2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
54 #include <linux/kthread.h>
56 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
57 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
58 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
60 /* Embedded module documentation macros - see modules.h */
61 MODULE_AUTHOR("Hewlett-Packard Company");
62 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
63 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
64 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
65 " Smart Array G2 Series SAS/SATA Controllers");
66 MODULE_VERSION("3.6.20");
67 MODULE_LICENSE("GPL");
69 #include "cciss_cmd.h"
71 #include <linux/cciss_ioctl.h>
73 /* define the PCI info for the cards we can control */
74 static const struct pci_device_id cciss_pci_device_id
[] = {
75 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
76 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
77 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
78 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
79 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
80 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
84 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
85 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
86 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
103 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
107 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
109 /* board_id = Subsystem Device ID & Vendor ID
110 * product = Marketing Name for the board
111 * access = Address of the struct of function pointers
113 static struct board_type products
[] = {
114 {0x40700E11, "Smart Array 5300", &SA5_access
},
115 {0x40800E11, "Smart Array 5i", &SA5B_access
},
116 {0x40820E11, "Smart Array 532", &SA5B_access
},
117 {0x40830E11, "Smart Array 5312", &SA5B_access
},
118 {0x409A0E11, "Smart Array 641", &SA5_access
},
119 {0x409B0E11, "Smart Array 642", &SA5_access
},
120 {0x409C0E11, "Smart Array 6400", &SA5_access
},
121 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
122 {0x40910E11, "Smart Array 6i", &SA5_access
},
123 {0x3225103C, "Smart Array P600", &SA5_access
},
124 {0x3223103C, "Smart Array P800", &SA5_access
},
125 {0x3234103C, "Smart Array P400", &SA5_access
},
126 {0x3235103C, "Smart Array P400i", &SA5_access
},
127 {0x3211103C, "Smart Array E200i", &SA5_access
},
128 {0x3212103C, "Smart Array E200", &SA5_access
},
129 {0x3213103C, "Smart Array E200i", &SA5_access
},
130 {0x3214103C, "Smart Array E200i", &SA5_access
},
131 {0x3215103C, "Smart Array E200i", &SA5_access
},
132 {0x3237103C, "Smart Array E500", &SA5_access
},
133 {0x323D103C, "Smart Array P700m", &SA5_access
},
134 {0x3241103C, "Smart Array P212", &SA5_access
},
135 {0x3243103C, "Smart Array P410", &SA5_access
},
136 {0x3245103C, "Smart Array P410i", &SA5_access
},
137 {0x3247103C, "Smart Array P411", &SA5_access
},
138 {0x3249103C, "Smart Array P812", &SA5_access
},
139 {0x324A103C, "Smart Array P712m", &SA5_access
},
140 {0x324B103C, "Smart Array P711m", &SA5_access
},
141 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
144 /* How long to wait (in milliseconds) for board to go into simple mode */
145 #define MAX_CONFIG_WAIT 30000
146 #define MAX_IOCTL_CONFIG_WAIT 1000
148 /*define how many times we will try a command because of bus resets */
149 #define MAX_CMD_RETRIES 3
153 /* Originally cciss driver only supports 8 major numbers */
154 #define MAX_CTLR_ORIG 8
156 static ctlr_info_t
*hba
[MAX_CTLR
];
158 static void do_cciss_request(struct request_queue
*q
);
159 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
);
160 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
161 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
162 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
163 unsigned int cmd
, unsigned long arg
);
164 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
166 static int cciss_revalidate(struct gendisk
*disk
);
167 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
);
168 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
171 static void cciss_read_capacity(int ctlr
, int logvol
, int withirq
,
172 sector_t
*total_size
, unsigned int *block_size
);
173 static void cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
,
174 sector_t
*total_size
, unsigned int *block_size
);
175 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
176 int withirq
, sector_t total_size
,
177 unsigned int block_size
, InquiryData_struct
*inq_buff
,
178 drive_info_struct
*drv
);
179 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*, struct pci_dev
*,
181 static void start_io(ctlr_info_t
*h
);
182 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
183 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
);
184 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
185 __u8 page_code
, unsigned char scsi3addr
[],
187 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
189 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
191 static void fail_all_cmds(unsigned long ctlr
);
192 static int scan_thread(void *data
);
193 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
195 #ifdef CONFIG_PROC_FS
196 static void cciss_procinit(int i
);
198 static void cciss_procinit(int i
)
201 #endif /* CONFIG_PROC_FS */
204 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
205 unsigned, unsigned long);
208 static struct block_device_operations cciss_fops
= {
209 .owner
= THIS_MODULE
,
211 .release
= cciss_release
,
212 .locked_ioctl
= cciss_ioctl
,
213 .getgeo
= cciss_getgeo
,
215 .compat_ioctl
= cciss_compat_ioctl
,
217 .revalidate_disk
= cciss_revalidate
,
221 * Enqueuing and dequeuing functions for cmdlists.
223 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
225 hlist_add_head(&c
->list
, list
);
228 static inline void removeQ(CommandList_struct
*c
)
230 if (WARN_ON(hlist_unhashed(&c
->list
)))
233 hlist_del_init(&c
->list
);
236 #include "cciss_scsi.c" /* For SCSI tape support */
238 #define RAID_UNKNOWN 6
240 #ifdef CONFIG_PROC_FS
243 * Report information about this controller.
245 #define ENG_GIG 1000000000
246 #define ENG_GIG_FACTOR (ENG_GIG/512)
247 #define ENGAGE_SCSI "engage scsi"
248 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
252 static struct proc_dir_entry
*proc_cciss
;
254 static void cciss_seq_show_header(struct seq_file
*seq
)
256 ctlr_info_t
*h
= seq
->private;
258 seq_printf(seq
, "%s: HP %s Controller\n"
259 "Board ID: 0x%08lx\n"
260 "Firmware Version: %c%c%c%c\n"
262 "Logical drives: %d\n"
263 "Current Q depth: %d\n"
264 "Current # commands on controller: %d\n"
265 "Max Q depth since init: %d\n"
266 "Max # commands on controller since init: %d\n"
267 "Max SG entries since init: %d\n",
270 (unsigned long)h
->board_id
,
271 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
272 h
->firm_ver
[3], (unsigned int)h
->intr
[SIMPLE_MODE_INT
],
274 h
->Qdepth
, h
->commands_outstanding
,
275 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
277 #ifdef CONFIG_CISS_SCSI_TAPE
278 cciss_seq_tape_report(seq
, h
->ctlr
);
279 #endif /* CONFIG_CISS_SCSI_TAPE */
282 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
284 ctlr_info_t
*h
= seq
->private;
285 unsigned ctlr
= h
->ctlr
;
288 /* prevent displaying bogus info during configuration
289 * or deconfiguration of a logical volume
291 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
292 if (h
->busy_configuring
) {
293 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
294 return ERR_PTR(-EBUSY
);
296 h
->busy_configuring
= 1;
297 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
300 cciss_seq_show_header(seq
);
305 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
307 sector_t vol_sz
, vol_sz_frac
;
308 ctlr_info_t
*h
= seq
->private;
309 unsigned ctlr
= h
->ctlr
;
311 drive_info_struct
*drv
= &h
->drv
[*pos
];
313 if (*pos
> h
->highest_lun
)
319 vol_sz
= drv
->nr_blocks
;
320 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
322 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
324 if (drv
->raid_level
> 5)
325 drv
->raid_level
= RAID_UNKNOWN
;
326 seq_printf(seq
, "cciss/c%dd%d:"
327 "\t%4u.%02uGB\tRAID %s\n",
328 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
329 raid_label
[drv
->raid_level
]);
333 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
335 ctlr_info_t
*h
= seq
->private;
337 if (*pos
> h
->highest_lun
)
344 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
346 ctlr_info_t
*h
= seq
->private;
348 /* Only reset h->busy_configuring if we succeeded in setting
349 * it during cciss_seq_start. */
350 if (v
== ERR_PTR(-EBUSY
))
353 h
->busy_configuring
= 0;
356 static struct seq_operations cciss_seq_ops
= {
357 .start
= cciss_seq_start
,
358 .show
= cciss_seq_show
,
359 .next
= cciss_seq_next
,
360 .stop
= cciss_seq_stop
,
363 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
365 int ret
= seq_open(file
, &cciss_seq_ops
);
366 struct seq_file
*seq
= file
->private_data
;
369 seq
->private = PDE(inode
)->data
;
375 cciss_proc_write(struct file
*file
, const char __user
*buf
,
376 size_t length
, loff_t
*ppos
)
381 #ifndef CONFIG_CISS_SCSI_TAPE
385 if (!buf
|| length
> PAGE_SIZE
- 1)
388 buffer
= (char *)__get_free_page(GFP_KERNEL
);
393 if (copy_from_user(buffer
, buf
, length
))
395 buffer
[length
] = '\0';
397 #ifdef CONFIG_CISS_SCSI_TAPE
398 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
399 struct seq_file
*seq
= file
->private_data
;
400 ctlr_info_t
*h
= seq
->private;
403 rc
= cciss_engage_scsi(h
->ctlr
);
409 #endif /* CONFIG_CISS_SCSI_TAPE */
411 /* might be nice to have "disengage" too, but it's not
412 safely possible. (only 1 module use count, lock issues.) */
415 free_page((unsigned long)buffer
);
419 static struct file_operations cciss_proc_fops
= {
420 .owner
= THIS_MODULE
,
421 .open
= cciss_seq_open
,
424 .release
= seq_release
,
425 .write
= cciss_proc_write
,
428 static void __devinit
cciss_procinit(int i
)
430 struct proc_dir_entry
*pde
;
432 if (proc_cciss
== NULL
)
433 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
436 pde
= proc_create_data(hba
[i
]->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
438 &cciss_proc_fops
, hba
[i
]);
440 #endif /* CONFIG_PROC_FS */
442 #define MAX_PRODUCT_NAME_LEN 19
444 #define to_hba(n) container_of(n, struct ctlr_info, dev)
445 #define to_drv(n) container_of(n, drive_info_struct, dev)
447 static struct device_type cciss_host_type
= {
448 .name
= "cciss_host",
451 static ssize_t
dev_show_unique_id(struct device
*dev
,
452 struct device_attribute
*attr
,
455 drive_info_struct
*drv
= to_drv(dev
);
456 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
461 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
462 if (h
->busy_configuring
)
465 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
466 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
471 return snprintf(buf
, 16 * 2 + 2,
472 "%02X%02X%02X%02X%02X%02X%02X%02X"
473 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
474 sn
[0], sn
[1], sn
[2], sn
[3],
475 sn
[4], sn
[5], sn
[6], sn
[7],
476 sn
[8], sn
[9], sn
[10], sn
[11],
477 sn
[12], sn
[13], sn
[14], sn
[15]);
479 DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
481 static ssize_t
dev_show_vendor(struct device
*dev
,
482 struct device_attribute
*attr
,
485 drive_info_struct
*drv
= to_drv(dev
);
486 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
487 char vendor
[VENDOR_LEN
+ 1];
491 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
492 if (h
->busy_configuring
)
495 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
496 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
501 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
503 DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
505 static ssize_t
dev_show_model(struct device
*dev
,
506 struct device_attribute
*attr
,
509 drive_info_struct
*drv
= to_drv(dev
);
510 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
511 char model
[MODEL_LEN
+ 1];
515 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
516 if (h
->busy_configuring
)
519 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
520 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
525 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
527 DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
529 static ssize_t
dev_show_rev(struct device
*dev
,
530 struct device_attribute
*attr
,
533 drive_info_struct
*drv
= to_drv(dev
);
534 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
535 char rev
[REV_LEN
+ 1];
539 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
540 if (h
->busy_configuring
)
543 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
544 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
549 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
551 DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
553 static struct attribute
*cciss_dev_attrs
[] = {
554 &dev_attr_unique_id
.attr
,
555 &dev_attr_model
.attr
,
556 &dev_attr_vendor
.attr
,
561 static struct attribute_group cciss_dev_attr_group
= {
562 .attrs
= cciss_dev_attrs
,
565 static struct attribute_group
*cciss_dev_attr_groups
[] = {
566 &cciss_dev_attr_group
,
570 static struct device_type cciss_dev_type
= {
571 .name
= "cciss_device",
572 .groups
= cciss_dev_attr_groups
,
575 static struct bus_type cciss_bus_type
= {
581 * Initialize sysfs entry for each controller. This sets up and registers
582 * the 'cciss#' directory for each individual controller under
583 * /sys/bus/pci/devices/<dev>/.
585 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
587 device_initialize(&h
->dev
);
588 h
->dev
.type
= &cciss_host_type
;
589 h
->dev
.bus
= &cciss_bus_type
;
590 dev_set_name(&h
->dev
, "%s", h
->devname
);
591 h
->dev
.parent
= &h
->pdev
->dev
;
593 return device_add(&h
->dev
);
597 * Remove sysfs entries for an hba.
599 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
605 * Initialize sysfs for each logical drive. This sets up and registers
606 * the 'c#d#' directory for each individual logical drive under
607 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
608 * /sys/block/cciss!c#d# to this entry.
610 static int cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
611 drive_info_struct
*drv
,
614 device_initialize(&drv
->dev
);
615 drv
->dev
.type
= &cciss_dev_type
;
616 drv
->dev
.bus
= &cciss_bus_type
;
617 dev_set_name(&drv
->dev
, "c%dd%d", h
->ctlr
, drv_index
);
618 drv
->dev
.parent
= &h
->dev
;
619 return device_add(&drv
->dev
);
623 * Remove sysfs entries for a logical drive.
625 static void cciss_destroy_ld_sysfs_entry(drive_info_struct
*drv
)
627 device_del(&drv
->dev
);
631 * For operations that cannot sleep, a command block is allocated at init,
632 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
633 * which ones are free or in use. For operations that can wait for kmalloc
634 * to possible sleep, this routine can be called with get_from_pool set to 0.
635 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
637 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
, int get_from_pool
)
639 CommandList_struct
*c
;
642 dma_addr_t cmd_dma_handle
, err_dma_handle
;
644 if (!get_from_pool
) {
645 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
646 sizeof(CommandList_struct
), &cmd_dma_handle
);
649 memset(c
, 0, sizeof(CommandList_struct
));
653 c
->err_info
= (ErrorInfo_struct
*)
654 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
657 if (c
->err_info
== NULL
) {
658 pci_free_consistent(h
->pdev
,
659 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
662 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
663 } else { /* get it out of the controllers pool */
666 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
669 } while (test_and_set_bit
670 (i
& (BITS_PER_LONG
- 1),
671 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
673 printk(KERN_DEBUG
"cciss: using command buffer %d\n", i
);
676 memset(c
, 0, sizeof(CommandList_struct
));
677 cmd_dma_handle
= h
->cmd_pool_dhandle
678 + i
* sizeof(CommandList_struct
);
679 c
->err_info
= h
->errinfo_pool
+ i
;
680 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
681 err_dma_handle
= h
->errinfo_pool_dhandle
682 + i
* sizeof(ErrorInfo_struct
);
688 INIT_HLIST_NODE(&c
->list
);
689 c
->busaddr
= (__u32
) cmd_dma_handle
;
690 temp64
.val
= (__u64
) err_dma_handle
;
691 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
692 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
693 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
700 * Frees a command block that was previously allocated with cmd_alloc().
702 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
, int got_from_pool
)
707 if (!got_from_pool
) {
708 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
709 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
710 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
711 c
->err_info
, (dma_addr_t
) temp64
.val
);
712 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
713 c
, (dma_addr_t
) c
->busaddr
);
716 clear_bit(i
& (BITS_PER_LONG
- 1),
717 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
722 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
724 return disk
->queue
->queuedata
;
727 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
729 return disk
->private_data
;
733 * Open. Make sure the device is really there.
735 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
737 ctlr_info_t
*host
= get_host(bdev
->bd_disk
);
738 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
741 printk(KERN_DEBUG
"cciss_open %s\n", bdev
->bd_disk
->disk_name
);
742 #endif /* CCISS_DEBUG */
744 if (host
->busy_initializing
|| drv
->busy_configuring
)
747 * Root is allowed to open raw volume zero even if it's not configured
748 * so array config can still work. Root is also allowed to open any
749 * volume that has a LUN ID, so it can issue IOCTL to reread the
750 * disk information. I don't think I really like this
751 * but I'm already using way to many device nodes to claim another one
752 * for "raw controller".
754 if (drv
->heads
== 0) {
755 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
756 /* if not node 0 make sure it is a partition = 0 */
757 if (MINOR(bdev
->bd_dev
) & 0x0f) {
759 /* if it is, make sure we have a LUN ID */
760 } else if (drv
->LunID
== 0) {
764 if (!capable(CAP_SYS_ADMIN
))
775 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
777 ctlr_info_t
*host
= get_host(disk
);
778 drive_info_struct
*drv
= get_drv(disk
);
781 printk(KERN_DEBUG
"cciss_release %s\n", disk
->disk_name
);
782 #endif /* CCISS_DEBUG */
791 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
792 unsigned cmd
, unsigned long arg
)
796 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
801 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
802 unsigned cmd
, unsigned long arg
);
803 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
804 unsigned cmd
, unsigned long arg
);
806 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
807 unsigned cmd
, unsigned long arg
)
810 case CCISS_GETPCIINFO
:
811 case CCISS_GETINTINFO
:
812 case CCISS_SETINTINFO
:
813 case CCISS_GETNODENAME
:
814 case CCISS_SETNODENAME
:
815 case CCISS_GETHEARTBEAT
:
816 case CCISS_GETBUSTYPES
:
817 case CCISS_GETFIRMVER
:
818 case CCISS_GETDRIVVER
:
819 case CCISS_REVALIDVOLS
:
820 case CCISS_DEREGDISK
:
821 case CCISS_REGNEWDISK
:
823 case CCISS_RESCANDISK
:
824 case CCISS_GETLUNINFO
:
825 return do_ioctl(bdev
, mode
, cmd
, arg
);
827 case CCISS_PASSTHRU32
:
828 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
829 case CCISS_BIG_PASSTHRU32
:
830 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
837 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
838 unsigned cmd
, unsigned long arg
)
840 IOCTL32_Command_struct __user
*arg32
=
841 (IOCTL32_Command_struct __user
*) arg
;
842 IOCTL_Command_struct arg64
;
843 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
849 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
850 sizeof(arg64
.LUN_info
));
852 copy_from_user(&arg64
.Request
, &arg32
->Request
,
853 sizeof(arg64
.Request
));
855 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
856 sizeof(arg64
.error_info
));
857 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
858 err
|= get_user(cp
, &arg32
->buf
);
859 arg64
.buf
= compat_ptr(cp
);
860 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
865 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
869 copy_in_user(&arg32
->error_info
, &p
->error_info
,
870 sizeof(arg32
->error_info
));
876 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
877 unsigned cmd
, unsigned long arg
)
879 BIG_IOCTL32_Command_struct __user
*arg32
=
880 (BIG_IOCTL32_Command_struct __user
*) arg
;
881 BIG_IOCTL_Command_struct arg64
;
882 BIG_IOCTL_Command_struct __user
*p
=
883 compat_alloc_user_space(sizeof(arg64
));
889 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
890 sizeof(arg64
.LUN_info
));
892 copy_from_user(&arg64
.Request
, &arg32
->Request
,
893 sizeof(arg64
.Request
));
895 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
896 sizeof(arg64
.error_info
));
897 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
898 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
899 err
|= get_user(cp
, &arg32
->buf
);
900 arg64
.buf
= compat_ptr(cp
);
901 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
906 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
910 copy_in_user(&arg32
->error_info
, &p
->error_info
,
911 sizeof(arg32
->error_info
));
918 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
920 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
925 geo
->heads
= drv
->heads
;
926 geo
->sectors
= drv
->sectors
;
927 geo
->cylinders
= drv
->cylinders
;
931 static void check_ioctl_unit_attention(ctlr_info_t
*host
, CommandList_struct
*c
)
933 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
934 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
935 (void)check_for_unit_attention(host
, c
);
940 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
941 unsigned int cmd
, unsigned long arg
)
943 struct gendisk
*disk
= bdev
->bd_disk
;
944 ctlr_info_t
*host
= get_host(disk
);
945 drive_info_struct
*drv
= get_drv(disk
);
946 int ctlr
= host
->ctlr
;
947 void __user
*argp
= (void __user
*)arg
;
950 printk(KERN_DEBUG
"cciss_ioctl: Called with cmd=%x %lx\n", cmd
, arg
);
951 #endif /* CCISS_DEBUG */
954 case CCISS_GETPCIINFO
:
956 cciss_pci_info_struct pciinfo
;
960 pciinfo
.domain
= pci_domain_nr(host
->pdev
->bus
);
961 pciinfo
.bus
= host
->pdev
->bus
->number
;
962 pciinfo
.dev_fn
= host
->pdev
->devfn
;
963 pciinfo
.board_id
= host
->board_id
;
965 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
969 case CCISS_GETINTINFO
:
971 cciss_coalint_struct intinfo
;
975 readl(&host
->cfgtable
->HostWrite
.CoalIntDelay
);
977 readl(&host
->cfgtable
->HostWrite
.CoalIntCount
);
979 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
983 case CCISS_SETINTINFO
:
985 cciss_coalint_struct intinfo
;
991 if (!capable(CAP_SYS_ADMIN
))
994 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
996 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
998 // printk("cciss_ioctl: delay and count cannot be 0\n");
1001 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1002 /* Update the field, and then ring the doorbell */
1003 writel(intinfo
.delay
,
1004 &(host
->cfgtable
->HostWrite
.CoalIntDelay
));
1005 writel(intinfo
.count
,
1006 &(host
->cfgtable
->HostWrite
.CoalIntCount
));
1007 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1009 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1010 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1011 & CFGTBL_ChangeReq
))
1013 /* delay and try again */
1016 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1017 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1021 case CCISS_GETNODENAME
:
1023 NodeName_type NodeName
;
1028 for (i
= 0; i
< 16; i
++)
1030 readb(&host
->cfgtable
->ServerName
[i
]);
1031 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1035 case CCISS_SETNODENAME
:
1037 NodeName_type NodeName
;
1038 unsigned long flags
;
1043 if (!capable(CAP_SYS_ADMIN
))
1047 (NodeName
, argp
, sizeof(NodeName_type
)))
1050 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1052 /* Update the field, and then ring the doorbell */
1053 for (i
= 0; i
< 16; i
++)
1055 &host
->cfgtable
->ServerName
[i
]);
1057 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1059 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1060 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1061 & CFGTBL_ChangeReq
))
1063 /* delay and try again */
1066 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1067 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1072 case CCISS_GETHEARTBEAT
:
1074 Heartbeat_type heartbeat
;
1078 heartbeat
= readl(&host
->cfgtable
->HeartBeat
);
1080 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1084 case CCISS_GETBUSTYPES
:
1086 BusTypes_type BusTypes
;
1090 BusTypes
= readl(&host
->cfgtable
->BusTypes
);
1092 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1096 case CCISS_GETFIRMVER
:
1098 FirmwareVer_type firmware
;
1102 memcpy(firmware
, host
->firm_ver
, 4);
1105 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1109 case CCISS_GETDRIVVER
:
1111 DriverVer_type DriverVer
= DRIVER_VERSION
;
1117 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1122 case CCISS_DEREGDISK
:
1124 case CCISS_REVALIDVOLS
:
1125 return rebuild_lun_table(host
, 0);
1127 case CCISS_GETLUNINFO
:{
1128 LogvolInfo_struct luninfo
;
1130 luninfo
.LunID
= drv
->LunID
;
1131 luninfo
.num_opens
= drv
->usage_count
;
1132 luninfo
.num_parts
= 0;
1133 if (copy_to_user(argp
, &luninfo
,
1134 sizeof(LogvolInfo_struct
)))
1138 case CCISS_PASSTHRU
:
1140 IOCTL_Command_struct iocommand
;
1141 CommandList_struct
*c
;
1144 unsigned long flags
;
1145 DECLARE_COMPLETION_ONSTACK(wait
);
1150 if (!capable(CAP_SYS_RAWIO
))
1154 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1156 if ((iocommand
.buf_size
< 1) &&
1157 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1160 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1161 /* Check kmalloc limits */
1162 if (iocommand
.buf_size
> 128000)
1165 if (iocommand
.buf_size
> 0) {
1166 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1170 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1171 /* Copy the data into the buffer we created */
1173 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1178 memset(buff
, 0, iocommand
.buf_size
);
1180 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1184 // Fill in the command type
1185 c
->cmd_type
= CMD_IOCTL_PEND
;
1186 // Fill in Command Header
1187 c
->Header
.ReplyQueue
= 0; // unused in simple mode
1188 if (iocommand
.buf_size
> 0) // buffer to fill
1190 c
->Header
.SGList
= 1;
1191 c
->Header
.SGTotal
= 1;
1192 } else // no buffers to fill
1194 c
->Header
.SGList
= 0;
1195 c
->Header
.SGTotal
= 0;
1197 c
->Header
.LUN
= iocommand
.LUN_info
;
1198 c
->Header
.Tag
.lower
= c
->busaddr
; // use the kernel address the cmd block for tag
1200 // Fill in Request block
1201 c
->Request
= iocommand
.Request
;
1203 // Fill in the scatter gather information
1204 if (iocommand
.buf_size
> 0) {
1205 temp64
.val
= pci_map_single(host
->pdev
, buff
,
1207 PCI_DMA_BIDIRECTIONAL
);
1208 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1209 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1210 c
->SG
[0].Len
= iocommand
.buf_size
;
1211 c
->SG
[0].Ext
= 0; // we are not chaining
1215 /* Put the request on the tail of the request queue */
1216 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1217 addQ(&host
->reqQ
, c
);
1220 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1222 wait_for_completion(&wait
);
1224 /* unlock the buffers from DMA */
1225 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1226 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1227 pci_unmap_single(host
->pdev
, (dma_addr_t
) temp64
.val
,
1229 PCI_DMA_BIDIRECTIONAL
);
1231 check_ioctl_unit_attention(host
, c
);
1233 /* Copy the error information out */
1234 iocommand
.error_info
= *(c
->err_info
);
1236 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1238 cmd_free(host
, c
, 0);
1242 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1243 /* Copy the data out of the buffer we created */
1245 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1247 cmd_free(host
, c
, 0);
1252 cmd_free(host
, c
, 0);
1255 case CCISS_BIG_PASSTHRU
:{
1256 BIG_IOCTL_Command_struct
*ioc
;
1257 CommandList_struct
*c
;
1258 unsigned char **buff
= NULL
;
1259 int *buff_size
= NULL
;
1261 unsigned long flags
;
1265 DECLARE_COMPLETION_ONSTACK(wait
);
1268 BYTE __user
*data_ptr
;
1272 if (!capable(CAP_SYS_RAWIO
))
1274 ioc
= (BIG_IOCTL_Command_struct
*)
1275 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1280 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1284 if ((ioc
->buf_size
< 1) &&
1285 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1289 /* Check kmalloc limits using all SGs */
1290 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1294 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1299 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1304 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1310 left
= ioc
->buf_size
;
1311 data_ptr
= ioc
->buf
;
1314 ioc
->malloc_size
) ? ioc
->
1316 buff_size
[sg_used
] = sz
;
1317 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1318 if (buff
[sg_used
] == NULL
) {
1322 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1324 (buff
[sg_used
], data_ptr
, sz
)) {
1329 memset(buff
[sg_used
], 0, sz
);
1335 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1339 c
->cmd_type
= CMD_IOCTL_PEND
;
1340 c
->Header
.ReplyQueue
= 0;
1342 if (ioc
->buf_size
> 0) {
1343 c
->Header
.SGList
= sg_used
;
1344 c
->Header
.SGTotal
= sg_used
;
1346 c
->Header
.SGList
= 0;
1347 c
->Header
.SGTotal
= 0;
1349 c
->Header
.LUN
= ioc
->LUN_info
;
1350 c
->Header
.Tag
.lower
= c
->busaddr
;
1352 c
->Request
= ioc
->Request
;
1353 if (ioc
->buf_size
> 0) {
1355 for (i
= 0; i
< sg_used
; i
++) {
1357 pci_map_single(host
->pdev
, buff
[i
],
1359 PCI_DMA_BIDIRECTIONAL
);
1360 c
->SG
[i
].Addr
.lower
=
1362 c
->SG
[i
].Addr
.upper
=
1364 c
->SG
[i
].Len
= buff_size
[i
];
1365 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1369 /* Put the request on the tail of the request queue */
1370 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1371 addQ(&host
->reqQ
, c
);
1374 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1375 wait_for_completion(&wait
);
1376 /* unlock the buffers from DMA */
1377 for (i
= 0; i
< sg_used
; i
++) {
1378 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1379 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1380 pci_unmap_single(host
->pdev
,
1381 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1382 PCI_DMA_BIDIRECTIONAL
);
1384 check_ioctl_unit_attention(host
, c
);
1385 /* Copy the error information out */
1386 ioc
->error_info
= *(c
->err_info
);
1387 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1388 cmd_free(host
, c
, 0);
1392 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1393 /* Copy the data out of the buffer we created */
1394 BYTE __user
*ptr
= ioc
->buf
;
1395 for (i
= 0; i
< sg_used
; i
++) {
1397 (ptr
, buff
[i
], buff_size
[i
])) {
1398 cmd_free(host
, c
, 0);
1402 ptr
+= buff_size
[i
];
1405 cmd_free(host
, c
, 0);
1409 for (i
= 0; i
< sg_used
; i
++)
1418 /* scsi_cmd_ioctl handles these, below, though some are not */
1419 /* very meaningful for cciss. SG_IO is the main one people want. */
1421 case SG_GET_VERSION_NUM
:
1422 case SG_SET_TIMEOUT
:
1423 case SG_GET_TIMEOUT
:
1424 case SG_GET_RESERVED_SIZE
:
1425 case SG_SET_RESERVED_SIZE
:
1426 case SG_EMULATED_HOST
:
1428 case SCSI_IOCTL_SEND_COMMAND
:
1429 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1431 /* scsi_cmd_ioctl would normally handle these, below, but */
1432 /* they aren't a good fit for cciss, as CD-ROMs are */
1433 /* not supported, and we don't have any bus/target/lun */
1434 /* which we present to the kernel. */
1436 case CDROM_SEND_PACKET
:
1437 case CDROMCLOSETRAY
:
1439 case SCSI_IOCTL_GET_IDLUN
:
1440 case SCSI_IOCTL_GET_BUS_NUMBER
:
1446 static void cciss_check_queues(ctlr_info_t
*h
)
1448 int start_queue
= h
->next_to_run
;
1451 /* check to see if we have maxed out the number of commands that can
1452 * be placed on the queue. If so then exit. We do this check here
1453 * in case the interrupt we serviced was from an ioctl and did not
1454 * free any new commands.
1456 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1459 /* We have room on the queue for more commands. Now we need to queue
1460 * them up. We will also keep track of the next queue to run so
1461 * that every queue gets a chance to be started first.
1463 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1464 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1465 /* make sure the disk has been added and the drive is real
1466 * because this can be called from the middle of init_one.
1468 if (!(h
->drv
[curr_queue
].queue
) || !(h
->drv
[curr_queue
].heads
))
1470 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1472 /* check to see if we have maxed out the number of commands
1473 * that can be placed on the queue.
1475 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1476 if (curr_queue
== start_queue
) {
1478 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1481 h
->next_to_run
= curr_queue
;
1488 static void cciss_softirq_done(struct request
*rq
)
1490 CommandList_struct
*cmd
= rq
->completion_data
;
1491 ctlr_info_t
*h
= hba
[cmd
->ctlr
];
1492 unsigned long flags
;
1496 if (cmd
->Request
.Type
.Direction
== XFER_READ
)
1497 ddir
= PCI_DMA_FROMDEVICE
;
1499 ddir
= PCI_DMA_TODEVICE
;
1501 /* command did not need to be retried */
1502 /* unmap the DMA mapping for all the scatter gather elements */
1503 for (i
= 0; i
< cmd
->Header
.SGList
; i
++) {
1504 temp64
.val32
.lower
= cmd
->SG
[i
].Addr
.lower
;
1505 temp64
.val32
.upper
= cmd
->SG
[i
].Addr
.upper
;
1506 pci_unmap_page(h
->pdev
, temp64
.val
, cmd
->SG
[i
].Len
, ddir
);
1510 printk("Done with %p\n", rq
);
1511 #endif /* CCISS_DEBUG */
1513 /* set the residual count for pc requests */
1514 if (blk_pc_request(rq
))
1515 rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
1517 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1519 spin_lock_irqsave(&h
->lock
, flags
);
1520 cmd_free(h
, cmd
, 1);
1521 cciss_check_queues(h
);
1522 spin_unlock_irqrestore(&h
->lock
, flags
);
1525 static void log_unit_to_scsi3addr(ctlr_info_t
*h
, unsigned char scsi3addr
[],
1528 log_unit
= h
->drv
[log_unit
].LunID
& 0x03fff;
1529 memset(&scsi3addr
[4], 0, 4);
1530 memcpy(&scsi3addr
[0], &log_unit
, 4);
1531 scsi3addr
[3] |= 0x40;
1534 /* This function gets the SCSI vendor, model, and revision of a logical drive
1535 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1536 * they cannot be read.
1538 static void cciss_get_device_descr(int ctlr
, int logvol
, int withirq
,
1539 char *vendor
, char *model
, char *rev
)
1542 InquiryData_struct
*inq_buf
;
1543 unsigned char scsi3addr
[8];
1549 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1553 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1555 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buf
,
1556 sizeof(InquiryData_struct
), 0,
1557 scsi3addr
, TYPE_CMD
);
1559 rc
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buf
,
1560 sizeof(InquiryData_struct
), 0,
1561 scsi3addr
, TYPE_CMD
);
1563 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1564 vendor
[VENDOR_LEN
] = '\0';
1565 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1566 model
[MODEL_LEN
] = '\0';
1567 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1568 rev
[REV_LEN
] = '\0';
1575 /* This function gets the serial number of a logical drive via
1576 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1577 * number cannot be had, for whatever reason, 16 bytes of 0xff
1578 * are returned instead.
1580 static void cciss_get_serial_no(int ctlr
, int logvol
, int withirq
,
1581 unsigned char *serial_no
, int buflen
)
1583 #define PAGE_83_INQ_BYTES 64
1586 unsigned char scsi3addr
[8];
1590 memset(serial_no
, 0xff, buflen
);
1591 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1594 memset(serial_no
, 0, buflen
);
1595 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1597 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, buf
,
1598 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1600 rc
= sendcmd(CISS_INQUIRY
, ctlr
, buf
,
1601 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1603 memcpy(serial_no
, &buf
[8], buflen
);
1608 static void cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1611 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1612 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1613 disk
->major
= h
->major
;
1614 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1615 disk
->fops
= &cciss_fops
;
1616 disk
->private_data
= &h
->drv
[drv_index
];
1617 disk
->driverfs_dev
= &h
->drv
[drv_index
].dev
;
1619 /* Set up queue information */
1620 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1622 /* This is a hardware imposed limit. */
1623 blk_queue_max_hw_segments(disk
->queue
, MAXSGENTRIES
);
1625 /* This is a limit in the driver and could be eliminated. */
1626 blk_queue_max_phys_segments(disk
->queue
, MAXSGENTRIES
);
1628 blk_queue_max_sectors(disk
->queue
, h
->cciss_max_sectors
);
1630 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1632 disk
->queue
->queuedata
= h
;
1634 blk_queue_logical_block_size(disk
->queue
,
1635 h
->drv
[drv_index
].block_size
);
1637 /* Make sure all queue data is written out before */
1638 /* setting h->drv[drv_index].queue, as setting this */
1639 /* allows the interrupt handler to start the queue */
1641 h
->drv
[drv_index
].queue
= disk
->queue
;
1645 /* This function will check the usage_count of the drive to be updated/added.
1646 * If the usage_count is zero and it is a heretofore unknown drive, or,
1647 * the drive's capacity, geometry, or serial number has changed,
1648 * then the drive information will be updated and the disk will be
1649 * re-registered with the kernel. If these conditions don't hold,
1650 * then it will be left alone for the next reboot. The exception to this
1651 * is disk 0 which will always be left registered with the kernel since it
1652 * is also the controller node. Any changes to disk 0 will show up on
1655 static void cciss_update_drive_info(int ctlr
, int drv_index
, int first_time
)
1657 ctlr_info_t
*h
= hba
[ctlr
];
1658 struct gendisk
*disk
;
1659 InquiryData_struct
*inq_buff
= NULL
;
1660 unsigned int block_size
;
1661 sector_t total_size
;
1662 unsigned long flags
= 0;
1664 drive_info_struct
*drvinfo
;
1665 int was_only_controller_node
;
1667 /* Get information about the disk and modify the driver structure */
1668 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1669 drvinfo
= kmalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1670 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1673 /* See if we're trying to update the "controller node"
1674 * this will happen the when the first logical drive gets
1677 was_only_controller_node
= (drv_index
== 0 &&
1678 h
->drv
[0].raid_level
== -1);
1680 /* testing to see if 16-byte CDBs are already being used */
1681 if (h
->cciss_read
== CCISS_READ_16
) {
1682 cciss_read_capacity_16(h
->ctlr
, drv_index
, 1,
1683 &total_size
, &block_size
);
1686 cciss_read_capacity(ctlr
, drv_index
, 1,
1687 &total_size
, &block_size
);
1689 /* if read_capacity returns all F's this volume is >2TB */
1690 /* in size so we switch to 16-byte CDB's for all */
1691 /* read/write ops */
1692 if (total_size
== 0xFFFFFFFFULL
) {
1693 cciss_read_capacity_16(ctlr
, drv_index
, 1,
1694 &total_size
, &block_size
);
1695 h
->cciss_read
= CCISS_READ_16
;
1696 h
->cciss_write
= CCISS_WRITE_16
;
1698 h
->cciss_read
= CCISS_READ_10
;
1699 h
->cciss_write
= CCISS_WRITE_10
;
1703 cciss_geometry_inquiry(ctlr
, drv_index
, 1, total_size
, block_size
,
1705 drvinfo
->block_size
= block_size
;
1706 drvinfo
->nr_blocks
= total_size
+ 1;
1708 cciss_get_device_descr(ctlr
, drv_index
, 1, drvinfo
->vendor
,
1709 drvinfo
->model
, drvinfo
->rev
);
1710 cciss_get_serial_no(ctlr
, drv_index
, 1, drvinfo
->serial_no
,
1711 sizeof(drvinfo
->serial_no
));
1713 /* Is it the same disk we already know, and nothing's changed? */
1714 if (h
->drv
[drv_index
].raid_level
!= -1 &&
1715 ((memcmp(drvinfo
->serial_no
,
1716 h
->drv
[drv_index
].serial_no
, 16) == 0) &&
1717 drvinfo
->block_size
== h
->drv
[drv_index
].block_size
&&
1718 drvinfo
->nr_blocks
== h
->drv
[drv_index
].nr_blocks
&&
1719 drvinfo
->heads
== h
->drv
[drv_index
].heads
&&
1720 drvinfo
->sectors
== h
->drv
[drv_index
].sectors
&&
1721 drvinfo
->cylinders
== h
->drv
[drv_index
].cylinders
))
1722 /* The disk is unchanged, nothing to update */
1725 /* If we get here it's not the same disk, or something's changed,
1726 * so we need to * deregister it, and re-register it, if it's not
1728 * If the disk already exists then deregister it before proceeding
1729 * (unless it's the first disk (for the controller node).
1731 if (h
->drv
[drv_index
].raid_level
!= -1 && drv_index
!= 0) {
1732 printk(KERN_WARNING
"disk %d has changed.\n", drv_index
);
1733 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1734 h
->drv
[drv_index
].busy_configuring
= 1;
1735 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1737 /* deregister_disk sets h->drv[drv_index].queue = NULL
1738 * which keeps the interrupt handler from starting
1741 ret
= deregister_disk(h
, drv_index
, 0);
1742 h
->drv
[drv_index
].busy_configuring
= 0;
1745 /* If the disk is in use return */
1749 /* Save the new information from cciss_geometry_inquiry
1750 * and serial number inquiry.
1752 h
->drv
[drv_index
].block_size
= drvinfo
->block_size
;
1753 h
->drv
[drv_index
].nr_blocks
= drvinfo
->nr_blocks
;
1754 h
->drv
[drv_index
].heads
= drvinfo
->heads
;
1755 h
->drv
[drv_index
].sectors
= drvinfo
->sectors
;
1756 h
->drv
[drv_index
].cylinders
= drvinfo
->cylinders
;
1757 h
->drv
[drv_index
].raid_level
= drvinfo
->raid_level
;
1758 memcpy(h
->drv
[drv_index
].serial_no
, drvinfo
->serial_no
, 16);
1759 memcpy(h
->drv
[drv_index
].vendor
, drvinfo
->vendor
, VENDOR_LEN
+ 1);
1760 memcpy(h
->drv
[drv_index
].model
, drvinfo
->model
, MODEL_LEN
+ 1);
1761 memcpy(h
->drv
[drv_index
].rev
, drvinfo
->rev
, REV_LEN
+ 1);
1764 disk
= h
->gendisk
[drv_index
];
1765 set_capacity(disk
, h
->drv
[drv_index
].nr_blocks
);
1767 /* If it's not disk 0 (drv_index != 0)
1768 * or if it was disk 0, but there was previously
1769 * no actual corresponding configured logical drive
1770 * (raid_leve == -1) then we want to update the
1771 * logical drive's information.
1773 if (drv_index
|| first_time
)
1774 cciss_add_disk(h
, disk
, drv_index
);
1781 printk(KERN_ERR
"cciss: out of memory\n");
1785 /* This function will find the first index of the controllers drive array
1786 * that has a -1 for the raid_level and will return that index. This is
1787 * where new drives will be added. If the index to be returned is greater
1788 * than the highest_lun index for the controller then highest_lun is set
1789 * to this new index. If there are no available indexes then -1 is returned.
1790 * "controller_node" is used to know if this is a real logical drive, or just
1791 * the controller node, which determines if this counts towards highest_lun.
1793 static int cciss_find_free_drive_index(int ctlr
, int controller_node
)
1797 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
1798 if (hba
[ctlr
]->drv
[i
].raid_level
== -1) {
1799 if (i
> hba
[ctlr
]->highest_lun
)
1800 if (!controller_node
)
1801 hba
[ctlr
]->highest_lun
= i
;
1808 /* cciss_add_gendisk finds a free hba[]->drv structure
1809 * and allocates a gendisk if needed, and sets the lunid
1810 * in the drvinfo structure. It returns the index into
1811 * the ->drv[] array, or -1 if none are free.
1812 * is_controller_node indicates whether highest_lun should
1813 * count this disk, or if it's only being added to provide
1814 * a means to talk to the controller in case no logical
1815 * drives have yet been configured.
1817 static int cciss_add_gendisk(ctlr_info_t
*h
, __u32 lunid
, int controller_node
)
1821 drv_index
= cciss_find_free_drive_index(h
->ctlr
, controller_node
);
1822 if (drv_index
== -1)
1824 /*Check if the gendisk needs to be allocated */
1825 if (!h
->gendisk
[drv_index
]) {
1826 h
->gendisk
[drv_index
] =
1827 alloc_disk(1 << NWD_SHIFT
);
1828 if (!h
->gendisk
[drv_index
]) {
1829 printk(KERN_ERR
"cciss%d: could not "
1830 "allocate a new disk %d\n",
1831 h
->ctlr
, drv_index
);
1835 h
->drv
[drv_index
].LunID
= lunid
;
1836 if (cciss_create_ld_sysfs_entry(h
, &h
->drv
[drv_index
], drv_index
))
1839 /* Don't need to mark this busy because nobody */
1840 /* else knows about this disk yet to contend */
1841 /* for access to it. */
1842 h
->drv
[drv_index
].busy_configuring
= 0;
1847 put_disk(h
->gendisk
[drv_index
]);
1848 h
->gendisk
[drv_index
] = NULL
;
1852 /* This is for the special case of a controller which
1853 * has no logical drives. In this case, we still need
1854 * to register a disk so the controller can be accessed
1855 * by the Array Config Utility.
1857 static void cciss_add_controller_node(ctlr_info_t
*h
)
1859 struct gendisk
*disk
;
1862 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
1865 drv_index
= cciss_add_gendisk(h
, 0, 1);
1866 if (drv_index
== -1) {
1867 printk(KERN_WARNING
"cciss%d: could not "
1868 "add disk 0.\n", h
->ctlr
);
1871 h
->drv
[drv_index
].block_size
= 512;
1872 h
->drv
[drv_index
].nr_blocks
= 0;
1873 h
->drv
[drv_index
].heads
= 0;
1874 h
->drv
[drv_index
].sectors
= 0;
1875 h
->drv
[drv_index
].cylinders
= 0;
1876 h
->drv
[drv_index
].raid_level
= -1;
1877 memset(h
->drv
[drv_index
].serial_no
, 0, 16);
1878 disk
= h
->gendisk
[drv_index
];
1879 cciss_add_disk(h
, disk
, drv_index
);
1882 /* This function will add and remove logical drives from the Logical
1883 * drive array of the controller and maintain persistency of ordering
1884 * so that mount points are preserved until the next reboot. This allows
1885 * for the removal of logical drives in the middle of the drive array
1886 * without a re-ordering of those drives.
1888 * h = The controller to perform the operations on
1890 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
)
1894 ReportLunData_struct
*ld_buff
= NULL
;
1901 unsigned long flags
;
1903 if (!capable(CAP_SYS_RAWIO
))
1906 /* Set busy_configuring flag for this operation */
1907 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1908 if (h
->busy_configuring
) {
1909 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1912 h
->busy_configuring
= 1;
1913 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1915 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
1916 if (ld_buff
== NULL
)
1919 return_code
= sendcmd_withirq(CISS_REPORT_LOG
, ctlr
, ld_buff
,
1920 sizeof(ReportLunData_struct
),
1921 0, CTLR_LUNID
, TYPE_CMD
);
1923 if (return_code
== IO_OK
)
1924 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
1925 else { /* reading number of logical volumes failed */
1926 printk(KERN_WARNING
"cciss: report logical volume"
1927 " command failed\n");
1932 num_luns
= listlength
/ 8; /* 8 bytes per entry */
1933 if (num_luns
> CISS_MAX_LUN
) {
1934 num_luns
= CISS_MAX_LUN
;
1935 printk(KERN_WARNING
"cciss: more luns configured"
1936 " on controller than can be handled by"
1941 cciss_add_controller_node(h
);
1943 /* Compare controller drive array to driver's drive array
1944 * to see if any drives are missing on the controller due
1945 * to action of Array Config Utility (user deletes drive)
1946 * and deregister logical drives which have disappeared.
1948 for (i
= 0; i
<= h
->highest_lun
; i
++) {
1952 /* skip holes in the array from already deleted drives */
1953 if (h
->drv
[i
].raid_level
== -1)
1956 for (j
= 0; j
< num_luns
; j
++) {
1957 memcpy(&lunid
, &ld_buff
->LUN
[j
][0], 4);
1958 lunid
= le32_to_cpu(lunid
);
1959 if (h
->drv
[i
].LunID
== lunid
) {
1965 /* Deregister it from the OS, it's gone. */
1966 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1967 h
->drv
[i
].busy_configuring
= 1;
1968 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1969 return_code
= deregister_disk(h
, i
, 1);
1970 cciss_destroy_ld_sysfs_entry(&h
->drv
[i
]);
1971 h
->drv
[i
].busy_configuring
= 0;
1975 /* Compare controller drive array to driver's drive array.
1976 * Check for updates in the drive information and any new drives
1977 * on the controller due to ACU adding logical drives, or changing
1978 * a logical drive's size, etc. Reregister any new/changed drives
1980 for (i
= 0; i
< num_luns
; i
++) {
1985 memcpy(&lunid
, &ld_buff
->LUN
[i
][0], 4);
1986 lunid
= le32_to_cpu(lunid
);
1988 /* Find if the LUN is already in the drive array
1989 * of the driver. If so then update its info
1990 * if not in use. If it does not exist then find
1991 * the first free index and add it.
1993 for (j
= 0; j
<= h
->highest_lun
; j
++) {
1994 if (h
->drv
[j
].raid_level
!= -1 &&
1995 h
->drv
[j
].LunID
== lunid
) {
2002 /* check if the drive was found already in the array */
2004 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2005 if (drv_index
== -1)
2008 cciss_update_drive_info(ctlr
, drv_index
, first_time
);
2013 h
->busy_configuring
= 0;
2014 /* We return -1 here to tell the ACU that we have registered/updated
2015 * all of the drives that we can and to keep it from calling us
2020 printk(KERN_ERR
"cciss: out of memory\n");
2021 h
->busy_configuring
= 0;
2025 /* This function will deregister the disk and it's queue from the
2026 * kernel. It must be called with the controller lock held and the
2027 * drv structures busy_configuring flag set. It's parameters are:
2029 * disk = This is the disk to be deregistered
2030 * drv = This is the drive_info_struct associated with the disk to be
2031 * deregistered. It contains information about the disk used
2033 * clear_all = This flag determines whether or not the disk information
2034 * is going to be completely cleared out and the highest_lun
2035 * reset. Sometimes we want to clear out information about
2036 * the disk in preparation for re-adding it. In this case
2037 * the highest_lun should be left unchanged and the LunID
2038 * should not be cleared.
2040 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2044 struct gendisk
*disk
;
2045 drive_info_struct
*drv
;
2047 if (!capable(CAP_SYS_RAWIO
))
2050 drv
= &h
->drv
[drv_index
];
2051 disk
= h
->gendisk
[drv_index
];
2053 /* make sure logical volume is NOT is use */
2054 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2055 if (drv
->usage_count
> 1)
2057 } else if (drv
->usage_count
> 0)
2060 /* invalidate the devices and deregister the disk. If it is disk
2061 * zero do not deregister it but just zero out it's values. This
2062 * allows us to delete disk zero but keep the controller registered.
2064 if (h
->gendisk
[0] != disk
) {
2065 struct request_queue
*q
= disk
->queue
;
2066 if (disk
->flags
& GENHD_FL_UP
)
2069 blk_cleanup_queue(q
);
2070 /* Set drv->queue to NULL so that we do not try
2071 * to call blk_start_queue on this queue in the
2076 /* If clear_all is set then we are deleting the logical
2077 * drive, not just refreshing its info. For drives
2078 * other than disk 0 we will call put_disk. We do not
2079 * do this for disk 0 as we need it to be able to
2080 * configure the controller.
2083 /* This isn't pretty, but we need to find the
2084 * disk in our array and NULL our the pointer.
2085 * This is so that we will call alloc_disk if
2086 * this index is used again later.
2088 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2089 if (h
->gendisk
[i
] == disk
) {
2090 h
->gendisk
[i
] = NULL
;
2097 set_capacity(disk
, 0);
2101 /* zero out the disk size info */
2103 drv
->block_size
= 0;
2107 drv
->raid_level
= -1; /* This can be used as a flag variable to
2108 * indicate that this element of the drive
2113 /* check to see if it was the last disk */
2114 if (drv
== h
->drv
+ h
->highest_lun
) {
2115 /* if so, find the new hightest lun */
2116 int i
, newhighest
= -1;
2117 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2118 /* if the disk has size > 0, it is available */
2119 if (h
->drv
[i
].heads
)
2122 h
->highest_lun
= newhighest
;
2130 static int fill_cmd(CommandList_struct
*c
, __u8 cmd
, int ctlr
, void *buff
,
2131 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2134 ctlr_info_t
*h
= hba
[ctlr
];
2135 u64bit buff_dma_handle
;
2138 c
->cmd_type
= CMD_IOCTL_PEND
;
2139 c
->Header
.ReplyQueue
= 0;
2141 c
->Header
.SGList
= 1;
2142 c
->Header
.SGTotal
= 1;
2144 c
->Header
.SGList
= 0;
2145 c
->Header
.SGTotal
= 0;
2147 c
->Header
.Tag
.lower
= c
->busaddr
;
2148 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2150 c
->Request
.Type
.Type
= cmd_type
;
2151 if (cmd_type
== TYPE_CMD
) {
2154 /* are we trying to read a vital product page */
2155 if (page_code
!= 0) {
2156 c
->Request
.CDB
[1] = 0x01;
2157 c
->Request
.CDB
[2] = page_code
;
2159 c
->Request
.CDBLen
= 6;
2160 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2161 c
->Request
.Type
.Direction
= XFER_READ
;
2162 c
->Request
.Timeout
= 0;
2163 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2164 c
->Request
.CDB
[4] = size
& 0xFF;
2166 case CISS_REPORT_LOG
:
2167 case CISS_REPORT_PHYS
:
2168 /* Talking to controller so It's a physical command
2169 mode = 00 target = 0. Nothing to write.
2171 c
->Request
.CDBLen
= 12;
2172 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2173 c
->Request
.Type
.Direction
= XFER_READ
;
2174 c
->Request
.Timeout
= 0;
2175 c
->Request
.CDB
[0] = cmd
;
2176 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; //MSB
2177 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2178 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2179 c
->Request
.CDB
[9] = size
& 0xFF;
2182 case CCISS_READ_CAPACITY
:
2183 c
->Request
.CDBLen
= 10;
2184 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2185 c
->Request
.Type
.Direction
= XFER_READ
;
2186 c
->Request
.Timeout
= 0;
2187 c
->Request
.CDB
[0] = cmd
;
2189 case CCISS_READ_CAPACITY_16
:
2190 c
->Request
.CDBLen
= 16;
2191 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2192 c
->Request
.Type
.Direction
= XFER_READ
;
2193 c
->Request
.Timeout
= 0;
2194 c
->Request
.CDB
[0] = cmd
;
2195 c
->Request
.CDB
[1] = 0x10;
2196 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2197 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2198 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2199 c
->Request
.CDB
[13] = size
& 0xFF;
2200 c
->Request
.Timeout
= 0;
2201 c
->Request
.CDB
[0] = cmd
;
2203 case CCISS_CACHE_FLUSH
:
2204 c
->Request
.CDBLen
= 12;
2205 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2206 c
->Request
.Type
.Direction
= XFER_WRITE
;
2207 c
->Request
.Timeout
= 0;
2208 c
->Request
.CDB
[0] = BMIC_WRITE
;
2209 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2211 case TEST_UNIT_READY
:
2212 c
->Request
.CDBLen
= 6;
2213 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2214 c
->Request
.Type
.Direction
= XFER_NONE
;
2215 c
->Request
.Timeout
= 0;
2219 "cciss%d: Unknown Command 0x%c\n", ctlr
, cmd
);
2222 } else if (cmd_type
== TYPE_MSG
) {
2224 case 0: /* ABORT message */
2225 c
->Request
.CDBLen
= 12;
2226 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2227 c
->Request
.Type
.Direction
= XFER_WRITE
;
2228 c
->Request
.Timeout
= 0;
2229 c
->Request
.CDB
[0] = cmd
; /* abort */
2230 c
->Request
.CDB
[1] = 0; /* abort a command */
2231 /* buff contains the tag of the command to abort */
2232 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2234 case 1: /* RESET message */
2235 c
->Request
.CDBLen
= 16;
2236 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2237 c
->Request
.Type
.Direction
= XFER_NONE
;
2238 c
->Request
.Timeout
= 0;
2239 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2240 c
->Request
.CDB
[0] = cmd
; /* reset */
2241 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2243 case 3: /* No-Op message */
2244 c
->Request
.CDBLen
= 1;
2245 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2246 c
->Request
.Type
.Direction
= XFER_WRITE
;
2247 c
->Request
.Timeout
= 0;
2248 c
->Request
.CDB
[0] = cmd
;
2252 "cciss%d: unknown message type %d\n", ctlr
, cmd
);
2257 "cciss%d: unknown command type %d\n", ctlr
, cmd_type
);
2260 /* Fill in the scatter gather information */
2262 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2264 PCI_DMA_BIDIRECTIONAL
);
2265 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2266 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2267 c
->SG
[0].Len
= size
;
2268 c
->SG
[0].Ext
= 0; /* we are not chaining */
2273 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2275 switch (c
->err_info
->ScsiStatus
) {
2278 case SAM_STAT_CHECK_CONDITION
:
2279 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2280 case 0: return IO_OK
; /* no sense */
2281 case 1: return IO_OK
; /* recovered error */
2283 printk(KERN_WARNING
"cciss%d: cmd 0x%02x "
2284 "check condition, sense key = 0x%02x\n",
2285 h
->ctlr
, c
->Request
.CDB
[0],
2286 c
->err_info
->SenseInfo
[2]);
2290 printk(KERN_WARNING
"cciss%d: cmd 0x%02x"
2291 "scsi status = 0x%02x\n", h
->ctlr
,
2292 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2298 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2300 int return_status
= IO_OK
;
2302 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2305 switch (c
->err_info
->CommandStatus
) {
2306 case CMD_TARGET_STATUS
:
2307 return_status
= check_target_status(h
, c
);
2309 case CMD_DATA_UNDERRUN
:
2310 case CMD_DATA_OVERRUN
:
2311 /* expected for inquiry and report lun commands */
2314 printk(KERN_WARNING
"cciss: cmd 0x%02x is "
2315 "reported invalid\n", c
->Request
.CDB
[0]);
2316 return_status
= IO_ERROR
;
2318 case CMD_PROTOCOL_ERR
:
2319 printk(KERN_WARNING
"cciss: cmd 0x%02x has "
2320 "protocol error \n", c
->Request
.CDB
[0]);
2321 return_status
= IO_ERROR
;
2323 case CMD_HARDWARE_ERR
:
2324 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2325 " hardware error\n", c
->Request
.CDB
[0]);
2326 return_status
= IO_ERROR
;
2328 case CMD_CONNECTION_LOST
:
2329 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2330 "connection lost\n", c
->Request
.CDB
[0]);
2331 return_status
= IO_ERROR
;
2334 printk(KERN_WARNING
"cciss: cmd 0x%02x was "
2335 "aborted\n", c
->Request
.CDB
[0]);
2336 return_status
= IO_ERROR
;
2338 case CMD_ABORT_FAILED
:
2339 printk(KERN_WARNING
"cciss: cmd 0x%02x reports "
2340 "abort failed\n", c
->Request
.CDB
[0]);
2341 return_status
= IO_ERROR
;
2343 case CMD_UNSOLICITED_ABORT
:
2345 "cciss%d: unsolicited abort 0x%02x\n", h
->ctlr
,
2347 return_status
= IO_NEEDS_RETRY
;
2350 printk(KERN_WARNING
"cciss: cmd 0x%02x returned "
2351 "unknown status %x\n", c
->Request
.CDB
[0],
2352 c
->err_info
->CommandStatus
);
2353 return_status
= IO_ERROR
;
2355 return return_status
;
2358 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2361 DECLARE_COMPLETION_ONSTACK(wait
);
2362 u64bit buff_dma_handle
;
2363 unsigned long flags
;
2364 int return_status
= IO_OK
;
2368 /* Put the request on the tail of the queue and send it */
2369 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2373 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2375 wait_for_completion(&wait
);
2377 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2380 return_status
= process_sendcmd_error(h
, c
);
2382 if (return_status
== IO_NEEDS_RETRY
&&
2383 c
->retry_count
< MAX_CMD_RETRIES
) {
2384 printk(KERN_WARNING
"cciss%d: retrying 0x%02x\n", h
->ctlr
,
2387 /* erase the old error information */
2388 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2389 return_status
= IO_OK
;
2390 INIT_COMPLETION(wait
);
2395 /* unlock the buffers from DMA */
2396 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2397 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2398 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2399 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2400 return return_status
;
2403 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2404 __u8 page_code
, unsigned char scsi3addr
[],
2407 ctlr_info_t
*h
= hba
[ctlr
];
2408 CommandList_struct
*c
;
2411 c
= cmd_alloc(h
, 0);
2414 return_status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2415 scsi3addr
, cmd_type
);
2416 if (return_status
== IO_OK
)
2417 return_status
= sendcmd_withirq_core(h
, c
, 1);
2420 return return_status
;
2423 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
2424 int withirq
, sector_t total_size
,
2425 unsigned int block_size
,
2426 InquiryData_struct
*inq_buff
,
2427 drive_info_struct
*drv
)
2431 unsigned char scsi3addr
[8];
2433 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2434 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2436 return_code
= sendcmd_withirq(CISS_INQUIRY
, ctlr
,
2437 inq_buff
, sizeof(*inq_buff
),
2438 0xC1, scsi3addr
, TYPE_CMD
);
2440 return_code
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buff
,
2441 sizeof(*inq_buff
), 0xC1, scsi3addr
,
2443 if (return_code
== IO_OK
) {
2444 if (inq_buff
->data_byte
[8] == 0xFF) {
2446 "cciss: reading geometry failed, volume "
2447 "does not support reading geometry\n");
2449 drv
->sectors
= 32; // Sectors per track
2450 drv
->cylinders
= total_size
+ 1;
2451 drv
->raid_level
= RAID_UNKNOWN
;
2453 drv
->heads
= inq_buff
->data_byte
[6];
2454 drv
->sectors
= inq_buff
->data_byte
[7];
2455 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2456 drv
->cylinders
+= inq_buff
->data_byte
[5];
2457 drv
->raid_level
= inq_buff
->data_byte
[8];
2459 drv
->block_size
= block_size
;
2460 drv
->nr_blocks
= total_size
+ 1;
2461 t
= drv
->heads
* drv
->sectors
;
2463 sector_t real_size
= total_size
+ 1;
2464 unsigned long rem
= sector_div(real_size
, t
);
2467 drv
->cylinders
= real_size
;
2469 } else { /* Get geometry failed */
2470 printk(KERN_WARNING
"cciss: reading geometry failed\n");
2472 printk(KERN_INFO
" heads=%d, sectors=%d, cylinders=%d\n\n",
2473 drv
->heads
, drv
->sectors
, drv
->cylinders
);
2477 cciss_read_capacity(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
,
2478 unsigned int *block_size
)
2480 ReadCapdata_struct
*buf
;
2482 unsigned char scsi3addr
[8];
2484 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2486 printk(KERN_WARNING
"cciss: out of memory\n");
2490 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2492 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY
,
2493 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2494 0, scsi3addr
, TYPE_CMD
);
2496 return_code
= sendcmd(CCISS_READ_CAPACITY
,
2497 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2498 0, scsi3addr
, TYPE_CMD
);
2499 if (return_code
== IO_OK
) {
2500 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2501 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2502 } else { /* read capacity command failed */
2503 printk(KERN_WARNING
"cciss: read capacity failed\n");
2505 *block_size
= BLOCK_SIZE
;
2507 if (*total_size
!= 0)
2508 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2509 (unsigned long long)*total_size
+1, *block_size
);
2514 cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
, unsigned int *block_size
)
2516 ReadCapdata_struct_16
*buf
;
2518 unsigned char scsi3addr
[8];
2520 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2522 printk(KERN_WARNING
"cciss: out of memory\n");
2526 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2528 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY_16
,
2529 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2530 0, scsi3addr
, TYPE_CMD
);
2533 return_code
= sendcmd(CCISS_READ_CAPACITY_16
,
2534 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2535 0, scsi3addr
, TYPE_CMD
);
2537 if (return_code
== IO_OK
) {
2538 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2539 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2540 } else { /* read capacity command failed */
2541 printk(KERN_WARNING
"cciss: read capacity failed\n");
2543 *block_size
= BLOCK_SIZE
;
2545 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2546 (unsigned long long)*total_size
+1, *block_size
);
2550 static int cciss_revalidate(struct gendisk
*disk
)
2552 ctlr_info_t
*h
= get_host(disk
);
2553 drive_info_struct
*drv
= get_drv(disk
);
2556 unsigned int block_size
;
2557 sector_t total_size
;
2558 InquiryData_struct
*inq_buff
= NULL
;
2560 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2561 if (h
->drv
[logvol
].LunID
== drv
->LunID
) {
2570 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2571 if (inq_buff
== NULL
) {
2572 printk(KERN_WARNING
"cciss: out of memory\n");
2575 if (h
->cciss_read
== CCISS_READ_10
) {
2576 cciss_read_capacity(h
->ctlr
, logvol
, 1,
2577 &total_size
, &block_size
);
2579 cciss_read_capacity_16(h
->ctlr
, logvol
, 1,
2580 &total_size
, &block_size
);
2582 cciss_geometry_inquiry(h
->ctlr
, logvol
, 1, total_size
, block_size
,
2585 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2586 set_capacity(disk
, drv
->nr_blocks
);
2593 * Wait polling for a command to complete.
2594 * The memory mapped FIFO is polled for the completion.
2595 * Used only at init time, interrupts from the HBA are disabled.
2597 static unsigned long pollcomplete(int ctlr
)
2602 /* Wait (up to 20 seconds) for a command to complete */
2604 for (i
= 20 * HZ
; i
> 0; i
--) {
2605 done
= hba
[ctlr
]->access
.command_completed(hba
[ctlr
]);
2606 if (done
== FIFO_EMPTY
)
2607 schedule_timeout_uninterruptible(1);
2611 /* Invalid address to tell caller we ran out of time */
2615 /* Send command c to controller h and poll for it to complete.
2616 * Turns interrupts off on the board. Used at driver init time
2617 * and during SCSI error recovery.
2619 static int sendcmd_core(ctlr_info_t
*h
, CommandList_struct
*c
)
2622 unsigned long complete
;
2623 int status
= IO_ERROR
;
2624 u64bit buff_dma_handle
;
2628 /* Disable interrupt on the board. */
2629 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
2631 /* Make sure there is room in the command FIFO */
2632 /* Actually it should be completely empty at this time */
2633 /* unless we are in here doing error handling for the scsi */
2634 /* tape side of the driver. */
2635 for (i
= 200000; i
> 0; i
--) {
2636 /* if fifo isn't full go */
2637 if (!(h
->access
.fifo_full(h
)))
2640 printk(KERN_WARNING
"cciss cciss%d: SendCmd FIFO full,"
2641 " waiting!\n", h
->ctlr
);
2643 h
->access
.submit_command(h
, c
); /* Send the cmd */
2645 complete
= pollcomplete(h
->ctlr
);
2648 printk(KERN_DEBUG
"cciss: command completed\n");
2649 #endif /* CCISS_DEBUG */
2651 if (complete
== 1) {
2653 "cciss cciss%d: SendCmd Timeout out, "
2654 "No command list address returned!\n", h
->ctlr
);
2659 /* Make sure it's the command we're expecting. */
2660 if ((complete
& ~CISS_ERROR_BIT
) != c
->busaddr
) {
2661 printk(KERN_WARNING
"cciss%d: Unexpected command "
2662 "completion.\n", h
->ctlr
);
2666 /* It is our command. If no error, we're done. */
2667 if (!(complete
& CISS_ERROR_BIT
)) {
2672 /* There is an error... */
2674 /* if data overrun or underun on Report command ignore it */
2675 if (((c
->Request
.CDB
[0] == CISS_REPORT_LOG
) ||
2676 (c
->Request
.CDB
[0] == CISS_REPORT_PHYS
) ||
2677 (c
->Request
.CDB
[0] == CISS_INQUIRY
)) &&
2678 ((c
->err_info
->CommandStatus
== CMD_DATA_OVERRUN
) ||
2679 (c
->err_info
->CommandStatus
== CMD_DATA_UNDERRUN
))) {
2680 complete
= c
->busaddr
;
2685 if (c
->err_info
->CommandStatus
== CMD_UNSOLICITED_ABORT
) {
2686 printk(KERN_WARNING
"cciss%d: unsolicited abort %p\n",
2688 if (c
->retry_count
< MAX_CMD_RETRIES
) {
2689 printk(KERN_WARNING
"cciss%d: retrying %p\n",
2692 /* erase the old error information */
2693 memset(c
->err_info
, 0, sizeof(c
->err_info
));
2696 printk(KERN_WARNING
"cciss%d: retried %p too many "
2697 "times\n", h
->ctlr
, c
);
2702 if (c
->err_info
->CommandStatus
== CMD_UNABORTABLE
) {
2703 printk(KERN_WARNING
"cciss%d: command could not be "
2704 "aborted.\n", h
->ctlr
);
2709 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
) {
2710 status
= check_target_status(h
, c
);
2714 printk(KERN_WARNING
"cciss%d: sendcmd error\n", h
->ctlr
);
2715 printk(KERN_WARNING
"cmd = 0x%02x, CommandStatus = 0x%02x\n",
2716 c
->Request
.CDB
[0], c
->err_info
->CommandStatus
);
2722 /* unlock the data buffer from DMA */
2723 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2724 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2725 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2726 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2731 * Send a command to the controller, and wait for it to complete.
2732 * Used at init time, and during SCSI error recovery.
2734 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2735 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
)
2737 CommandList_struct
*c
;
2740 c
= cmd_alloc(hba
[ctlr
], 1);
2742 printk(KERN_WARNING
"cciss: unable to get memory");
2745 status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2746 scsi3addr
, cmd_type
);
2747 if (status
== IO_OK
)
2748 status
= sendcmd_core(hba
[ctlr
], c
);
2749 cmd_free(hba
[ctlr
], c
, 1);
2754 * Map (physical) PCI mem into (virtual) kernel space
2756 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2758 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2759 ulong page_offs
= ((ulong
) base
) - page_base
;
2760 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2762 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2766 * Takes jobs of the Q and sends them to the hardware, then puts it on
2767 * the Q to wait for completion.
2769 static void start_io(ctlr_info_t
*h
)
2771 CommandList_struct
*c
;
2773 while (!hlist_empty(&h
->reqQ
)) {
2774 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
2775 /* can't do anything if fifo is full */
2776 if ((h
->access
.fifo_full(h
))) {
2777 printk(KERN_WARNING
"cciss: fifo full\n");
2781 /* Get the first entry from the Request Q */
2785 /* Tell the controller execute command */
2786 h
->access
.submit_command(h
, c
);
2788 /* Put job onto the completed Q */
2793 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2794 /* Zeros out the error record and then resends the command back */
2795 /* to the controller */
2796 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2798 /* erase the old error information */
2799 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2801 /* add it to software queue and then send it to the controller */
2804 if (h
->Qdepth
> h
->maxQsinceinit
)
2805 h
->maxQsinceinit
= h
->Qdepth
;
2810 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2811 unsigned int msg_byte
, unsigned int host_byte
,
2812 unsigned int driver_byte
)
2814 /* inverse of macros in scsi.h */
2815 return (scsi_status_byte
& 0xff) |
2816 ((msg_byte
& 0xff) << 8) |
2817 ((host_byte
& 0xff) << 16) |
2818 ((driver_byte
& 0xff) << 24);
2821 static inline int evaluate_target_status(ctlr_info_t
*h
,
2822 CommandList_struct
*cmd
, int *retry_cmd
)
2824 unsigned char sense_key
;
2825 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2829 /* If we get in here, it means we got "target status", that is, scsi status */
2830 status_byte
= cmd
->err_info
->ScsiStatus
;
2831 driver_byte
= DRIVER_OK
;
2832 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2834 if (blk_pc_request(cmd
->rq
))
2835 host_byte
= DID_PASSTHROUGH
;
2839 error_value
= make_status_bytes(status_byte
, msg_byte
,
2840 host_byte
, driver_byte
);
2842 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
2843 if (!blk_pc_request(cmd
->rq
))
2844 printk(KERN_WARNING
"cciss: cmd %p "
2845 "has SCSI Status 0x%x\n",
2846 cmd
, cmd
->err_info
->ScsiStatus
);
2850 /* check the sense key */
2851 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
2852 /* no status or recovered error */
2853 if (((sense_key
== 0x0) || (sense_key
== 0x1)) && !blk_pc_request(cmd
->rq
))
2856 if (check_for_unit_attention(h
, cmd
)) {
2857 *retry_cmd
= !blk_pc_request(cmd
->rq
);
2861 if (!blk_pc_request(cmd
->rq
)) { /* Not SG_IO or similar? */
2862 if (error_value
!= 0)
2863 printk(KERN_WARNING
"cciss: cmd %p has CHECK CONDITION"
2864 " sense key = 0x%x\n", cmd
, sense_key
);
2868 /* SG_IO or similar, copy sense data back */
2869 if (cmd
->rq
->sense
) {
2870 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
2871 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
2872 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
2873 cmd
->rq
->sense_len
);
2875 cmd
->rq
->sense_len
= 0;
2880 /* checks the status of the job and calls complete buffers to mark all
2881 * buffers for the completed job. Note that this function does not need
2882 * to hold the hba/queue lock.
2884 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
2888 struct request
*rq
= cmd
->rq
;
2893 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
2895 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
2896 goto after_error_processing
;
2898 switch (cmd
->err_info
->CommandStatus
) {
2899 case CMD_TARGET_STATUS
:
2900 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
2902 case CMD_DATA_UNDERRUN
:
2903 if (blk_fs_request(cmd
->rq
)) {
2904 printk(KERN_WARNING
"cciss: cmd %p has"
2905 " completed with data underrun "
2907 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
2910 case CMD_DATA_OVERRUN
:
2911 if (blk_fs_request(cmd
->rq
))
2912 printk(KERN_WARNING
"cciss: cmd %p has"
2913 " completed with data overrun "
2917 printk(KERN_WARNING
"cciss: cmd %p is "
2918 "reported invalid\n", cmd
);
2919 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2920 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2921 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2923 case CMD_PROTOCOL_ERR
:
2924 printk(KERN_WARNING
"cciss: cmd %p has "
2925 "protocol error \n", cmd
);
2926 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2927 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2928 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2930 case CMD_HARDWARE_ERR
:
2931 printk(KERN_WARNING
"cciss: cmd %p had "
2932 " hardware error\n", cmd
);
2933 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2934 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2935 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2937 case CMD_CONNECTION_LOST
:
2938 printk(KERN_WARNING
"cciss: cmd %p had "
2939 "connection lost\n", cmd
);
2940 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2941 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2942 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2945 printk(KERN_WARNING
"cciss: cmd %p was "
2947 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2948 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2949 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
2951 case CMD_ABORT_FAILED
:
2952 printk(KERN_WARNING
"cciss: cmd %p reports "
2953 "abort failed\n", cmd
);
2954 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2955 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2956 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2958 case CMD_UNSOLICITED_ABORT
:
2959 printk(KERN_WARNING
"cciss%d: unsolicited "
2960 "abort %p\n", h
->ctlr
, cmd
);
2961 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
2964 "cciss%d: retrying %p\n", h
->ctlr
, cmd
);
2968 "cciss%d: %p retried too "
2969 "many times\n", h
->ctlr
, cmd
);
2970 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2971 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2972 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
2975 printk(KERN_WARNING
"cciss: cmd %p timedout\n", cmd
);
2976 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2977 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2978 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2981 printk(KERN_WARNING
"cciss: cmd %p returned "
2982 "unknown status %x\n", cmd
,
2983 cmd
->err_info
->CommandStatus
);
2984 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2985 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2986 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2989 after_error_processing
:
2991 /* We need to return this command */
2993 resend_cciss_cmd(h
, cmd
);
2996 cmd
->rq
->completion_data
= cmd
;
2997 blk_complete_request(cmd
->rq
);
3001 * Get a request and submit it to the controller.
3003 static void do_cciss_request(struct request_queue
*q
)
3005 ctlr_info_t
*h
= q
->queuedata
;
3006 CommandList_struct
*c
;
3009 struct request
*creq
;
3011 struct scatterlist tmp_sg
[MAXSGENTRIES
];
3012 drive_info_struct
*drv
;
3015 /* We call start_io here in case there is a command waiting on the
3016 * queue that has not been sent.
3018 if (blk_queue_plugged(q
))
3022 creq
= blk_peek_request(q
);
3026 BUG_ON(creq
->nr_phys_segments
> MAXSGENTRIES
);
3028 if ((c
= cmd_alloc(h
, 1)) == NULL
)
3031 blk_start_request(creq
);
3033 spin_unlock_irq(q
->queue_lock
);
3035 c
->cmd_type
= CMD_RWREQ
;
3038 /* fill in the request */
3039 drv
= creq
->rq_disk
->private_data
;
3040 c
->Header
.ReplyQueue
= 0; // unused in simple mode
3041 /* got command from pool, so use the command block index instead */
3042 /* for direct lookups. */
3043 /* The first 2 bits are reserved for controller error reporting. */
3044 c
->Header
.Tag
.lower
= (c
->cmdindex
<< 3);
3045 c
->Header
.Tag
.lower
|= 0x04; /* flag for direct lookup. */
3046 c
->Header
.LUN
.LogDev
.VolId
= drv
->LunID
;
3047 c
->Header
.LUN
.LogDev
.Mode
= 1;
3048 c
->Request
.CDBLen
= 10; // 12 byte commands not in FW yet;
3049 c
->Request
.Type
.Type
= TYPE_CMD
; // It is a command.
3050 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3051 c
->Request
.Type
.Direction
=
3052 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3053 c
->Request
.Timeout
= 0; // Don't time out
3055 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3056 start_blk
= blk_rq_pos(creq
);
3058 printk(KERN_DEBUG
"ciss: sector =%d nr_sectors=%d\n",
3059 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3060 #endif /* CCISS_DEBUG */
3062 sg_init_table(tmp_sg
, MAXSGENTRIES
);
3063 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3065 /* get the DMA records for the setup */
3066 if (c
->Request
.Type
.Direction
== XFER_READ
)
3067 dir
= PCI_DMA_FROMDEVICE
;
3069 dir
= PCI_DMA_TODEVICE
;
3071 for (i
= 0; i
< seg
; i
++) {
3072 c
->SG
[i
].Len
= tmp_sg
[i
].length
;
3073 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3075 tmp_sg
[i
].length
, dir
);
3076 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3077 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3078 c
->SG
[i
].Ext
= 0; // we are not chaining
3080 /* track how many SG entries we are using */
3085 printk(KERN_DEBUG
"cciss: Submitting %u sectors in %d segments\n",
3086 blk_rq_sectors(creq
), seg
);
3087 #endif /* CCISS_DEBUG */
3089 c
->Header
.SGList
= c
->Header
.SGTotal
= seg
;
3090 if (likely(blk_fs_request(creq
))) {
3091 if(h
->cciss_read
== CCISS_READ_10
) {
3092 c
->Request
.CDB
[1] = 0;
3093 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; //MSB
3094 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3095 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3096 c
->Request
.CDB
[5] = start_blk
& 0xff;
3097 c
->Request
.CDB
[6] = 0; // (sect >> 24) & 0xff; MSB
3098 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3099 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3100 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3102 u32 upper32
= upper_32_bits(start_blk
);
3104 c
->Request
.CDBLen
= 16;
3105 c
->Request
.CDB
[1]= 0;
3106 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; //MSB
3107 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3108 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3109 c
->Request
.CDB
[5]= upper32
& 0xff;
3110 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3111 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3112 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3113 c
->Request
.CDB
[9]= start_blk
& 0xff;
3114 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3115 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3116 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3117 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3118 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3120 } else if (blk_pc_request(creq
)) {
3121 c
->Request
.CDBLen
= creq
->cmd_len
;
3122 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3124 printk(KERN_WARNING
"cciss%d: bad request type %d\n", h
->ctlr
, creq
->cmd_type
);
3128 spin_lock_irq(q
->queue_lock
);
3132 if (h
->Qdepth
> h
->maxQsinceinit
)
3133 h
->maxQsinceinit
= h
->Qdepth
;
3139 /* We will already have the driver lock here so not need
3145 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3147 return h
->access
.command_completed(h
);
3150 static inline int interrupt_pending(ctlr_info_t
*h
)
3152 return h
->access
.intr_pending(h
);
3155 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3157 return (((h
->access
.intr_pending(h
) == 0) ||
3158 (h
->interrupts_enabled
== 0)));
3161 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
)
3163 ctlr_info_t
*h
= dev_id
;
3164 CommandList_struct
*c
;
3165 unsigned long flags
;
3168 if (interrupt_not_for_us(h
))
3171 * If there are completed commands in the completion queue,
3172 * we had better do something about it.
3174 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3175 while (interrupt_pending(h
)) {
3176 while ((a
= get_next_completion(h
)) != FIFO_EMPTY
) {
3180 if (a2
>= h
->nr_cmds
) {
3182 "cciss: controller cciss%d failed, stopping.\n",
3184 fail_all_cmds(h
->ctlr
);
3188 c
= h
->cmd_pool
+ a2
;
3192 struct hlist_node
*tmp
;
3196 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3197 if (c
->busaddr
== a
)
3202 * If we've found the command, take it off the
3203 * completion Q and free it
3205 if (c
&& c
->busaddr
== a
) {
3207 if (c
->cmd_type
== CMD_RWREQ
) {
3208 complete_command(h
, c
, 0);
3209 } else if (c
->cmd_type
== CMD_IOCTL_PEND
) {
3210 complete(c
->waiting
);
3212 # ifdef CONFIG_CISS_SCSI_TAPE
3213 else if (c
->cmd_type
== CMD_SCSI
)
3214 complete_scsi_command(c
, 0, a1
);
3221 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3225 static int scan_thread(void *data
)
3227 ctlr_info_t
*h
= data
;
3229 DECLARE_COMPLETION_ONSTACK(wait
);
3230 h
->rescan_wait
= &wait
;
3233 rc
= wait_for_completion_interruptible(&wait
);
3234 if (kthread_should_stop())
3237 rebuild_lun_table(h
, 0);
3242 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3244 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3247 switch (c
->err_info
->SenseInfo
[12]) {
3249 printk(KERN_WARNING
"cciss%d: a state change "
3250 "detected, command retried\n", h
->ctlr
);
3254 printk(KERN_WARNING
"cciss%d: LUN failure "
3255 "detected, action required\n", h
->ctlr
);
3258 case REPORT_LUNS_CHANGED
:
3259 printk(KERN_WARNING
"cciss%d: report LUN data "
3260 "changed\n", h
->ctlr
);
3262 complete(h
->rescan_wait
);
3265 case POWER_OR_RESET
:
3266 printk(KERN_WARNING
"cciss%d: a power on "
3267 "or device reset detected\n", h
->ctlr
);
3270 case UNIT_ATTENTION_CLEARED
:
3271 printk(KERN_WARNING
"cciss%d: unit attention "
3272 "cleared by another initiator\n", h
->ctlr
);
3276 printk(KERN_WARNING
"cciss%d: unknown "
3277 "unit attention detected\n", h
->ctlr
);
3283 * We cannot read the structure directly, for portability we must use
3285 * This is for debug only.
3288 static void print_cfg_table(CfgTable_struct
*tb
)
3293 printk("Controller Configuration information\n");
3294 printk("------------------------------------\n");
3295 for (i
= 0; i
< 4; i
++)
3296 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3297 temp_name
[4] = '\0';
3298 printk(" Signature = %s\n", temp_name
);
3299 printk(" Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3300 printk(" Transport methods supported = 0x%x\n",
3301 readl(&(tb
->TransportSupport
)));
3302 printk(" Transport methods active = 0x%x\n",
3303 readl(&(tb
->TransportActive
)));
3304 printk(" Requested transport Method = 0x%x\n",
3305 readl(&(tb
->HostWrite
.TransportRequest
)));
3306 printk(" Coalesce Interrupt Delay = 0x%x\n",
3307 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3308 printk(" Coalesce Interrupt Count = 0x%x\n",
3309 readl(&(tb
->HostWrite
.CoalIntCount
)));
3310 printk(" Max outstanding commands = 0x%d\n",
3311 readl(&(tb
->CmdsOutMax
)));
3312 printk(" Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3313 for (i
= 0; i
< 16; i
++)
3314 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3315 temp_name
[16] = '\0';
3316 printk(" Server Name = %s\n", temp_name
);
3317 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb
->HeartBeat
)));
3319 #endif /* CCISS_DEBUG */
3321 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3323 int i
, offset
, mem_type
, bar_type
;
3324 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3327 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3328 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3329 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3332 mem_type
= pci_resource_flags(pdev
, i
) &
3333 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3335 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3336 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3337 offset
+= 4; /* 32 bit */
3339 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3342 default: /* reserved in PCI 2.2 */
3344 "Base address is invalid\n");
3349 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3355 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3356 * controllers that are capable. If not, we use IO-APIC mode.
3359 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*c
,
3360 struct pci_dev
*pdev
, __u32 board_id
)
3362 #ifdef CONFIG_PCI_MSI
3364 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3368 /* Some boards advertise MSI but don't really support it */
3369 if ((board_id
== 0x40700E11) ||
3370 (board_id
== 0x40800E11) ||
3371 (board_id
== 0x40820E11) || (board_id
== 0x40830E11))
3372 goto default_int_mode
;
3374 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
)) {
3375 err
= pci_enable_msix(pdev
, cciss_msix_entries
, 4);
3377 c
->intr
[0] = cciss_msix_entries
[0].vector
;
3378 c
->intr
[1] = cciss_msix_entries
[1].vector
;
3379 c
->intr
[2] = cciss_msix_entries
[2].vector
;
3380 c
->intr
[3] = cciss_msix_entries
[3].vector
;
3385 printk(KERN_WARNING
"cciss: only %d MSI-X vectors "
3386 "available\n", err
);
3387 goto default_int_mode
;
3389 printk(KERN_WARNING
"cciss: MSI-X init failed %d\n",
3391 goto default_int_mode
;
3394 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
)) {
3395 if (!pci_enable_msi(pdev
)) {
3398 printk(KERN_WARNING
"cciss: MSI init failed\n");
3402 #endif /* CONFIG_PCI_MSI */
3403 /* if we get here we're going to use the default interrupt mode */
3404 c
->intr
[SIMPLE_MODE_INT
] = pdev
->irq
;
3408 static int __devinit
cciss_pci_init(ctlr_info_t
*c
, struct pci_dev
*pdev
)
3410 ushort subsystem_vendor_id
, subsystem_device_id
, command
;
3411 __u32 board_id
, scratchpad
= 0;
3413 __u32 cfg_base_addr
;
3414 __u64 cfg_base_addr_index
;
3417 /* check to see if controller has been disabled */
3418 /* BEFORE trying to enable it */
3419 (void)pci_read_config_word(pdev
, PCI_COMMAND
, &command
);
3420 if (!(command
& 0x02)) {
3422 "cciss: controller appears to be disabled\n");
3426 err
= pci_enable_device(pdev
);
3428 printk(KERN_ERR
"cciss: Unable to Enable PCI device\n");
3432 err
= pci_request_regions(pdev
, "cciss");
3434 printk(KERN_ERR
"cciss: Cannot obtain PCI resources, "
3439 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3440 subsystem_device_id
= pdev
->subsystem_device
;
3441 board_id
= (((__u32
) (subsystem_device_id
<< 16) & 0xffff0000) |
3442 subsystem_vendor_id
);
3445 printk("command = %x\n", command
);
3446 printk("irq = %x\n", pdev
->irq
);
3447 printk("board_id = %x\n", board_id
);
3448 #endif /* CCISS_DEBUG */
3450 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3451 * else we use the IO-APIC interrupt assigned to us by system ROM.
3453 cciss_interrupt_mode(c
, pdev
, board_id
);
3455 /* find the memory BAR */
3456 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3457 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
)
3460 if (i
== DEVICE_COUNT_RESOURCE
) {
3461 printk(KERN_WARNING
"cciss: No memory BAR found\n");
3463 goto err_out_free_res
;
3466 c
->paddr
= pci_resource_start(pdev
, i
); /* addressing mode bits
3471 printk("address 0 = %lx\n", c
->paddr
);
3472 #endif /* CCISS_DEBUG */
3473 c
->vaddr
= remap_pci_mem(c
->paddr
, 0x250);
3475 /* Wait for the board to become ready. (PCI hotplug needs this.)
3476 * We poll for up to 120 secs, once per 100ms. */
3477 for (i
= 0; i
< 1200; i
++) {
3478 scratchpad
= readl(c
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
3479 if (scratchpad
== CCISS_FIRMWARE_READY
)
3481 set_current_state(TASK_INTERRUPTIBLE
);
3482 schedule_timeout(HZ
/ 10); /* wait 100ms */
3484 if (scratchpad
!= CCISS_FIRMWARE_READY
) {
3485 printk(KERN_WARNING
"cciss: Board not ready. Timed out.\n");
3487 goto err_out_free_res
;
3490 /* get the address index number */
3491 cfg_base_addr
= readl(c
->vaddr
+ SA5_CTCFG_OFFSET
);
3492 cfg_base_addr
&= (__u32
) 0x0000ffff;
3494 printk("cfg base address = %x\n", cfg_base_addr
);
3495 #endif /* CCISS_DEBUG */
3496 cfg_base_addr_index
= find_PCI_BAR_index(pdev
, cfg_base_addr
);
3498 printk("cfg base address index = %llx\n",
3499 (unsigned long long)cfg_base_addr_index
);
3500 #endif /* CCISS_DEBUG */
3501 if (cfg_base_addr_index
== -1) {
3502 printk(KERN_WARNING
"cciss: Cannot find cfg_base_addr_index\n");
3504 goto err_out_free_res
;
3507 cfg_offset
= readl(c
->vaddr
+ SA5_CTMEM_OFFSET
);
3509 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset
);
3510 #endif /* CCISS_DEBUG */
3511 c
->cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3512 cfg_base_addr_index
) +
3513 cfg_offset
, sizeof(CfgTable_struct
));
3514 c
->board_id
= board_id
;
3517 print_cfg_table(c
->cfgtable
);
3518 #endif /* CCISS_DEBUG */
3520 /* Some controllers support Zero Memory Raid (ZMR).
3521 * When configured in ZMR mode the number of supported
3522 * commands drops to 64. So instead of just setting an
3523 * arbitrary value we make the driver a little smarter.
3524 * We read the config table to tell us how many commands
3525 * are supported on the controller then subtract 4 to
3526 * leave a little room for ioctl calls.
3528 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3529 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3530 if (board_id
== products
[i
].board_id
) {
3531 c
->product_name
= products
[i
].product_name
;
3532 c
->access
= *(products
[i
].access
);
3533 c
->nr_cmds
= c
->max_commands
- 4;
3537 if ((readb(&c
->cfgtable
->Signature
[0]) != 'C') ||
3538 (readb(&c
->cfgtable
->Signature
[1]) != 'I') ||
3539 (readb(&c
->cfgtable
->Signature
[2]) != 'S') ||
3540 (readb(&c
->cfgtable
->Signature
[3]) != 'S')) {
3541 printk("Does not appear to be a valid CISS config table\n");
3543 goto err_out_free_res
;
3545 /* We didn't find the controller in our list. We know the
3546 * signature is valid. If it's an HP device let's try to
3547 * bind to the device and fire it up. Otherwise we bail.
3549 if (i
== ARRAY_SIZE(products
)) {
3550 if (subsystem_vendor_id
== PCI_VENDOR_ID_HP
) {
3551 c
->product_name
= products
[i
-1].product_name
;
3552 c
->access
= *(products
[i
-1].access
);
3553 c
->nr_cmds
= c
->max_commands
- 4;
3554 printk(KERN_WARNING
"cciss: This is an unknown "
3555 "Smart Array controller.\n"
3556 "cciss: Please update to the latest driver "
3557 "available from www.hp.com.\n");
3559 printk(KERN_WARNING
"cciss: Sorry, I don't know how"
3560 " to access the Smart Array controller %08lx\n"
3561 , (unsigned long)board_id
);
3563 goto err_out_free_res
;
3568 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3570 prefetch
= readl(&(c
->cfgtable
->SCSI_Prefetch
));
3572 writel(prefetch
, &(c
->cfgtable
->SCSI_Prefetch
));
3576 /* Disabling DMA prefetch and refetch for the P600.
3577 * An ASIC bug may result in accesses to invalid memory addresses.
3578 * We've disabled prefetch for some time now. Testing with XEN
3579 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3581 if(board_id
== 0x3225103C) {
3584 dma_prefetch
= readl(c
->vaddr
+ I2O_DMA1_CFG
);
3585 dma_prefetch
|= 0x8000;
3586 writel(dma_prefetch
, c
->vaddr
+ I2O_DMA1_CFG
);
3587 pci_read_config_dword(pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
3589 pci_write_config_dword(pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
3593 printk("Trying to put board into Simple mode\n");
3594 #endif /* CCISS_DEBUG */
3595 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3596 /* Update the field, and then ring the doorbell */
3597 writel(CFGTBL_Trans_Simple
, &(c
->cfgtable
->HostWrite
.TransportRequest
));
3598 writel(CFGTBL_ChangeReq
, c
->vaddr
+ SA5_DOORBELL
);
3600 /* under certain very rare conditions, this can take awhile.
3601 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3602 * as we enter this code.) */
3603 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3604 if (!(readl(c
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3606 /* delay and try again */
3607 set_current_state(TASK_INTERRUPTIBLE
);
3608 schedule_timeout(10);
3612 printk(KERN_DEBUG
"I counter got to %d %x\n", i
,
3613 readl(c
->vaddr
+ SA5_DOORBELL
));
3614 #endif /* CCISS_DEBUG */
3616 print_cfg_table(c
->cfgtable
);
3617 #endif /* CCISS_DEBUG */
3619 if (!(readl(&(c
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
3620 printk(KERN_WARNING
"cciss: unable to get board into"
3623 goto err_out_free_res
;
3629 * Deliberately omit pci_disable_device(): it does something nasty to
3630 * Smart Array controllers that pci_enable_device does not undo
3632 pci_release_regions(pdev
);
3636 /* Function to find the first free pointer into our hba[] array
3637 * Returns -1 if no free entries are left.
3639 static int alloc_cciss_hba(void)
3643 for (i
= 0; i
< MAX_CTLR
; i
++) {
3647 p
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
3654 printk(KERN_WARNING
"cciss: This driver supports a maximum"
3655 " of %d controllers.\n", MAX_CTLR
);
3658 printk(KERN_ERR
"cciss: out of memory.\n");
3662 static void free_hba(int i
)
3664 ctlr_info_t
*p
= hba
[i
];
3668 for (n
= 0; n
< CISS_MAX_LUN
; n
++)
3669 put_disk(p
->gendisk
[n
]);
3673 /* Send a message CDB to the firmware. */
3674 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
3677 CommandListHeader_struct CommandHeader
;
3678 RequestBlock_struct Request
;
3679 ErrDescriptor_struct ErrorDescriptor
;
3681 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
3684 uint32_t paddr32
, tag
;
3685 void __iomem
*vaddr
;
3688 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
3692 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3693 CCISS commands, so they must be allocated from the lower 4GiB of
3695 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3701 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3707 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3708 although there's no guarantee, we assume that the address is at
3709 least 4-byte aligned (most likely, it's page-aligned). */
3712 cmd
->CommandHeader
.ReplyQueue
= 0;
3713 cmd
->CommandHeader
.SGList
= 0;
3714 cmd
->CommandHeader
.SGTotal
= 0;
3715 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
3716 cmd
->CommandHeader
.Tag
.upper
= 0;
3717 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
3719 cmd
->Request
.CDBLen
= 16;
3720 cmd
->Request
.Type
.Type
= TYPE_MSG
;
3721 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
3722 cmd
->Request
.Type
.Direction
= XFER_NONE
;
3723 cmd
->Request
.Timeout
= 0; /* Don't time out */
3724 cmd
->Request
.CDB
[0] = opcode
;
3725 cmd
->Request
.CDB
[1] = type
;
3726 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
3728 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
3729 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
3730 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
3732 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
3734 for (i
= 0; i
< 10; i
++) {
3735 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
3736 if ((tag
& ~3) == paddr32
)
3738 schedule_timeout_uninterruptible(HZ
);
3743 /* we leak the DMA buffer here ... no choice since the controller could
3744 still complete the command. */
3746 printk(KERN_ERR
"cciss: controller message %02x:%02x timed out\n",
3751 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
3754 printk(KERN_ERR
"cciss: controller message %02x:%02x failed\n",
3759 printk(KERN_INFO
"cciss: controller message %02x:%02x succeeded\n",
3764 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3765 #define cciss_noop(p) cciss_message(p, 3, 0)
3767 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
3769 /* the #defines are stolen from drivers/pci/msi.h. */
3770 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3771 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3776 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
3778 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
3779 if (control
& PCI_MSI_FLAGS_ENABLE
) {
3780 printk(KERN_INFO
"cciss: resetting MSI\n");
3781 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
3785 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
3787 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
3788 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
3789 printk(KERN_INFO
"cciss: resetting MSI-X\n");
3790 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
3797 /* This does a hard reset of the controller using PCI power management
3799 static __devinit
int cciss_hard_reset_controller(struct pci_dev
*pdev
)
3801 u16 pmcsr
, saved_config_space
[32];
3804 printk(KERN_INFO
"cciss: using PCI PM to reset controller\n");
3806 /* This is very nearly the same thing as
3808 pci_save_state(pci_dev);
3809 pci_set_power_state(pci_dev, PCI_D3hot);
3810 pci_set_power_state(pci_dev, PCI_D0);
3811 pci_restore_state(pci_dev);
3813 but we can't use these nice canned kernel routines on
3814 kexec, because they also check the MSI/MSI-X state in PCI
3815 configuration space and do the wrong thing when it is
3816 set/cleared. Also, the pci_save/restore_state functions
3817 violate the ordering requirements for restoring the
3818 configuration space from the CCISS document (see the
3819 comment below). So we roll our own .... */
3821 for (i
= 0; i
< 32; i
++)
3822 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
3824 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
3826 printk(KERN_ERR
"cciss_reset_controller: PCI PM not supported\n");
3830 /* Quoting from the Open CISS Specification: "The Power
3831 * Management Control/Status Register (CSR) controls the power
3832 * state of the device. The normal operating state is D0,
3833 * CSR=00h. The software off state is D3, CSR=03h. To reset
3834 * the controller, place the interface device in D3 then to
3835 * D0, this causes a secondary PCI reset which will reset the
3838 /* enter the D3hot power management state */
3839 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
3840 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3842 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3844 schedule_timeout_uninterruptible(HZ
>> 1);
3846 /* enter the D0 power management state */
3847 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3849 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3851 schedule_timeout_uninterruptible(HZ
>> 1);
3853 /* Restore the PCI configuration space. The Open CISS
3854 * Specification says, "Restore the PCI Configuration
3855 * Registers, offsets 00h through 60h. It is important to
3856 * restore the command register, 16-bits at offset 04h,
3857 * last. Do not restore the configuration status register,
3858 * 16-bits at offset 06h." Note that the offset is 2*i. */
3859 for (i
= 0; i
< 32; i
++) {
3860 if (i
== 2 || i
== 3)
3862 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
3865 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
3871 * This is it. Find all the controllers and register them. I really hate
3872 * stealing all these major device numbers.
3873 * returns the number of block devices registered.
3875 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
3876 const struct pci_device_id
*ent
)
3881 int dac
, return_code
;
3882 InquiryData_struct
*inq_buff
= NULL
;
3884 if (reset_devices
) {
3885 /* Reset the controller with a PCI power-cycle */
3886 if (cciss_hard_reset_controller(pdev
) || cciss_reset_msi(pdev
))
3889 /* Now try to get the controller to respond to a no-op. Some
3890 devices (notably the HP Smart Array 5i Controller) need
3891 up to 30 seconds to respond. */
3892 for (i
=0; i
<30; i
++) {
3893 if (cciss_noop(pdev
) == 0)
3896 schedule_timeout_uninterruptible(HZ
);
3899 printk(KERN_ERR
"cciss: controller seems dead\n");
3904 i
= alloc_cciss_hba();
3908 hba
[i
]->busy_initializing
= 1;
3909 INIT_HLIST_HEAD(&hba
[i
]->cmpQ
);
3910 INIT_HLIST_HEAD(&hba
[i
]->reqQ
);
3912 if (cciss_pci_init(hba
[i
], pdev
) != 0)
3915 sprintf(hba
[i
]->devname
, "cciss%d", i
);
3917 hba
[i
]->pdev
= pdev
;
3919 if (cciss_create_hba_sysfs_entry(hba
[i
]))
3922 /* configure PCI DMA stuff */
3923 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
3925 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
3928 printk(KERN_ERR
"cciss: no suitable DMA available\n");
3933 * register with the major number, or get a dynamic major number
3934 * by passing 0 as argument. This is done for greater than
3935 * 8 controller support.
3937 if (i
< MAX_CTLR_ORIG
)
3938 hba
[i
]->major
= COMPAQ_CISS_MAJOR
+ i
;
3939 rc
= register_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
3940 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
3942 "cciss: Unable to get major number %d for %s "
3943 "on hba %d\n", hba
[i
]->major
, hba
[i
]->devname
, i
);
3946 if (i
>= MAX_CTLR_ORIG
)
3950 /* make sure the board interrupts are off */
3951 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_OFF
);
3952 if (request_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], do_cciss_intr
,
3953 IRQF_DISABLED
| IRQF_SHARED
, hba
[i
]->devname
, hba
[i
])) {
3954 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
3955 hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]->devname
);
3959 printk(KERN_INFO
"%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3960 hba
[i
]->devname
, pdev
->device
, pci_name(pdev
),
3961 hba
[i
]->intr
[SIMPLE_MODE_INT
], dac
? "" : " not");
3963 hba
[i
]->cmd_pool_bits
=
3964 kmalloc(DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
3965 * sizeof(unsigned long), GFP_KERNEL
);
3966 hba
[i
]->cmd_pool
= (CommandList_struct
*)
3967 pci_alloc_consistent(hba
[i
]->pdev
,
3968 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
3969 &(hba
[i
]->cmd_pool_dhandle
));
3970 hba
[i
]->errinfo_pool
= (ErrorInfo_struct
*)
3971 pci_alloc_consistent(hba
[i
]->pdev
,
3972 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
3973 &(hba
[i
]->errinfo_pool_dhandle
));
3974 if ((hba
[i
]->cmd_pool_bits
== NULL
)
3975 || (hba
[i
]->cmd_pool
== NULL
)
3976 || (hba
[i
]->errinfo_pool
== NULL
)) {
3977 printk(KERN_ERR
"cciss: out of memory");
3980 spin_lock_init(&hba
[i
]->lock
);
3982 /* Initialize the pdev driver private data.
3983 have it point to hba[i]. */
3984 pci_set_drvdata(pdev
, hba
[i
]);
3985 /* command and error info recs zeroed out before
3987 memset(hba
[i
]->cmd_pool_bits
, 0,
3988 DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
3989 * sizeof(unsigned long));
3991 hba
[i
]->num_luns
= 0;
3992 hba
[i
]->highest_lun
= -1;
3993 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
3994 hba
[i
]->drv
[j
].raid_level
= -1;
3995 hba
[i
]->drv
[j
].queue
= NULL
;
3996 hba
[i
]->gendisk
[j
] = NULL
;
3999 cciss_scsi_setup(i
);
4001 /* Turn the interrupts on so we can service requests */
4002 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_ON
);
4004 /* Get the firmware version */
4005 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4006 if (inq_buff
== NULL
) {
4007 printk(KERN_ERR
"cciss: out of memory\n");
4011 return_code
= sendcmd_withirq(CISS_INQUIRY
, i
, inq_buff
,
4012 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4013 if (return_code
== IO_OK
) {
4014 hba
[i
]->firm_ver
[0] = inq_buff
->data_byte
[32];
4015 hba
[i
]->firm_ver
[1] = inq_buff
->data_byte
[33];
4016 hba
[i
]->firm_ver
[2] = inq_buff
->data_byte
[34];
4017 hba
[i
]->firm_ver
[3] = inq_buff
->data_byte
[35];
4018 } else { /* send command failed */
4019 printk(KERN_WARNING
"cciss: unable to determine firmware"
4020 " version of controller\n");
4025 hba
[i
]->cciss_max_sectors
= 2048;
4027 hba
[i
]->busy_initializing
= 0;
4029 rebuild_lun_table(hba
[i
], 1);
4030 hba
[i
]->cciss_scan_thread
= kthread_run(scan_thread
, hba
[i
],
4031 "cciss_scan%02d", i
);
4032 if (IS_ERR(hba
[i
]->cciss_scan_thread
))
4033 return PTR_ERR(hba
[i
]->cciss_scan_thread
);
4039 kfree(hba
[i
]->cmd_pool_bits
);
4040 if (hba
[i
]->cmd_pool
)
4041 pci_free_consistent(hba
[i
]->pdev
,
4042 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4043 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4044 if (hba
[i
]->errinfo_pool
)
4045 pci_free_consistent(hba
[i
]->pdev
,
4046 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4047 hba
[i
]->errinfo_pool
,
4048 hba
[i
]->errinfo_pool_dhandle
);
4049 free_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]);
4051 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4053 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4055 hba
[i
]->busy_initializing
= 0;
4056 /* cleanup any queues that may have been initialized */
4057 for (j
=0; j
<= hba
[i
]->highest_lun
; j
++){
4058 drive_info_struct
*drv
= &(hba
[i
]->drv
[j
]);
4060 blk_cleanup_queue(drv
->queue
);
4063 * Deliberately omit pci_disable_device(): it does something nasty to
4064 * Smart Array controllers that pci_enable_device does not undo
4066 pci_release_regions(pdev
);
4067 pci_set_drvdata(pdev
, NULL
);
4072 static void cciss_shutdown(struct pci_dev
*pdev
)
4074 ctlr_info_t
*tmp_ptr
;
4079 tmp_ptr
= pci_get_drvdata(pdev
);
4080 if (tmp_ptr
== NULL
)
4086 /* Turn board interrupts off and send the flush cache command */
4087 /* sendcmd will turn off interrupt, and send the flush...
4088 * To write all data in the battery backed cache to disks */
4089 memset(flush_buf
, 0, 4);
4090 return_code
= sendcmd(CCISS_CACHE_FLUSH
, i
, flush_buf
, 4, 0,
4091 CTLR_LUNID
, TYPE_CMD
);
4092 if (return_code
== IO_OK
) {
4093 printk(KERN_INFO
"Completed flushing cache on controller %d\n", i
);
4095 printk(KERN_WARNING
"Error flushing cache on controller %d\n", i
);
4097 free_irq(hba
[i
]->intr
[2], hba
[i
]);
4100 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4102 ctlr_info_t
*tmp_ptr
;
4105 if (pci_get_drvdata(pdev
) == NULL
) {
4106 printk(KERN_ERR
"cciss: Unable to remove device \n");
4110 tmp_ptr
= pci_get_drvdata(pdev
);
4112 if (hba
[i
] == NULL
) {
4113 printk(KERN_ERR
"cciss: device appears to "
4114 "already be removed \n");
4118 kthread_stop(hba
[i
]->cciss_scan_thread
);
4120 remove_proc_entry(hba
[i
]->devname
, proc_cciss
);
4121 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4123 /* remove it from the disk list */
4124 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4125 struct gendisk
*disk
= hba
[i
]->gendisk
[j
];
4127 struct request_queue
*q
= disk
->queue
;
4129 if (disk
->flags
& GENHD_FL_UP
)
4132 blk_cleanup_queue(q
);
4136 #ifdef CONFIG_CISS_SCSI_TAPE
4137 cciss_unregister_scsi(i
); /* unhook from SCSI subsystem */
4140 cciss_shutdown(pdev
);
4142 #ifdef CONFIG_PCI_MSI
4143 if (hba
[i
]->msix_vector
)
4144 pci_disable_msix(hba
[i
]->pdev
);
4145 else if (hba
[i
]->msi_vector
)
4146 pci_disable_msi(hba
[i
]->pdev
);
4147 #endif /* CONFIG_PCI_MSI */
4149 iounmap(hba
[i
]->vaddr
);
4151 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4152 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4153 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4154 hba
[i
]->errinfo_pool
, hba
[i
]->errinfo_pool_dhandle
);
4155 kfree(hba
[i
]->cmd_pool_bits
);
4157 * Deliberately omit pci_disable_device(): it does something nasty to
4158 * Smart Array controllers that pci_enable_device does not undo
4160 pci_release_regions(pdev
);
4161 pci_set_drvdata(pdev
, NULL
);
4162 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4166 static struct pci_driver cciss_pci_driver
= {
4168 .probe
= cciss_init_one
,
4169 .remove
= __devexit_p(cciss_remove_one
),
4170 .id_table
= cciss_pci_device_id
, /* id_table */
4171 .shutdown
= cciss_shutdown
,
4175 * This is it. Register the PCI driver information for the cards we control
4176 * the OS will call our registered routines when it finds one of our cards.
4178 static int __init
cciss_init(void)
4183 * The hardware requires that commands are aligned on a 64-bit
4184 * boundary. Given that we use pci_alloc_consistent() to allocate an
4185 * array of them, the size must be a multiple of 8 bytes.
4187 BUILD_BUG_ON(sizeof(CommandList_struct
) % 8);
4189 printk(KERN_INFO DRIVER_NAME
"\n");
4191 err
= bus_register(&cciss_bus_type
);
4195 /* Register for our PCI devices */
4196 err
= pci_register_driver(&cciss_pci_driver
);
4198 goto err_bus_register
;
4203 bus_unregister(&cciss_bus_type
);
4207 static void __exit
cciss_cleanup(void)
4211 pci_unregister_driver(&cciss_pci_driver
);
4212 /* double check that all controller entrys have been removed */
4213 for (i
= 0; i
< MAX_CTLR
; i
++) {
4214 if (hba
[i
] != NULL
) {
4215 printk(KERN_WARNING
"cciss: had to remove"
4216 " controller %d\n", i
);
4217 cciss_remove_one(hba
[i
]->pdev
);
4220 remove_proc_entry("driver/cciss", NULL
);
4221 bus_unregister(&cciss_bus_type
);
4224 static void fail_all_cmds(unsigned long ctlr
)
4226 /* If we get here, the board is apparently dead. */
4227 ctlr_info_t
*h
= hba
[ctlr
];
4228 CommandList_struct
*c
;
4229 unsigned long flags
;
4231 printk(KERN_WARNING
"cciss%d: controller not responding.\n", h
->ctlr
);
4232 h
->alive
= 0; /* the controller apparently died... */
4234 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
4236 pci_disable_device(h
->pdev
); /* Make sure it is really dead. */
4238 /* move everything off the request queue onto the completed queue */
4239 while (!hlist_empty(&h
->reqQ
)) {
4240 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
4246 /* Now, fail everything on the completed queue with a HW error */
4247 while (!hlist_empty(&h
->cmpQ
)) {
4248 c
= hlist_entry(h
->cmpQ
.first
, CommandList_struct
, list
);
4250 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4251 if (c
->cmd_type
== CMD_RWREQ
) {
4252 complete_command(h
, c
, 0);
4253 } else if (c
->cmd_type
== CMD_IOCTL_PEND
)
4254 complete(c
->waiting
);
4255 #ifdef CONFIG_CISS_SCSI_TAPE
4256 else if (c
->cmd_type
== CMD_SCSI
)
4257 complete_scsi_command(c
, 0, 0);
4260 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
4264 module_init(cciss_init
);
4265 module_exit(cciss_cleanup
);