2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49 #include <linux/smp_lock.h>
51 #include <asm/atomic.h>
53 static DEFINE_MUTEX(cgroup_mutex
);
55 /* Generate an array of cgroup subsystem pointers */
56 #define SUBSYS(_x) &_x ## _subsys,
58 static struct cgroup_subsys
*subsys
[] = {
59 #include <linux/cgroup_subsys.h>
63 * A cgroupfs_root represents the root of a cgroup hierarchy,
64 * and may be associated with a superblock to form an active
67 struct cgroupfs_root
{
68 struct super_block
*sb
;
71 * The bitmask of subsystems intended to be attached to this
74 unsigned long subsys_bits
;
76 /* The bitmask of subsystems currently attached to this hierarchy */
77 unsigned long actual_subsys_bits
;
79 /* A list running through the attached subsystems */
80 struct list_head subsys_list
;
82 /* The root cgroup for this hierarchy */
83 struct cgroup top_cgroup
;
85 /* Tracks how many cgroups are currently defined in hierarchy.*/
86 int number_of_cgroups
;
88 /* A list running through the active hierarchies */
89 struct list_head root_list
;
91 /* Hierarchy-specific flags */
94 /* The path to use for release notifications. */
95 char release_agent_path
[PATH_MAX
];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode
;
106 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
107 * cgroup_subsys->use_id != 0.
109 #define CSS_ID_MAX (65535)
112 * The css to which this ID points. This pointer is set to valid value
113 * after cgroup is populated. If cgroup is removed, this will be NULL.
114 * This pointer is expected to be RCU-safe because destroy()
115 * is called after synchronize_rcu(). But for safe use, css_is_removed()
116 * css_tryget() should be used for avoiding race.
118 struct cgroup_subsys_state
*css
;
124 * Depth in hierarchy which this ID belongs to.
126 unsigned short depth
;
128 * ID is freed by RCU. (and lookup routine is RCU safe.)
130 struct rcu_head rcu_head
;
132 * Hierarchy of CSS ID belongs to.
134 unsigned short stack
[0]; /* Array of Length (depth+1) */
138 /* The list of hierarchy roots */
140 static LIST_HEAD(roots
);
141 static int root_count
;
143 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
144 #define dummytop (&rootnode.top_cgroup)
146 /* This flag indicates whether tasks in the fork and exit paths should
147 * check for fork/exit handlers to call. This avoids us having to do
148 * extra work in the fork/exit path if none of the subsystems need to
151 static int need_forkexit_callback __read_mostly
;
153 /* convenient tests for these bits */
154 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
156 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
159 /* bits in struct cgroupfs_root flags field */
161 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
164 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
167 (1 << CGRP_RELEASABLE
) |
168 (1 << CGRP_NOTIFY_ON_RELEASE
);
169 return (cgrp
->flags
& bits
) == bits
;
172 static int notify_on_release(const struct cgroup
*cgrp
)
174 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
178 * for_each_subsys() allows you to iterate on each subsystem attached to
179 * an active hierarchy
181 #define for_each_subsys(_root, _ss) \
182 list_for_each_entry(_ss, &_root->subsys_list, sibling)
184 /* for_each_active_root() allows you to iterate across the active hierarchies */
185 #define for_each_active_root(_root) \
186 list_for_each_entry(_root, &roots, root_list)
188 /* the list of cgroups eligible for automatic release. Protected by
189 * release_list_lock */
190 static LIST_HEAD(release_list
);
191 static DEFINE_SPINLOCK(release_list_lock
);
192 static void cgroup_release_agent(struct work_struct
*work
);
193 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
194 static void check_for_release(struct cgroup
*cgrp
);
196 /* Link structure for associating css_set objects with cgroups */
197 struct cg_cgroup_link
{
199 * List running through cg_cgroup_links associated with a
200 * cgroup, anchored on cgroup->css_sets
202 struct list_head cgrp_link_list
;
204 * List running through cg_cgroup_links pointing at a
205 * single css_set object, anchored on css_set->cg_links
207 struct list_head cg_link_list
;
211 /* The default css_set - used by init and its children prior to any
212 * hierarchies being mounted. It contains a pointer to the root state
213 * for each subsystem. Also used to anchor the list of css_sets. Not
214 * reference-counted, to improve performance when child cgroups
215 * haven't been created.
218 static struct css_set init_css_set
;
219 static struct cg_cgroup_link init_css_set_link
;
221 static int cgroup_subsys_init_idr(struct cgroup_subsys
*ss
);
223 /* css_set_lock protects the list of css_set objects, and the
224 * chain of tasks off each css_set. Nests outside task->alloc_lock
225 * due to cgroup_iter_start() */
226 static DEFINE_RWLOCK(css_set_lock
);
227 static int css_set_count
;
229 /* hash table for cgroup groups. This improves the performance to
230 * find an existing css_set */
231 #define CSS_SET_HASH_BITS 7
232 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
233 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
235 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
239 unsigned long tmp
= 0UL;
241 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
242 tmp
+= (unsigned long)css
[i
];
243 tmp
= (tmp
>> 16) ^ tmp
;
245 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
247 return &css_set_table
[index
];
250 /* We don't maintain the lists running through each css_set to its
251 * task until after the first call to cgroup_iter_start(). This
252 * reduces the fork()/exit() overhead for people who have cgroups
253 * compiled into their kernel but not actually in use */
254 static int use_task_css_set_links __read_mostly
;
256 /* When we create or destroy a css_set, the operation simply
257 * takes/releases a reference count on all the cgroups referenced
258 * by subsystems in this css_set. This can end up multiple-counting
259 * some cgroups, but that's OK - the ref-count is just a
260 * busy/not-busy indicator; ensuring that we only count each cgroup
261 * once would require taking a global lock to ensure that no
262 * subsystems moved between hierarchies while we were doing so.
264 * Possible TODO: decide at boot time based on the number of
265 * registered subsystems and the number of CPUs or NUMA nodes whether
266 * it's better for performance to ref-count every subsystem, or to
267 * take a global lock and only add one ref count to each hierarchy.
271 * unlink a css_set from the list and free it
273 static void unlink_css_set(struct css_set
*cg
)
275 struct cg_cgroup_link
*link
;
276 struct cg_cgroup_link
*saved_link
;
278 hlist_del(&cg
->hlist
);
281 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
283 list_del(&link
->cg_link_list
);
284 list_del(&link
->cgrp_link_list
);
289 static void __put_css_set(struct css_set
*cg
, int taskexit
)
293 * Ensure that the refcount doesn't hit zero while any readers
294 * can see it. Similar to atomic_dec_and_lock(), but for an
297 if (atomic_add_unless(&cg
->refcount
, -1, 1))
299 write_lock(&css_set_lock
);
300 if (!atomic_dec_and_test(&cg
->refcount
)) {
301 write_unlock(&css_set_lock
);
305 write_unlock(&css_set_lock
);
308 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
309 struct cgroup
*cgrp
= rcu_dereference(cg
->subsys
[i
]->cgroup
);
310 if (atomic_dec_and_test(&cgrp
->count
) &&
311 notify_on_release(cgrp
)) {
313 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
314 check_for_release(cgrp
);
322 * refcounted get/put for css_set objects
324 static inline void get_css_set(struct css_set
*cg
)
326 atomic_inc(&cg
->refcount
);
329 static inline void put_css_set(struct css_set
*cg
)
331 __put_css_set(cg
, 0);
334 static inline void put_css_set_taskexit(struct css_set
*cg
)
336 __put_css_set(cg
, 1);
340 * find_existing_css_set() is a helper for
341 * find_css_set(), and checks to see whether an existing
342 * css_set is suitable.
344 * oldcg: the cgroup group that we're using before the cgroup
347 * cgrp: the cgroup that we're moving into
349 * template: location in which to build the desired set of subsystem
350 * state objects for the new cgroup group
352 static struct css_set
*find_existing_css_set(
353 struct css_set
*oldcg
,
355 struct cgroup_subsys_state
*template[])
358 struct cgroupfs_root
*root
= cgrp
->root
;
359 struct hlist_head
*hhead
;
360 struct hlist_node
*node
;
363 /* Built the set of subsystem state objects that we want to
364 * see in the new css_set */
365 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
366 if (root
->subsys_bits
& (1UL << i
)) {
367 /* Subsystem is in this hierarchy. So we want
368 * the subsystem state from the new
370 template[i
] = cgrp
->subsys
[i
];
372 /* Subsystem is not in this hierarchy, so we
373 * don't want to change the subsystem state */
374 template[i
] = oldcg
->subsys
[i
];
378 hhead
= css_set_hash(template);
379 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
380 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
381 /* All subsystems matched */
386 /* No existing cgroup group matched */
390 static void free_cg_links(struct list_head
*tmp
)
392 struct cg_cgroup_link
*link
;
393 struct cg_cgroup_link
*saved_link
;
395 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
396 list_del(&link
->cgrp_link_list
);
402 * allocate_cg_links() allocates "count" cg_cgroup_link structures
403 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
404 * success or a negative error
406 static int allocate_cg_links(int count
, struct list_head
*tmp
)
408 struct cg_cgroup_link
*link
;
411 for (i
= 0; i
< count
; i
++) {
412 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
417 list_add(&link
->cgrp_link_list
, tmp
);
423 * link_css_set - a helper function to link a css_set to a cgroup
424 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
425 * @cg: the css_set to be linked
426 * @cgrp: the destination cgroup
428 static void link_css_set(struct list_head
*tmp_cg_links
,
429 struct css_set
*cg
, struct cgroup
*cgrp
)
431 struct cg_cgroup_link
*link
;
433 BUG_ON(list_empty(tmp_cg_links
));
434 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
437 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
438 list_add(&link
->cg_link_list
, &cg
->cg_links
);
442 * find_css_set() takes an existing cgroup group and a
443 * cgroup object, and returns a css_set object that's
444 * equivalent to the old group, but with the given cgroup
445 * substituted into the appropriate hierarchy. Must be called with
448 static struct css_set
*find_css_set(
449 struct css_set
*oldcg
, struct cgroup
*cgrp
)
452 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
455 struct list_head tmp_cg_links
;
457 struct hlist_head
*hhead
;
459 /* First see if we already have a cgroup group that matches
461 read_lock(&css_set_lock
);
462 res
= find_existing_css_set(oldcg
, cgrp
, template);
465 read_unlock(&css_set_lock
);
470 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
474 /* Allocate all the cg_cgroup_link objects that we'll need */
475 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
480 atomic_set(&res
->refcount
, 1);
481 INIT_LIST_HEAD(&res
->cg_links
);
482 INIT_LIST_HEAD(&res
->tasks
);
483 INIT_HLIST_NODE(&res
->hlist
);
485 /* Copy the set of subsystem state objects generated in
486 * find_existing_css_set() */
487 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
489 write_lock(&css_set_lock
);
490 /* Add reference counts and links from the new css_set. */
491 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
492 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
493 struct cgroup_subsys
*ss
= subsys
[i
];
494 atomic_inc(&cgrp
->count
);
496 * We want to add a link once per cgroup, so we
497 * only do it for the first subsystem in each
500 if (ss
->root
->subsys_list
.next
== &ss
->sibling
)
501 link_css_set(&tmp_cg_links
, res
, cgrp
);
503 if (list_empty(&rootnode
.subsys_list
))
504 link_css_set(&tmp_cg_links
, res
, dummytop
);
506 BUG_ON(!list_empty(&tmp_cg_links
));
510 /* Add this cgroup group to the hash table */
511 hhead
= css_set_hash(res
->subsys
);
512 hlist_add_head(&res
->hlist
, hhead
);
514 write_unlock(&css_set_lock
);
520 * There is one global cgroup mutex. We also require taking
521 * task_lock() when dereferencing a task's cgroup subsys pointers.
522 * See "The task_lock() exception", at the end of this comment.
524 * A task must hold cgroup_mutex to modify cgroups.
526 * Any task can increment and decrement the count field without lock.
527 * So in general, code holding cgroup_mutex can't rely on the count
528 * field not changing. However, if the count goes to zero, then only
529 * cgroup_attach_task() can increment it again. Because a count of zero
530 * means that no tasks are currently attached, therefore there is no
531 * way a task attached to that cgroup can fork (the other way to
532 * increment the count). So code holding cgroup_mutex can safely
533 * assume that if the count is zero, it will stay zero. Similarly, if
534 * a task holds cgroup_mutex on a cgroup with zero count, it
535 * knows that the cgroup won't be removed, as cgroup_rmdir()
538 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
539 * (usually) take cgroup_mutex. These are the two most performance
540 * critical pieces of code here. The exception occurs on cgroup_exit(),
541 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
542 * is taken, and if the cgroup count is zero, a usermode call made
543 * to the release agent with the name of the cgroup (path relative to
544 * the root of cgroup file system) as the argument.
546 * A cgroup can only be deleted if both its 'count' of using tasks
547 * is zero, and its list of 'children' cgroups is empty. Since all
548 * tasks in the system use _some_ cgroup, and since there is always at
549 * least one task in the system (init, pid == 1), therefore, top_cgroup
550 * always has either children cgroups and/or using tasks. So we don't
551 * need a special hack to ensure that top_cgroup cannot be deleted.
553 * The task_lock() exception
555 * The need for this exception arises from the action of
556 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
557 * another. It does so using cgroup_mutex, however there are
558 * several performance critical places that need to reference
559 * task->cgroup without the expense of grabbing a system global
560 * mutex. Therefore except as noted below, when dereferencing or, as
561 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
562 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
563 * the task_struct routinely used for such matters.
565 * P.S. One more locking exception. RCU is used to guard the
566 * update of a tasks cgroup pointer by cgroup_attach_task()
570 * cgroup_lock - lock out any changes to cgroup structures
573 void cgroup_lock(void)
575 mutex_lock(&cgroup_mutex
);
579 * cgroup_unlock - release lock on cgroup changes
581 * Undo the lock taken in a previous cgroup_lock() call.
583 void cgroup_unlock(void)
585 mutex_unlock(&cgroup_mutex
);
589 * A couple of forward declarations required, due to cyclic reference loop:
590 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
591 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
595 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
596 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
597 static int cgroup_populate_dir(struct cgroup
*cgrp
);
598 static struct inode_operations cgroup_dir_inode_operations
;
599 static struct file_operations proc_cgroupstats_operations
;
601 static struct backing_dev_info cgroup_backing_dev_info
= {
602 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
605 static int alloc_css_id(struct cgroup_subsys
*ss
,
606 struct cgroup
*parent
, struct cgroup
*child
);
608 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
610 struct inode
*inode
= new_inode(sb
);
613 inode
->i_mode
= mode
;
614 inode
->i_uid
= current_fsuid();
615 inode
->i_gid
= current_fsgid();
616 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
617 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
623 * Call subsys's pre_destroy handler.
624 * This is called before css refcnt check.
626 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
628 struct cgroup_subsys
*ss
;
631 for_each_subsys(cgrp
->root
, ss
)
632 if (ss
->pre_destroy
) {
633 ret
= ss
->pre_destroy(ss
, cgrp
);
640 static void free_cgroup_rcu(struct rcu_head
*obj
)
642 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
647 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
649 /* is dentry a directory ? if so, kfree() associated cgroup */
650 if (S_ISDIR(inode
->i_mode
)) {
651 struct cgroup
*cgrp
= dentry
->d_fsdata
;
652 struct cgroup_subsys
*ss
;
653 BUG_ON(!(cgroup_is_removed(cgrp
)));
654 /* It's possible for external users to be holding css
655 * reference counts on a cgroup; css_put() needs to
656 * be able to access the cgroup after decrementing
657 * the reference count in order to know if it needs to
658 * queue the cgroup to be handled by the release
662 mutex_lock(&cgroup_mutex
);
664 * Release the subsystem state objects.
666 for_each_subsys(cgrp
->root
, ss
)
667 ss
->destroy(ss
, cgrp
);
669 cgrp
->root
->number_of_cgroups
--;
670 mutex_unlock(&cgroup_mutex
);
673 * Drop the active superblock reference that we took when we
676 deactivate_super(cgrp
->root
->sb
);
678 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
683 static void remove_dir(struct dentry
*d
)
685 struct dentry
*parent
= dget(d
->d_parent
);
688 simple_rmdir(parent
->d_inode
, d
);
692 static void cgroup_clear_directory(struct dentry
*dentry
)
694 struct list_head
*node
;
696 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
697 spin_lock(&dcache_lock
);
698 node
= dentry
->d_subdirs
.next
;
699 while (node
!= &dentry
->d_subdirs
) {
700 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
703 /* This should never be called on a cgroup
704 * directory with child cgroups */
705 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
707 spin_unlock(&dcache_lock
);
709 simple_unlink(dentry
->d_inode
, d
);
711 spin_lock(&dcache_lock
);
713 node
= dentry
->d_subdirs
.next
;
715 spin_unlock(&dcache_lock
);
719 * NOTE : the dentry must have been dget()'ed
721 static void cgroup_d_remove_dir(struct dentry
*dentry
)
723 cgroup_clear_directory(dentry
);
725 spin_lock(&dcache_lock
);
726 list_del_init(&dentry
->d_u
.d_child
);
727 spin_unlock(&dcache_lock
);
732 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
733 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
734 * reference to css->refcnt. In general, this refcnt is expected to goes down
737 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
739 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
741 static void cgroup_wakeup_rmdir_waiters(const struct cgroup
*cgrp
)
743 if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
744 wake_up_all(&cgroup_rmdir_waitq
);
747 static int rebind_subsystems(struct cgroupfs_root
*root
,
748 unsigned long final_bits
)
750 unsigned long added_bits
, removed_bits
;
751 struct cgroup
*cgrp
= &root
->top_cgroup
;
754 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
755 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
756 /* Check that any added subsystems are currently free */
757 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
758 unsigned long bit
= 1UL << i
;
759 struct cgroup_subsys
*ss
= subsys
[i
];
760 if (!(bit
& added_bits
))
762 if (ss
->root
!= &rootnode
) {
763 /* Subsystem isn't free */
768 /* Currently we don't handle adding/removing subsystems when
769 * any child cgroups exist. This is theoretically supportable
770 * but involves complex error handling, so it's being left until
772 if (root
->number_of_cgroups
> 1)
775 /* Process each subsystem */
776 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
777 struct cgroup_subsys
*ss
= subsys
[i
];
778 unsigned long bit
= 1UL << i
;
779 if (bit
& added_bits
) {
780 /* We're binding this subsystem to this hierarchy */
781 BUG_ON(cgrp
->subsys
[i
]);
782 BUG_ON(!dummytop
->subsys
[i
]);
783 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
784 mutex_lock(&ss
->hierarchy_mutex
);
785 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
786 cgrp
->subsys
[i
]->cgroup
= cgrp
;
787 list_move(&ss
->sibling
, &root
->subsys_list
);
791 mutex_unlock(&ss
->hierarchy_mutex
);
792 } else if (bit
& removed_bits
) {
793 /* We're removing this subsystem */
794 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
795 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
796 mutex_lock(&ss
->hierarchy_mutex
);
798 ss
->bind(ss
, dummytop
);
799 dummytop
->subsys
[i
]->cgroup
= dummytop
;
800 cgrp
->subsys
[i
] = NULL
;
801 subsys
[i
]->root
= &rootnode
;
802 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
803 mutex_unlock(&ss
->hierarchy_mutex
);
804 } else if (bit
& final_bits
) {
805 /* Subsystem state should already exist */
806 BUG_ON(!cgrp
->subsys
[i
]);
808 /* Subsystem state shouldn't exist */
809 BUG_ON(cgrp
->subsys
[i
]);
812 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
818 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
820 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
821 struct cgroup_subsys
*ss
;
823 mutex_lock(&cgroup_mutex
);
824 for_each_subsys(root
, ss
)
825 seq_printf(seq
, ",%s", ss
->name
);
826 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
827 seq_puts(seq
, ",noprefix");
828 if (strlen(root
->release_agent_path
))
829 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
830 mutex_unlock(&cgroup_mutex
);
834 struct cgroup_sb_opts
{
835 unsigned long subsys_bits
;
840 /* Convert a hierarchy specifier into a bitmask of subsystems and
842 static int parse_cgroupfs_options(char *data
,
843 struct cgroup_sb_opts
*opts
)
845 char *token
, *o
= data
?: "all";
847 opts
->subsys_bits
= 0;
849 opts
->release_agent
= NULL
;
851 while ((token
= strsep(&o
, ",")) != NULL
) {
854 if (!strcmp(token
, "all")) {
855 /* Add all non-disabled subsystems */
857 opts
->subsys_bits
= 0;
858 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
859 struct cgroup_subsys
*ss
= subsys
[i
];
861 opts
->subsys_bits
|= 1ul << i
;
863 } else if (!strcmp(token
, "noprefix")) {
864 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
865 } else if (!strncmp(token
, "release_agent=", 14)) {
866 /* Specifying two release agents is forbidden */
867 if (opts
->release_agent
)
869 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
870 if (!opts
->release_agent
)
872 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
873 opts
->release_agent
[PATH_MAX
- 1] = 0;
875 struct cgroup_subsys
*ss
;
877 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
879 if (!strcmp(token
, ss
->name
)) {
881 set_bit(i
, &opts
->subsys_bits
);
885 if (i
== CGROUP_SUBSYS_COUNT
)
890 /* We can't have an empty hierarchy */
891 if (!opts
->subsys_bits
)
897 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
900 struct cgroupfs_root
*root
= sb
->s_fs_info
;
901 struct cgroup
*cgrp
= &root
->top_cgroup
;
902 struct cgroup_sb_opts opts
;
905 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
906 mutex_lock(&cgroup_mutex
);
908 /* See what subsystems are wanted */
909 ret
= parse_cgroupfs_options(data
, &opts
);
913 /* Don't allow flags to change at remount */
914 if (opts
.flags
!= root
->flags
) {
919 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
923 /* (re)populate subsystem files */
924 cgroup_populate_dir(cgrp
);
926 if (opts
.release_agent
)
927 strcpy(root
->release_agent_path
, opts
.release_agent
);
929 kfree(opts
.release_agent
);
930 mutex_unlock(&cgroup_mutex
);
931 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
936 static struct super_operations cgroup_ops
= {
937 .statfs
= simple_statfs
,
938 .drop_inode
= generic_delete_inode
,
939 .show_options
= cgroup_show_options
,
940 .remount_fs
= cgroup_remount
,
943 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
945 INIT_LIST_HEAD(&cgrp
->sibling
);
946 INIT_LIST_HEAD(&cgrp
->children
);
947 INIT_LIST_HEAD(&cgrp
->css_sets
);
948 INIT_LIST_HEAD(&cgrp
->release_list
);
949 init_rwsem(&cgrp
->pids_mutex
);
951 static void init_cgroup_root(struct cgroupfs_root
*root
)
953 struct cgroup
*cgrp
= &root
->top_cgroup
;
954 INIT_LIST_HEAD(&root
->subsys_list
);
955 INIT_LIST_HEAD(&root
->root_list
);
956 root
->number_of_cgroups
= 1;
958 cgrp
->top_cgroup
= cgrp
;
959 init_cgroup_housekeeping(cgrp
);
962 static int cgroup_test_super(struct super_block
*sb
, void *data
)
964 struct cgroupfs_root
*new = data
;
965 struct cgroupfs_root
*root
= sb
->s_fs_info
;
967 /* First check subsystems */
968 if (new->subsys_bits
!= root
->subsys_bits
)
971 /* Next check flags */
972 if (new->flags
!= root
->flags
)
978 static int cgroup_set_super(struct super_block
*sb
, void *data
)
981 struct cgroupfs_root
*root
= data
;
983 ret
= set_anon_super(sb
, NULL
);
987 sb
->s_fs_info
= root
;
990 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
991 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
992 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
993 sb
->s_op
= &cgroup_ops
;
998 static int cgroup_get_rootdir(struct super_block
*sb
)
1000 struct inode
*inode
=
1001 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1002 struct dentry
*dentry
;
1007 inode
->i_fop
= &simple_dir_operations
;
1008 inode
->i_op
= &cgroup_dir_inode_operations
;
1009 /* directories start off with i_nlink == 2 (for "." entry) */
1011 dentry
= d_alloc_root(inode
);
1016 sb
->s_root
= dentry
;
1020 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1021 int flags
, const char *unused_dev_name
,
1022 void *data
, struct vfsmount
*mnt
)
1024 struct cgroup_sb_opts opts
;
1026 struct super_block
*sb
;
1027 struct cgroupfs_root
*root
;
1028 struct list_head tmp_cg_links
;
1030 /* First find the desired set of subsystems */
1031 ret
= parse_cgroupfs_options(data
, &opts
);
1033 kfree(opts
.release_agent
);
1037 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1039 kfree(opts
.release_agent
);
1043 init_cgroup_root(root
);
1044 root
->subsys_bits
= opts
.subsys_bits
;
1045 root
->flags
= opts
.flags
;
1046 if (opts
.release_agent
) {
1047 strcpy(root
->release_agent_path
, opts
.release_agent
);
1048 kfree(opts
.release_agent
);
1051 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
1058 if (sb
->s_fs_info
!= root
) {
1059 /* Reusing an existing superblock */
1060 BUG_ON(sb
->s_root
== NULL
);
1064 /* New superblock */
1065 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1066 struct inode
*inode
;
1069 BUG_ON(sb
->s_root
!= NULL
);
1071 ret
= cgroup_get_rootdir(sb
);
1073 goto drop_new_super
;
1074 inode
= sb
->s_root
->d_inode
;
1076 mutex_lock(&inode
->i_mutex
);
1077 mutex_lock(&cgroup_mutex
);
1080 * We're accessing css_set_count without locking
1081 * css_set_lock here, but that's OK - it can only be
1082 * increased by someone holding cgroup_lock, and
1083 * that's us. The worst that can happen is that we
1084 * have some link structures left over
1086 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1088 mutex_unlock(&cgroup_mutex
);
1089 mutex_unlock(&inode
->i_mutex
);
1090 goto drop_new_super
;
1093 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1094 if (ret
== -EBUSY
) {
1095 mutex_unlock(&cgroup_mutex
);
1096 mutex_unlock(&inode
->i_mutex
);
1100 /* EBUSY should be the only error here */
1103 list_add(&root
->root_list
, &roots
);
1106 sb
->s_root
->d_fsdata
= root_cgrp
;
1107 root
->top_cgroup
.dentry
= sb
->s_root
;
1109 /* Link the top cgroup in this hierarchy into all
1110 * the css_set objects */
1111 write_lock(&css_set_lock
);
1112 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1113 struct hlist_head
*hhead
= &css_set_table
[i
];
1114 struct hlist_node
*node
;
1117 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1118 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1120 write_unlock(&css_set_lock
);
1122 free_cg_links(&tmp_cg_links
);
1124 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1125 BUG_ON(!list_empty(&root_cgrp
->children
));
1126 BUG_ON(root
->number_of_cgroups
!= 1);
1128 cgroup_populate_dir(root_cgrp
);
1129 mutex_unlock(&inode
->i_mutex
);
1130 mutex_unlock(&cgroup_mutex
);
1133 simple_set_mnt(mnt
, sb
);
1137 free_cg_links(&tmp_cg_links
);
1139 deactivate_locked_super(sb
);
1143 static void cgroup_kill_sb(struct super_block
*sb
) {
1144 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1145 struct cgroup
*cgrp
= &root
->top_cgroup
;
1147 struct cg_cgroup_link
*link
;
1148 struct cg_cgroup_link
*saved_link
;
1152 BUG_ON(root
->number_of_cgroups
!= 1);
1153 BUG_ON(!list_empty(&cgrp
->children
));
1154 BUG_ON(!list_empty(&cgrp
->sibling
));
1156 mutex_lock(&cgroup_mutex
);
1158 /* Rebind all subsystems back to the default hierarchy */
1159 ret
= rebind_subsystems(root
, 0);
1160 /* Shouldn't be able to fail ... */
1164 * Release all the links from css_sets to this hierarchy's
1167 write_lock(&css_set_lock
);
1169 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1171 list_del(&link
->cg_link_list
);
1172 list_del(&link
->cgrp_link_list
);
1175 write_unlock(&css_set_lock
);
1177 if (!list_empty(&root
->root_list
)) {
1178 list_del(&root
->root_list
);
1182 mutex_unlock(&cgroup_mutex
);
1184 kill_litter_super(sb
);
1188 static struct file_system_type cgroup_fs_type
= {
1190 .get_sb
= cgroup_get_sb
,
1191 .kill_sb
= cgroup_kill_sb
,
1194 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1196 return dentry
->d_fsdata
;
1199 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1201 return dentry
->d_fsdata
;
1205 * cgroup_path - generate the path of a cgroup
1206 * @cgrp: the cgroup in question
1207 * @buf: the buffer to write the path into
1208 * @buflen: the length of the buffer
1210 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1211 * reference. Writes path of cgroup into buf. Returns 0 on success,
1214 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1217 struct dentry
*dentry
= rcu_dereference(cgrp
->dentry
);
1219 if (!dentry
|| cgrp
== dummytop
) {
1221 * Inactive subsystems have no dentry for their root
1228 start
= buf
+ buflen
;
1232 int len
= dentry
->d_name
.len
;
1233 if ((start
-= len
) < buf
)
1234 return -ENAMETOOLONG
;
1235 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1236 cgrp
= cgrp
->parent
;
1239 dentry
= rcu_dereference(cgrp
->dentry
);
1243 return -ENAMETOOLONG
;
1246 memmove(buf
, start
, buf
+ buflen
- start
);
1251 * Return the first subsystem attached to a cgroup's hierarchy, and
1255 static void get_first_subsys(const struct cgroup
*cgrp
,
1256 struct cgroup_subsys_state
**css
, int *subsys_id
)
1258 const struct cgroupfs_root
*root
= cgrp
->root
;
1259 const struct cgroup_subsys
*test_ss
;
1260 BUG_ON(list_empty(&root
->subsys_list
));
1261 test_ss
= list_entry(root
->subsys_list
.next
,
1262 struct cgroup_subsys
, sibling
);
1264 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1268 *subsys_id
= test_ss
->subsys_id
;
1272 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1273 * @cgrp: the cgroup the task is attaching to
1274 * @tsk: the task to be attached
1276 * Call holding cgroup_mutex. May take task_lock of
1277 * the task 'tsk' during call.
1279 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1282 struct cgroup_subsys
*ss
;
1283 struct cgroup
*oldcgrp
;
1285 struct css_set
*newcg
;
1286 struct cgroupfs_root
*root
= cgrp
->root
;
1289 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1291 /* Nothing to do if the task is already in that cgroup */
1292 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1293 if (cgrp
== oldcgrp
)
1296 for_each_subsys(root
, ss
) {
1297 if (ss
->can_attach
) {
1298 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1309 * Locate or allocate a new css_set for this task,
1310 * based on its final set of cgroups
1312 newcg
= find_css_set(cg
, cgrp
);
1318 if (tsk
->flags
& PF_EXITING
) {
1323 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1326 /* Update the css_set linked lists if we're using them */
1327 write_lock(&css_set_lock
);
1328 if (!list_empty(&tsk
->cg_list
)) {
1329 list_del(&tsk
->cg_list
);
1330 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1332 write_unlock(&css_set_lock
);
1334 for_each_subsys(root
, ss
) {
1336 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1338 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1343 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1344 * is no longer empty.
1346 cgroup_wakeup_rmdir_waiters(cgrp
);
1351 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1352 * held. May take task_lock of task
1354 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1356 struct task_struct
*tsk
;
1357 const struct cred
*cred
= current_cred(), *tcred
;
1362 tsk
= find_task_by_vpid(pid
);
1363 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1368 tcred
= __task_cred(tsk
);
1370 cred
->euid
!= tcred
->uid
&&
1371 cred
->euid
!= tcred
->suid
) {
1375 get_task_struct(tsk
);
1379 get_task_struct(tsk
);
1382 ret
= cgroup_attach_task(cgrp
, tsk
);
1383 put_task_struct(tsk
);
1387 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1390 if (!cgroup_lock_live_group(cgrp
))
1392 ret
= attach_task_by_pid(cgrp
, pid
);
1397 /* The various types of files and directories in a cgroup file system */
1398 enum cgroup_filetype
{
1402 FILE_NOTIFY_ON_RELEASE
,
1407 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1408 * @cgrp: the cgroup to be checked for liveness
1410 * On success, returns true; the lock should be later released with
1411 * cgroup_unlock(). On failure returns false with no lock held.
1413 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1415 mutex_lock(&cgroup_mutex
);
1416 if (cgroup_is_removed(cgrp
)) {
1417 mutex_unlock(&cgroup_mutex
);
1423 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1426 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1427 if (!cgroup_lock_live_group(cgrp
))
1429 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1434 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1435 struct seq_file
*seq
)
1437 if (!cgroup_lock_live_group(cgrp
))
1439 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1440 seq_putc(seq
, '\n');
1445 /* A buffer size big enough for numbers or short strings */
1446 #define CGROUP_LOCAL_BUFFER_SIZE 64
1448 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1450 const char __user
*userbuf
,
1451 size_t nbytes
, loff_t
*unused_ppos
)
1453 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1459 if (nbytes
>= sizeof(buffer
))
1461 if (copy_from_user(buffer
, userbuf
, nbytes
))
1464 buffer
[nbytes
] = 0; /* nul-terminate */
1466 if (cft
->write_u64
) {
1467 u64 val
= simple_strtoull(buffer
, &end
, 0);
1470 retval
= cft
->write_u64(cgrp
, cft
, val
);
1472 s64 val
= simple_strtoll(buffer
, &end
, 0);
1475 retval
= cft
->write_s64(cgrp
, cft
, val
);
1482 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1484 const char __user
*userbuf
,
1485 size_t nbytes
, loff_t
*unused_ppos
)
1487 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1489 size_t max_bytes
= cft
->max_write_len
;
1490 char *buffer
= local_buffer
;
1493 max_bytes
= sizeof(local_buffer
) - 1;
1494 if (nbytes
>= max_bytes
)
1496 /* Allocate a dynamic buffer if we need one */
1497 if (nbytes
>= sizeof(local_buffer
)) {
1498 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1502 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1507 buffer
[nbytes
] = 0; /* nul-terminate */
1509 retval
= cft
->write_string(cgrp
, cft
, buffer
);
1513 if (buffer
!= local_buffer
)
1518 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1519 size_t nbytes
, loff_t
*ppos
)
1521 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1522 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1524 if (cgroup_is_removed(cgrp
))
1527 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1528 if (cft
->write_u64
|| cft
->write_s64
)
1529 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1530 if (cft
->write_string
)
1531 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1533 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1534 return ret
? ret
: nbytes
;
1539 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1541 char __user
*buf
, size_t nbytes
,
1544 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1545 u64 val
= cft
->read_u64(cgrp
, cft
);
1546 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1548 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1551 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1553 char __user
*buf
, size_t nbytes
,
1556 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1557 s64 val
= cft
->read_s64(cgrp
, cft
);
1558 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1560 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1563 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1564 size_t nbytes
, loff_t
*ppos
)
1566 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1567 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1569 if (cgroup_is_removed(cgrp
))
1573 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1575 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1577 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1582 * seqfile ops/methods for returning structured data. Currently just
1583 * supports string->u64 maps, but can be extended in future.
1586 struct cgroup_seqfile_state
{
1588 struct cgroup
*cgroup
;
1591 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1593 struct seq_file
*sf
= cb
->state
;
1594 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1597 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1599 struct cgroup_seqfile_state
*state
= m
->private;
1600 struct cftype
*cft
= state
->cft
;
1601 if (cft
->read_map
) {
1602 struct cgroup_map_cb cb
= {
1603 .fill
= cgroup_map_add
,
1606 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1608 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1611 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1613 struct seq_file
*seq
= file
->private_data
;
1614 kfree(seq
->private);
1615 return single_release(inode
, file
);
1618 static struct file_operations cgroup_seqfile_operations
= {
1620 .write
= cgroup_file_write
,
1621 .llseek
= seq_lseek
,
1622 .release
= cgroup_seqfile_release
,
1625 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1630 err
= generic_file_open(inode
, file
);
1633 cft
= __d_cft(file
->f_dentry
);
1635 if (cft
->read_map
|| cft
->read_seq_string
) {
1636 struct cgroup_seqfile_state
*state
=
1637 kzalloc(sizeof(*state
), GFP_USER
);
1641 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1642 file
->f_op
= &cgroup_seqfile_operations
;
1643 err
= single_open(file
, cgroup_seqfile_show
, state
);
1646 } else if (cft
->open
)
1647 err
= cft
->open(inode
, file
);
1654 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1656 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1658 return cft
->release(inode
, file
);
1663 * cgroup_rename - Only allow simple rename of directories in place.
1665 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1666 struct inode
*new_dir
, struct dentry
*new_dentry
)
1668 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1670 if (new_dentry
->d_inode
)
1672 if (old_dir
!= new_dir
)
1674 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1677 static struct file_operations cgroup_file_operations
= {
1678 .read
= cgroup_file_read
,
1679 .write
= cgroup_file_write
,
1680 .llseek
= generic_file_llseek
,
1681 .open
= cgroup_file_open
,
1682 .release
= cgroup_file_release
,
1685 static struct inode_operations cgroup_dir_inode_operations
= {
1686 .lookup
= simple_lookup
,
1687 .mkdir
= cgroup_mkdir
,
1688 .rmdir
= cgroup_rmdir
,
1689 .rename
= cgroup_rename
,
1692 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
1693 struct super_block
*sb
)
1695 static const struct dentry_operations cgroup_dops
= {
1696 .d_iput
= cgroup_diput
,
1699 struct inode
*inode
;
1703 if (dentry
->d_inode
)
1706 inode
= cgroup_new_inode(mode
, sb
);
1710 if (S_ISDIR(mode
)) {
1711 inode
->i_op
= &cgroup_dir_inode_operations
;
1712 inode
->i_fop
= &simple_dir_operations
;
1714 /* start off with i_nlink == 2 (for "." entry) */
1717 /* start with the directory inode held, so that we can
1718 * populate it without racing with another mkdir */
1719 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1720 } else if (S_ISREG(mode
)) {
1722 inode
->i_fop
= &cgroup_file_operations
;
1724 dentry
->d_op
= &cgroup_dops
;
1725 d_instantiate(dentry
, inode
);
1726 dget(dentry
); /* Extra count - pin the dentry in core */
1731 * cgroup_create_dir - create a directory for an object.
1732 * @cgrp: the cgroup we create the directory for. It must have a valid
1733 * ->parent field. And we are going to fill its ->dentry field.
1734 * @dentry: dentry of the new cgroup
1735 * @mode: mode to set on new directory.
1737 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1740 struct dentry
*parent
;
1743 parent
= cgrp
->parent
->dentry
;
1744 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1746 dentry
->d_fsdata
= cgrp
;
1747 inc_nlink(parent
->d_inode
);
1748 rcu_assign_pointer(cgrp
->dentry
, dentry
);
1757 * cgroup_file_mode - deduce file mode of a control file
1758 * @cft: the control file in question
1760 * returns cft->mode if ->mode is not 0
1761 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1762 * returns S_IRUGO if it has only a read handler
1763 * returns S_IWUSR if it has only a write hander
1765 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
1772 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
1773 cft
->read_map
|| cft
->read_seq_string
)
1776 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
1777 cft
->write_string
|| cft
->trigger
)
1783 int cgroup_add_file(struct cgroup
*cgrp
,
1784 struct cgroup_subsys
*subsys
,
1785 const struct cftype
*cft
)
1787 struct dentry
*dir
= cgrp
->dentry
;
1788 struct dentry
*dentry
;
1792 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1793 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1794 strcpy(name
, subsys
->name
);
1797 strcat(name
, cft
->name
);
1798 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1799 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1800 if (!IS_ERR(dentry
)) {
1801 mode
= cgroup_file_mode(cft
);
1802 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
1805 dentry
->d_fsdata
= (void *)cft
;
1808 error
= PTR_ERR(dentry
);
1812 int cgroup_add_files(struct cgroup
*cgrp
,
1813 struct cgroup_subsys
*subsys
,
1814 const struct cftype cft
[],
1818 for (i
= 0; i
< count
; i
++) {
1819 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1827 * cgroup_task_count - count the number of tasks in a cgroup.
1828 * @cgrp: the cgroup in question
1830 * Return the number of tasks in the cgroup.
1832 int cgroup_task_count(const struct cgroup
*cgrp
)
1835 struct cg_cgroup_link
*link
;
1837 read_lock(&css_set_lock
);
1838 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
1839 count
+= atomic_read(&link
->cg
->refcount
);
1841 read_unlock(&css_set_lock
);
1846 * Advance a list_head iterator. The iterator should be positioned at
1847 * the start of a css_set
1849 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1850 struct cgroup_iter
*it
)
1852 struct list_head
*l
= it
->cg_link
;
1853 struct cg_cgroup_link
*link
;
1856 /* Advance to the next non-empty css_set */
1859 if (l
== &cgrp
->css_sets
) {
1863 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1865 } while (list_empty(&cg
->tasks
));
1867 it
->task
= cg
->tasks
.next
;
1871 * To reduce the fork() overhead for systems that are not actually
1872 * using their cgroups capability, we don't maintain the lists running
1873 * through each css_set to its tasks until we see the list actually
1874 * used - in other words after the first call to cgroup_iter_start().
1876 * The tasklist_lock is not held here, as do_each_thread() and
1877 * while_each_thread() are protected by RCU.
1879 static void cgroup_enable_task_cg_lists(void)
1881 struct task_struct
*p
, *g
;
1882 write_lock(&css_set_lock
);
1883 use_task_css_set_links
= 1;
1884 do_each_thread(g
, p
) {
1887 * We should check if the process is exiting, otherwise
1888 * it will race with cgroup_exit() in that the list
1889 * entry won't be deleted though the process has exited.
1891 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1892 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1894 } while_each_thread(g
, p
);
1895 write_unlock(&css_set_lock
);
1898 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1901 * The first time anyone tries to iterate across a cgroup,
1902 * we need to enable the list linking each css_set to its
1903 * tasks, and fix up all existing tasks.
1905 if (!use_task_css_set_links
)
1906 cgroup_enable_task_cg_lists();
1908 read_lock(&css_set_lock
);
1909 it
->cg_link
= &cgrp
->css_sets
;
1910 cgroup_advance_iter(cgrp
, it
);
1913 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1914 struct cgroup_iter
*it
)
1916 struct task_struct
*res
;
1917 struct list_head
*l
= it
->task
;
1918 struct cg_cgroup_link
*link
;
1920 /* If the iterator cg is NULL, we have no tasks */
1923 res
= list_entry(l
, struct task_struct
, cg_list
);
1924 /* Advance iterator to find next entry */
1926 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
1927 if (l
== &link
->cg
->tasks
) {
1928 /* We reached the end of this task list - move on to
1929 * the next cg_cgroup_link */
1930 cgroup_advance_iter(cgrp
, it
);
1937 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1939 read_unlock(&css_set_lock
);
1942 static inline int started_after_time(struct task_struct
*t1
,
1943 struct timespec
*time
,
1944 struct task_struct
*t2
)
1946 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1947 if (start_diff
> 0) {
1949 } else if (start_diff
< 0) {
1953 * Arbitrarily, if two processes started at the same
1954 * time, we'll say that the lower pointer value
1955 * started first. Note that t2 may have exited by now
1956 * so this may not be a valid pointer any longer, but
1957 * that's fine - it still serves to distinguish
1958 * between two tasks started (effectively) simultaneously.
1965 * This function is a callback from heap_insert() and is used to order
1967 * In this case we order the heap in descending task start time.
1969 static inline int started_after(void *p1
, void *p2
)
1971 struct task_struct
*t1
= p1
;
1972 struct task_struct
*t2
= p2
;
1973 return started_after_time(t1
, &t2
->start_time
, t2
);
1977 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1978 * @scan: struct cgroup_scanner containing arguments for the scan
1980 * Arguments include pointers to callback functions test_task() and
1982 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1983 * and if it returns true, call process_task() for it also.
1984 * The test_task pointer may be NULL, meaning always true (select all tasks).
1985 * Effectively duplicates cgroup_iter_{start,next,end}()
1986 * but does not lock css_set_lock for the call to process_task().
1987 * The struct cgroup_scanner may be embedded in any structure of the caller's
1989 * It is guaranteed that process_task() will act on every task that
1990 * is a member of the cgroup for the duration of this call. This
1991 * function may or may not call process_task() for tasks that exit
1992 * or move to a different cgroup during the call, or are forked or
1993 * move into the cgroup during the call.
1995 * Note that test_task() may be called with locks held, and may in some
1996 * situations be called multiple times for the same task, so it should
1998 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1999 * pre-allocated and will be used for heap operations (and its "gt" member will
2000 * be overwritten), else a temporary heap will be used (allocation of which
2001 * may cause this function to fail).
2003 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2006 struct cgroup_iter it
;
2007 struct task_struct
*p
, *dropped
;
2008 /* Never dereference latest_task, since it's not refcounted */
2009 struct task_struct
*latest_task
= NULL
;
2010 struct ptr_heap tmp_heap
;
2011 struct ptr_heap
*heap
;
2012 struct timespec latest_time
= { 0, 0 };
2015 /* The caller supplied our heap and pre-allocated its memory */
2017 heap
->gt
= &started_after
;
2019 /* We need to allocate our own heap memory */
2021 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2023 /* cannot allocate the heap */
2029 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2030 * to determine which are of interest, and using the scanner's
2031 * "process_task" callback to process any of them that need an update.
2032 * Since we don't want to hold any locks during the task updates,
2033 * gather tasks to be processed in a heap structure.
2034 * The heap is sorted by descending task start time.
2035 * If the statically-sized heap fills up, we overflow tasks that
2036 * started later, and in future iterations only consider tasks that
2037 * started after the latest task in the previous pass. This
2038 * guarantees forward progress and that we don't miss any tasks.
2041 cgroup_iter_start(scan
->cg
, &it
);
2042 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2044 * Only affect tasks that qualify per the caller's callback,
2045 * if he provided one
2047 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2050 * Only process tasks that started after the last task
2053 if (!started_after_time(p
, &latest_time
, latest_task
))
2055 dropped
= heap_insert(heap
, p
);
2056 if (dropped
== NULL
) {
2058 * The new task was inserted; the heap wasn't
2062 } else if (dropped
!= p
) {
2064 * The new task was inserted, and pushed out a
2068 put_task_struct(dropped
);
2071 * Else the new task was newer than anything already in
2072 * the heap and wasn't inserted
2075 cgroup_iter_end(scan
->cg
, &it
);
2078 for (i
= 0; i
< heap
->size
; i
++) {
2079 struct task_struct
*q
= heap
->ptrs
[i
];
2081 latest_time
= q
->start_time
;
2084 /* Process the task per the caller's callback */
2085 scan
->process_task(q
, scan
);
2089 * If we had to process any tasks at all, scan again
2090 * in case some of them were in the middle of forking
2091 * children that didn't get processed.
2092 * Not the most efficient way to do it, but it avoids
2093 * having to take callback_mutex in the fork path
2097 if (heap
== &tmp_heap
)
2098 heap_free(&tmp_heap
);
2103 * Stuff for reading the 'tasks' file.
2105 * Reading this file can return large amounts of data if a cgroup has
2106 * *lots* of attached tasks. So it may need several calls to read(),
2107 * but we cannot guarantee that the information we produce is correct
2108 * unless we produce it entirely atomically.
2113 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2114 * 'cgrp'. Return actual number of pids loaded. No need to
2115 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2116 * read section, so the css_set can't go away, and is
2117 * immutable after creation.
2119 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2122 struct cgroup_iter it
;
2123 struct task_struct
*tsk
;
2124 cgroup_iter_start(cgrp
, &it
);
2125 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2126 if (unlikely(n
== npids
))
2128 pid
= task_pid_vnr(tsk
);
2130 pidarray
[n
++] = pid
;
2132 cgroup_iter_end(cgrp
, &it
);
2137 * cgroupstats_build - build and fill cgroupstats
2138 * @stats: cgroupstats to fill information into
2139 * @dentry: A dentry entry belonging to the cgroup for which stats have
2142 * Build and fill cgroupstats so that taskstats can export it to user
2145 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2148 struct cgroup
*cgrp
;
2149 struct cgroup_iter it
;
2150 struct task_struct
*tsk
;
2153 * Validate dentry by checking the superblock operations,
2154 * and make sure it's a directory.
2156 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2157 !S_ISDIR(dentry
->d_inode
->i_mode
))
2161 cgrp
= dentry
->d_fsdata
;
2163 cgroup_iter_start(cgrp
, &it
);
2164 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2165 switch (tsk
->state
) {
2167 stats
->nr_running
++;
2169 case TASK_INTERRUPTIBLE
:
2170 stats
->nr_sleeping
++;
2172 case TASK_UNINTERRUPTIBLE
:
2173 stats
->nr_uninterruptible
++;
2176 stats
->nr_stopped
++;
2179 if (delayacct_is_task_waiting_on_io(tsk
))
2180 stats
->nr_io_wait
++;
2184 cgroup_iter_end(cgrp
, &it
);
2190 static int cmppid(const void *a
, const void *b
)
2192 return *(pid_t
*)a
- *(pid_t
*)b
;
2197 * seq_file methods for the "tasks" file. The seq_file position is the
2198 * next pid to display; the seq_file iterator is a pointer to the pid
2199 * in the cgroup->tasks_pids array.
2202 static void *cgroup_tasks_start(struct seq_file
*s
, loff_t
*pos
)
2205 * Initially we receive a position value that corresponds to
2206 * one more than the last pid shown (or 0 on the first call or
2207 * after a seek to the start). Use a binary-search to find the
2208 * next pid to display, if any
2210 struct cgroup
*cgrp
= s
->private;
2211 int index
= 0, pid
= *pos
;
2214 down_read(&cgrp
->pids_mutex
);
2216 int end
= cgrp
->pids_length
;
2218 while (index
< end
) {
2219 int mid
= (index
+ end
) / 2;
2220 if (cgrp
->tasks_pids
[mid
] == pid
) {
2223 } else if (cgrp
->tasks_pids
[mid
] <= pid
)
2229 /* If we're off the end of the array, we're done */
2230 if (index
>= cgrp
->pids_length
)
2232 /* Update the abstract position to be the actual pid that we found */
2233 iter
= cgrp
->tasks_pids
+ index
;
2238 static void cgroup_tasks_stop(struct seq_file
*s
, void *v
)
2240 struct cgroup
*cgrp
= s
->private;
2241 up_read(&cgrp
->pids_mutex
);
2244 static void *cgroup_tasks_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2246 struct cgroup
*cgrp
= s
->private;
2248 int *end
= cgrp
->tasks_pids
+ cgrp
->pids_length
;
2251 * Advance to the next pid in the array. If this goes off the
2263 static int cgroup_tasks_show(struct seq_file
*s
, void *v
)
2265 return seq_printf(s
, "%d\n", *(int *)v
);
2268 static struct seq_operations cgroup_tasks_seq_operations
= {
2269 .start
= cgroup_tasks_start
,
2270 .stop
= cgroup_tasks_stop
,
2271 .next
= cgroup_tasks_next
,
2272 .show
= cgroup_tasks_show
,
2275 static void release_cgroup_pid_array(struct cgroup
*cgrp
)
2277 down_write(&cgrp
->pids_mutex
);
2278 BUG_ON(!cgrp
->pids_use_count
);
2279 if (!--cgrp
->pids_use_count
) {
2280 kfree(cgrp
->tasks_pids
);
2281 cgrp
->tasks_pids
= NULL
;
2282 cgrp
->pids_length
= 0;
2284 up_write(&cgrp
->pids_mutex
);
2287 static int cgroup_tasks_release(struct inode
*inode
, struct file
*file
)
2289 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2291 if (!(file
->f_mode
& FMODE_READ
))
2294 release_cgroup_pid_array(cgrp
);
2295 return seq_release(inode
, file
);
2298 static struct file_operations cgroup_tasks_operations
= {
2300 .llseek
= seq_lseek
,
2301 .write
= cgroup_file_write
,
2302 .release
= cgroup_tasks_release
,
2306 * Handle an open on 'tasks' file. Prepare an array containing the
2307 * process id's of tasks currently attached to the cgroup being opened.
2310 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2312 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2317 /* Nothing to do for write-only files */
2318 if (!(file
->f_mode
& FMODE_READ
))
2322 * If cgroup gets more users after we read count, we won't have
2323 * enough space - tough. This race is indistinguishable to the
2324 * caller from the case that the additional cgroup users didn't
2325 * show up until sometime later on.
2327 npids
= cgroup_task_count(cgrp
);
2328 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2331 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2332 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2335 * Store the array in the cgroup, freeing the old
2336 * array if necessary
2338 down_write(&cgrp
->pids_mutex
);
2339 kfree(cgrp
->tasks_pids
);
2340 cgrp
->tasks_pids
= pidarray
;
2341 cgrp
->pids_length
= npids
;
2342 cgrp
->pids_use_count
++;
2343 up_write(&cgrp
->pids_mutex
);
2345 file
->f_op
= &cgroup_tasks_operations
;
2347 retval
= seq_open(file
, &cgroup_tasks_seq_operations
);
2349 release_cgroup_pid_array(cgrp
);
2352 ((struct seq_file
*)file
->private_data
)->private = cgrp
;
2356 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2359 return notify_on_release(cgrp
);
2362 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2366 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2368 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2370 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2375 * for the common functions, 'private' gives the type of file
2377 static struct cftype files
[] = {
2380 .open
= cgroup_tasks_open
,
2381 .write_u64
= cgroup_tasks_write
,
2382 .release
= cgroup_tasks_release
,
2383 .private = FILE_TASKLIST
,
2384 .mode
= S_IRUGO
| S_IWUSR
,
2388 .name
= "notify_on_release",
2389 .read_u64
= cgroup_read_notify_on_release
,
2390 .write_u64
= cgroup_write_notify_on_release
,
2391 .private = FILE_NOTIFY_ON_RELEASE
,
2395 static struct cftype cft_release_agent
= {
2396 .name
= "release_agent",
2397 .read_seq_string
= cgroup_release_agent_show
,
2398 .write_string
= cgroup_release_agent_write
,
2399 .max_write_len
= PATH_MAX
,
2400 .private = FILE_RELEASE_AGENT
,
2403 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2406 struct cgroup_subsys
*ss
;
2408 /* First clear out any existing files */
2409 cgroup_clear_directory(cgrp
->dentry
);
2411 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2415 if (cgrp
== cgrp
->top_cgroup
) {
2416 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2420 for_each_subsys(cgrp
->root
, ss
) {
2421 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2424 /* This cgroup is ready now */
2425 for_each_subsys(cgrp
->root
, ss
) {
2426 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2428 * Update id->css pointer and make this css visible from
2429 * CSS ID functions. This pointer will be dereferened
2430 * from RCU-read-side without locks.
2433 rcu_assign_pointer(css
->id
->css
, css
);
2439 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2440 struct cgroup_subsys
*ss
,
2441 struct cgroup
*cgrp
)
2444 atomic_set(&css
->refcnt
, 1);
2447 if (cgrp
== dummytop
)
2448 set_bit(CSS_ROOT
, &css
->flags
);
2449 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2450 cgrp
->subsys
[ss
->subsys_id
] = css
;
2453 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
2455 /* We need to take each hierarchy_mutex in a consistent order */
2458 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2459 struct cgroup_subsys
*ss
= subsys
[i
];
2460 if (ss
->root
== root
)
2461 mutex_lock(&ss
->hierarchy_mutex
);
2465 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
2469 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2470 struct cgroup_subsys
*ss
= subsys
[i
];
2471 if (ss
->root
== root
)
2472 mutex_unlock(&ss
->hierarchy_mutex
);
2477 * cgroup_create - create a cgroup
2478 * @parent: cgroup that will be parent of the new cgroup
2479 * @dentry: dentry of the new cgroup
2480 * @mode: mode to set on new inode
2482 * Must be called with the mutex on the parent inode held
2484 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2487 struct cgroup
*cgrp
;
2488 struct cgroupfs_root
*root
= parent
->root
;
2490 struct cgroup_subsys
*ss
;
2491 struct super_block
*sb
= root
->sb
;
2493 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2497 /* Grab a reference on the superblock so the hierarchy doesn't
2498 * get deleted on unmount if there are child cgroups. This
2499 * can be done outside cgroup_mutex, since the sb can't
2500 * disappear while someone has an open control file on the
2502 atomic_inc(&sb
->s_active
);
2504 mutex_lock(&cgroup_mutex
);
2506 init_cgroup_housekeeping(cgrp
);
2508 cgrp
->parent
= parent
;
2509 cgrp
->root
= parent
->root
;
2510 cgrp
->top_cgroup
= parent
->top_cgroup
;
2512 if (notify_on_release(parent
))
2513 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2515 for_each_subsys(root
, ss
) {
2516 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2521 init_cgroup_css(css
, ss
, cgrp
);
2523 if (alloc_css_id(ss
, parent
, cgrp
))
2525 /* At error, ->destroy() callback has to free assigned ID. */
2528 cgroup_lock_hierarchy(root
);
2529 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2530 cgroup_unlock_hierarchy(root
);
2531 root
->number_of_cgroups
++;
2533 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2537 /* The cgroup directory was pre-locked for us */
2538 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2540 err
= cgroup_populate_dir(cgrp
);
2541 /* If err < 0, we have a half-filled directory - oh well ;) */
2543 mutex_unlock(&cgroup_mutex
);
2544 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2550 cgroup_lock_hierarchy(root
);
2551 list_del(&cgrp
->sibling
);
2552 cgroup_unlock_hierarchy(root
);
2553 root
->number_of_cgroups
--;
2557 for_each_subsys(root
, ss
) {
2558 if (cgrp
->subsys
[ss
->subsys_id
])
2559 ss
->destroy(ss
, cgrp
);
2562 mutex_unlock(&cgroup_mutex
);
2564 /* Release the reference count that we took on the superblock */
2565 deactivate_super(sb
);
2571 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2573 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2575 /* the vfs holds inode->i_mutex already */
2576 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2579 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
2581 /* Check the reference count on each subsystem. Since we
2582 * already established that there are no tasks in the
2583 * cgroup, if the css refcount is also 1, then there should
2584 * be no outstanding references, so the subsystem is safe to
2585 * destroy. We scan across all subsystems rather than using
2586 * the per-hierarchy linked list of mounted subsystems since
2587 * we can be called via check_for_release() with no
2588 * synchronization other than RCU, and the subsystem linked
2589 * list isn't RCU-safe */
2591 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2592 struct cgroup_subsys
*ss
= subsys
[i
];
2593 struct cgroup_subsys_state
*css
;
2594 /* Skip subsystems not in this hierarchy */
2595 if (ss
->root
!= cgrp
->root
)
2597 css
= cgrp
->subsys
[ss
->subsys_id
];
2598 /* When called from check_for_release() it's possible
2599 * that by this point the cgroup has been removed
2600 * and the css deleted. But a false-positive doesn't
2601 * matter, since it can only happen if the cgroup
2602 * has been deleted and hence no longer needs the
2603 * release agent to be called anyway. */
2604 if (css
&& (atomic_read(&css
->refcnt
) > 1))
2611 * Atomically mark all (or else none) of the cgroup's CSS objects as
2612 * CSS_REMOVED. Return true on success, or false if the cgroup has
2613 * busy subsystems. Call with cgroup_mutex held
2616 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
2618 struct cgroup_subsys
*ss
;
2619 unsigned long flags
;
2620 bool failed
= false;
2621 local_irq_save(flags
);
2622 for_each_subsys(cgrp
->root
, ss
) {
2623 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2626 /* We can only remove a CSS with a refcnt==1 */
2627 refcnt
= atomic_read(&css
->refcnt
);
2634 * Drop the refcnt to 0 while we check other
2635 * subsystems. This will cause any racing
2636 * css_tryget() to spin until we set the
2637 * CSS_REMOVED bits or abort
2639 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
2645 for_each_subsys(cgrp
->root
, ss
) {
2646 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2649 * Restore old refcnt if we previously managed
2650 * to clear it from 1 to 0
2652 if (!atomic_read(&css
->refcnt
))
2653 atomic_set(&css
->refcnt
, 1);
2655 /* Commit the fact that the CSS is removed */
2656 set_bit(CSS_REMOVED
, &css
->flags
);
2659 local_irq_restore(flags
);
2663 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2665 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2667 struct cgroup
*parent
;
2671 /* the vfs holds both inode->i_mutex already */
2673 mutex_lock(&cgroup_mutex
);
2674 if (atomic_read(&cgrp
->count
) != 0) {
2675 mutex_unlock(&cgroup_mutex
);
2678 if (!list_empty(&cgrp
->children
)) {
2679 mutex_unlock(&cgroup_mutex
);
2682 mutex_unlock(&cgroup_mutex
);
2685 * Call pre_destroy handlers of subsys. Notify subsystems
2686 * that rmdir() request comes.
2688 ret
= cgroup_call_pre_destroy(cgrp
);
2692 mutex_lock(&cgroup_mutex
);
2693 parent
= cgrp
->parent
;
2694 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
2695 mutex_unlock(&cgroup_mutex
);
2699 * css_put/get is provided for subsys to grab refcnt to css. In typical
2700 * case, subsystem has no reference after pre_destroy(). But, under
2701 * hierarchy management, some *temporal* refcnt can be hold.
2702 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
2703 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
2704 * is called when css_put() is called and refcnt goes down to 0.
2706 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2707 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
2709 if (!cgroup_clear_css_refs(cgrp
)) {
2710 mutex_unlock(&cgroup_mutex
);
2712 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2713 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2714 if (signal_pending(current
))
2718 /* NO css_tryget() can success after here. */
2719 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2720 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2722 spin_lock(&release_list_lock
);
2723 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2724 if (!list_empty(&cgrp
->release_list
))
2725 list_del(&cgrp
->release_list
);
2726 spin_unlock(&release_list_lock
);
2728 cgroup_lock_hierarchy(cgrp
->root
);
2729 /* delete this cgroup from parent->children */
2730 list_del(&cgrp
->sibling
);
2731 cgroup_unlock_hierarchy(cgrp
->root
);
2733 spin_lock(&cgrp
->dentry
->d_lock
);
2734 d
= dget(cgrp
->dentry
);
2735 spin_unlock(&d
->d_lock
);
2737 cgroup_d_remove_dir(d
);
2740 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2741 check_for_release(parent
);
2743 mutex_unlock(&cgroup_mutex
);
2747 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2749 struct cgroup_subsys_state
*css
;
2751 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2753 /* Create the top cgroup state for this subsystem */
2754 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
2755 ss
->root
= &rootnode
;
2756 css
= ss
->create(ss
, dummytop
);
2757 /* We don't handle early failures gracefully */
2758 BUG_ON(IS_ERR(css
));
2759 init_cgroup_css(css
, ss
, dummytop
);
2761 /* Update the init_css_set to contain a subsys
2762 * pointer to this state - since the subsystem is
2763 * newly registered, all tasks and hence the
2764 * init_css_set is in the subsystem's top cgroup. */
2765 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2767 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2769 /* At system boot, before all subsystems have been
2770 * registered, no tasks have been forked, so we don't
2771 * need to invoke fork callbacks here. */
2772 BUG_ON(!list_empty(&init_task
.tasks
));
2774 mutex_init(&ss
->hierarchy_mutex
);
2775 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
2780 * cgroup_init_early - cgroup initialization at system boot
2782 * Initialize cgroups at system boot, and initialize any
2783 * subsystems that request early init.
2785 int __init
cgroup_init_early(void)
2788 atomic_set(&init_css_set
.refcount
, 1);
2789 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2790 INIT_LIST_HEAD(&init_css_set
.tasks
);
2791 INIT_HLIST_NODE(&init_css_set
.hlist
);
2793 init_cgroup_root(&rootnode
);
2795 init_task
.cgroups
= &init_css_set
;
2797 init_css_set_link
.cg
= &init_css_set
;
2798 list_add(&init_css_set_link
.cgrp_link_list
,
2799 &rootnode
.top_cgroup
.css_sets
);
2800 list_add(&init_css_set_link
.cg_link_list
,
2801 &init_css_set
.cg_links
);
2803 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2804 INIT_HLIST_HEAD(&css_set_table
[i
]);
2806 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2807 struct cgroup_subsys
*ss
= subsys
[i
];
2810 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2811 BUG_ON(!ss
->create
);
2812 BUG_ON(!ss
->destroy
);
2813 if (ss
->subsys_id
!= i
) {
2814 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2815 ss
->name
, ss
->subsys_id
);
2820 cgroup_init_subsys(ss
);
2826 * cgroup_init - cgroup initialization
2828 * Register cgroup filesystem and /proc file, and initialize
2829 * any subsystems that didn't request early init.
2831 int __init
cgroup_init(void)
2835 struct hlist_head
*hhead
;
2837 err
= bdi_init(&cgroup_backing_dev_info
);
2841 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2842 struct cgroup_subsys
*ss
= subsys
[i
];
2843 if (!ss
->early_init
)
2844 cgroup_init_subsys(ss
);
2846 cgroup_subsys_init_idr(ss
);
2849 /* Add init_css_set to the hash table */
2850 hhead
= css_set_hash(init_css_set
.subsys
);
2851 hlist_add_head(&init_css_set
.hlist
, hhead
);
2853 err
= register_filesystem(&cgroup_fs_type
);
2857 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2861 bdi_destroy(&cgroup_backing_dev_info
);
2867 * proc_cgroup_show()
2868 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2869 * - Used for /proc/<pid>/cgroup.
2870 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2871 * doesn't really matter if tsk->cgroup changes after we read it,
2872 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2873 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2874 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2875 * cgroup to top_cgroup.
2878 /* TODO: Use a proper seq_file iterator */
2879 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2882 struct task_struct
*tsk
;
2885 struct cgroupfs_root
*root
;
2888 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2894 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2900 mutex_lock(&cgroup_mutex
);
2902 for_each_active_root(root
) {
2903 struct cgroup_subsys
*ss
;
2904 struct cgroup
*cgrp
;
2908 seq_printf(m
, "%lu:", root
->subsys_bits
);
2909 for_each_subsys(root
, ss
)
2910 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2912 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2913 cgrp
= task_cgroup(tsk
, subsys_id
);
2914 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
2922 mutex_unlock(&cgroup_mutex
);
2923 put_task_struct(tsk
);
2930 static int cgroup_open(struct inode
*inode
, struct file
*file
)
2932 struct pid
*pid
= PROC_I(inode
)->pid
;
2933 return single_open(file
, proc_cgroup_show
, pid
);
2936 struct file_operations proc_cgroup_operations
= {
2937 .open
= cgroup_open
,
2939 .llseek
= seq_lseek
,
2940 .release
= single_release
,
2943 /* Display information about each subsystem and each hierarchy */
2944 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
2948 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2949 mutex_lock(&cgroup_mutex
);
2950 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2951 struct cgroup_subsys
*ss
= subsys
[i
];
2952 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
2953 ss
->name
, ss
->root
->subsys_bits
,
2954 ss
->root
->number_of_cgroups
, !ss
->disabled
);
2956 mutex_unlock(&cgroup_mutex
);
2960 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
2962 return single_open(file
, proc_cgroupstats_show
, NULL
);
2965 static struct file_operations proc_cgroupstats_operations
= {
2966 .open
= cgroupstats_open
,
2968 .llseek
= seq_lseek
,
2969 .release
= single_release
,
2973 * cgroup_fork - attach newly forked task to its parents cgroup.
2974 * @child: pointer to task_struct of forking parent process.
2976 * Description: A task inherits its parent's cgroup at fork().
2978 * A pointer to the shared css_set was automatically copied in
2979 * fork.c by dup_task_struct(). However, we ignore that copy, since
2980 * it was not made under the protection of RCU or cgroup_mutex, so
2981 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2982 * have already changed current->cgroups, allowing the previously
2983 * referenced cgroup group to be removed and freed.
2985 * At the point that cgroup_fork() is called, 'current' is the parent
2986 * task, and the passed argument 'child' points to the child task.
2988 void cgroup_fork(struct task_struct
*child
)
2991 child
->cgroups
= current
->cgroups
;
2992 get_css_set(child
->cgroups
);
2993 task_unlock(current
);
2994 INIT_LIST_HEAD(&child
->cg_list
);
2998 * cgroup_fork_callbacks - run fork callbacks
2999 * @child: the new task
3001 * Called on a new task very soon before adding it to the
3002 * tasklist. No need to take any locks since no-one can
3003 * be operating on this task.
3005 void cgroup_fork_callbacks(struct task_struct
*child
)
3007 if (need_forkexit_callback
) {
3009 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3010 struct cgroup_subsys
*ss
= subsys
[i
];
3012 ss
->fork(ss
, child
);
3018 * cgroup_post_fork - called on a new task after adding it to the task list
3019 * @child: the task in question
3021 * Adds the task to the list running through its css_set if necessary.
3022 * Has to be after the task is visible on the task list in case we race
3023 * with the first call to cgroup_iter_start() - to guarantee that the
3024 * new task ends up on its list.
3026 void cgroup_post_fork(struct task_struct
*child
)
3028 if (use_task_css_set_links
) {
3029 write_lock(&css_set_lock
);
3031 if (list_empty(&child
->cg_list
))
3032 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
3034 write_unlock(&css_set_lock
);
3038 * cgroup_exit - detach cgroup from exiting task
3039 * @tsk: pointer to task_struct of exiting process
3040 * @run_callback: run exit callbacks?
3042 * Description: Detach cgroup from @tsk and release it.
3044 * Note that cgroups marked notify_on_release force every task in
3045 * them to take the global cgroup_mutex mutex when exiting.
3046 * This could impact scaling on very large systems. Be reluctant to
3047 * use notify_on_release cgroups where very high task exit scaling
3048 * is required on large systems.
3050 * the_top_cgroup_hack:
3052 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3054 * We call cgroup_exit() while the task is still competent to
3055 * handle notify_on_release(), then leave the task attached to the
3056 * root cgroup in each hierarchy for the remainder of its exit.
3058 * To do this properly, we would increment the reference count on
3059 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3060 * code we would add a second cgroup function call, to drop that
3061 * reference. This would just create an unnecessary hot spot on
3062 * the top_cgroup reference count, to no avail.
3064 * Normally, holding a reference to a cgroup without bumping its
3065 * count is unsafe. The cgroup could go away, or someone could
3066 * attach us to a different cgroup, decrementing the count on
3067 * the first cgroup that we never incremented. But in this case,
3068 * top_cgroup isn't going away, and either task has PF_EXITING set,
3069 * which wards off any cgroup_attach_task() attempts, or task is a failed
3070 * fork, never visible to cgroup_attach_task.
3072 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
3077 if (run_callbacks
&& need_forkexit_callback
) {
3078 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3079 struct cgroup_subsys
*ss
= subsys
[i
];
3086 * Unlink from the css_set task list if necessary.
3087 * Optimistically check cg_list before taking
3090 if (!list_empty(&tsk
->cg_list
)) {
3091 write_lock(&css_set_lock
);
3092 if (!list_empty(&tsk
->cg_list
))
3093 list_del(&tsk
->cg_list
);
3094 write_unlock(&css_set_lock
);
3097 /* Reassign the task to the init_css_set. */
3100 tsk
->cgroups
= &init_css_set
;
3103 put_css_set_taskexit(cg
);
3107 * cgroup_clone - clone the cgroup the given subsystem is attached to
3108 * @tsk: the task to be moved
3109 * @subsys: the given subsystem
3110 * @nodename: the name for the new cgroup
3112 * Duplicate the current cgroup in the hierarchy that the given
3113 * subsystem is attached to, and move this task into the new
3116 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
3119 struct dentry
*dentry
;
3121 struct cgroup
*parent
, *child
;
3122 struct inode
*inode
;
3124 struct cgroupfs_root
*root
;
3125 struct cgroup_subsys
*ss
;
3127 /* We shouldn't be called by an unregistered subsystem */
3128 BUG_ON(!subsys
->active
);
3130 /* First figure out what hierarchy and cgroup we're dealing
3131 * with, and pin them so we can drop cgroup_mutex */
3132 mutex_lock(&cgroup_mutex
);
3134 root
= subsys
->root
;
3135 if (root
== &rootnode
) {
3136 mutex_unlock(&cgroup_mutex
);
3140 /* Pin the hierarchy */
3141 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
3142 /* We race with the final deactivate_super() */
3143 mutex_unlock(&cgroup_mutex
);
3147 /* Keep the cgroup alive */
3149 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
3154 mutex_unlock(&cgroup_mutex
);
3156 /* Now do the VFS work to create a cgroup */
3157 inode
= parent
->dentry
->d_inode
;
3159 /* Hold the parent directory mutex across this operation to
3160 * stop anyone else deleting the new cgroup */
3161 mutex_lock(&inode
->i_mutex
);
3162 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
3163 if (IS_ERR(dentry
)) {
3165 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
3167 ret
= PTR_ERR(dentry
);
3171 /* Create the cgroup directory, which also creates the cgroup */
3172 ret
= vfs_mkdir(inode
, dentry
, 0755);
3173 child
= __d_cgrp(dentry
);
3177 "Failed to create cgroup %s: %d\n", nodename
,
3182 /* The cgroup now exists. Retake cgroup_mutex and check
3183 * that we're still in the same state that we thought we
3185 mutex_lock(&cgroup_mutex
);
3186 if ((root
!= subsys
->root
) ||
3187 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
3188 /* Aargh, we raced ... */
3189 mutex_unlock(&inode
->i_mutex
);
3192 deactivate_super(root
->sb
);
3193 /* The cgroup is still accessible in the VFS, but
3194 * we're not going to try to rmdir() it at this
3197 "Race in cgroup_clone() - leaking cgroup %s\n",
3202 /* do any required auto-setup */
3203 for_each_subsys(root
, ss
) {
3205 ss
->post_clone(ss
, child
);
3208 /* All seems fine. Finish by moving the task into the new cgroup */
3209 ret
= cgroup_attach_task(child
, tsk
);
3210 mutex_unlock(&cgroup_mutex
);
3213 mutex_unlock(&inode
->i_mutex
);
3215 mutex_lock(&cgroup_mutex
);
3217 mutex_unlock(&cgroup_mutex
);
3218 deactivate_super(root
->sb
);
3223 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3224 * @cgrp: the cgroup in question
3225 * @task: the task in question
3227 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3230 * If we are sending in dummytop, then presumably we are creating
3231 * the top cgroup in the subsystem.
3233 * Called only by the ns (nsproxy) cgroup.
3235 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
3238 struct cgroup
*target
;
3241 if (cgrp
== dummytop
)
3244 get_first_subsys(cgrp
, NULL
, &subsys_id
);
3245 target
= task_cgroup(task
, subsys_id
);
3246 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
3247 cgrp
= cgrp
->parent
;
3248 ret
= (cgrp
== target
);
3252 static void check_for_release(struct cgroup
*cgrp
)
3254 /* All of these checks rely on RCU to keep the cgroup
3255 * structure alive */
3256 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3257 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3258 /* Control Group is currently removeable. If it's not
3259 * already queued for a userspace notification, queue
3261 int need_schedule_work
= 0;
3262 spin_lock(&release_list_lock
);
3263 if (!cgroup_is_removed(cgrp
) &&
3264 list_empty(&cgrp
->release_list
)) {
3265 list_add(&cgrp
->release_list
, &release_list
);
3266 need_schedule_work
= 1;
3268 spin_unlock(&release_list_lock
);
3269 if (need_schedule_work
)
3270 schedule_work(&release_agent_work
);
3274 void __css_put(struct cgroup_subsys_state
*css
)
3276 struct cgroup
*cgrp
= css
->cgroup
;
3278 if (atomic_dec_return(&css
->refcnt
) == 1) {
3279 if (notify_on_release(cgrp
)) {
3280 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3281 check_for_release(cgrp
);
3283 cgroup_wakeup_rmdir_waiters(cgrp
);
3289 * Notify userspace when a cgroup is released, by running the
3290 * configured release agent with the name of the cgroup (path
3291 * relative to the root of cgroup file system) as the argument.
3293 * Most likely, this user command will try to rmdir this cgroup.
3295 * This races with the possibility that some other task will be
3296 * attached to this cgroup before it is removed, or that some other
3297 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3298 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3299 * unused, and this cgroup will be reprieved from its death sentence,
3300 * to continue to serve a useful existence. Next time it's released,
3301 * we will get notified again, if it still has 'notify_on_release' set.
3303 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3304 * means only wait until the task is successfully execve()'d. The
3305 * separate release agent task is forked by call_usermodehelper(),
3306 * then control in this thread returns here, without waiting for the
3307 * release agent task. We don't bother to wait because the caller of
3308 * this routine has no use for the exit status of the release agent
3309 * task, so no sense holding our caller up for that.
3311 static void cgroup_release_agent(struct work_struct
*work
)
3313 BUG_ON(work
!= &release_agent_work
);
3314 mutex_lock(&cgroup_mutex
);
3315 spin_lock(&release_list_lock
);
3316 while (!list_empty(&release_list
)) {
3317 char *argv
[3], *envp
[3];
3319 char *pathbuf
= NULL
, *agentbuf
= NULL
;
3320 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3323 list_del_init(&cgrp
->release_list
);
3324 spin_unlock(&release_list_lock
);
3325 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3328 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
3330 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
3335 argv
[i
++] = agentbuf
;
3336 argv
[i
++] = pathbuf
;
3340 /* minimal command environment */
3341 envp
[i
++] = "HOME=/";
3342 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3345 /* Drop the lock while we invoke the usermode helper,
3346 * since the exec could involve hitting disk and hence
3347 * be a slow process */
3348 mutex_unlock(&cgroup_mutex
);
3349 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3350 mutex_lock(&cgroup_mutex
);
3354 spin_lock(&release_list_lock
);
3356 spin_unlock(&release_list_lock
);
3357 mutex_unlock(&cgroup_mutex
);
3360 static int __init
cgroup_disable(char *str
)
3365 while ((token
= strsep(&str
, ",")) != NULL
) {
3369 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3370 struct cgroup_subsys
*ss
= subsys
[i
];
3372 if (!strcmp(token
, ss
->name
)) {
3374 printk(KERN_INFO
"Disabling %s control group"
3375 " subsystem\n", ss
->name
);
3382 __setup("cgroup_disable=", cgroup_disable
);
3385 * Functons for CSS ID.
3389 *To get ID other than 0, this should be called when !cgroup_is_removed().
3391 unsigned short css_id(struct cgroup_subsys_state
*css
)
3393 struct css_id
*cssid
= rcu_dereference(css
->id
);
3400 unsigned short css_depth(struct cgroup_subsys_state
*css
)
3402 struct css_id
*cssid
= rcu_dereference(css
->id
);
3405 return cssid
->depth
;
3409 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
3410 const struct cgroup_subsys_state
*root
)
3412 struct css_id
*child_id
= rcu_dereference(child
->id
);
3413 struct css_id
*root_id
= rcu_dereference(root
->id
);
3415 if (!child_id
|| !root_id
|| (child_id
->depth
< root_id
->depth
))
3417 return child_id
->stack
[root_id
->depth
] == root_id
->id
;
3420 static void __free_css_id_cb(struct rcu_head
*head
)
3424 id
= container_of(head
, struct css_id
, rcu_head
);
3428 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
3430 struct css_id
*id
= css
->id
;
3431 /* When this is called before css_id initialization, id can be NULL */
3435 BUG_ON(!ss
->use_id
);
3437 rcu_assign_pointer(id
->css
, NULL
);
3438 rcu_assign_pointer(css
->id
, NULL
);
3439 spin_lock(&ss
->id_lock
);
3440 idr_remove(&ss
->idr
, id
->id
);
3441 spin_unlock(&ss
->id_lock
);
3442 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
3446 * This is called by init or create(). Then, calls to this function are
3447 * always serialized (By cgroup_mutex() at create()).
3450 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
3452 struct css_id
*newid
;
3453 int myid
, error
, size
;
3455 BUG_ON(!ss
->use_id
);
3457 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
3458 newid
= kzalloc(size
, GFP_KERNEL
);
3460 return ERR_PTR(-ENOMEM
);
3462 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
3466 spin_lock(&ss
->id_lock
);
3467 /* Don't use 0. allocates an ID of 1-65535 */
3468 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
3469 spin_unlock(&ss
->id_lock
);
3471 /* Returns error when there are no free spaces for new ID.*/
3476 if (myid
> CSS_ID_MAX
)
3480 newid
->depth
= depth
;
3484 spin_lock(&ss
->id_lock
);
3485 idr_remove(&ss
->idr
, myid
);
3486 spin_unlock(&ss
->id_lock
);
3489 return ERR_PTR(error
);
3493 static int __init
cgroup_subsys_init_idr(struct cgroup_subsys
*ss
)
3495 struct css_id
*newid
;
3496 struct cgroup_subsys_state
*rootcss
;
3498 spin_lock_init(&ss
->id_lock
);
3501 rootcss
= init_css_set
.subsys
[ss
->subsys_id
];
3502 newid
= get_new_cssid(ss
, 0);
3504 return PTR_ERR(newid
);
3506 newid
->stack
[0] = newid
->id
;
3507 newid
->css
= rootcss
;
3508 rootcss
->id
= newid
;
3512 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
3513 struct cgroup
*child
)
3515 int subsys_id
, i
, depth
= 0;
3516 struct cgroup_subsys_state
*parent_css
, *child_css
;
3517 struct css_id
*child_id
, *parent_id
= NULL
;
3519 subsys_id
= ss
->subsys_id
;
3520 parent_css
= parent
->subsys
[subsys_id
];
3521 child_css
= child
->subsys
[subsys_id
];
3522 depth
= css_depth(parent_css
) + 1;
3523 parent_id
= parent_css
->id
;
3525 child_id
= get_new_cssid(ss
, depth
);
3526 if (IS_ERR(child_id
))
3527 return PTR_ERR(child_id
);
3529 for (i
= 0; i
< depth
; i
++)
3530 child_id
->stack
[i
] = parent_id
->stack
[i
];
3531 child_id
->stack
[depth
] = child_id
->id
;
3533 * child_id->css pointer will be set after this cgroup is available
3534 * see cgroup_populate_dir()
3536 rcu_assign_pointer(child_css
->id
, child_id
);
3542 * css_lookup - lookup css by id
3543 * @ss: cgroup subsys to be looked into.
3546 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3547 * NULL if not. Should be called under rcu_read_lock()
3549 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
3551 struct css_id
*cssid
= NULL
;
3553 BUG_ON(!ss
->use_id
);
3554 cssid
= idr_find(&ss
->idr
, id
);
3556 if (unlikely(!cssid
))
3559 return rcu_dereference(cssid
->css
);
3563 * css_get_next - lookup next cgroup under specified hierarchy.
3564 * @ss: pointer to subsystem
3565 * @id: current position of iteration.
3566 * @root: pointer to css. search tree under this.
3567 * @foundid: position of found object.
3569 * Search next css under the specified hierarchy of rootid. Calling under
3570 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3572 struct cgroup_subsys_state
*
3573 css_get_next(struct cgroup_subsys
*ss
, int id
,
3574 struct cgroup_subsys_state
*root
, int *foundid
)
3576 struct cgroup_subsys_state
*ret
= NULL
;
3579 int rootid
= css_id(root
);
3580 int depth
= css_depth(root
);
3585 BUG_ON(!ss
->use_id
);
3586 /* fill start point for scan */
3590 * scan next entry from bitmap(tree), tmpid is updated after
3593 spin_lock(&ss
->id_lock
);
3594 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
3595 spin_unlock(&ss
->id_lock
);
3599 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
3600 ret
= rcu_dereference(tmp
->css
);
3606 /* continue to scan from next id */