542 * Unmap all mapped DMA memory associated with this command.
4544 * LOCKING:
4545 * spin_lock_irqsave(host lock)
4547 void ata_sg_clean(struct ata_queued_cmd *qc)
4549 struct ata_port *ap = qc->ap;
4550 struct scatterlist *sg = qc->sg;
4551 int dir = qc->dma_dir;
4553 WARN_ON(sg == NULL);
4555 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4557 if (qc->n_elem)
4558 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4560 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4561 qc->sg = NULL;
4565 * atapi_check_dma - Check whether ATAPI DMA can be supported
4566 * @qc: Metadata associated with taskfile to check
4568 * Allow low-level driver to filter ATA PACKET commands, returning
4569 * a status indicating whether or not it is OK to use DMA for the
4570 * supplied PACKET command.
4572 * LOCKING:
4573 * spin_lock_irqsave(host lock)
4575 * RETURNS: 0 when ATAPI DMA can be used
4576 * nonzero otherwise
4578 int atapi_check_dma(struct ata_queued_cmd *qc)
4580 struct ata_port *ap = qc->ap;
4582 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4583 * few ATAPI devices choke on such DMA requests.
4585 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4586 unlikely(qc->nbytes & 15))
4587 return 1;
4589 if (ap->ops->check_atapi_dma)
4590 return ap->ops->check_atapi_dma(qc);
4592 return 0;
4596 * ata_std_qc_defer - Check whether a qc needs to be deferred
4597 * @qc: ATA command in question
4599 * Non-NCQ commands cannot run with any other command, NCQ or
4600 * not. As upper layer only knows the queue depth, we are
4601 * responsible for maintaining exclusion. This function checks
4602 * whether a new command @qc can be issued.
4604 * LOCKING:
4605 * spin_lock_irqsave(host lock)
4607 * RETURNS:
4608 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4610 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4612 struct ata_link *link = qc->dev->link;
4614 if (qc->tf.protocol == ATA_PROT_NCQ) {
4615 if (!ata_tag_valid(link->active_tag))
4616 return 0;
4617 } else {
4618 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4619 return 0;
4622 return ATA_DEFER_LINK;
4625 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4628 * ata_sg_init - Associate command with scatter-gather table.
4629 * @qc: Command to be associated
4630 * @sg: Scatter-gather table.
4631 * @n_elem: Number of elements in s/g table.
4633 * Initialize the data-related elements of queued_cmd @qc
4634 * to point to a scatter-gather table @sg, containing @n_elem
4635 * elements.
4637 * LOCKING:
4638 * spin_lock_irqsave(host lock)
4640 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4641 unsigned int n_elem)
4643 qc->sg = sg;
4644 qc->n_elem = n_elem;
4645 qc->cursg = qc->sg;
4649 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4650 * @qc: Command with scatter-gather table to be mapped.
4652 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4654 * LOCKING:
4655 * spin_lock_irqsave(host lock)
4657 * RETURNS:
4658 * Zero on success, negative on error.
4661 static int ata_sg_setup(struct ata_queued_cmd *qc)
4663 struct ata_port *ap = qc->ap;
4664 unsigned int n_elem;
4666 VPRINTK("ENTER, ata%u\n", ap->print_id);
4668 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4669 if (n_elem < 1)
4670 return -1;
4672 DPRINTK("%d sg elements mapped\n", n_elem);
4674 qc->n_elem = n_elem;
4675 qc->flags |= ATA_QCFLAG_DMAMAP;
4677 return 0;
4681 * swap_buf_le16 - swap halves of 16-bit words in place
4682 * @buf: Buffer to swap
4683 * @buf_words: Number of 16-bit words in buffer.
4685 * Swap halves of 16-bit words if needed to convert from
4686 * little-endian byte order to native cpu byte order, or
4687 * vice-versa.
4689 * LOCKING:
4690 * Inherited from caller.
4692 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4694 #ifdef __BIG_ENDIAN
4695 unsigned int i;
4697 for (i = 0; i < buf_words; i++)
4698 buf[i] = le16_to_cpu(buf[i]);
4699 #endif /* __BIG_ENDIAN */
4703 * ata_qc_new - Request an available ATA command, for queueing
4704 * @ap: Port associated with device @dev
4705 * @dev: Device from whom we request an available command structure
4707 * LOCKING:
4708 * None.
4711 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4713 struct ata_queued_cmd *qc = NULL;
4714 unsigned int i;
4716 /* no command while frozen */
4717 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4718 return NULL;
4720 /* the last tag is reserved for internal command. */
4721 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4722 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4723 qc = __ata_qc_from_tag(ap, i);
4724 break;
4727 if (qc)
4728 qc->tag = i;
4730 return qc;
4734 * ata_qc_new_init - Request an available ATA command, and initialize it
4735 * @dev: Device from whom we request an available command structure
4737 * LOCKING:
4738 * None.
4741 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4743 struct ata_port *ap = dev->link->ap;
4744 struct ata_queued_cmd *qc;
4746 qc = ata_qc_new(ap);
4747 if (qc) {
4748 qc->scsicmd = NULL;
4749 qc->ap = ap;
4750 qc->dev = dev;
4752 ata_qc_reinit(qc);
4755 return qc;
4759 * ata_qc_free - free unused ata_queued_cmd
4760 * @qc: Command to complete
4762 * Designed to free unused ata_queued_cmd object
4763 * in case something prevents using it.
4765 * LOCKING:
4766 * spin_lock_irqsave(host lock)
4768 void ata_qc_free(struct ata_queued_cmd *qc)
4770 struct ata_port *ap = qc->ap;
4771 unsigned int tag;
4773 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4775 qc->flags = 0;
4776 tag = qc->tag;
4777 if (likely(ata_tag_valid(tag))) {
4778 qc->tag = ATA_TAG_POISON;
4779 clear_bit(tag, &ap->qc_allocated);
4783 void __ata_qc_complete(struct ata_queued_cmd *qc)
4785 struct ata_port *ap = qc->ap;
4786 struct ata_link *link = qc->dev->link;
4788 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4789 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4791 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4792 ata_sg_clean(qc);
4794 /* command should be marked inactive atomically with qc completion */
4795 if (qc->tf.protocol == ATA_PROT_NCQ) {
4796 link->sactive &= ~(1 << qc->tag);
4797 if (!link->sactive)
4798 ap->nr_active_links--;
4799 } else {
4800 link->active_tag = ATA_TAG_POISON;
4801 ap->nr_active_links--;
4804 /* clear exclusive status */
4805 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4806 ap->excl_link == link))
4807 ap->excl_link = NULL;
4809 /* atapi: mark qc as inactive to prevent the interrupt handler
4810 * from completing the command twice later, before the error handler
4811 * is called. (when rc != 0 and atapi request sense is needed)
4813 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4814 ap->qc_active &= ~(1 << qc->tag);
4816 /* call completion callback */
4817 qc->complete_fn(qc);
4820 static void fill_result_tf(struct ata_queued_cmd *qc)
4822 struct ata_port *ap = qc->ap;
4824 qc->result_tf.flags = qc->tf.flags;
4825 ap->ops->qc_fill_rtf(qc);
4828 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4830 struct ata_device *dev = qc->dev;
4832 if (ata_tag_internal(qc->tag))
4833 return;
4835 if (ata_is_nodata(qc->tf.protocol))
4836 return;
4838 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4839 return;
4841 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4845 * ata_qc_complete - Complete an active ATA command
4846 * @qc: Command to complete
4848 * Indicate to the mid and upper layers that an ATA
4849 * command has completed, with either an ok or not-ok status.
4851 * LOCKING:
4852 * spin_lock_irqsave(host lock)
4854 void ata_qc_complete(struct ata_queued_cmd *qc)
4856 struct ata_port *ap = qc->ap;
4858 /* XXX: New EH and old EH use different mechanisms to
4859 * synchronize EH with regular execution path.
4861 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4862 * Normal execution path is responsible for not accessing a
4863 * failed qc. libata core enforces the rule by returning NULL
4864 * from ata_qc_from_tag() for failed qcs.
4866 * Old EH depends on ata_qc_complete() nullifying completion
4867 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4868 * not synchronize with interrupt handler. Only PIO task is
4869 * taken care of.
4871 if (ap->ops->error_handler) {
4872 struct ata_device *dev = qc->dev;
4873 struct ata_eh_info *ehi = &dev->link->eh_info;
4875 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4877 if (unlikely(qc->err_mask))
4878 qc->flags |= ATA_QCFLAG_FAILED;
4880 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4881 if (!ata_tag_internal(qc->tag)) {
4882 /* always fill result TF for failed qc */
4883 fill_result_tf(qc);
4884 ata_qc_schedule_eh(qc);
4885 return;
4889 /* read result TF if requested */
4890 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4891 fill_result_tf(qc);
4893 /* Some commands need post-processing after successful
4894 * completion.
4896 switch (qc->tf.command) {
4897 case ATA_CMD_SET_FEATURES:
4898 if (qc->tf.feature != SETFEATURES_WC_ON &&
4899 qc->tf.feature != SETFEATURES_WC_OFF)
4900 break;
4901 /* fall through */
4902 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4903 case ATA_CMD_SET_MULTI: /* multi_count changed */
4904 /* revalidate device */
4905 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4906 ata_port_schedule_eh(ap);
4907 break;
4909 case ATA_CMD_SLEEP:
4910 dev->flags |= ATA_DFLAG_SLEEPING;
4911 break;
4914 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4915 ata_verify_xfer(qc);
4917 __ata_qc_complete(qc);
4918 } else {
4919 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4920 return;
4922 /* read result TF if failed or requested */
4923 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4924 fill_result_tf(qc);
4926 __ata_qc_complete(qc);
4931 * ata_qc_complete_multiple - Complete multiple qcs successfully
4932 * @ap: port in question
4933 * @qc_active: new qc_active mask
4935 * Complete in-flight commands. This functions is meant to be
4936 * called from low-level driver's interrupt routine to complete
4937 * requests normally. ap->qc_active and @qc_active is compared
4938 * and commands are completed accordingly.
4940 * LOCKING:
4941 * spin_lock_irqsave(host lock)
4943 * RETURNS:
4944 * Number of completed commands on success, -errno otherwise.
4946 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4948 int nr_done = 0;
4949 u32 done_mask;
4950 int i;
4952 done_mask = ap->qc_active ^ qc_active;
4954 if (unlikely(done_mask & qc_active)) {
4955 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4956 "(%08x->%08x)\n", ap->qc_active, qc_active);
4957 return -EINVAL;
4960 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4961 struct ata_queued_cmd *qc;
4963 if (!(done_mask & (1 << i)))
4964 continue;
4966 if ((qc = ata_qc_from_tag(ap, i))) {
4967 ata_qc_complete(qc);
4968 nr_done++;
4972 return nr_done;
4976 * ata_qc_issue - issue taskfile to device
4977 * @qc: command to issue to device
4979 * Prepare an ATA command to submission to device.
4980 * This includes mapping the data into a DMA-able
4981 * area, filling in the S/G table, and finally
4982 * writing the taskfile to hardware, starting the command.
4984 * LOCKING:
4985 * spin_lock_irqsave(host lock)
4987 void ata_qc_issue(struct ata_queued_cmd *qc)
4989 struct ata_port *ap = qc->ap;
4990 struct ata_link *link = qc->dev->link;
4991 u8 prot = qc->tf.protocol;
4993 /* Make sure only one non-NCQ command is outstanding. The
4994 * check is skipped for old EH because it reuses active qc to
4995 * request ATAPI sense.
4997 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4999 if (ata_is_ncq(prot)) {
5000 WARN_ON(link->sactive & (1 << qc->tag));
5002 if (!link->sactive)
5003 ap->nr_active_links++;
5004 link->sactive |= 1 << qc->tag;
5005 } else {
5006 WARN_ON(link->sactive);
5008 ap->nr_active_links++;
5009 link->active_tag = qc->tag;
5012 qc->flags |= ATA_QCFLAG_ACTIVE;
5013 ap->qc_active |= 1 << qc->tag;
5015 /* We guarantee to LLDs that they will have at least one
5016 * non-zero sg if the command is a data command.
5018 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5020 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5021 (ap->flags & ATA_FLAG_PIO_DMA)))
5022 if (ata_sg_setup(qc))
5023 goto sg_err;
5025 /* if device is sleeping, schedule reset and abort the link */
5026 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5027 link->eh_info.action |= ATA_EH_RESET;
5028 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5029 ata_link_abort(link);
5030 return;
5033 ap->ops->qc_prep(qc);
5035 qc->err_mask |= ap->ops->qc_issue(qc);
5036 if (unlikely(qc->err_mask))
5037 goto err;
5038 return;
5040 sg_err:
5041 qc->err_mask |= AC_ERR_SYSTEM;
5042 err:
5043 ata_qc_complete(qc);
5047 * sata_scr_valid - test whether SCRs are accessible
5048 * @link: ATA link to test SCR accessibility for
5050 * Test whether SCRs are accessible for @link.
5052 * LOCKING:
5053 * None.
5055 * RETURNS:
5056 * 1 if SCRs are accessible, 0 otherwise.
5058 int sata_scr_valid(struct ata_link *link)
5060 struct ata_port *ap = link->ap;
5062 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5066 * sata_scr_read - read SCR register of the specified port
5067 * @link: ATA link to read SCR for
5068 * @reg: SCR to read
5069 * @val: Place to store read value
5071 * Read SCR register @reg of @link into *@val. This function is
5072 * guaranteed to succeed if @link is ap->link, the cable type of
5073 * the port is SATA and the port implements ->scr_read.
5075 * LOCKING:
5076 * None if @link is ap->link. Kernel thread context otherwise.
5078 * RETURNS:
5079 * 0 on success, negative errno on failure.
5081 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5083 if (ata_is_host_link(link)) {
5084 if (sata_scr_valid(link))
5085 return link->ap->ops->scr_read(link, reg, val);
5086 return -EOPNOTSUPP;
5089 return sata_pmp_scr_read(link, reg, val);
5093 * sata_scr_write - write SCR register of the specified port
5094 * @link: ATA link to write SCR for
5095 * @reg: SCR to write
5096 * @val: value to write
5098 * Write @val to SCR register @reg of @link. This function is
5099 * guaranteed to succeed if @link is ap->link, the cable type of
5100 * the port is SATA and the port implements ->scr_read.
5102 * LOCKING:
5103 * None if @link is ap->link. Kernel thread context otherwise.
5105 * RETURNS:
5106 * 0 on success, negative errno on failure.
5108 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5110 if (ata_is_host_link(link)) {
5111 if (sata_scr_valid(link))
5112 return link->ap->ops->scr_write(link, reg, val);
5113 return -EOPNOTSUPP;
5116 return sata_pmp_scr_write(link, reg, val);
5120 * sata_scr_write_flush - write SCR register of the specified port and flush
5121 * @link: ATA link to write SCR for
5122 * @reg: SCR to write
5123 * @val: value to write
5125 * This function is identical to sata_scr_write() except that this
5126 * function performs flush after writing to the register.
5128 * LOCKING:
5129 * None if @link is ap->link. Kernel thread context otherwise.
5131 * RETURNS:
5132 * 0 on success, negative errno on failure.
5134 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5136 if (ata_is_host_link(link)) {
5137 int rc;
5139 if (sata_scr_valid(link)) {
5140 rc = link->ap->ops->scr_write(link, reg, val);
5141 if (rc == 0)
5142 rc = link->ap->ops->scr_read(link, reg, &val);
5143 return rc;
5145 return -EOPNOTSUPP;
5148 return sata_pmp_scr_write(link, reg, val);
5152 * ata_phys_link_online - test whether the given link is online
5153 * @link: ATA link to test
5155 * Test whether @link is online. Note that this function returns
5156 * 0 if online status of @link cannot be obtained, so
5157 * ata_link_online(link) != !ata_link_offline(link).
5159 * LOCKING:
5160 * None.
5162 * RETURNS:
5163 * True if the port online status is available and online.
5165 bool ata_phys_link_online(struct ata_link *link)
5167 u32 sstatus;
5169 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5170 (sstatus & 0xf) == 0x3)
5171 return true;
5172 return false;
5176 * ata_phys_link_offline - test whether the given link is offline
5177 * @link: ATA link to test
5179 * Test whether @link is offline. Note that this function
5180 * returns 0 if offline status of @link cannot be obtained, so
5181 * ata_link_online(link) != !ata_link_offline(link).
5183 * LOCKING:
5184 * None.
5186 * RETURNS:
5187 * True if the port offline status is available and offline.
5189 bool ata_phys_link_offline(struct ata_link *link)
5191 u32 sstatus;
5193 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5194 (sstatus & 0xf) != 0x3)
5195 return true;
5196 return false;
5200 * ata_link_online - test whether the given link is online
5201 * @link: ATA link to test
5203 * Test whether @link is online. This is identical to
5204 * ata_phys_link_online() when there's no slave link. When
5205 * there's a slave link, this function should only be called on
5206 * the master link and will return true if any of M/S links is
5207 * online.
5209 * LOCKING:
5210 * None.
5212 * RETURNS:
5213 * True if the port online status is available and online.
5215 bool ata_link_online(struct ata_link *link)
5217 struct ata_link *slave = link->ap->slave_link;
5219 WARN_ON(link == slave); /* shouldn't be called on slave link */
5221 return ata_phys_link_online(link) ||
5222 (slave && ata_phys_link_online(slave));
5226 * ata_link_offline - test whether the given link is offline
5227 * @link: ATA link to test
5229 * Test whether @link is offline. This is identical to
5230 * ata_phys_link_offline() when there's no slave link. When
5231 * there's a slave link, this function should only be called on
5232 * the master link and will return true if both M/S links are
5233 * offline.
5235 * LOCKING:
5236 * None.
5238 * RETURNS:
5239 * True if the port offline status is available and offline.
5241 bool ata_link_offline(struct ata_link *link)
5243 struct ata_link *slave = link->ap->slave_link;
5245 WARN_ON(link == slave); /* shouldn't be called on slave link */
5247 return ata_phys_link_offline(link) &&
5248 (!slave || ata_phys_link_offline(slave));
5251 #ifdef CONFIG_PM
5252 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5253 unsigned int action, unsigned int ehi_flags,
5254 int wait)
5256 unsigned long flags;
5257 int i, rc;
5259 for (i = 0; i < host->n_ports; i++) {
5260 struct ata_port *ap = host->ports[i];
5261 struct ata_link *link;
5263 /* Previous resume operation might still be in
5264 * progress. Wait for PM_PENDING to clear.
5266 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5267 ata_port_wait_eh(ap);
5268 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5271 /* request PM ops to EH */
5272 spin_lock_irqsave(ap->lock, flags);
5274 ap->pm_mesg = mesg;
5275 if (wait) {
5276 rc = 0;
5277 ap->pm_result = &rc;
5280 ap->pflags |= ATA_PFLAG_PM_PENDING;
5281 ata_for_each_link(link, ap, HOST_FIRST) {
5282 link->eh_info.action |= action;
5283 link->eh_info.flags |= ehi_flags;
5286 ata_port_schedule_eh(ap);
5288 spin_unlock_irqrestore(ap->lock, flags);
5290 /* wait and check result */
5291 if (wait) {
5292 ata_port_wait_eh(ap);
5293 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5294 if (rc)
5295 return rc;
5299 return 0;
5303 * ata_host_suspend - suspend host
5304 * @host: host to suspend
5305 * @mesg: PM message
5307 * Suspend @host. Actual operation is performed by EH. This
5308 * function requests EH to perform PM operations and waits for EH
5309 * to finish.
5311 * LOCKING:
5312 * Kernel thread context (may sleep).
5314 * RETURNS:
5315 * 0 on success, -errno on failure.
5317 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5319 int rc;
5322 * disable link pm on all ports before requesting
5323 * any pm activity
5325 ata_lpm_enable(host);
5327 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5328 if (rc == 0)
5329 host->dev->power.power_state = mesg;
5330 return rc;
5334 * ata_host_resume - resume host
5335 * @host: host to resume
5337 * Resume @host. Actual operation is performed by EH. This
5338 * function requests EH to perform PM operations and returns.
5339 * Note that all resume operations are performed parallely.
5341 * LOCKING:
5342 * Kernel thread context (may sleep).
5344 void ata_host_resume(struct ata_host *host)
5346 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5347 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5348 host->dev->power.power_state = PMSG_ON;
5350 /* reenable link pm */
5351 ata_lpm_disable(host);
5353 #endif
5356 * ata_port_start - Set port up for dma.
5357 * @ap: Port to initialize
5359 * Called just after data structures for each port are
5360 * initialized. Allocates space for PRD table.
5362 * May be used as the port_start() entry in ata_port_operations.
5364 * LOCKING:
5365 * Inherited from caller.
5367 int ata_port_start(struct ata_port *ap)
5369 struct device *dev = ap->dev;
5371 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5372 GFP_KERNEL);
5373 if (!ap->prd)
5374 return -ENOMEM;
5376 return 0;
5380 * ata_dev_init - Initialize an ata_device structure
5381 * @dev: Device structure to initialize
5383 * Initialize @dev in preparation for probing.
5385 * LOCKING:
5386 * Inherited from caller.
5388 void ata_dev_init(struct ata_device *dev)
5390 struct ata_link *link = ata_dev_phys_link(dev);
5391 struct ata_port *ap = link->ap;
5392 unsigned long flags;
5394 /* SATA spd limit is bound to the attached device, reset together */
5395 link->sata_spd_limit = link->hw_sata_spd_limit;
5396 link->sata_spd = 0;
5398 /* High bits of dev->flags are used to record warm plug
5399 * requests which occur asynchronously. Synchronize using
5400 * host lock.
5402 spin_lock_irqsave(ap->lock, flags);
5403 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5404 dev->horkage = 0;
5405 spin_unlock_irqrestore(ap->lock, flags);
5407 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5408 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5409 dev->pio_mask = UINT_MAX;
5410 dev->mwdma_mask = UINT_MAX;
5411 dev->udma_mask = UINT_MAX;
5415 * ata_link_init - Initialize an ata_link structure
5416 * @ap: ATA port link is attached to
5417 * @link: Link structure to initialize
5418 * @pmp: Port multiplier port number
5420 * Initialize @link.
5422 * LOCKING:
5423 * Kernel thread context (may sleep)
5425 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5427 int i;
5429 /* clear everything except for devices */
5430 memset(link, 0, offsetof(struct ata_link, device[0]));
5432 link->ap = ap;
5433 link->pmp = pmp;
5434 link->active_tag = ATA_TAG_POISON;
5435 link->hw_sata_spd_limit = UINT_MAX;
5437 /* can't use iterator, ap isn't initialized yet */
5438 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5439 struct ata_device *dev = &link->device[i];
5441 dev->link = link;
5442 dev->devno = dev - link->device;
5443 ata_dev_init(dev);
5448 * sata_link_init_spd - Initialize link->sata_spd_limit
5449 * @link: Link to configure sata_spd_limit for
5451 * Initialize @link->[hw_]sata_spd_limit to the currently
5452 * configured value.
5454 * LOCKING:
5455 * Kernel thread context (may sleep).
5457 * RETURNS:
5458 * 0 on success, -errno on failure.
5460 int sata_link_init_spd(struct ata_link *link)
5462 u8 spd;
5463 int rc;
5465 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5466 if (rc)
5467 return rc;
5469 spd = (link->saved_scontrol >> 4) & 0xf;
5470 if (spd)
5471 link->hw_sata_spd_limit &= (1 << spd) - 1;
5473 ata_force_link_limits(link);
5475 link->sata_spd_limit = link->hw_sata_spd_limit;
5477 return 0;
5481 * ata_port_alloc - allocate and initialize basic ATA port resources
5482 * @host: ATA host this allocated port belongs to
5484 * Allocate and initialize basic ATA port resources.
5486 * RETURNS:
5487 * Allocate ATA port on success, NULL on failure.
5489 * LOCKING:
5490 * Inherited from calling layer (may sleep).
5492 struct ata_port *ata_port_alloc(struct ata_host *host)
5494 struct ata_port *ap;
5496 DPRINTK("ENTER\n");
5498 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5499 if (!ap)
5500 return NULL;
5502 ap->pflags |= ATA_PFLAG_INITIALIZING;
5503 ap->lock = &host->lock;
5504 ap->flags = ATA_FLAG_DISABLED;
5505 ap->print_id = -1;
5506 ap->ctl = ATA_DEVCTL_OBS;
5507 ap->host = host;
5508 ap->dev = host->dev;
5509 ap->last_ctl = 0xFF;
5511 #if defined(ATA_VERBOSE_DEBUG)
5512 /* turn on all debugging levels */
5513 ap->msg_enable = 0x00FF;
5514 #elif defined(ATA_DEBUG)
5515 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5516 #else
5517 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5518 #endif
5520 #ifdef CONFIG_ATA_SFF
5521 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5522 #else
5523 INIT_DELAYED_WORK(&ap->port_task, NULL);
5524 #endif
5525 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5526 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5527 INIT_LIST_HEAD(&ap->eh_done_q);
5528 init_waitqueue_head(&ap->eh_wait_q);
5529 init_completion(&ap->park_req_pending);
5530 init_timer_deferrable(&ap->fastdrain_timer);
5531 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5532 ap->fastdrain_timer.data = (unsigned long)ap;
5534 ap->cbl = ATA_CBL_NONE;
5536 ata_link_init(ap, &ap->link, 0);
5538 #ifdef ATA_IRQ_TRAP
5539 ap->stats.unhandled_irq = 1;
5540 ap->stats.idle_irq = 1;
5541 #endif
5542 return ap;
5545 static void ata_host_release(struct device *gendev, void *res)
5547 struct ata_host *host = dev_get_drvdata(gendev);
5548 int i;
5550 for (i = 0; i < host->n_ports; i++) {
5551 struct ata_port *ap = host->ports[i];
5553 if (!ap)
5554 continue;
5556 if (ap->scsi_host)
5557 scsi_host_put(ap->scsi_host);
5559 kfree(ap->pmp_link);
5560 kfree(ap->slave_link);
5561 kfree(ap);
5562 host->ports[i] = NULL;
5565 dev_set_drvdata(gendev, NULL);
5569 * ata_host_alloc - allocate and init basic ATA host resources
5570 * @dev: generic device this host is associated with
5571 * @max_ports: maximum number of ATA ports associated with this host
5573 * Allocate and initialize basic ATA host resources. LLD calls
5574 * this function to allocate a host, initializes it fully and
5575 * attaches it using ata_host_register().
5577 * @max_ports ports are allocated and host->n_ports is
5578 * initialized to @max_ports. The caller is allowed to decrease
5579 * host->n_ports before calling ata_host_register(). The unused
5580 * ports will be automatically freed on registration.
5582 * RETURNS:
5583 * Allocate ATA host on success, NULL on failure.
5585 * LOCKING:
5586 * Inherited from calling layer (may sleep).
5588 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5590 struct ata_host *host;
5591 size_t sz;
5592 int i;
5594 DPRINTK("ENTER\n");
5596 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5597 return NULL;
5599 /* alloc a container for our list of ATA ports (buses) */
5600 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5601 /* alloc a container for our list of ATA ports (buses) */
5602 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5603 if (!host)
5604 goto err_out;
5606 devres_add(dev, host);
5607 dev_set_drvdata(dev, host);
5609 spin_lock_init(&host->lock);
5610 host->dev = dev;
5611 host->n_ports = max_ports;
5613 /* allocate ports bound to this host */
5614 for (i = 0; i < max_ports; i++) {
5615 struct ata_port *ap;
5617 ap = ata_port_alloc(host);
5618 if (!ap)
5619 goto err_out;
5621 ap->port_no = i;
5622 host->ports[i] = ap;
5625 devres_remove_group(dev, NULL);
5626 return host;
5628 err_out:
5629 devres_release_group(dev, NULL);
5630 return NULL;
5634 * ata_host_alloc_pinfo - alloc host and init with port_info array
5635 * @dev: generic device this host is associated with
5636 * @ppi: array of ATA port_info to initialize host with
5637 * @n_ports: number of ATA ports attached to this host
5639 * Allocate ATA host and initialize with info from @ppi. If NULL
5640 * terminated, @ppi may contain fewer entries than @n_ports. The
5641 * last entry will be used for the remaining ports.
5643 * RETURNS:
5644 * Allocate ATA host on success, NULL on failure.
5646 * LOCKING:
5647 * Inherited from calling layer (may sleep).
5649 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5650 const struct ata_port_info * const * ppi,
5651 int n_ports)
5653 const struct ata_port_info *pi;
5654 struct ata_host *host;
5655 int i, j;
5657 host = ata_host_alloc(dev, n_ports);
5658 if (!host)
5659 return NULL;
5661 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5662 struct ata_port *ap = host->ports[i];
5664 if (ppi[j])
5665 pi = ppi[j++];
5667 ap->pio_mask = pi->pio_mask;
5668 ap->mwdma_mask = pi->mwdma_mask;
5669 ap->udma_mask = pi->udma_mask;
5670 ap->flags |= pi->flags;
5671 ap->link.flags |= pi->link_flags;
5672 ap->ops = pi->port_ops;
5674 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5675 host->ops = pi->port_ops;
5678 return host;
5682 * ata_slave_link_init - initialize slave link
5683 * @ap: port to initialize slave link for
5685 * Create and initialize slave link for @ap. This enables slave
5686 * link handling on the port.
5688 * In libata, a port contains links and a link contains devices.
5689 * There is single host link but if a PMP is attached to it,
5690 * there can be multiple fan-out links. On SATA, there's usually
5691 * a single device connected to a link but PATA and SATA
5692 * controllers emulating TF based interface can have two - master
5693 * and slave.
5695 * However, there are a few controllers which don't fit into this
5696 * abstraction too well - SATA controllers which emulate TF
5697 * interface with both master and slave devices but also have
5698 * separate SCR register sets for each device. These controllers
5699 * need separate links for physical link handling
5700 * (e.g. onlineness, link speed) but should be treated like a
5701 * traditional M/S controller for everything else (e.g. command
5702 * issue, softreset).
5704 * slave_link is libata's way of handling this class of
5705 * controllers without impacting core layer too much. For
5706 * anything other than physical link handling, the default host
5707 * link is used for both master and slave. For physical link
5708 * handling, separate @ap->slave_link is used. All dirty details
5709 * are implemented inside libata core layer. From LLD's POV, the
5710 * only difference is that prereset, hardreset and postreset are
5711 * called once more for the slave link, so the reset sequence
5712 * looks like the following.
5714 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5715 * softreset(M) -> postreset(M) -> postreset(S)
5717 * Note that softreset is called only for the master. Softreset
5718 * resets both M/S by definition, so SRST on master should handle
5719 * both (the standard method will work just fine).
5721 * LOCKING:
5722 * Should be called before host is registered.
5724 * RETURNS:
5725 * 0 on success, -errno on failure.
5727 int ata_slave_link_init(struct ata_port *ap)
5729 struct ata_link *link;
5731 WARN_ON(ap->slave_link);
5732 WARN_ON(ap->flags & ATA_FLAG_PMP);
5734 link = kzalloc(sizeof(*link), GFP_KERNEL);
5735 if (!link)
5736 return -ENOMEM;
5738 ata_link_init(ap, link, 1);
5739 ap->slave_link = link;
5740 return 0;
5743 static void ata_host_stop(struct device *gendev, void *res)
5745 struct ata_host *host = dev_get_drvdata(gendev);
5746 int i;
5748 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5750 for (i = 0; i < host->n_ports; i++) {
5751 struct ata_port *ap = host->ports[i];
5753 if (ap->ops->port_stop)
5754 ap->ops->port_stop(ap);
5757 if (host->ops->host_stop)
5758 host->ops->host_stop(host);
5762 * ata_finalize_port_ops - finalize ata_port_operations
5763 * @ops: ata_port_operations to finalize
5765 * An ata_port_operations can inherit from another ops and that
5766 * ops can again inherit from another. This can go on as many
5767 * times as necessary as long as there is no loop in the
5768 * inheritance chain.
5770 * Ops tables are finalized when the host is started. NULL or
5771 * unspecified entries are inherited from the closet ancestor
5772 * which has the method and the entry is populated with it.
5773 * After finalization, the ops table directly points to all the
5774 * methods and ->inherits is no longer necessary and cleared.
5776 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5778 * LOCKING:
5779 * None.
5781 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5783 static DEFINE_SPINLOCK(lock);
5784 const struct ata_port_operations *cur;
5785 void **begin = (void **)ops;
5786 void **end = (void **)&ops->inherits;
5787 void **pp;
5789 if (!ops || !ops->inherits)
5790 return;
5792 spin_lock(&lock);
5794 for (cur = ops->inherits; cur; cur = cur->inherits) {
5795 void **inherit = (void **)cur;
5797 for (pp = begin; pp < end; pp++, inherit++)
5798 if (!*pp)
5799 *pp = *inherit;
5802 for (pp = begin; pp < end; pp++)
5803 if (IS_ERR(*pp))
5804 *pp = NULL;
5806 ops->inherits = NULL;
5808 spin_unlock(&lock);
5812 * ata_host_start - start and freeze ports of an ATA host
5813 * @host: ATA host to start ports for
5815 * Start and then freeze ports of @host. Started status is
5816 * recorded in host->flags, so this function can be called
5817 * multiple times. Ports are guaranteed to get started only
5818 * once. If host->ops isn't initialized yet, its set to the
5819 * first non-dummy port ops.
5821 * LOCKING:
5822 * Inherited from calling layer (may sleep).
5824 * RETURNS:
5825 * 0 if all ports are started successfully, -errno otherwise.
5827 int ata_host_start(struct ata_host *host)
5829 int have_stop = 0;
5830 void *start_dr = NULL;
5831 int i, rc;
5833 if (host->flags & ATA_HOST_STARTED)
5834 return 0;
5836 ata_finalize_port_ops(host->ops);
5838 for (i = 0; i < host->n_ports; i++) {
5839 struct ata_port *ap = host->ports[i];
5841 ata_finalize_port_ops(ap->ops);
5843 if (!host->ops && !ata_port_is_dummy(ap))
5844 host->ops = ap->ops;
5846 if (ap->ops->port_stop)
5847 have_stop = 1;
5850 if (host->ops->host_stop)
5851 have_stop = 1;
5853 if (have_stop) {
5854 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5855 if (!start_dr)
5856 return -ENOMEM;
5859 for (i = 0; i < host->n_ports; i++) {
5860 struct ata_port *ap = host->ports[i];
5862 if (ap->ops->port_start) {
5863 rc = ap->ops->port_start(ap);
5864 if (rc) {
5865 if (rc != -ENODEV)
5866 dev_printk(KERN_ERR, host->dev,
5867 "failed to start port %d "
5868 "(errno=%d)\n", i, rc);
5869 goto err_out;
5872 ata_eh_freeze_port(ap);
5875 if (start_dr)
5876 devres_add(host->dev, start_dr);
5877 host->flags |= ATA_HOST_STARTED;
5878 return 0;
5880 err_out:
5881 while (--i >= 0) {
5882 struct ata_port *ap = host->ports[i];
5884 if (ap->ops->port_stop)
5885 ap->ops->port_stop(ap);
5887 devres_free(start_dr);
5888 return rc;
5892 * ata_sas_host_init - Initialize a host struct
5893 * @host: host to initialize
5894 * @dev: device host is attached to
5895 * @flags: host flags
5896 * @ops: port_ops
5898 * LOCKING:
5899 * PCI/etc. bus probe sem.
5902 /* KILLME - the only user left is ipr */
5903 void ata_host_init(struct ata_host *host, struct device *dev,
5904 unsigned long flags, struct ata_port_operations *ops)
5906 spin_lock_init(&host->lock);
5907 host->dev = dev;
5908 host->flags = flags;
5909 host->ops = ops;
5913 * ata_host_register - register initialized ATA host
5914 * @host: ATA host to register
5915 * @sht: template for SCSI host
5917 * Register initialized ATA host. @host is allocated using
5918 * ata_host_alloc() and fully initialized by LLD. This function
5919 * starts ports, registers @host with ATA and SCSI layers and
5920 * probe registered devices.
5922 * LOCKING:
5923 * Inherited from calling layer (may sleep).
5925 * RETURNS:
5926 * 0 on success, -errno otherwise.
5928 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5930 int i, rc;
5932 /* host must have been started */
5933 if (!(host->flags & ATA_HOST_STARTED)) {
5934 dev_printk(KERN_ERR, host->dev,
5935 "BUG: trying to register unstarted host\n");
5936 WARN_ON(1);
5937 return -EINVAL;
5940 /* Blow away unused ports. This happens when LLD can't
5941 * determine the exact number of ports to allocate at
5942 * allocation time.
5944 for (i = host->n_ports; host->ports[i]; i++)
5945 kfree(host->ports[i]);
5947 /* give ports names and add SCSI hosts */
5948 for (i = 0; i < host->n_ports; i++)
5949 host->ports[i]->print_id = ata_print_id++;
5951 rc = ata_scsi_add_hosts(host, sht);
5952 if (rc)
5953 return rc;
5955 /* associate with ACPI nodes */
5956 ata_acpi_associate(host);
5958 /* set cable, sata_spd_limit and report */
5959 for (i = 0; i < host->n_ports; i++) {
5960 struct ata_port *ap = host->ports[i];
5961 unsigned long xfer_mask;
5963 /* set SATA cable type if still unset */
5964 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5965 ap->cbl = ATA_CBL_SATA;
5967 /* init sata_spd_limit to the current value */
5968 sata_link_init_spd(&ap->link);
5969 if (ap->slave_link)
5970 sata_link_init_spd(ap->slave_link);
5972 /* print per-port info to dmesg */
5973 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5974 ap->udma_mask);
5976 if (!ata_port_is_dummy(ap)) {
5977 ata_port_printk(ap, KERN_INFO,
5978 "%cATA max %s %s\n",
5979 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5980 ata_mode_string(xfer_mask),
5981 ap->link.eh_info.desc);
5982 ata_ehi_clear_desc(&ap->link.eh_info);
5983 } else
5984 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5987 /* perform each probe synchronously */
5988 DPRINTK("probe begin\n");
5989 for (i = 0; i < host->n_ports; i++) {
5990 struct ata_port *ap = host->ports[i];
5992 /* probe */
5993 if (ap->ops->error_handler) {
5994 struct ata_eh_info *ehi = &ap->link.eh_info;
5995 unsigned long flags;
5997 ata_port_probe(ap);
5999 /* kick EH for boot probing */
6000 spin_lock_irqsave(ap->lock, flags);
6002 ehi->probe_mask |= ATA_ALL_DEVICES;
6003 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6004 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6006 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6007 ap->pflags |= ATA_PFLAG_LOADING;
6008 ata_port_schedule_eh(ap);
6010 spin_unlock_irqrestore(ap->lock, flags);
6012 /* wait for EH to finish */
6013 ata_port_wait_eh(ap);
6014 } else {
6015 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6016 rc = ata_bus_probe(ap);
6017 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6019 if (rc) {
6020 /* FIXME: do something useful here?
6021 * Current libata behavior will
6022 * tear down everything when
6023 * the module is removed
6024 * or the h/w is unplugged.
6030 /* probes are done, now scan each port's disk(s) */
6031 DPRINTK("host probe begin\n");
6032 for (i = 0; i < host->n_ports; i++) {
6033 struct ata_port *ap = host->ports[i];
6035 ata_scsi_scan_host(ap, 1);
6038 return 0;
6042 * ata_host_activate - start host, request IRQ and register it
6043 * @host: target ATA host
6044 * @irq: IRQ to request
6045 * @irq_handler: irq_handler used when requesting IRQ
6046 * @irq_flags: irq_flags used when requesting IRQ
6047 * @sht: scsi_host_template to use when registering the host
6049 * After allocating an ATA host and initializing it, most libata
6050 * LLDs perform three steps to activate the host - start host,
6051 * request IRQ and register it. This helper takes necessasry
6052 * arguments and performs the three steps in one go.
6054 * An invalid IRQ skips the IRQ registration and expects the host to
6055 * have set polling mode on the port. In this case, @irq_handler
6056 * should be NULL.
6058 * LOCKING:
6059 * Inherited from calling layer (may sleep).
6061 * RETURNS:
6062 * 0 on success, -errno otherwise.
6064 int ata_host_activate(struct ata_host *host, int irq,
6065 irq_handler_t irq_handler, unsigned long irq_flags,
6066 struct scsi_host_template *sht)
6068 int i, rc;
6070 rc = ata_host_start(host);
6071 if (rc)
6072 return rc;
6074 /* Special case for polling mode */
6075 if (!irq) {
6076 WARN_ON(irq_handler);
6077 return ata_host_register(host, sht);
6080 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6081 dev_driver_string(host->dev), host);
6082 if (rc)
6083 return rc;
6085 for (i = 0; i < host->n_ports; i++)
6086 ata_port_desc(host->ports[i], "irq %d", irq);
6088 rc = ata_host_register(host, sht);
6089 /* if failed, just free the IRQ and leave ports alone */
6090 if (rc)
6091 devm_free_irq(host->dev, irq, host);
6093 return rc;
6097 * ata_port_detach - Detach ATA port in prepration of device removal
6098 * @ap: ATA port to be detached
6100 * Detach all ATA devices and the associated SCSI devices of @ap;
6101 * then, remove the associated SCSI host. @ap is guaranteed to
6102 * be quiescent on return from this function.
6104 * LOCKING:
6105 * Kernel thread context (may sleep).
6107 static void ata_port_detach(struct ata_port *ap)
6109 unsigned long flags;
6111 if (!ap->ops->error_handler)
6112 goto skip_eh;
6114 /* tell EH we're leaving & flush EH */
6115 spin_lock_irqsave(ap->lock, flags);
6116 ap->pflags |= ATA_PFLAG_UNLOADING;
6117 ata_port_schedule_eh(ap);
6118 spin_unlock_irqrestore(ap->lock, flags);
6120 /* wait till EH commits suicide */
6121 ata_port_wait_eh(ap);
6123 /* it better be dead now */
6124 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6126 cancel_rearming_delayed_work(&ap->hotplug_task);
6128 skip_eh:
6129 /* remove the associated SCSI host */
6130 scsi_remove_host(ap->scsi_host);
6134 * ata_host_detach - Detach all ports of an ATA host
6135 * @host: Host to detach
6137 * Detach all ports of @host.
6139 * LOCKING:
6140 * Kernel thread context (may sleep).
6142 void ata_host_detach(struct ata_host *host)
6144 int i;
6146 for (i = 0; i < host->n_ports; i++)
6147 ata_port_detach(host->ports[i]);
6149 /* the host is dead now, dissociate ACPI */
6150 ata_acpi_dissociate(host);
6153 #ifdef CONFIG_PCI
6156 * ata_pci_remove_one - PCI layer callback for device removal
6157 * @pdev: PCI device that was removed
6159 * PCI layer indicates to libata via this hook that hot-unplug or
6160 * module unload event has occurred. Detach all ports. Resource
6161 * release is handled via devres.
6163 * LOCKING:
6164 * Inherited from PCI layer (may sleep).
6166 void ata_pci_remove_one(struct pci_dev *pdev)
6168 struct device *dev = &pdev->dev;
6169 struct ata_host *host = dev_get_drvdata(dev);
6171 ata_host_detach(host);
6174 /* move to PCI subsystem */
6175 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6177 unsigned long tmp = 0;
6179 switch (bits->width) {
6180 case 1: {
6181 u8 tmp8 = 0;
6182 pci_read_config_byte(pdev, bits->reg, &tmp8);
6183 tmp = tmp8;
6184 break;
6186 case 2: {
6187 u16 tmp16 = 0;
6188 pci_read_config_word(pdev, bits->reg, &tmp16);
6189 tmp = tmp16;
6190 break;
6192 case 4: {
6193 u32 tmp32 = 0;
6194 pci_read_config_dword(pdev, bits->reg, &tmp32);
6195 tmp = tmp32;
6196 break;
6199 default:
6200 return -EINVAL;
6203 tmp &= bits->mask;
6205 return (tmp == bits->val) ? 1 : 0;
6208 #ifdef CONFIG_PM
6209 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6211 pci_save_state(pdev);
6212 pci_disable_device(pdev);
6214 if (mesg.event & PM_EVENT_SLEEP)
6215 pci_set_power_state(pdev, PCI_D3hot);
6218 int ata_pci_device_do_resume(struct pci_dev *pdev)
6220 int rc;
6222 pci_set_power_state(pdev, PCI_D0);
6223 pci_restore_state(pdev);
6225 rc = pcim_enable_device(pdev);
6226 if (rc) {
6227 dev_printk(KERN_ERR, &pdev->dev,
6228 "failed to enable device after resume (%d)\n", rc);
6229 return rc;
6232 pci_set_master(pdev);
6233 return 0;
6236 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6238 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6239 int rc = 0;
6241 rc = ata_host_suspend(host, mesg);
6242 if (rc)
6243 return rc;
6245 ata_pci_device_do_suspend(pdev, mesg);
6247 return 0;
6250 int ata_pci_device_resume(struct pci_dev *pdev)
6252 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6253 int rc;
6255 rc = ata_pci_device_do_resume(pdev);
6256 if (rc == 0)
6257 ata_host_resume(host);
6258 return rc;
6260 #endif /* CONFIG_PM */
6262 #endif /* CONFIG_PCI */
6264 static int __init ata_parse_force_one(char **cur,
6265 struct ata_force_ent *force_ent,
6266 const char **reason)
6268 /* FIXME: Currently, there's no way to tag init const data and
6269 * using __initdata causes build failure on some versions of
6270 * gcc. Once __initdataconst is implemented, add const to the
6271 * following structure.
6273 static struct ata_force_param force_tbl[] __initdata = {
6274 { "40c", .cbl = ATA_CBL_PATA40 },
6275 { "80c", .cbl = ATA_CBL_PATA80 },
6276 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6277 { "unk", .cbl = ATA_CBL_PATA_UNK },
6278 { "ign", .cbl = ATA_CBL_PATA_IGN },
6279 { "sata", .cbl = ATA_CBL_SATA },
6280 { "1.5Gbps", .spd_limit = 1 },
6281 { "3.0Gbps", .spd_limit = 2 },
6282 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6283 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6284 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6285 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6286 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6287 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6288 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6289 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6290 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6291 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6292 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6293 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6294 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6295 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6296 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6297 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6298 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6299 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6300 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6301 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6302 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6303 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6304 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6305 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6306 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6307 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6308 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6309 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6310 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6311 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6312 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6313 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6314 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6315 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6316 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6317 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6318 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6319 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6320 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6322 char *start = *cur, *p = *cur;
6323 char *id, *val, *endp;
6324 const struct ata_force_param *match_fp = NULL;
6325 int nr_matches = 0, i;
6327 /* find where this param ends and update *cur */
6328 while (*p != '\0' && *p != ',')
6329 p++;
6331 if (*p == '\0')
6332 *cur = p;
6333 else
6334 *cur = p + 1;
6336 *p = '\0';
6338 /* parse */
6339 p = strchr(start, ':');
6340 if (!p) {
6341 val = strstrip(start);
6342 goto parse_val;
6344 *p = '\0';
6346 id = strstrip(start);
6347 val = strstrip(p + 1);
6349 /* parse id */
6350 p = strchr(id, '.');
6351 if (p) {
6352 *p++ = '\0';
6353 force_ent->device = simple_strtoul(p, &endp, 10);
6354 if (p == endp || *endp != '\0') {
6355 *reason = "invalid device";
6356 return -EINVAL;
6360 force_ent->port = simple_strtoul(id, &endp, 10);
6361 if (p == endp || *endp != '\0') {
6362 *reason = "invalid port/link";
6363 return -EINVAL;
6366 parse_val:
6367 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6368 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6369 const struct ata_force_param *fp = &force_tbl[i];
6371 if (strncasecmp(val, fp->name, strlen(val)))
6372 continue;
6374 nr_matches++;
6375 match_fp = fp;
6377 if (strcasecmp(val, fp->name) == 0) {
6378 nr_matches = 1;
6379 break;
6383 if (!nr_matches) {
6384 *reason = "unknown value";
6385 return -EINVAL;
6387 if (nr_matches > 1) {
6388 *reason = "ambigious value";
6389 return -EINVAL;
6392 force_ent->param = *match_fp;
6394 return 0;
6397 static void __init ata_parse_force_param(void)
6399 int idx = 0, size = 1;
6400 int last_port = -1, last_device = -1;
6401 char *p, *cur, *next;
6403 /* calculate maximum number of params and allocate force_tbl */
6404 for (p = ata_force_param_buf; *p; p++)
6405 if (*p == ',')
6406 size++;
6408 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6409 if (!ata_force_tbl) {
6410 printk(KERN_WARNING "ata: failed to extend force table, "
6411 "libata.force ignored\n");
6412 return;
6415 /* parse and populate the table */
6416 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6417 const char *reason = "";
6418 struct ata_force_ent te = { .port = -1, .device = -1 };
6420 next = cur;
6421 if (ata_parse_force_one(&next, &te, &reason)) {
6422 printk(KERN_WARNING "ata: failed to parse force "
6423 "parameter \"%s\" (%s)\n",
6424 cur, reason);
6425 continue;
6428 if (te.port == -1) {
6429 te.port = last_port;
6430 te.device = last_device;
6433 ata_force_tbl[idx++] = te;
6435 last_port = te.port;
6436 last_device = te.device;
6439 ata_force_tbl_size = idx;
6442 static int __init ata_init(void)
6444 ata_parse_force_param();
6446 ata_wq = create_workqueue("ata");
6447 if (!ata_wq)
6448 goto free_force_tbl;
6450 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6451 if (!ata_aux_wq)
6452 goto free_wq;
6454 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6455 return 0;
6457 free_wq:
6458 destroy_workqueue(ata_wq);
6459 free_force_tbl:
6460 kfree(ata_force_tbl);
6461 return -ENOMEM;
6464 static void __exit ata_exit(void)
6466 kfree(ata_force_tbl);
6467 destroy_workqueue(ata_wq);
6468 destroy_workqueue(ata_aux_wq);
6471 subsys_initcall(ata_init);
6472 module_exit(ata_exit);
6474 static unsigned long ratelimit_time;
6475 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6477 int ata_ratelimit(void)
6479 int rc;
6480 unsigned long flags;
6482 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6484 if (time_after(jiffies, ratelimit_time)) {
6485 rc = 1;
6486 ratelimit_time = jiffies + (HZ/5);
6487 } else
6488 rc = 0;
6490 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6492 return rc;
6496 * ata_wait_register - wait until register value changes
6497 * @reg: IO-mapped register
6498 * @mask: Mask to apply to read register value
6499 * @val: Wait condition
6500 * @interval: polling interval in milliseconds
6501 * @timeout: timeout in milliseconds
6503 * Waiting for some bits of register to change is a common
6504 * operation for ATA controllers. This function reads 32bit LE
6505 * IO-mapped register @reg and tests for the following condition.
6507 * (*@reg & mask) != val
6509 * If the condition is met, it returns; otherwise, the process is
6510 * repeated after @interval_msec until timeout.
6512 * LOCKING:
6513 * Kernel thread context (may sleep)
6515 * RETURNS:
6516 * The final register value.
6518 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6519 unsigned long interval, unsigned long timeout)
6521 unsigned long deadline;
6522 u32 tmp;
6524 tmp = ioread32(reg);
6526 /* Calculate timeout _after_ the first read to make sure
6527 * preceding writes reach the controller before starting to
6528 * eat away the timeout.
6530 deadline = ata_deadline(jiffies, timeout);
6532 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6533 msleep(interval);
6534 tmp = ioread32(reg);
6537 return tmp;
6541 * Dummy port_ops
6543 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6545 return AC_ERR_SYSTEM;
6548 static void ata_dummy_error_handler(struct ata_port *ap)
6550 /* truly dummy */
6553 struct ata_port_operations ata_dummy_port_ops = {
6554 .qc_prep = ata_noop_qc_prep,
6555 .qc_issue = ata_dummy_qc_issue,
6556 .error_handler = ata_dummy_error_handler,
6559 const struct ata_port_info ata_dummy_port_info = {
6560 .port_ops = &ata_dummy_port_ops,
6564 * libata is essentially a library of internal helper functions for
6565 * low-level ATA host controller drivers. As such, the API/ABI is
6566 * likely to change as new drivers are added and updated.
6567 * Do not depend on ABI/API stability.
6569 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6570 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6571 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6572 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6573 EXPORT_SYMBOL_GPL(sata_port_ops);
6574 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6575 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6576 EXPORT_SYMBOL_GPL(ata_link_next);
6577 EXPORT_SYMBOL_GPL(ata_dev_next);
6578 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6579 EXPORT_SYMBOL_GPL(ata_host_init);
6580 EXPORT_SYMBOL_GPL(ata_host_alloc);
6581 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6582 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6583 EXPORT_SYMBOL_GPL(ata_host_start);
6584 EXPORT_SYMBOL_GPL(ata_host_register);
6585 EXPORT_SYMBOL_GPL(ata_host_activate);
6586 EXPORT_SYMBOL_GPL(ata_host_detach);
6587 EXPORT_SYMBOL_GPL(ata_sg_init);
6588 EXPORT_SYMBOL_GPL(ata_qc_complete);
6589 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6590 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6591 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6592 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6593 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6594 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6595 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6596 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6597 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6598 EXPORT_SYMBOL_GPL(ata_mode_string);
6599 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6600 EXPORT_SYMBOL_GPL(ata_port_start);
6601 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6602 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6603 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6604 EXPORT_SYMBOL_GPL(ata_port_probe);
6605 EXPORT_SYMBOL_GPL(ata_dev_disable);
6606 EXPORT_SYMBOL_GPL(sata_set_spd);
6607 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6608 EXPORT_SYMBOL_GPL(sata_link_debounce);
6609 EXPORT_SYMBOL_GPL(sata_link_resume);
6610 EXPORT_SYMBOL_GPL(ata_std_prereset);
6611 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6612 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6613 EXPORT_SYMBOL_GPL(ata_std_postreset);
6614 EXPORT_SYMBOL_GPL(ata_dev_classify);
6615 EXPORT_SYMBOL_GPL(ata_dev_pair);
6616 EXPORT_SYMBOL_GPL(ata_port_disable);
6617 EXPORT_SYMBOL_GPL(ata_ratelimit);
6618 EXPORT_SYMBOL_GPL(ata_wait_register);
6619 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6620 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6621 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6622 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6623 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6624 EXPORT_SYMBOL_GPL(sata_scr_valid);
6625 EXPORT_SYMBOL_GPL(sata_scr_read);
6626 EXPORT_SYMBOL_GPL(sata_scr_write);
6627 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6628 EXPORT_SYMBOL_GPL(ata_link_online);
6629 EXPORT_SYMBOL_GPL(ata_link_offline);
6630 #ifdef CONFIG_PM
6631 EXPORT_SYMBOL_GPL(ata_host_suspend);
6632 EXPORT_SYMBOL_GPL(ata_host_resume);
6633 #endif /* CONFIG_PM */
6634 EXPORT_SYMBOL_GPL(ata_id_string);
6635 EXPORT_SYMBOL_GPL(ata_id_c_string);
6636 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6637 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6639 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6640 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6641 EXPORT_SYMBOL_GPL(ata_timing_compute);
6642 EXPORT_SYMBOL_GPL(ata_timing_merge);
6643 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6645 #ifdef CONFIG_PCI
6646 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6647 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6648 #ifdef CONFIG_PM
6649 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6650 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6651 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6652 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6653 #endif /* CONFIG_PM */
6654 #endif /* CONFIG_PCI */
6656 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6657 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6658 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6659 EXPORT_SYMBOL_GPL(ata_port_desc);
6660 #ifdef CONFIG_PCI
6661 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6662 #endif /* CONFIG_PCI */
6663 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6664 EXPORT_SYMBOL_GPL(ata_link_abort);
6665 EXPORT_SYMBOL_GPL(ata_port_abort);
6666 EXPORT_SYMBOL_GPL(ata_port_freeze);
6667 EXPORT_SYMBOL_GPL(sata_async_notification);
6668 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6669 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6670 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6671 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6672 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6673 EXPORT_SYMBOL_GPL(ata_do_eh);
6674 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6676 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6677 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6678 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6679 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6680 EXPORT_SYMBOL_GPL(ata_cable_sata);