[IPIP]: Allow rebinding the tunnel to another interface
[linux-2.6/verdex.git] / drivers / acpi / processor_idle.c
blob2235f4e02d26f46267b512a0d3c4c14badc34526
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
87 #ifndef CONFIG_CPU_IDLE
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
95 static unsigned int bm_history __read_mostly =
96 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
101 #endif
104 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105 * For now disable this. Probably a bug somewhere else.
107 * To skip this limit, boot/load with a large max_cstate limit.
109 static int set_max_cstate(const struct dmi_system_id *id)
111 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
112 return 0;
114 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
115 " Override with \"processor.max_cstate=%d\"\n", id->ident,
116 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
118 max_cstate = (long)id->driver_data;
120 return 0;
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124 callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
126 { set_max_cstate, "IBM ThinkPad R40e", {
127 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
129 { set_max_cstate, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
132 { set_max_cstate, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
135 { set_max_cstate, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
138 { set_max_cstate, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
141 { set_max_cstate, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
144 { set_max_cstate, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
147 { set_max_cstate, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
150 { set_max_cstate, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
153 { set_max_cstate, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
156 { set_max_cstate, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
159 { set_max_cstate, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
162 { set_max_cstate, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
165 { set_max_cstate, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
168 { set_max_cstate, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
171 { set_max_cstate, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
174 { set_max_cstate, "Medion 41700", {
175 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
176 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
177 { set_max_cstate, "Clevo 5600D", {
178 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180 (void *)2},
184 static inline u32 ticks_elapsed(u32 t1, u32 t2)
186 if (t2 >= t1)
187 return (t2 - t1);
188 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
189 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
190 else
191 return ((0xFFFFFFFF - t1) + t2);
194 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
196 if (t2 >= t1)
197 return PM_TIMER_TICKS_TO_US(t2 - t1);
198 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
199 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
200 else
201 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
204 static void acpi_safe_halt(void)
206 current_thread_info()->status &= ~TS_POLLING;
208 * TS_POLLING-cleared state must be visible before we
209 * test NEED_RESCHED:
211 smp_mb();
212 if (!need_resched())
213 safe_halt();
214 current_thread_info()->status |= TS_POLLING;
217 #ifndef CONFIG_CPU_IDLE
219 static void
220 acpi_processor_power_activate(struct acpi_processor *pr,
221 struct acpi_processor_cx *new)
223 struct acpi_processor_cx *old;
225 if (!pr || !new)
226 return;
228 old = pr->power.state;
230 if (old)
231 old->promotion.count = 0;
232 new->demotion.count = 0;
234 /* Cleanup from old state. */
235 if (old) {
236 switch (old->type) {
237 case ACPI_STATE_C3:
238 /* Disable bus master reload */
239 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
240 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
241 break;
245 /* Prepare to use new state. */
246 switch (new->type) {
247 case ACPI_STATE_C3:
248 /* Enable bus master reload */
249 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
250 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
251 break;
254 pr->power.state = new;
256 return;
259 static atomic_t c3_cpu_count;
261 /* Common C-state entry for C2, C3, .. */
262 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
264 if (cstate->space_id == ACPI_CSTATE_FFH) {
265 /* Call into architectural FFH based C-state */
266 acpi_processor_ffh_cstate_enter(cstate);
267 } else {
268 int unused;
269 /* IO port based C-state */
270 inb(cstate->address);
271 /* Dummy wait op - must do something useless after P_LVL2 read
272 because chipsets cannot guarantee that STPCLK# signal
273 gets asserted in time to freeze execution properly. */
274 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
277 #endif /* !CONFIG_CPU_IDLE */
279 #ifdef ARCH_APICTIMER_STOPS_ON_C3
282 * Some BIOS implementations switch to C3 in the published C2 state.
283 * This seems to be a common problem on AMD boxen, but other vendors
284 * are affected too. We pick the most conservative approach: we assume
285 * that the local APIC stops in both C2 and C3.
287 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
288 struct acpi_processor_cx *cx)
290 struct acpi_processor_power *pwr = &pr->power;
291 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
294 * Check, if one of the previous states already marked the lapic
295 * unstable
297 if (pwr->timer_broadcast_on_state < state)
298 return;
300 if (cx->type >= type)
301 pr->power.timer_broadcast_on_state = state;
304 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
306 unsigned long reason;
308 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
309 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
311 clockevents_notify(reason, &pr->id);
314 /* Power(C) State timer broadcast control */
315 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
316 struct acpi_processor_cx *cx,
317 int broadcast)
319 int state = cx - pr->power.states;
321 if (state >= pr->power.timer_broadcast_on_state) {
322 unsigned long reason;
324 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
325 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
326 clockevents_notify(reason, &pr->id);
330 #else
332 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
333 struct acpi_processor_cx *cstate) { }
334 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
335 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
336 struct acpi_processor_cx *cx,
337 int broadcast)
341 #endif
344 * Suspend / resume control
346 static int acpi_idle_suspend;
348 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
350 acpi_idle_suspend = 1;
351 return 0;
354 int acpi_processor_resume(struct acpi_device * device)
356 acpi_idle_suspend = 0;
357 return 0;
360 #ifndef CONFIG_CPU_IDLE
361 static void acpi_processor_idle(void)
363 struct acpi_processor *pr = NULL;
364 struct acpi_processor_cx *cx = NULL;
365 struct acpi_processor_cx *next_state = NULL;
366 int sleep_ticks = 0;
367 u32 t1, t2 = 0;
370 * Interrupts must be disabled during bus mastering calculations and
371 * for C2/C3 transitions.
373 local_irq_disable();
375 pr = processors[smp_processor_id()];
376 if (!pr) {
377 local_irq_enable();
378 return;
382 * Check whether we truly need to go idle, or should
383 * reschedule:
385 if (unlikely(need_resched())) {
386 local_irq_enable();
387 return;
390 cx = pr->power.state;
391 if (!cx || acpi_idle_suspend) {
392 if (pm_idle_save)
393 pm_idle_save();
394 else
395 acpi_safe_halt();
396 return;
400 * Check BM Activity
401 * -----------------
402 * Check for bus mastering activity (if required), record, and check
403 * for demotion.
405 if (pr->flags.bm_check) {
406 u32 bm_status = 0;
407 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
409 if (diff > 31)
410 diff = 31;
412 pr->power.bm_activity <<= diff;
414 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
415 if (bm_status) {
416 pr->power.bm_activity |= 0x1;
417 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
420 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
421 * the true state of bus mastering activity; forcing us to
422 * manually check the BMIDEA bit of each IDE channel.
424 else if (errata.piix4.bmisx) {
425 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
426 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
427 pr->power.bm_activity |= 0x1;
430 pr->power.bm_check_timestamp = jiffies;
433 * If bus mastering is or was active this jiffy, demote
434 * to avoid a faulty transition. Note that the processor
435 * won't enter a low-power state during this call (to this
436 * function) but should upon the next.
438 * TBD: A better policy might be to fallback to the demotion
439 * state (use it for this quantum only) istead of
440 * demoting -- and rely on duration as our sole demotion
441 * qualification. This may, however, introduce DMA
442 * issues (e.g. floppy DMA transfer overrun/underrun).
444 if ((pr->power.bm_activity & 0x1) &&
445 cx->demotion.threshold.bm) {
446 local_irq_enable();
447 next_state = cx->demotion.state;
448 goto end;
452 #ifdef CONFIG_HOTPLUG_CPU
454 * Check for P_LVL2_UP flag before entering C2 and above on
455 * an SMP system. We do it here instead of doing it at _CST/P_LVL
456 * detection phase, to work cleanly with logical CPU hotplug.
458 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
459 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
460 cx = &pr->power.states[ACPI_STATE_C1];
461 #endif
464 * Sleep:
465 * ------
466 * Invoke the current Cx state to put the processor to sleep.
468 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
469 current_thread_info()->status &= ~TS_POLLING;
471 * TS_POLLING-cleared state must be visible before we
472 * test NEED_RESCHED:
474 smp_mb();
475 if (need_resched()) {
476 current_thread_info()->status |= TS_POLLING;
477 local_irq_enable();
478 return;
482 switch (cx->type) {
484 case ACPI_STATE_C1:
486 * Invoke C1.
487 * Use the appropriate idle routine, the one that would
488 * be used without acpi C-states.
490 if (pm_idle_save)
491 pm_idle_save();
492 else
493 acpi_safe_halt();
496 * TBD: Can't get time duration while in C1, as resumes
497 * go to an ISR rather than here. Need to instrument
498 * base interrupt handler.
500 * Note: the TSC better not stop in C1, sched_clock() will
501 * skew otherwise.
503 sleep_ticks = 0xFFFFFFFF;
504 break;
506 case ACPI_STATE_C2:
507 /* Get start time (ticks) */
508 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
509 /* Tell the scheduler that we are going deep-idle: */
510 sched_clock_idle_sleep_event();
511 /* Invoke C2 */
512 acpi_state_timer_broadcast(pr, cx, 1);
513 acpi_cstate_enter(cx);
514 /* Get end time (ticks) */
515 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
517 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
518 /* TSC halts in C2, so notify users */
519 mark_tsc_unstable("possible TSC halt in C2");
520 #endif
521 /* Compute time (ticks) that we were actually asleep */
522 sleep_ticks = ticks_elapsed(t1, t2);
524 /* Tell the scheduler how much we idled: */
525 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
527 /* Re-enable interrupts */
528 local_irq_enable();
529 /* Do not account our idle-switching overhead: */
530 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
532 current_thread_info()->status |= TS_POLLING;
533 acpi_state_timer_broadcast(pr, cx, 0);
534 break;
536 case ACPI_STATE_C3:
538 * Must be done before busmaster disable as we might
539 * need to access HPET !
541 acpi_state_timer_broadcast(pr, cx, 1);
543 * disable bus master
544 * bm_check implies we need ARB_DIS
545 * !bm_check implies we need cache flush
546 * bm_control implies whether we can do ARB_DIS
548 * That leaves a case where bm_check is set and bm_control is
549 * not set. In that case we cannot do much, we enter C3
550 * without doing anything.
552 if (pr->flags.bm_check && pr->flags.bm_control) {
553 if (atomic_inc_return(&c3_cpu_count) ==
554 num_online_cpus()) {
556 * All CPUs are trying to go to C3
557 * Disable bus master arbitration
559 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
561 } else if (!pr->flags.bm_check) {
562 /* SMP with no shared cache... Invalidate cache */
563 ACPI_FLUSH_CPU_CACHE();
566 /* Get start time (ticks) */
567 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
568 /* Invoke C3 */
569 /* Tell the scheduler that we are going deep-idle: */
570 sched_clock_idle_sleep_event();
571 acpi_cstate_enter(cx);
572 /* Get end time (ticks) */
573 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
574 if (pr->flags.bm_check && pr->flags.bm_control) {
575 /* Enable bus master arbitration */
576 atomic_dec(&c3_cpu_count);
577 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
580 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
581 /* TSC halts in C3, so notify users */
582 mark_tsc_unstable("TSC halts in C3");
583 #endif
584 /* Compute time (ticks) that we were actually asleep */
585 sleep_ticks = ticks_elapsed(t1, t2);
586 /* Tell the scheduler how much we idled: */
587 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
589 /* Re-enable interrupts */
590 local_irq_enable();
591 /* Do not account our idle-switching overhead: */
592 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
594 current_thread_info()->status |= TS_POLLING;
595 acpi_state_timer_broadcast(pr, cx, 0);
596 break;
598 default:
599 local_irq_enable();
600 return;
602 cx->usage++;
603 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
604 cx->time += sleep_ticks;
606 next_state = pr->power.state;
608 #ifdef CONFIG_HOTPLUG_CPU
609 /* Don't do promotion/demotion */
610 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
611 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
612 next_state = cx;
613 goto end;
615 #endif
618 * Promotion?
619 * ----------
620 * Track the number of longs (time asleep is greater than threshold)
621 * and promote when the count threshold is reached. Note that bus
622 * mastering activity may prevent promotions.
623 * Do not promote above max_cstate.
625 if (cx->promotion.state &&
626 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
627 if (sleep_ticks > cx->promotion.threshold.ticks &&
628 cx->promotion.state->latency <= system_latency_constraint()) {
629 cx->promotion.count++;
630 cx->demotion.count = 0;
631 if (cx->promotion.count >=
632 cx->promotion.threshold.count) {
633 if (pr->flags.bm_check) {
634 if (!
635 (pr->power.bm_activity & cx->
636 promotion.threshold.bm)) {
637 next_state =
638 cx->promotion.state;
639 goto end;
641 } else {
642 next_state = cx->promotion.state;
643 goto end;
650 * Demotion?
651 * ---------
652 * Track the number of shorts (time asleep is less than time threshold)
653 * and demote when the usage threshold is reached.
655 if (cx->demotion.state) {
656 if (sleep_ticks < cx->demotion.threshold.ticks) {
657 cx->demotion.count++;
658 cx->promotion.count = 0;
659 if (cx->demotion.count >= cx->demotion.threshold.count) {
660 next_state = cx->demotion.state;
661 goto end;
666 end:
668 * Demote if current state exceeds max_cstate
669 * or if the latency of the current state is unacceptable
671 if ((pr->power.state - pr->power.states) > max_cstate ||
672 pr->power.state->latency > system_latency_constraint()) {
673 if (cx->demotion.state)
674 next_state = cx->demotion.state;
678 * New Cx State?
679 * -------------
680 * If we're going to start using a new Cx state we must clean up
681 * from the previous and prepare to use the new.
683 if (next_state != pr->power.state)
684 acpi_processor_power_activate(pr, next_state);
687 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
689 unsigned int i;
690 unsigned int state_is_set = 0;
691 struct acpi_processor_cx *lower = NULL;
692 struct acpi_processor_cx *higher = NULL;
693 struct acpi_processor_cx *cx;
696 if (!pr)
697 return -EINVAL;
700 * This function sets the default Cx state policy (OS idle handler).
701 * Our scheme is to promote quickly to C2 but more conservatively
702 * to C3. We're favoring C2 for its characteristics of low latency
703 * (quick response), good power savings, and ability to allow bus
704 * mastering activity. Note that the Cx state policy is completely
705 * customizable and can be altered dynamically.
708 /* startup state */
709 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
710 cx = &pr->power.states[i];
711 if (!cx->valid)
712 continue;
714 if (!state_is_set)
715 pr->power.state = cx;
716 state_is_set++;
717 break;
720 if (!state_is_set)
721 return -ENODEV;
723 /* demotion */
724 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
725 cx = &pr->power.states[i];
726 if (!cx->valid)
727 continue;
729 if (lower) {
730 cx->demotion.state = lower;
731 cx->demotion.threshold.ticks = cx->latency_ticks;
732 cx->demotion.threshold.count = 1;
733 if (cx->type == ACPI_STATE_C3)
734 cx->demotion.threshold.bm = bm_history;
737 lower = cx;
740 /* promotion */
741 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
742 cx = &pr->power.states[i];
743 if (!cx->valid)
744 continue;
746 if (higher) {
747 cx->promotion.state = higher;
748 cx->promotion.threshold.ticks = cx->latency_ticks;
749 if (cx->type >= ACPI_STATE_C2)
750 cx->promotion.threshold.count = 4;
751 else
752 cx->promotion.threshold.count = 10;
753 if (higher->type == ACPI_STATE_C3)
754 cx->promotion.threshold.bm = bm_history;
757 higher = cx;
760 return 0;
762 #endif /* !CONFIG_CPU_IDLE */
764 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
767 if (!pr)
768 return -EINVAL;
770 if (!pr->pblk)
771 return -ENODEV;
773 /* if info is obtained from pblk/fadt, type equals state */
774 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
775 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
777 #ifndef CONFIG_HOTPLUG_CPU
779 * Check for P_LVL2_UP flag before entering C2 and above on
780 * an SMP system.
782 if ((num_online_cpus() > 1) &&
783 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
784 return -ENODEV;
785 #endif
787 /* determine C2 and C3 address from pblk */
788 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
789 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
791 /* determine latencies from FADT */
792 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
793 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
795 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
796 "lvl2[0x%08x] lvl3[0x%08x]\n",
797 pr->power.states[ACPI_STATE_C2].address,
798 pr->power.states[ACPI_STATE_C3].address));
800 return 0;
803 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
805 if (!pr->power.states[ACPI_STATE_C1].valid) {
806 /* set the first C-State to C1 */
807 /* all processors need to support C1 */
808 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
809 pr->power.states[ACPI_STATE_C1].valid = 1;
811 /* the C0 state only exists as a filler in our array */
812 pr->power.states[ACPI_STATE_C0].valid = 1;
813 return 0;
816 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
818 acpi_status status = 0;
819 acpi_integer count;
820 int current_count;
821 int i;
822 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
823 union acpi_object *cst;
826 if (nocst)
827 return -ENODEV;
829 current_count = 0;
831 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
832 if (ACPI_FAILURE(status)) {
833 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
834 return -ENODEV;
837 cst = buffer.pointer;
839 /* There must be at least 2 elements */
840 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
841 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
842 status = -EFAULT;
843 goto end;
846 count = cst->package.elements[0].integer.value;
848 /* Validate number of power states. */
849 if (count < 1 || count != cst->package.count - 1) {
850 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
851 status = -EFAULT;
852 goto end;
855 /* Tell driver that at least _CST is supported. */
856 pr->flags.has_cst = 1;
858 for (i = 1; i <= count; i++) {
859 union acpi_object *element;
860 union acpi_object *obj;
861 struct acpi_power_register *reg;
862 struct acpi_processor_cx cx;
864 memset(&cx, 0, sizeof(cx));
866 element = &(cst->package.elements[i]);
867 if (element->type != ACPI_TYPE_PACKAGE)
868 continue;
870 if (element->package.count != 4)
871 continue;
873 obj = &(element->package.elements[0]);
875 if (obj->type != ACPI_TYPE_BUFFER)
876 continue;
878 reg = (struct acpi_power_register *)obj->buffer.pointer;
880 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
881 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
882 continue;
884 /* There should be an easy way to extract an integer... */
885 obj = &(element->package.elements[1]);
886 if (obj->type != ACPI_TYPE_INTEGER)
887 continue;
889 cx.type = obj->integer.value;
891 * Some buggy BIOSes won't list C1 in _CST -
892 * Let acpi_processor_get_power_info_default() handle them later
894 if (i == 1 && cx.type != ACPI_STATE_C1)
895 current_count++;
897 cx.address = reg->address;
898 cx.index = current_count + 1;
900 cx.space_id = ACPI_CSTATE_SYSTEMIO;
901 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
902 if (acpi_processor_ffh_cstate_probe
903 (pr->id, &cx, reg) == 0) {
904 cx.space_id = ACPI_CSTATE_FFH;
905 } else if (cx.type != ACPI_STATE_C1) {
907 * C1 is a special case where FIXED_HARDWARE
908 * can be handled in non-MWAIT way as well.
909 * In that case, save this _CST entry info.
910 * That is, we retain space_id of SYSTEM_IO for
911 * halt based C1.
912 * Otherwise, ignore this info and continue.
914 continue;
918 obj = &(element->package.elements[2]);
919 if (obj->type != ACPI_TYPE_INTEGER)
920 continue;
922 cx.latency = obj->integer.value;
924 obj = &(element->package.elements[3]);
925 if (obj->type != ACPI_TYPE_INTEGER)
926 continue;
928 cx.power = obj->integer.value;
930 current_count++;
931 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
934 * We support total ACPI_PROCESSOR_MAX_POWER - 1
935 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
937 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
938 printk(KERN_WARNING
939 "Limiting number of power states to max (%d)\n",
940 ACPI_PROCESSOR_MAX_POWER);
941 printk(KERN_WARNING
942 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
943 break;
947 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
948 current_count));
950 /* Validate number of power states discovered */
951 if (current_count < 2)
952 status = -EFAULT;
954 end:
955 kfree(buffer.pointer);
957 return status;
960 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
963 if (!cx->address)
964 return;
967 * C2 latency must be less than or equal to 100
968 * microseconds.
970 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
971 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
972 "latency too large [%d]\n", cx->latency));
973 return;
977 * Otherwise we've met all of our C2 requirements.
978 * Normalize the C2 latency to expidite policy
980 cx->valid = 1;
982 #ifndef CONFIG_CPU_IDLE
983 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
984 #else
985 cx->latency_ticks = cx->latency;
986 #endif
988 return;
991 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
992 struct acpi_processor_cx *cx)
994 static int bm_check_flag;
997 if (!cx->address)
998 return;
1001 * C3 latency must be less than or equal to 1000
1002 * microseconds.
1004 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1005 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1006 "latency too large [%d]\n", cx->latency));
1007 return;
1011 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1012 * DMA transfers are used by any ISA device to avoid livelock.
1013 * Note that we could disable Type-F DMA (as recommended by
1014 * the erratum), but this is known to disrupt certain ISA
1015 * devices thus we take the conservative approach.
1017 else if (errata.piix4.fdma) {
1018 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1019 "C3 not supported on PIIX4 with Type-F DMA\n"));
1020 return;
1023 /* All the logic here assumes flags.bm_check is same across all CPUs */
1024 if (!bm_check_flag) {
1025 /* Determine whether bm_check is needed based on CPU */
1026 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1027 bm_check_flag = pr->flags.bm_check;
1028 } else {
1029 pr->flags.bm_check = bm_check_flag;
1032 if (pr->flags.bm_check) {
1033 if (!pr->flags.bm_control) {
1034 if (pr->flags.has_cst != 1) {
1035 /* bus mastering control is necessary */
1036 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1037 "C3 support requires BM control\n"));
1038 return;
1039 } else {
1040 /* Here we enter C3 without bus mastering */
1041 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1042 "C3 support without BM control\n"));
1045 } else {
1047 * WBINVD should be set in fadt, for C3 state to be
1048 * supported on when bm_check is not required.
1050 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1051 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1052 "Cache invalidation should work properly"
1053 " for C3 to be enabled on SMP systems\n"));
1054 return;
1056 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1060 * Otherwise we've met all of our C3 requirements.
1061 * Normalize the C3 latency to expidite policy. Enable
1062 * checking of bus mastering status (bm_check) so we can
1063 * use this in our C3 policy
1065 cx->valid = 1;
1067 #ifndef CONFIG_CPU_IDLE
1068 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1069 #else
1070 cx->latency_ticks = cx->latency;
1071 #endif
1073 return;
1076 static int acpi_processor_power_verify(struct acpi_processor *pr)
1078 unsigned int i;
1079 unsigned int working = 0;
1081 pr->power.timer_broadcast_on_state = INT_MAX;
1083 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1084 struct acpi_processor_cx *cx = &pr->power.states[i];
1086 switch (cx->type) {
1087 case ACPI_STATE_C1:
1088 cx->valid = 1;
1089 break;
1091 case ACPI_STATE_C2:
1092 acpi_processor_power_verify_c2(cx);
1093 if (cx->valid)
1094 acpi_timer_check_state(i, pr, cx);
1095 break;
1097 case ACPI_STATE_C3:
1098 acpi_processor_power_verify_c3(pr, cx);
1099 if (cx->valid)
1100 acpi_timer_check_state(i, pr, cx);
1101 break;
1104 if (cx->valid)
1105 working++;
1108 acpi_propagate_timer_broadcast(pr);
1110 return (working);
1113 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1115 unsigned int i;
1116 int result;
1119 /* NOTE: the idle thread may not be running while calling
1120 * this function */
1122 /* Zero initialize all the C-states info. */
1123 memset(pr->power.states, 0, sizeof(pr->power.states));
1125 result = acpi_processor_get_power_info_cst(pr);
1126 if (result == -ENODEV)
1127 result = acpi_processor_get_power_info_fadt(pr);
1129 if (result)
1130 return result;
1132 acpi_processor_get_power_info_default(pr);
1134 pr->power.count = acpi_processor_power_verify(pr);
1136 #ifndef CONFIG_CPU_IDLE
1138 * Set Default Policy
1139 * ------------------
1140 * Now that we know which states are supported, set the default
1141 * policy. Note that this policy can be changed dynamically
1142 * (e.g. encourage deeper sleeps to conserve battery life when
1143 * not on AC).
1145 result = acpi_processor_set_power_policy(pr);
1146 if (result)
1147 return result;
1148 #endif
1151 * if one state of type C2 or C3 is available, mark this
1152 * CPU as being "idle manageable"
1154 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1155 if (pr->power.states[i].valid) {
1156 pr->power.count = i;
1157 if (pr->power.states[i].type >= ACPI_STATE_C2)
1158 pr->flags.power = 1;
1162 return 0;
1165 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1167 struct acpi_processor *pr = seq->private;
1168 unsigned int i;
1171 if (!pr)
1172 goto end;
1174 seq_printf(seq, "active state: C%zd\n"
1175 "max_cstate: C%d\n"
1176 "bus master activity: %08x\n"
1177 "maximum allowed latency: %d usec\n",
1178 pr->power.state ? pr->power.state - pr->power.states : 0,
1179 max_cstate, (unsigned)pr->power.bm_activity,
1180 system_latency_constraint());
1182 seq_puts(seq, "states:\n");
1184 for (i = 1; i <= pr->power.count; i++) {
1185 seq_printf(seq, " %cC%d: ",
1186 (&pr->power.states[i] ==
1187 pr->power.state ? '*' : ' '), i);
1189 if (!pr->power.states[i].valid) {
1190 seq_puts(seq, "<not supported>\n");
1191 continue;
1194 switch (pr->power.states[i].type) {
1195 case ACPI_STATE_C1:
1196 seq_printf(seq, "type[C1] ");
1197 break;
1198 case ACPI_STATE_C2:
1199 seq_printf(seq, "type[C2] ");
1200 break;
1201 case ACPI_STATE_C3:
1202 seq_printf(seq, "type[C3] ");
1203 break;
1204 default:
1205 seq_printf(seq, "type[--] ");
1206 break;
1209 if (pr->power.states[i].promotion.state)
1210 seq_printf(seq, "promotion[C%zd] ",
1211 (pr->power.states[i].promotion.state -
1212 pr->power.states));
1213 else
1214 seq_puts(seq, "promotion[--] ");
1216 if (pr->power.states[i].demotion.state)
1217 seq_printf(seq, "demotion[C%zd] ",
1218 (pr->power.states[i].demotion.state -
1219 pr->power.states));
1220 else
1221 seq_puts(seq, "demotion[--] ");
1223 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1224 pr->power.states[i].latency,
1225 pr->power.states[i].usage,
1226 (unsigned long long)pr->power.states[i].time);
1229 end:
1230 return 0;
1233 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1235 return single_open(file, acpi_processor_power_seq_show,
1236 PDE(inode)->data);
1239 static const struct file_operations acpi_processor_power_fops = {
1240 .open = acpi_processor_power_open_fs,
1241 .read = seq_read,
1242 .llseek = seq_lseek,
1243 .release = single_release,
1246 #ifndef CONFIG_CPU_IDLE
1248 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1250 int result = 0;
1253 if (!pr)
1254 return -EINVAL;
1256 if (nocst) {
1257 return -ENODEV;
1260 if (!pr->flags.power_setup_done)
1261 return -ENODEV;
1263 /* Fall back to the default idle loop */
1264 pm_idle = pm_idle_save;
1265 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1267 pr->flags.power = 0;
1268 result = acpi_processor_get_power_info(pr);
1269 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1270 pm_idle = acpi_processor_idle;
1272 return result;
1275 #ifdef CONFIG_SMP
1276 static void smp_callback(void *v)
1278 /* we already woke the CPU up, nothing more to do */
1282 * This function gets called when a part of the kernel has a new latency
1283 * requirement. This means we need to get all processors out of their C-state,
1284 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1285 * wakes them all right up.
1287 static int acpi_processor_latency_notify(struct notifier_block *b,
1288 unsigned long l, void *v)
1290 smp_call_function(smp_callback, NULL, 0, 1);
1291 return NOTIFY_OK;
1294 static struct notifier_block acpi_processor_latency_notifier = {
1295 .notifier_call = acpi_processor_latency_notify,
1298 #endif
1300 #else /* CONFIG_CPU_IDLE */
1303 * acpi_idle_bm_check - checks if bus master activity was detected
1305 static int acpi_idle_bm_check(void)
1307 u32 bm_status = 0;
1309 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1310 if (bm_status)
1311 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1313 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1314 * the true state of bus mastering activity; forcing us to
1315 * manually check the BMIDEA bit of each IDE channel.
1317 else if (errata.piix4.bmisx) {
1318 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1319 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1320 bm_status = 1;
1322 return bm_status;
1326 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1327 * @pr: the processor
1328 * @target: the new target state
1330 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1331 struct acpi_processor_cx *target)
1333 if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1334 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1335 pr->flags.bm_rld_set = 0;
1338 if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1339 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1340 pr->flags.bm_rld_set = 1;
1345 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1346 * @cx: cstate data
1348 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1350 if (cx->space_id == ACPI_CSTATE_FFH) {
1351 /* Call into architectural FFH based C-state */
1352 acpi_processor_ffh_cstate_enter(cx);
1353 } else {
1354 int unused;
1355 /* IO port based C-state */
1356 inb(cx->address);
1357 /* Dummy wait op - must do something useless after P_LVL2 read
1358 because chipsets cannot guarantee that STPCLK# signal
1359 gets asserted in time to freeze execution properly. */
1360 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1365 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1366 * @dev: the target CPU
1367 * @state: the state data
1369 * This is equivalent to the HALT instruction.
1371 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1372 struct cpuidle_state *state)
1374 struct acpi_processor *pr;
1375 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1376 pr = processors[smp_processor_id()];
1378 if (unlikely(!pr))
1379 return 0;
1381 if (pr->flags.bm_check)
1382 acpi_idle_update_bm_rld(pr, cx);
1384 acpi_safe_halt();
1386 cx->usage++;
1388 return 0;
1392 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1393 * @dev: the target CPU
1394 * @state: the state data
1396 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1397 struct cpuidle_state *state)
1399 struct acpi_processor *pr;
1400 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1401 u32 t1, t2;
1402 int sleep_ticks = 0;
1404 pr = processors[smp_processor_id()];
1406 if (unlikely(!pr))
1407 return 0;
1409 if (acpi_idle_suspend)
1410 return(acpi_idle_enter_c1(dev, state));
1412 local_irq_disable();
1413 current_thread_info()->status &= ~TS_POLLING;
1415 * TS_POLLING-cleared state must be visible before we test
1416 * NEED_RESCHED:
1418 smp_mb();
1420 if (unlikely(need_resched())) {
1421 current_thread_info()->status |= TS_POLLING;
1422 local_irq_enable();
1423 return 0;
1427 * Must be done before busmaster disable as we might need to
1428 * access HPET !
1430 acpi_state_timer_broadcast(pr, cx, 1);
1432 if (pr->flags.bm_check)
1433 acpi_idle_update_bm_rld(pr, cx);
1435 if (cx->type == ACPI_STATE_C3)
1436 ACPI_FLUSH_CPU_CACHE();
1438 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1439 /* Tell the scheduler that we are going deep-idle: */
1440 sched_clock_idle_sleep_event();
1441 acpi_idle_do_entry(cx);
1442 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1444 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1445 /* TSC could halt in idle, so notify users */
1446 mark_tsc_unstable("TSC halts in idle");;
1447 #endif
1448 sleep_ticks = ticks_elapsed(t1, t2);
1450 /* Tell the scheduler how much we idled: */
1451 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1453 local_irq_enable();
1454 current_thread_info()->status |= TS_POLLING;
1456 cx->usage++;
1458 acpi_state_timer_broadcast(pr, cx, 0);
1459 cx->time += sleep_ticks;
1460 return ticks_elapsed_in_us(t1, t2);
1463 static int c3_cpu_count;
1464 static DEFINE_SPINLOCK(c3_lock);
1467 * acpi_idle_enter_bm - enters C3 with proper BM handling
1468 * @dev: the target CPU
1469 * @state: the state data
1471 * If BM is detected, the deepest non-C3 idle state is entered instead.
1473 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1474 struct cpuidle_state *state)
1476 struct acpi_processor *pr;
1477 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1478 u32 t1, t2;
1479 int sleep_ticks = 0;
1481 pr = processors[smp_processor_id()];
1483 if (unlikely(!pr))
1484 return 0;
1486 if (acpi_idle_suspend)
1487 return(acpi_idle_enter_c1(dev, state));
1489 if (acpi_idle_bm_check()) {
1490 if (dev->safe_state) {
1491 return dev->safe_state->enter(dev, dev->safe_state);
1492 } else {
1493 acpi_safe_halt();
1494 return 0;
1498 local_irq_disable();
1499 current_thread_info()->status &= ~TS_POLLING;
1501 * TS_POLLING-cleared state must be visible before we test
1502 * NEED_RESCHED:
1504 smp_mb();
1506 if (unlikely(need_resched())) {
1507 current_thread_info()->status |= TS_POLLING;
1508 local_irq_enable();
1509 return 0;
1512 /* Tell the scheduler that we are going deep-idle: */
1513 sched_clock_idle_sleep_event();
1515 * Must be done before busmaster disable as we might need to
1516 * access HPET !
1518 acpi_state_timer_broadcast(pr, cx, 1);
1520 acpi_idle_update_bm_rld(pr, cx);
1523 * disable bus master
1524 * bm_check implies we need ARB_DIS
1525 * !bm_check implies we need cache flush
1526 * bm_control implies whether we can do ARB_DIS
1528 * That leaves a case where bm_check is set and bm_control is
1529 * not set. In that case we cannot do much, we enter C3
1530 * without doing anything.
1532 if (pr->flags.bm_check && pr->flags.bm_control) {
1533 spin_lock(&c3_lock);
1534 c3_cpu_count++;
1535 /* Disable bus master arbitration when all CPUs are in C3 */
1536 if (c3_cpu_count == num_online_cpus())
1537 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1538 spin_unlock(&c3_lock);
1539 } else if (!pr->flags.bm_check) {
1540 ACPI_FLUSH_CPU_CACHE();
1543 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1544 acpi_idle_do_entry(cx);
1545 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1547 /* Re-enable bus master arbitration */
1548 if (pr->flags.bm_check && pr->flags.bm_control) {
1549 spin_lock(&c3_lock);
1550 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1551 c3_cpu_count--;
1552 spin_unlock(&c3_lock);
1555 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1556 /* TSC could halt in idle, so notify users */
1557 mark_tsc_unstable("TSC halts in idle");
1558 #endif
1559 sleep_ticks = ticks_elapsed(t1, t2);
1560 /* Tell the scheduler how much we idled: */
1561 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1563 local_irq_enable();
1564 current_thread_info()->status |= TS_POLLING;
1566 cx->usage++;
1568 acpi_state_timer_broadcast(pr, cx, 0);
1569 cx->time += sleep_ticks;
1570 return ticks_elapsed_in_us(t1, t2);
1573 struct cpuidle_driver acpi_idle_driver = {
1574 .name = "acpi_idle",
1575 .owner = THIS_MODULE,
1579 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1580 * @pr: the ACPI processor
1582 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1584 int i, count = 0;
1585 struct acpi_processor_cx *cx;
1586 struct cpuidle_state *state;
1587 struct cpuidle_device *dev = &pr->power.dev;
1589 if (!pr->flags.power_setup_done)
1590 return -EINVAL;
1592 if (pr->flags.power == 0) {
1593 return -EINVAL;
1596 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1597 cx = &pr->power.states[i];
1598 state = &dev->states[count];
1600 if (!cx->valid)
1601 continue;
1603 #ifdef CONFIG_HOTPLUG_CPU
1604 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1605 !pr->flags.has_cst &&
1606 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1607 continue;
1608 #endif
1609 cpuidle_set_statedata(state, cx);
1611 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1612 state->exit_latency = cx->latency;
1613 state->target_residency = cx->latency * 6;
1614 state->power_usage = cx->power;
1616 state->flags = 0;
1617 switch (cx->type) {
1618 case ACPI_STATE_C1:
1619 state->flags |= CPUIDLE_FLAG_SHALLOW;
1620 state->enter = acpi_idle_enter_c1;
1621 dev->safe_state = state;
1622 break;
1624 case ACPI_STATE_C2:
1625 state->flags |= CPUIDLE_FLAG_BALANCED;
1626 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1627 state->enter = acpi_idle_enter_simple;
1628 dev->safe_state = state;
1629 break;
1631 case ACPI_STATE_C3:
1632 state->flags |= CPUIDLE_FLAG_DEEP;
1633 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1634 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1635 state->enter = pr->flags.bm_check ?
1636 acpi_idle_enter_bm :
1637 acpi_idle_enter_simple;
1638 break;
1641 count++;
1644 dev->state_count = count;
1646 if (!count)
1647 return -EINVAL;
1649 return 0;
1652 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1654 int ret;
1656 if (!pr)
1657 return -EINVAL;
1659 if (nocst) {
1660 return -ENODEV;
1663 if (!pr->flags.power_setup_done)
1664 return -ENODEV;
1666 cpuidle_pause_and_lock();
1667 cpuidle_disable_device(&pr->power.dev);
1668 acpi_processor_get_power_info(pr);
1669 acpi_processor_setup_cpuidle(pr);
1670 ret = cpuidle_enable_device(&pr->power.dev);
1671 cpuidle_resume_and_unlock();
1673 return ret;
1676 #endif /* CONFIG_CPU_IDLE */
1678 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1679 struct acpi_device *device)
1681 acpi_status status = 0;
1682 static int first_run;
1683 struct proc_dir_entry *entry = NULL;
1684 unsigned int i;
1687 if (!first_run) {
1688 dmi_check_system(processor_power_dmi_table);
1689 max_cstate = acpi_processor_cstate_check(max_cstate);
1690 if (max_cstate < ACPI_C_STATES_MAX)
1691 printk(KERN_NOTICE
1692 "ACPI: processor limited to max C-state %d\n",
1693 max_cstate);
1694 first_run++;
1695 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1696 register_latency_notifier(&acpi_processor_latency_notifier);
1697 #endif
1700 if (!pr)
1701 return -EINVAL;
1703 if (acpi_gbl_FADT.cst_control && !nocst) {
1704 status =
1705 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1706 if (ACPI_FAILURE(status)) {
1707 ACPI_EXCEPTION((AE_INFO, status,
1708 "Notifying BIOS of _CST ability failed"));
1712 acpi_processor_get_power_info(pr);
1713 pr->flags.power_setup_done = 1;
1716 * Install the idle handler if processor power management is supported.
1717 * Note that we use previously set idle handler will be used on
1718 * platforms that only support C1.
1720 if ((pr->flags.power) && (!boot_option_idle_override)) {
1721 #ifdef CONFIG_CPU_IDLE
1722 acpi_processor_setup_cpuidle(pr);
1723 pr->power.dev.cpu = pr->id;
1724 if (cpuidle_register_device(&pr->power.dev))
1725 return -EIO;
1726 #endif
1728 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1729 for (i = 1; i <= pr->power.count; i++)
1730 if (pr->power.states[i].valid)
1731 printk(" C%d[C%d]", i,
1732 pr->power.states[i].type);
1733 printk(")\n");
1735 #ifndef CONFIG_CPU_IDLE
1736 if (pr->id == 0) {
1737 pm_idle_save = pm_idle;
1738 pm_idle = acpi_processor_idle;
1740 #endif
1743 /* 'power' [R] */
1744 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1745 S_IRUGO, acpi_device_dir(device));
1746 if (!entry)
1747 return -EIO;
1748 else {
1749 entry->proc_fops = &acpi_processor_power_fops;
1750 entry->data = acpi_driver_data(device);
1751 entry->owner = THIS_MODULE;
1754 return 0;
1757 int acpi_processor_power_exit(struct acpi_processor *pr,
1758 struct acpi_device *device)
1760 #ifdef CONFIG_CPU_IDLE
1761 if ((pr->flags.power) && (!boot_option_idle_override))
1762 cpuidle_unregister_device(&pr->power.dev);
1763 #endif
1764 pr->flags.power_setup_done = 0;
1766 if (acpi_device_dir(device))
1767 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1768 acpi_device_dir(device));
1770 #ifndef CONFIG_CPU_IDLE
1772 /* Unregister the idle handler when processor #0 is removed. */
1773 if (pr->id == 0) {
1774 pm_idle = pm_idle_save;
1777 * We are about to unload the current idle thread pm callback
1778 * (pm_idle), Wait for all processors to update cached/local
1779 * copies of pm_idle before proceeding.
1781 cpu_idle_wait();
1782 #ifdef CONFIG_SMP
1783 unregister_latency_notifier(&acpi_processor_latency_notifier);
1784 #endif
1786 #endif
1788 return 0;