perf_counter: change event definition
[linux-2.6/verdex.git] / kernel / perf_counter.c
blob8c8eaf0625f9a433f6e7be3fa2dabc6f1fee27e2
1 /*
2 * Performance counter core code
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
8 * For licensing details see kernel-base/COPYING
9 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
30 #include <asm/irq_regs.h>
33 * Each CPU has a list of per CPU counters:
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
42 * Mutex for (sysadmin-configurable) counter reservations:
44 static DEFINE_MUTEX(perf_resource_mutex);
47 * Architecture provided APIs - weak aliases:
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
52 return NULL;
55 u64 __weak hw_perf_save_disable(void) { return 0; }
56 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59 struct perf_cpu_context *cpuctx,
60 struct perf_counter_context *ctx, int cpu)
62 return 0;
65 void __weak perf_counter_print_debug(void) { }
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
70 struct perf_counter *group_leader = counter->group_leader;
73 * Depending on whether it is a standalone or sibling counter,
74 * add it straight to the context's counter list, or to the group
75 * leader's sibling list:
77 if (counter->group_leader == counter)
78 list_add_tail(&counter->list_entry, &ctx->counter_list);
79 else {
80 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81 group_leader->nr_siblings++;
84 list_add_rcu(&counter->event_entry, &ctx->event_list);
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
90 struct perf_counter *sibling, *tmp;
92 list_del_init(&counter->list_entry);
93 list_del_rcu(&counter->event_entry);
95 if (counter->group_leader != counter)
96 counter->group_leader->nr_siblings--;
99 * If this was a group counter with sibling counters then
100 * upgrade the siblings to singleton counters by adding them
101 * to the context list directly:
103 list_for_each_entry_safe(sibling, tmp,
104 &counter->sibling_list, list_entry) {
106 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 sibling->group_leader = sibling;
111 static void
112 counter_sched_out(struct perf_counter *counter,
113 struct perf_cpu_context *cpuctx,
114 struct perf_counter_context *ctx)
116 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117 return;
119 counter->state = PERF_COUNTER_STATE_INACTIVE;
120 counter->tstamp_stopped = ctx->time_now;
121 counter->hw_ops->disable(counter);
122 counter->oncpu = -1;
124 if (!is_software_counter(counter))
125 cpuctx->active_oncpu--;
126 ctx->nr_active--;
127 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128 cpuctx->exclusive = 0;
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133 struct perf_cpu_context *cpuctx,
134 struct perf_counter_context *ctx)
136 struct perf_counter *counter;
138 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139 return;
141 counter_sched_out(group_counter, cpuctx, ctx);
144 * Schedule out siblings (if any):
146 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147 counter_sched_out(counter, cpuctx, ctx);
149 if (group_counter->hw_event.exclusive)
150 cpuctx->exclusive = 0;
154 * Cross CPU call to remove a performance counter
156 * We disable the counter on the hardware level first. After that we
157 * remove it from the context list.
159 static void __perf_counter_remove_from_context(void *info)
161 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162 struct perf_counter *counter = info;
163 struct perf_counter_context *ctx = counter->ctx;
164 unsigned long flags;
165 u64 perf_flags;
168 * If this is a task context, we need to check whether it is
169 * the current task context of this cpu. If not it has been
170 * scheduled out before the smp call arrived.
172 if (ctx->task && cpuctx->task_ctx != ctx)
173 return;
175 curr_rq_lock_irq_save(&flags);
176 spin_lock(&ctx->lock);
178 counter_sched_out(counter, cpuctx, ctx);
180 counter->task = NULL;
181 ctx->nr_counters--;
184 * Protect the list operation against NMI by disabling the
185 * counters on a global level. NOP for non NMI based counters.
187 perf_flags = hw_perf_save_disable();
188 list_del_counter(counter, ctx);
189 hw_perf_restore(perf_flags);
191 if (!ctx->task) {
193 * Allow more per task counters with respect to the
194 * reservation:
196 cpuctx->max_pertask =
197 min(perf_max_counters - ctx->nr_counters,
198 perf_max_counters - perf_reserved_percpu);
201 spin_unlock(&ctx->lock);
202 curr_rq_unlock_irq_restore(&flags);
207 * Remove the counter from a task's (or a CPU's) list of counters.
209 * Must be called with counter->mutex and ctx->mutex held.
211 * CPU counters are removed with a smp call. For task counters we only
212 * call when the task is on a CPU.
214 static void perf_counter_remove_from_context(struct perf_counter *counter)
216 struct perf_counter_context *ctx = counter->ctx;
217 struct task_struct *task = ctx->task;
219 if (!task) {
221 * Per cpu counters are removed via an smp call and
222 * the removal is always sucessful.
224 smp_call_function_single(counter->cpu,
225 __perf_counter_remove_from_context,
226 counter, 1);
227 return;
230 retry:
231 task_oncpu_function_call(task, __perf_counter_remove_from_context,
232 counter);
234 spin_lock_irq(&ctx->lock);
236 * If the context is active we need to retry the smp call.
238 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
239 spin_unlock_irq(&ctx->lock);
240 goto retry;
244 * The lock prevents that this context is scheduled in so we
245 * can remove the counter safely, if the call above did not
246 * succeed.
248 if (!list_empty(&counter->list_entry)) {
249 ctx->nr_counters--;
250 list_del_counter(counter, ctx);
251 counter->task = NULL;
253 spin_unlock_irq(&ctx->lock);
257 * Get the current time for this context.
258 * If this is a task context, we use the task's task clock,
259 * or for a per-cpu context, we use the cpu clock.
261 static u64 get_context_time(struct perf_counter_context *ctx, int update)
263 struct task_struct *curr = ctx->task;
265 if (!curr)
266 return cpu_clock(smp_processor_id());
268 return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
272 * Update the record of the current time in a context.
274 static void update_context_time(struct perf_counter_context *ctx, int update)
276 ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
280 * Update the total_time_enabled and total_time_running fields for a counter.
282 static void update_counter_times(struct perf_counter *counter)
284 struct perf_counter_context *ctx = counter->ctx;
285 u64 run_end;
287 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
288 counter->total_time_enabled = ctx->time_now -
289 counter->tstamp_enabled;
290 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
291 run_end = counter->tstamp_stopped;
292 else
293 run_end = ctx->time_now;
294 counter->total_time_running = run_end - counter->tstamp_running;
299 * Update total_time_enabled and total_time_running for all counters in a group.
301 static void update_group_times(struct perf_counter *leader)
303 struct perf_counter *counter;
305 update_counter_times(leader);
306 list_for_each_entry(counter, &leader->sibling_list, list_entry)
307 update_counter_times(counter);
311 * Cross CPU call to disable a performance counter
313 static void __perf_counter_disable(void *info)
315 struct perf_counter *counter = info;
316 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
317 struct perf_counter_context *ctx = counter->ctx;
318 unsigned long flags;
321 * If this is a per-task counter, need to check whether this
322 * counter's task is the current task on this cpu.
324 if (ctx->task && cpuctx->task_ctx != ctx)
325 return;
327 curr_rq_lock_irq_save(&flags);
328 spin_lock(&ctx->lock);
331 * If the counter is on, turn it off.
332 * If it is in error state, leave it in error state.
334 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 update_context_time(ctx, 1);
336 update_counter_times(counter);
337 if (counter == counter->group_leader)
338 group_sched_out(counter, cpuctx, ctx);
339 else
340 counter_sched_out(counter, cpuctx, ctx);
341 counter->state = PERF_COUNTER_STATE_OFF;
344 spin_unlock(&ctx->lock);
345 curr_rq_unlock_irq_restore(&flags);
349 * Disable a counter.
351 static void perf_counter_disable(struct perf_counter *counter)
353 struct perf_counter_context *ctx = counter->ctx;
354 struct task_struct *task = ctx->task;
356 if (!task) {
358 * Disable the counter on the cpu that it's on
360 smp_call_function_single(counter->cpu, __perf_counter_disable,
361 counter, 1);
362 return;
365 retry:
366 task_oncpu_function_call(task, __perf_counter_disable, counter);
368 spin_lock_irq(&ctx->lock);
370 * If the counter is still active, we need to retry the cross-call.
372 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
373 spin_unlock_irq(&ctx->lock);
374 goto retry;
378 * Since we have the lock this context can't be scheduled
379 * in, so we can change the state safely.
381 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
382 update_counter_times(counter);
383 counter->state = PERF_COUNTER_STATE_OFF;
386 spin_unlock_irq(&ctx->lock);
390 * Disable a counter and all its children.
392 static void perf_counter_disable_family(struct perf_counter *counter)
394 struct perf_counter *child;
396 perf_counter_disable(counter);
399 * Lock the mutex to protect the list of children
401 mutex_lock(&counter->mutex);
402 list_for_each_entry(child, &counter->child_list, child_list)
403 perf_counter_disable(child);
404 mutex_unlock(&counter->mutex);
407 static int
408 counter_sched_in(struct perf_counter *counter,
409 struct perf_cpu_context *cpuctx,
410 struct perf_counter_context *ctx,
411 int cpu)
413 if (counter->state <= PERF_COUNTER_STATE_OFF)
414 return 0;
416 counter->state = PERF_COUNTER_STATE_ACTIVE;
417 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
419 * The new state must be visible before we turn it on in the hardware:
421 smp_wmb();
423 if (counter->hw_ops->enable(counter)) {
424 counter->state = PERF_COUNTER_STATE_INACTIVE;
425 counter->oncpu = -1;
426 return -EAGAIN;
429 counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
431 if (!is_software_counter(counter))
432 cpuctx->active_oncpu++;
433 ctx->nr_active++;
435 if (counter->hw_event.exclusive)
436 cpuctx->exclusive = 1;
438 return 0;
442 * Return 1 for a group consisting entirely of software counters,
443 * 0 if the group contains any hardware counters.
445 static int is_software_only_group(struct perf_counter *leader)
447 struct perf_counter *counter;
449 if (!is_software_counter(leader))
450 return 0;
452 list_for_each_entry(counter, &leader->sibling_list, list_entry)
453 if (!is_software_counter(counter))
454 return 0;
456 return 1;
460 * Work out whether we can put this counter group on the CPU now.
462 static int group_can_go_on(struct perf_counter *counter,
463 struct perf_cpu_context *cpuctx,
464 int can_add_hw)
467 * Groups consisting entirely of software counters can always go on.
469 if (is_software_only_group(counter))
470 return 1;
472 * If an exclusive group is already on, no other hardware
473 * counters can go on.
475 if (cpuctx->exclusive)
476 return 0;
478 * If this group is exclusive and there are already
479 * counters on the CPU, it can't go on.
481 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
482 return 0;
484 * Otherwise, try to add it if all previous groups were able
485 * to go on.
487 return can_add_hw;
490 static void add_counter_to_ctx(struct perf_counter *counter,
491 struct perf_counter_context *ctx)
493 list_add_counter(counter, ctx);
494 ctx->nr_counters++;
495 counter->prev_state = PERF_COUNTER_STATE_OFF;
496 counter->tstamp_enabled = ctx->time_now;
497 counter->tstamp_running = ctx->time_now;
498 counter->tstamp_stopped = ctx->time_now;
502 * Cross CPU call to install and enable a performance counter
504 static void __perf_install_in_context(void *info)
506 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
507 struct perf_counter *counter = info;
508 struct perf_counter_context *ctx = counter->ctx;
509 struct perf_counter *leader = counter->group_leader;
510 int cpu = smp_processor_id();
511 unsigned long flags;
512 u64 perf_flags;
513 int err;
516 * If this is a task context, we need to check whether it is
517 * the current task context of this cpu. If not it has been
518 * scheduled out before the smp call arrived.
520 if (ctx->task && cpuctx->task_ctx != ctx)
521 return;
523 curr_rq_lock_irq_save(&flags);
524 spin_lock(&ctx->lock);
525 update_context_time(ctx, 1);
528 * Protect the list operation against NMI by disabling the
529 * counters on a global level. NOP for non NMI based counters.
531 perf_flags = hw_perf_save_disable();
533 add_counter_to_ctx(counter, ctx);
536 * Don't put the counter on if it is disabled or if
537 * it is in a group and the group isn't on.
539 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
540 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
541 goto unlock;
544 * An exclusive counter can't go on if there are already active
545 * hardware counters, and no hardware counter can go on if there
546 * is already an exclusive counter on.
548 if (!group_can_go_on(counter, cpuctx, 1))
549 err = -EEXIST;
550 else
551 err = counter_sched_in(counter, cpuctx, ctx, cpu);
553 if (err) {
555 * This counter couldn't go on. If it is in a group
556 * then we have to pull the whole group off.
557 * If the counter group is pinned then put it in error state.
559 if (leader != counter)
560 group_sched_out(leader, cpuctx, ctx);
561 if (leader->hw_event.pinned) {
562 update_group_times(leader);
563 leader->state = PERF_COUNTER_STATE_ERROR;
567 if (!err && !ctx->task && cpuctx->max_pertask)
568 cpuctx->max_pertask--;
570 unlock:
571 hw_perf_restore(perf_flags);
573 spin_unlock(&ctx->lock);
574 curr_rq_unlock_irq_restore(&flags);
578 * Attach a performance counter to a context
580 * First we add the counter to the list with the hardware enable bit
581 * in counter->hw_config cleared.
583 * If the counter is attached to a task which is on a CPU we use a smp
584 * call to enable it in the task context. The task might have been
585 * scheduled away, but we check this in the smp call again.
587 * Must be called with ctx->mutex held.
589 static void
590 perf_install_in_context(struct perf_counter_context *ctx,
591 struct perf_counter *counter,
592 int cpu)
594 struct task_struct *task = ctx->task;
596 if (!task) {
598 * Per cpu counters are installed via an smp call and
599 * the install is always sucessful.
601 smp_call_function_single(cpu, __perf_install_in_context,
602 counter, 1);
603 return;
606 counter->task = task;
607 retry:
608 task_oncpu_function_call(task, __perf_install_in_context,
609 counter);
611 spin_lock_irq(&ctx->lock);
613 * we need to retry the smp call.
615 if (ctx->is_active && list_empty(&counter->list_entry)) {
616 spin_unlock_irq(&ctx->lock);
617 goto retry;
621 * The lock prevents that this context is scheduled in so we
622 * can add the counter safely, if it the call above did not
623 * succeed.
625 if (list_empty(&counter->list_entry))
626 add_counter_to_ctx(counter, ctx);
627 spin_unlock_irq(&ctx->lock);
631 * Cross CPU call to enable a performance counter
633 static void __perf_counter_enable(void *info)
635 struct perf_counter *counter = info;
636 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
637 struct perf_counter_context *ctx = counter->ctx;
638 struct perf_counter *leader = counter->group_leader;
639 unsigned long flags;
640 int err;
643 * If this is a per-task counter, need to check whether this
644 * counter's task is the current task on this cpu.
646 if (ctx->task && cpuctx->task_ctx != ctx)
647 return;
649 curr_rq_lock_irq_save(&flags);
650 spin_lock(&ctx->lock);
651 update_context_time(ctx, 1);
653 counter->prev_state = counter->state;
654 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
655 goto unlock;
656 counter->state = PERF_COUNTER_STATE_INACTIVE;
657 counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
660 * If the counter is in a group and isn't the group leader,
661 * then don't put it on unless the group is on.
663 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
664 goto unlock;
666 if (!group_can_go_on(counter, cpuctx, 1))
667 err = -EEXIST;
668 else
669 err = counter_sched_in(counter, cpuctx, ctx,
670 smp_processor_id());
672 if (err) {
674 * If this counter can't go on and it's part of a
675 * group, then the whole group has to come off.
677 if (leader != counter)
678 group_sched_out(leader, cpuctx, ctx);
679 if (leader->hw_event.pinned) {
680 update_group_times(leader);
681 leader->state = PERF_COUNTER_STATE_ERROR;
685 unlock:
686 spin_unlock(&ctx->lock);
687 curr_rq_unlock_irq_restore(&flags);
691 * Enable a counter.
693 static void perf_counter_enable(struct perf_counter *counter)
695 struct perf_counter_context *ctx = counter->ctx;
696 struct task_struct *task = ctx->task;
698 if (!task) {
700 * Enable the counter on the cpu that it's on
702 smp_call_function_single(counter->cpu, __perf_counter_enable,
703 counter, 1);
704 return;
707 spin_lock_irq(&ctx->lock);
708 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
709 goto out;
712 * If the counter is in error state, clear that first.
713 * That way, if we see the counter in error state below, we
714 * know that it has gone back into error state, as distinct
715 * from the task having been scheduled away before the
716 * cross-call arrived.
718 if (counter->state == PERF_COUNTER_STATE_ERROR)
719 counter->state = PERF_COUNTER_STATE_OFF;
721 retry:
722 spin_unlock_irq(&ctx->lock);
723 task_oncpu_function_call(task, __perf_counter_enable, counter);
725 spin_lock_irq(&ctx->lock);
728 * If the context is active and the counter is still off,
729 * we need to retry the cross-call.
731 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
732 goto retry;
735 * Since we have the lock this context can't be scheduled
736 * in, so we can change the state safely.
738 if (counter->state == PERF_COUNTER_STATE_OFF) {
739 counter->state = PERF_COUNTER_STATE_INACTIVE;
740 counter->tstamp_enabled = ctx->time_now -
741 counter->total_time_enabled;
743 out:
744 spin_unlock_irq(&ctx->lock);
747 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
749 atomic_add(refresh, &counter->event_limit);
750 perf_counter_enable(counter);
754 * Enable a counter and all its children.
756 static void perf_counter_enable_family(struct perf_counter *counter)
758 struct perf_counter *child;
760 perf_counter_enable(counter);
763 * Lock the mutex to protect the list of children
765 mutex_lock(&counter->mutex);
766 list_for_each_entry(child, &counter->child_list, child_list)
767 perf_counter_enable(child);
768 mutex_unlock(&counter->mutex);
771 void __perf_counter_sched_out(struct perf_counter_context *ctx,
772 struct perf_cpu_context *cpuctx)
774 struct perf_counter *counter;
775 u64 flags;
777 spin_lock(&ctx->lock);
778 ctx->is_active = 0;
779 if (likely(!ctx->nr_counters))
780 goto out;
781 update_context_time(ctx, 0);
783 flags = hw_perf_save_disable();
784 if (ctx->nr_active) {
785 list_for_each_entry(counter, &ctx->counter_list, list_entry)
786 group_sched_out(counter, cpuctx, ctx);
788 hw_perf_restore(flags);
789 out:
790 spin_unlock(&ctx->lock);
794 * Called from scheduler to remove the counters of the current task,
795 * with interrupts disabled.
797 * We stop each counter and update the counter value in counter->count.
799 * This does not protect us against NMI, but disable()
800 * sets the disabled bit in the control field of counter _before_
801 * accessing the counter control register. If a NMI hits, then it will
802 * not restart the counter.
804 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
806 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
807 struct perf_counter_context *ctx = &task->perf_counter_ctx;
808 struct pt_regs *regs;
810 if (likely(!cpuctx->task_ctx))
811 return;
813 regs = task_pt_regs(task);
814 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
815 __perf_counter_sched_out(ctx, cpuctx);
817 cpuctx->task_ctx = NULL;
820 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
822 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
825 static int
826 group_sched_in(struct perf_counter *group_counter,
827 struct perf_cpu_context *cpuctx,
828 struct perf_counter_context *ctx,
829 int cpu)
831 struct perf_counter *counter, *partial_group;
832 int ret;
834 if (group_counter->state == PERF_COUNTER_STATE_OFF)
835 return 0;
837 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
838 if (ret)
839 return ret < 0 ? ret : 0;
841 group_counter->prev_state = group_counter->state;
842 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
843 return -EAGAIN;
846 * Schedule in siblings as one group (if any):
848 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
849 counter->prev_state = counter->state;
850 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
851 partial_group = counter;
852 goto group_error;
856 return 0;
858 group_error:
860 * Groups can be scheduled in as one unit only, so undo any
861 * partial group before returning:
863 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
864 if (counter == partial_group)
865 break;
866 counter_sched_out(counter, cpuctx, ctx);
868 counter_sched_out(group_counter, cpuctx, ctx);
870 return -EAGAIN;
873 static void
874 __perf_counter_sched_in(struct perf_counter_context *ctx,
875 struct perf_cpu_context *cpuctx, int cpu)
877 struct perf_counter *counter;
878 u64 flags;
879 int can_add_hw = 1;
881 spin_lock(&ctx->lock);
882 ctx->is_active = 1;
883 if (likely(!ctx->nr_counters))
884 goto out;
887 * Add any time since the last sched_out to the lost time
888 * so it doesn't get included in the total_time_enabled and
889 * total_time_running measures for counters in the context.
891 ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
893 flags = hw_perf_save_disable();
896 * First go through the list and put on any pinned groups
897 * in order to give them the best chance of going on.
899 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900 if (counter->state <= PERF_COUNTER_STATE_OFF ||
901 !counter->hw_event.pinned)
902 continue;
903 if (counter->cpu != -1 && counter->cpu != cpu)
904 continue;
906 if (group_can_go_on(counter, cpuctx, 1))
907 group_sched_in(counter, cpuctx, ctx, cpu);
910 * If this pinned group hasn't been scheduled,
911 * put it in error state.
913 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
914 update_group_times(counter);
915 counter->state = PERF_COUNTER_STATE_ERROR;
919 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
921 * Ignore counters in OFF or ERROR state, and
922 * ignore pinned counters since we did them already.
924 if (counter->state <= PERF_COUNTER_STATE_OFF ||
925 counter->hw_event.pinned)
926 continue;
929 * Listen to the 'cpu' scheduling filter constraint
930 * of counters:
932 if (counter->cpu != -1 && counter->cpu != cpu)
933 continue;
935 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936 if (group_sched_in(counter, cpuctx, ctx, cpu))
937 can_add_hw = 0;
940 hw_perf_restore(flags);
941 out:
942 spin_unlock(&ctx->lock);
946 * Called from scheduler to add the counters of the current task
947 * with interrupts disabled.
949 * We restore the counter value and then enable it.
951 * This does not protect us against NMI, but enable()
952 * sets the enabled bit in the control field of counter _before_
953 * accessing the counter control register. If a NMI hits, then it will
954 * keep the counter running.
956 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
958 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
959 struct perf_counter_context *ctx = &task->perf_counter_ctx;
961 __perf_counter_sched_in(ctx, cpuctx, cpu);
962 cpuctx->task_ctx = ctx;
965 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
967 struct perf_counter_context *ctx = &cpuctx->ctx;
969 __perf_counter_sched_in(ctx, cpuctx, cpu);
972 int perf_counter_task_disable(void)
974 struct task_struct *curr = current;
975 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
976 struct perf_counter *counter;
977 unsigned long flags;
978 u64 perf_flags;
979 int cpu;
981 if (likely(!ctx->nr_counters))
982 return 0;
984 curr_rq_lock_irq_save(&flags);
985 cpu = smp_processor_id();
987 /* force the update of the task clock: */
988 __task_delta_exec(curr, 1);
990 perf_counter_task_sched_out(curr, cpu);
992 spin_lock(&ctx->lock);
995 * Disable all the counters:
997 perf_flags = hw_perf_save_disable();
999 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1000 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1001 update_group_times(counter);
1002 counter->state = PERF_COUNTER_STATE_OFF;
1006 hw_perf_restore(perf_flags);
1008 spin_unlock(&ctx->lock);
1010 curr_rq_unlock_irq_restore(&flags);
1012 return 0;
1015 int perf_counter_task_enable(void)
1017 struct task_struct *curr = current;
1018 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1019 struct perf_counter *counter;
1020 unsigned long flags;
1021 u64 perf_flags;
1022 int cpu;
1024 if (likely(!ctx->nr_counters))
1025 return 0;
1027 curr_rq_lock_irq_save(&flags);
1028 cpu = smp_processor_id();
1030 /* force the update of the task clock: */
1031 __task_delta_exec(curr, 1);
1033 perf_counter_task_sched_out(curr, cpu);
1035 spin_lock(&ctx->lock);
1038 * Disable all the counters:
1040 perf_flags = hw_perf_save_disable();
1042 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1043 if (counter->state > PERF_COUNTER_STATE_OFF)
1044 continue;
1045 counter->state = PERF_COUNTER_STATE_INACTIVE;
1046 counter->tstamp_enabled = ctx->time_now -
1047 counter->total_time_enabled;
1048 counter->hw_event.disabled = 0;
1050 hw_perf_restore(perf_flags);
1052 spin_unlock(&ctx->lock);
1054 perf_counter_task_sched_in(curr, cpu);
1056 curr_rq_unlock_irq_restore(&flags);
1058 return 0;
1062 * Round-robin a context's counters:
1064 static void rotate_ctx(struct perf_counter_context *ctx)
1066 struct perf_counter *counter;
1067 u64 perf_flags;
1069 if (!ctx->nr_counters)
1070 return;
1072 spin_lock(&ctx->lock);
1074 * Rotate the first entry last (works just fine for group counters too):
1076 perf_flags = hw_perf_save_disable();
1077 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1078 list_move_tail(&counter->list_entry, &ctx->counter_list);
1079 break;
1081 hw_perf_restore(perf_flags);
1083 spin_unlock(&ctx->lock);
1086 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1088 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1089 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1090 const int rotate_percpu = 0;
1092 if (rotate_percpu)
1093 perf_counter_cpu_sched_out(cpuctx);
1094 perf_counter_task_sched_out(curr, cpu);
1096 if (rotate_percpu)
1097 rotate_ctx(&cpuctx->ctx);
1098 rotate_ctx(ctx);
1100 if (rotate_percpu)
1101 perf_counter_cpu_sched_in(cpuctx, cpu);
1102 perf_counter_task_sched_in(curr, cpu);
1106 * Cross CPU call to read the hardware counter
1108 static void __read(void *info)
1110 struct perf_counter *counter = info;
1111 struct perf_counter_context *ctx = counter->ctx;
1112 unsigned long flags;
1114 curr_rq_lock_irq_save(&flags);
1115 if (ctx->is_active)
1116 update_context_time(ctx, 1);
1117 counter->hw_ops->read(counter);
1118 update_counter_times(counter);
1119 curr_rq_unlock_irq_restore(&flags);
1122 static u64 perf_counter_read(struct perf_counter *counter)
1125 * If counter is enabled and currently active on a CPU, update the
1126 * value in the counter structure:
1128 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1129 smp_call_function_single(counter->oncpu,
1130 __read, counter, 1);
1131 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1132 update_counter_times(counter);
1135 return atomic64_read(&counter->count);
1138 static void put_context(struct perf_counter_context *ctx)
1140 if (ctx->task)
1141 put_task_struct(ctx->task);
1144 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1146 struct perf_cpu_context *cpuctx;
1147 struct perf_counter_context *ctx;
1148 struct task_struct *task;
1151 * If cpu is not a wildcard then this is a percpu counter:
1153 if (cpu != -1) {
1154 /* Must be root to operate on a CPU counter: */
1155 if (!capable(CAP_SYS_ADMIN))
1156 return ERR_PTR(-EACCES);
1158 if (cpu < 0 || cpu > num_possible_cpus())
1159 return ERR_PTR(-EINVAL);
1162 * We could be clever and allow to attach a counter to an
1163 * offline CPU and activate it when the CPU comes up, but
1164 * that's for later.
1166 if (!cpu_isset(cpu, cpu_online_map))
1167 return ERR_PTR(-ENODEV);
1169 cpuctx = &per_cpu(perf_cpu_context, cpu);
1170 ctx = &cpuctx->ctx;
1172 return ctx;
1175 rcu_read_lock();
1176 if (!pid)
1177 task = current;
1178 else
1179 task = find_task_by_vpid(pid);
1180 if (task)
1181 get_task_struct(task);
1182 rcu_read_unlock();
1184 if (!task)
1185 return ERR_PTR(-ESRCH);
1187 ctx = &task->perf_counter_ctx;
1188 ctx->task = task;
1190 /* Reuse ptrace permission checks for now. */
1191 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1192 put_context(ctx);
1193 return ERR_PTR(-EACCES);
1196 return ctx;
1199 static void free_counter_rcu(struct rcu_head *head)
1201 struct perf_counter *counter;
1203 counter = container_of(head, struct perf_counter, rcu_head);
1204 kfree(counter);
1207 static void perf_pending_sync(struct perf_counter *counter);
1209 static void free_counter(struct perf_counter *counter)
1211 perf_pending_sync(counter);
1213 if (counter->destroy)
1214 counter->destroy(counter);
1216 call_rcu(&counter->rcu_head, free_counter_rcu);
1220 * Called when the last reference to the file is gone.
1222 static int perf_release(struct inode *inode, struct file *file)
1224 struct perf_counter *counter = file->private_data;
1225 struct perf_counter_context *ctx = counter->ctx;
1227 file->private_data = NULL;
1229 mutex_lock(&ctx->mutex);
1230 mutex_lock(&counter->mutex);
1232 perf_counter_remove_from_context(counter);
1234 mutex_unlock(&counter->mutex);
1235 mutex_unlock(&ctx->mutex);
1237 free_counter(counter);
1238 put_context(ctx);
1240 return 0;
1244 * Read the performance counter - simple non blocking version for now
1246 static ssize_t
1247 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1249 u64 values[3];
1250 int n;
1253 * Return end-of-file for a read on a counter that is in
1254 * error state (i.e. because it was pinned but it couldn't be
1255 * scheduled on to the CPU at some point).
1257 if (counter->state == PERF_COUNTER_STATE_ERROR)
1258 return 0;
1260 mutex_lock(&counter->mutex);
1261 values[0] = perf_counter_read(counter);
1262 n = 1;
1263 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1264 values[n++] = counter->total_time_enabled +
1265 atomic64_read(&counter->child_total_time_enabled);
1266 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1267 values[n++] = counter->total_time_running +
1268 atomic64_read(&counter->child_total_time_running);
1269 mutex_unlock(&counter->mutex);
1271 if (count < n * sizeof(u64))
1272 return -EINVAL;
1273 count = n * sizeof(u64);
1275 if (copy_to_user(buf, values, count))
1276 return -EFAULT;
1278 return count;
1281 static ssize_t
1282 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1284 struct perf_counter *counter = file->private_data;
1286 return perf_read_hw(counter, buf, count);
1289 static unsigned int perf_poll(struct file *file, poll_table *wait)
1291 struct perf_counter *counter = file->private_data;
1292 struct perf_mmap_data *data;
1293 unsigned int events;
1295 rcu_read_lock();
1296 data = rcu_dereference(counter->data);
1297 if (data)
1298 events = atomic_xchg(&data->wakeup, 0);
1299 else
1300 events = POLL_HUP;
1301 rcu_read_unlock();
1303 poll_wait(file, &counter->waitq, wait);
1305 return events;
1308 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1310 struct perf_counter *counter = file->private_data;
1311 int err = 0;
1313 switch (cmd) {
1314 case PERF_COUNTER_IOC_ENABLE:
1315 perf_counter_enable_family(counter);
1316 break;
1317 case PERF_COUNTER_IOC_DISABLE:
1318 perf_counter_disable_family(counter);
1319 break;
1320 case PERF_COUNTER_IOC_REFRESH:
1321 perf_counter_refresh(counter, arg);
1322 break;
1323 default:
1324 err = -ENOTTY;
1326 return err;
1330 * Callers need to ensure there can be no nesting of this function, otherwise
1331 * the seqlock logic goes bad. We can not serialize this because the arch
1332 * code calls this from NMI context.
1334 void perf_counter_update_userpage(struct perf_counter *counter)
1336 struct perf_mmap_data *data;
1337 struct perf_counter_mmap_page *userpg;
1339 rcu_read_lock();
1340 data = rcu_dereference(counter->data);
1341 if (!data)
1342 goto unlock;
1344 userpg = data->user_page;
1347 * Disable preemption so as to not let the corresponding user-space
1348 * spin too long if we get preempted.
1350 preempt_disable();
1351 ++userpg->lock;
1352 barrier();
1353 userpg->index = counter->hw.idx;
1354 userpg->offset = atomic64_read(&counter->count);
1355 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1356 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1358 barrier();
1359 ++userpg->lock;
1360 preempt_enable();
1361 unlock:
1362 rcu_read_unlock();
1365 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1367 struct perf_counter *counter = vma->vm_file->private_data;
1368 struct perf_mmap_data *data;
1369 int ret = VM_FAULT_SIGBUS;
1371 rcu_read_lock();
1372 data = rcu_dereference(counter->data);
1373 if (!data)
1374 goto unlock;
1376 if (vmf->pgoff == 0) {
1377 vmf->page = virt_to_page(data->user_page);
1378 } else {
1379 int nr = vmf->pgoff - 1;
1381 if ((unsigned)nr > data->nr_pages)
1382 goto unlock;
1384 vmf->page = virt_to_page(data->data_pages[nr]);
1386 get_page(vmf->page);
1387 ret = 0;
1388 unlock:
1389 rcu_read_unlock();
1391 return ret;
1394 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1396 struct perf_mmap_data *data;
1397 unsigned long size;
1398 int i;
1400 WARN_ON(atomic_read(&counter->mmap_count));
1402 size = sizeof(struct perf_mmap_data);
1403 size += nr_pages * sizeof(void *);
1405 data = kzalloc(size, GFP_KERNEL);
1406 if (!data)
1407 goto fail;
1409 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1410 if (!data->user_page)
1411 goto fail_user_page;
1413 for (i = 0; i < nr_pages; i++) {
1414 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1415 if (!data->data_pages[i])
1416 goto fail_data_pages;
1419 data->nr_pages = nr_pages;
1421 rcu_assign_pointer(counter->data, data);
1423 return 0;
1425 fail_data_pages:
1426 for (i--; i >= 0; i--)
1427 free_page((unsigned long)data->data_pages[i]);
1429 free_page((unsigned long)data->user_page);
1431 fail_user_page:
1432 kfree(data);
1434 fail:
1435 return -ENOMEM;
1438 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1440 struct perf_mmap_data *data = container_of(rcu_head,
1441 struct perf_mmap_data, rcu_head);
1442 int i;
1444 free_page((unsigned long)data->user_page);
1445 for (i = 0; i < data->nr_pages; i++)
1446 free_page((unsigned long)data->data_pages[i]);
1447 kfree(data);
1450 static void perf_mmap_data_free(struct perf_counter *counter)
1452 struct perf_mmap_data *data = counter->data;
1454 WARN_ON(atomic_read(&counter->mmap_count));
1456 rcu_assign_pointer(counter->data, NULL);
1457 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1460 static void perf_mmap_open(struct vm_area_struct *vma)
1462 struct perf_counter *counter = vma->vm_file->private_data;
1464 atomic_inc(&counter->mmap_count);
1467 static void perf_mmap_close(struct vm_area_struct *vma)
1469 struct perf_counter *counter = vma->vm_file->private_data;
1471 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1472 &counter->mmap_mutex)) {
1473 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1474 perf_mmap_data_free(counter);
1475 mutex_unlock(&counter->mmap_mutex);
1479 static struct vm_operations_struct perf_mmap_vmops = {
1480 .open = perf_mmap_open,
1481 .close = perf_mmap_close,
1482 .fault = perf_mmap_fault,
1485 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1487 struct perf_counter *counter = file->private_data;
1488 unsigned long vma_size;
1489 unsigned long nr_pages;
1490 unsigned long locked, lock_limit;
1491 int ret = 0;
1493 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1494 return -EINVAL;
1496 vma_size = vma->vm_end - vma->vm_start;
1497 nr_pages = (vma_size / PAGE_SIZE) - 1;
1500 * If we have data pages ensure they're a power-of-two number, so we
1501 * can do bitmasks instead of modulo.
1503 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1504 return -EINVAL;
1506 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1507 return -EINVAL;
1509 if (vma->vm_pgoff != 0)
1510 return -EINVAL;
1512 mutex_lock(&counter->mmap_mutex);
1513 if (atomic_inc_not_zero(&counter->mmap_count)) {
1514 if (nr_pages != counter->data->nr_pages)
1515 ret = -EINVAL;
1516 goto unlock;
1519 locked = vma->vm_mm->locked_vm;
1520 locked += nr_pages + 1;
1522 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1523 lock_limit >>= PAGE_SHIFT;
1525 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1526 ret = -EPERM;
1527 goto unlock;
1530 WARN_ON(counter->data);
1531 ret = perf_mmap_data_alloc(counter, nr_pages);
1532 if (ret)
1533 goto unlock;
1535 atomic_set(&counter->mmap_count, 1);
1536 vma->vm_mm->locked_vm += nr_pages + 1;
1537 unlock:
1538 mutex_unlock(&counter->mmap_mutex);
1540 vma->vm_flags &= ~VM_MAYWRITE;
1541 vma->vm_flags |= VM_RESERVED;
1542 vma->vm_ops = &perf_mmap_vmops;
1544 return ret;
1547 static int perf_fasync(int fd, struct file *filp, int on)
1549 struct perf_counter *counter = filp->private_data;
1550 struct inode *inode = filp->f_path.dentry->d_inode;
1551 int retval;
1553 mutex_lock(&inode->i_mutex);
1554 retval = fasync_helper(fd, filp, on, &counter->fasync);
1555 mutex_unlock(&inode->i_mutex);
1557 if (retval < 0)
1558 return retval;
1560 return 0;
1563 static const struct file_operations perf_fops = {
1564 .release = perf_release,
1565 .read = perf_read,
1566 .poll = perf_poll,
1567 .unlocked_ioctl = perf_ioctl,
1568 .compat_ioctl = perf_ioctl,
1569 .mmap = perf_mmap,
1570 .fasync = perf_fasync,
1574 * Perf counter wakeup
1576 * If there's data, ensure we set the poll() state and publish everything
1577 * to user-space before waking everybody up.
1580 void perf_counter_wakeup(struct perf_counter *counter)
1582 struct perf_mmap_data *data;
1584 rcu_read_lock();
1585 data = rcu_dereference(counter->data);
1586 if (data) {
1587 atomic_set(&data->wakeup, POLL_IN);
1589 * Ensure all data writes are issued before updating the
1590 * user-space data head information. The matching rmb()
1591 * will be in userspace after reading this value.
1593 smp_wmb();
1594 data->user_page->data_head = atomic_read(&data->head);
1596 rcu_read_unlock();
1598 wake_up_all(&counter->waitq);
1600 if (counter->pending_kill) {
1601 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1602 counter->pending_kill = 0;
1607 * Pending wakeups
1609 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1611 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1612 * single linked list and use cmpxchg() to add entries lockless.
1615 static void perf_pending_counter(struct perf_pending_entry *entry)
1617 struct perf_counter *counter = container_of(entry,
1618 struct perf_counter, pending);
1620 if (counter->pending_disable) {
1621 counter->pending_disable = 0;
1622 perf_counter_disable(counter);
1625 if (counter->pending_wakeup) {
1626 counter->pending_wakeup = 0;
1627 perf_counter_wakeup(counter);
1631 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1633 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1634 PENDING_TAIL,
1637 static void perf_pending_queue(struct perf_pending_entry *entry,
1638 void (*func)(struct perf_pending_entry *))
1640 struct perf_pending_entry **head;
1642 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1643 return;
1645 entry->func = func;
1647 head = &get_cpu_var(perf_pending_head);
1649 do {
1650 entry->next = *head;
1651 } while (cmpxchg(head, entry->next, entry) != entry->next);
1653 set_perf_counter_pending();
1655 put_cpu_var(perf_pending_head);
1658 static int __perf_pending_run(void)
1660 struct perf_pending_entry *list;
1661 int nr = 0;
1663 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1664 while (list != PENDING_TAIL) {
1665 void (*func)(struct perf_pending_entry *);
1666 struct perf_pending_entry *entry = list;
1668 list = list->next;
1670 func = entry->func;
1671 entry->next = NULL;
1673 * Ensure we observe the unqueue before we issue the wakeup,
1674 * so that we won't be waiting forever.
1675 * -- see perf_not_pending().
1677 smp_wmb();
1679 func(entry);
1680 nr++;
1683 return nr;
1686 static inline int perf_not_pending(struct perf_counter *counter)
1689 * If we flush on whatever cpu we run, there is a chance we don't
1690 * need to wait.
1692 get_cpu();
1693 __perf_pending_run();
1694 put_cpu();
1697 * Ensure we see the proper queue state before going to sleep
1698 * so that we do not miss the wakeup. -- see perf_pending_handle()
1700 smp_rmb();
1701 return counter->pending.next == NULL;
1704 static void perf_pending_sync(struct perf_counter *counter)
1706 wait_event(counter->waitq, perf_not_pending(counter));
1709 void perf_counter_do_pending(void)
1711 __perf_pending_run();
1715 * Callchain support -- arch specific
1718 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1720 return NULL;
1724 * Output
1727 struct perf_output_handle {
1728 struct perf_counter *counter;
1729 struct perf_mmap_data *data;
1730 unsigned int offset;
1731 unsigned int head;
1732 int wakeup;
1733 int nmi;
1734 int overflow;
1737 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1739 if (handle->nmi) {
1740 handle->counter->pending_wakeup = 1;
1741 perf_pending_queue(&handle->counter->pending,
1742 perf_pending_counter);
1743 } else
1744 perf_counter_wakeup(handle->counter);
1747 static int perf_output_begin(struct perf_output_handle *handle,
1748 struct perf_counter *counter, unsigned int size,
1749 int nmi, int overflow)
1751 struct perf_mmap_data *data;
1752 unsigned int offset, head;
1754 rcu_read_lock();
1755 data = rcu_dereference(counter->data);
1756 if (!data)
1757 goto out;
1759 handle->counter = counter;
1760 handle->nmi = nmi;
1761 handle->overflow = overflow;
1763 if (!data->nr_pages)
1764 goto fail;
1766 do {
1767 offset = head = atomic_read(&data->head);
1768 head += size;
1769 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1771 handle->data = data;
1772 handle->offset = offset;
1773 handle->head = head;
1774 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1776 return 0;
1778 fail:
1779 __perf_output_wakeup(handle);
1780 out:
1781 rcu_read_unlock();
1783 return -ENOSPC;
1786 static void perf_output_copy(struct perf_output_handle *handle,
1787 void *buf, unsigned int len)
1789 unsigned int pages_mask;
1790 unsigned int offset;
1791 unsigned int size;
1792 void **pages;
1794 offset = handle->offset;
1795 pages_mask = handle->data->nr_pages - 1;
1796 pages = handle->data->data_pages;
1798 do {
1799 unsigned int page_offset;
1800 int nr;
1802 nr = (offset >> PAGE_SHIFT) & pages_mask;
1803 page_offset = offset & (PAGE_SIZE - 1);
1804 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1806 memcpy(pages[nr] + page_offset, buf, size);
1808 len -= size;
1809 buf += size;
1810 offset += size;
1811 } while (len);
1813 handle->offset = offset;
1815 WARN_ON_ONCE(handle->offset > handle->head);
1818 #define perf_output_put(handle, x) \
1819 perf_output_copy((handle), &(x), sizeof(x))
1821 static void perf_output_end(struct perf_output_handle *handle)
1823 int wakeup_events = handle->counter->hw_event.wakeup_events;
1825 if (handle->overflow && wakeup_events) {
1826 int events = atomic_inc_return(&handle->data->events);
1827 if (events >= wakeup_events) {
1828 atomic_sub(wakeup_events, &handle->data->events);
1829 __perf_output_wakeup(handle);
1831 } else if (handle->wakeup)
1832 __perf_output_wakeup(handle);
1833 rcu_read_unlock();
1836 static void perf_counter_output(struct perf_counter *counter,
1837 int nmi, struct pt_regs *regs)
1839 int ret;
1840 u64 record_type = counter->hw_event.record_type;
1841 struct perf_output_handle handle;
1842 struct perf_event_header header;
1843 u64 ip;
1844 struct {
1845 u32 pid, tid;
1846 } tid_entry;
1847 struct {
1848 u64 event;
1849 u64 counter;
1850 } group_entry;
1851 struct perf_callchain_entry *callchain = NULL;
1852 int callchain_size = 0;
1853 u64 time;
1855 header.type = PERF_EVENT_COUNTER_OVERFLOW;
1856 header.size = sizeof(header);
1858 if (record_type & PERF_RECORD_IP) {
1859 ip = instruction_pointer(regs);
1860 header.type |= __PERF_EVENT_IP;
1861 header.size += sizeof(ip);
1864 if (record_type & PERF_RECORD_TID) {
1865 /* namespace issues */
1866 tid_entry.pid = current->group_leader->pid;
1867 tid_entry.tid = current->pid;
1869 header.type |= __PERF_EVENT_TID;
1870 header.size += sizeof(tid_entry);
1873 if (record_type & PERF_RECORD_GROUP) {
1874 header.type |= __PERF_EVENT_GROUP;
1875 header.size += sizeof(u64) +
1876 counter->nr_siblings * sizeof(group_entry);
1879 if (record_type & PERF_RECORD_CALLCHAIN) {
1880 callchain = perf_callchain(regs);
1882 if (callchain) {
1883 callchain_size = (1 + callchain->nr) * sizeof(u64);
1885 header.type |= __PERF_EVENT_CALLCHAIN;
1886 header.size += callchain_size;
1890 if (record_type & PERF_RECORD_TIME) {
1892 * Maybe do better on x86 and provide cpu_clock_nmi()
1894 time = sched_clock();
1896 header.type |= __PERF_EVENT_TIME;
1897 header.size += sizeof(u64);
1900 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1901 if (ret)
1902 return;
1904 perf_output_put(&handle, header);
1906 if (record_type & PERF_RECORD_IP)
1907 perf_output_put(&handle, ip);
1909 if (record_type & PERF_RECORD_TID)
1910 perf_output_put(&handle, tid_entry);
1912 if (record_type & PERF_RECORD_GROUP) {
1913 struct perf_counter *leader, *sub;
1914 u64 nr = counter->nr_siblings;
1916 perf_output_put(&handle, nr);
1918 leader = counter->group_leader;
1919 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1920 if (sub != counter)
1921 sub->hw_ops->read(sub);
1923 group_entry.event = sub->hw_event.config;
1924 group_entry.counter = atomic64_read(&sub->count);
1926 perf_output_put(&handle, group_entry);
1930 if (callchain)
1931 perf_output_copy(&handle, callchain, callchain_size);
1933 if (record_type & PERF_RECORD_TIME)
1934 perf_output_put(&handle, time);
1936 perf_output_end(&handle);
1940 * mmap tracking
1943 struct perf_mmap_event {
1944 struct file *file;
1945 char *file_name;
1946 int file_size;
1948 struct {
1949 struct perf_event_header header;
1951 u32 pid;
1952 u32 tid;
1953 u64 start;
1954 u64 len;
1955 u64 pgoff;
1956 } event;
1959 static void perf_counter_mmap_output(struct perf_counter *counter,
1960 struct perf_mmap_event *mmap_event)
1962 struct perf_output_handle handle;
1963 int size = mmap_event->event.header.size;
1964 int ret = perf_output_begin(&handle, counter, size, 0, 0);
1966 if (ret)
1967 return;
1969 perf_output_put(&handle, mmap_event->event);
1970 perf_output_copy(&handle, mmap_event->file_name,
1971 mmap_event->file_size);
1972 perf_output_end(&handle);
1975 static int perf_counter_mmap_match(struct perf_counter *counter,
1976 struct perf_mmap_event *mmap_event)
1978 if (counter->hw_event.mmap &&
1979 mmap_event->event.header.type == PERF_EVENT_MMAP)
1980 return 1;
1982 if (counter->hw_event.munmap &&
1983 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1984 return 1;
1986 return 0;
1989 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1990 struct perf_mmap_event *mmap_event)
1992 struct perf_counter *counter;
1994 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1995 return;
1997 rcu_read_lock();
1998 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1999 if (perf_counter_mmap_match(counter, mmap_event))
2000 perf_counter_mmap_output(counter, mmap_event);
2002 rcu_read_unlock();
2005 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2007 struct perf_cpu_context *cpuctx;
2008 struct file *file = mmap_event->file;
2009 unsigned int size;
2010 char tmp[16];
2011 char *buf = NULL;
2012 char *name;
2014 if (file) {
2015 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2016 if (!buf) {
2017 name = strncpy(tmp, "//enomem", sizeof(tmp));
2018 goto got_name;
2020 name = dentry_path(file->f_dentry, buf, PATH_MAX);
2021 if (IS_ERR(name)) {
2022 name = strncpy(tmp, "//toolong", sizeof(tmp));
2023 goto got_name;
2025 } else {
2026 name = strncpy(tmp, "//anon", sizeof(tmp));
2027 goto got_name;
2030 got_name:
2031 size = ALIGN(strlen(name), sizeof(u64));
2033 mmap_event->file_name = name;
2034 mmap_event->file_size = size;
2036 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2038 cpuctx = &get_cpu_var(perf_cpu_context);
2039 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2040 put_cpu_var(perf_cpu_context);
2042 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2044 kfree(buf);
2047 void perf_counter_mmap(unsigned long addr, unsigned long len,
2048 unsigned long pgoff, struct file *file)
2050 struct perf_mmap_event mmap_event = {
2051 .file = file,
2052 .event = {
2053 .header = { .type = PERF_EVENT_MMAP, },
2054 .pid = current->group_leader->pid,
2055 .tid = current->pid,
2056 .start = addr,
2057 .len = len,
2058 .pgoff = pgoff,
2062 perf_counter_mmap_event(&mmap_event);
2065 void perf_counter_munmap(unsigned long addr, unsigned long len,
2066 unsigned long pgoff, struct file *file)
2068 struct perf_mmap_event mmap_event = {
2069 .file = file,
2070 .event = {
2071 .header = { .type = PERF_EVENT_MUNMAP, },
2072 .pid = current->group_leader->pid,
2073 .tid = current->pid,
2074 .start = addr,
2075 .len = len,
2076 .pgoff = pgoff,
2080 perf_counter_mmap_event(&mmap_event);
2084 * Generic counter overflow handling.
2087 int perf_counter_overflow(struct perf_counter *counter,
2088 int nmi, struct pt_regs *regs)
2090 int events = atomic_read(&counter->event_limit);
2091 int ret = 0;
2093 counter->pending_kill = POLL_IN;
2094 if (events && atomic_dec_and_test(&counter->event_limit)) {
2095 ret = 1;
2096 counter->pending_kill = POLL_HUP;
2097 if (nmi) {
2098 counter->pending_disable = 1;
2099 perf_pending_queue(&counter->pending,
2100 perf_pending_counter);
2101 } else
2102 perf_counter_disable(counter);
2105 perf_counter_output(counter, nmi, regs);
2106 return ret;
2110 * Generic software counter infrastructure
2113 static void perf_swcounter_update(struct perf_counter *counter)
2115 struct hw_perf_counter *hwc = &counter->hw;
2116 u64 prev, now;
2117 s64 delta;
2119 again:
2120 prev = atomic64_read(&hwc->prev_count);
2121 now = atomic64_read(&hwc->count);
2122 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2123 goto again;
2125 delta = now - prev;
2127 atomic64_add(delta, &counter->count);
2128 atomic64_sub(delta, &hwc->period_left);
2131 static void perf_swcounter_set_period(struct perf_counter *counter)
2133 struct hw_perf_counter *hwc = &counter->hw;
2134 s64 left = atomic64_read(&hwc->period_left);
2135 s64 period = hwc->irq_period;
2137 if (unlikely(left <= -period)) {
2138 left = period;
2139 atomic64_set(&hwc->period_left, left);
2142 if (unlikely(left <= 0)) {
2143 left += period;
2144 atomic64_add(period, &hwc->period_left);
2147 atomic64_set(&hwc->prev_count, -left);
2148 atomic64_set(&hwc->count, -left);
2151 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2153 enum hrtimer_restart ret = HRTIMER_RESTART;
2154 struct perf_counter *counter;
2155 struct pt_regs *regs;
2157 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2158 counter->hw_ops->read(counter);
2160 regs = get_irq_regs();
2162 * In case we exclude kernel IPs or are somehow not in interrupt
2163 * context, provide the next best thing, the user IP.
2165 if ((counter->hw_event.exclude_kernel || !regs) &&
2166 !counter->hw_event.exclude_user)
2167 regs = task_pt_regs(current);
2169 if (regs) {
2170 if (perf_counter_overflow(counter, 0, regs))
2171 ret = HRTIMER_NORESTART;
2174 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2176 return ret;
2179 static void perf_swcounter_overflow(struct perf_counter *counter,
2180 int nmi, struct pt_regs *regs)
2182 perf_swcounter_update(counter);
2183 perf_swcounter_set_period(counter);
2184 if (perf_counter_overflow(counter, nmi, regs))
2185 /* soft-disable the counter */
2190 static int perf_swcounter_match(struct perf_counter *counter,
2191 enum perf_event_types type,
2192 u32 event, struct pt_regs *regs)
2194 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2195 return 0;
2197 if (perf_event_raw(&counter->hw_event))
2198 return 0;
2200 if (perf_event_type(&counter->hw_event) != type)
2201 return 0;
2203 if (perf_event_id(&counter->hw_event) != event)
2204 return 0;
2206 if (counter->hw_event.exclude_user && user_mode(regs))
2207 return 0;
2209 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2210 return 0;
2212 return 1;
2215 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2216 int nmi, struct pt_regs *regs)
2218 int neg = atomic64_add_negative(nr, &counter->hw.count);
2219 if (counter->hw.irq_period && !neg)
2220 perf_swcounter_overflow(counter, nmi, regs);
2223 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2224 enum perf_event_types type, u32 event,
2225 u64 nr, int nmi, struct pt_regs *regs)
2227 struct perf_counter *counter;
2229 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2230 return;
2232 rcu_read_lock();
2233 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2234 if (perf_swcounter_match(counter, type, event, regs))
2235 perf_swcounter_add(counter, nr, nmi, regs);
2237 rcu_read_unlock();
2240 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2242 if (in_nmi())
2243 return &cpuctx->recursion[3];
2245 if (in_irq())
2246 return &cpuctx->recursion[2];
2248 if (in_softirq())
2249 return &cpuctx->recursion[1];
2251 return &cpuctx->recursion[0];
2254 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2255 u64 nr, int nmi, struct pt_regs *regs)
2257 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2258 int *recursion = perf_swcounter_recursion_context(cpuctx);
2260 if (*recursion)
2261 goto out;
2263 (*recursion)++;
2264 barrier();
2266 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2267 if (cpuctx->task_ctx) {
2268 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2269 nr, nmi, regs);
2272 barrier();
2273 (*recursion)--;
2275 out:
2276 put_cpu_var(perf_cpu_context);
2279 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2281 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2284 static void perf_swcounter_read(struct perf_counter *counter)
2286 perf_swcounter_update(counter);
2289 static int perf_swcounter_enable(struct perf_counter *counter)
2291 perf_swcounter_set_period(counter);
2292 return 0;
2295 static void perf_swcounter_disable(struct perf_counter *counter)
2297 perf_swcounter_update(counter);
2300 static const struct hw_perf_counter_ops perf_ops_generic = {
2301 .enable = perf_swcounter_enable,
2302 .disable = perf_swcounter_disable,
2303 .read = perf_swcounter_read,
2307 * Software counter: cpu wall time clock
2310 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2312 int cpu = raw_smp_processor_id();
2313 s64 prev;
2314 u64 now;
2316 now = cpu_clock(cpu);
2317 prev = atomic64_read(&counter->hw.prev_count);
2318 atomic64_set(&counter->hw.prev_count, now);
2319 atomic64_add(now - prev, &counter->count);
2322 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2324 struct hw_perf_counter *hwc = &counter->hw;
2325 int cpu = raw_smp_processor_id();
2327 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2328 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2329 hwc->hrtimer.function = perf_swcounter_hrtimer;
2330 if (hwc->irq_period) {
2331 __hrtimer_start_range_ns(&hwc->hrtimer,
2332 ns_to_ktime(hwc->irq_period), 0,
2333 HRTIMER_MODE_REL, 0);
2336 return 0;
2339 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2341 hrtimer_cancel(&counter->hw.hrtimer);
2342 cpu_clock_perf_counter_update(counter);
2345 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2347 cpu_clock_perf_counter_update(counter);
2350 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2351 .enable = cpu_clock_perf_counter_enable,
2352 .disable = cpu_clock_perf_counter_disable,
2353 .read = cpu_clock_perf_counter_read,
2357 * Software counter: task time clock
2361 * Called from within the scheduler:
2363 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
2365 struct task_struct *curr = counter->task;
2366 u64 delta;
2368 delta = __task_delta_exec(curr, update);
2370 return curr->se.sum_exec_runtime + delta;
2373 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2375 u64 prev;
2376 s64 delta;
2378 prev = atomic64_read(&counter->hw.prev_count);
2380 atomic64_set(&counter->hw.prev_count, now);
2382 delta = now - prev;
2384 atomic64_add(delta, &counter->count);
2387 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2389 struct hw_perf_counter *hwc = &counter->hw;
2391 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
2392 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2393 hwc->hrtimer.function = perf_swcounter_hrtimer;
2394 if (hwc->irq_period) {
2395 __hrtimer_start_range_ns(&hwc->hrtimer,
2396 ns_to_ktime(hwc->irq_period), 0,
2397 HRTIMER_MODE_REL, 0);
2400 return 0;
2403 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2405 hrtimer_cancel(&counter->hw.hrtimer);
2406 task_clock_perf_counter_update(counter,
2407 task_clock_perf_counter_val(counter, 0));
2410 static void task_clock_perf_counter_read(struct perf_counter *counter)
2412 task_clock_perf_counter_update(counter,
2413 task_clock_perf_counter_val(counter, 1));
2416 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2417 .enable = task_clock_perf_counter_enable,
2418 .disable = task_clock_perf_counter_disable,
2419 .read = task_clock_perf_counter_read,
2423 * Software counter: cpu migrations
2426 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2428 struct task_struct *curr = counter->ctx->task;
2430 if (curr)
2431 return curr->se.nr_migrations;
2432 return cpu_nr_migrations(smp_processor_id());
2435 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2437 u64 prev, now;
2438 s64 delta;
2440 prev = atomic64_read(&counter->hw.prev_count);
2441 now = get_cpu_migrations(counter);
2443 atomic64_set(&counter->hw.prev_count, now);
2445 delta = now - prev;
2447 atomic64_add(delta, &counter->count);
2450 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2452 cpu_migrations_perf_counter_update(counter);
2455 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2457 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2458 atomic64_set(&counter->hw.prev_count,
2459 get_cpu_migrations(counter));
2460 return 0;
2463 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2465 cpu_migrations_perf_counter_update(counter);
2468 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2469 .enable = cpu_migrations_perf_counter_enable,
2470 .disable = cpu_migrations_perf_counter_disable,
2471 .read = cpu_migrations_perf_counter_read,
2474 #ifdef CONFIG_EVENT_PROFILE
2475 void perf_tpcounter_event(int event_id)
2477 struct pt_regs *regs = get_irq_regs();
2479 if (!regs)
2480 regs = task_pt_regs(current);
2482 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2485 extern int ftrace_profile_enable(int);
2486 extern void ftrace_profile_disable(int);
2488 static void tp_perf_counter_destroy(struct perf_counter *counter)
2490 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2493 static const struct hw_perf_counter_ops *
2494 tp_perf_counter_init(struct perf_counter *counter)
2496 int event_id = perf_event_id(&counter->hw_event);
2497 int ret;
2499 ret = ftrace_profile_enable(event_id);
2500 if (ret)
2501 return NULL;
2503 counter->destroy = tp_perf_counter_destroy;
2504 counter->hw.irq_period = counter->hw_event.irq_period;
2506 return &perf_ops_generic;
2508 #else
2509 static const struct hw_perf_counter_ops *
2510 tp_perf_counter_init(struct perf_counter *counter)
2512 return NULL;
2514 #endif
2516 static const struct hw_perf_counter_ops *
2517 sw_perf_counter_init(struct perf_counter *counter)
2519 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2520 const struct hw_perf_counter_ops *hw_ops = NULL;
2521 struct hw_perf_counter *hwc = &counter->hw;
2524 * Software counters (currently) can't in general distinguish
2525 * between user, kernel and hypervisor events.
2526 * However, context switches and cpu migrations are considered
2527 * to be kernel events, and page faults are never hypervisor
2528 * events.
2530 switch (perf_event_id(&counter->hw_event)) {
2531 case PERF_COUNT_CPU_CLOCK:
2532 hw_ops = &perf_ops_cpu_clock;
2534 if (hw_event->irq_period && hw_event->irq_period < 10000)
2535 hw_event->irq_period = 10000;
2536 break;
2537 case PERF_COUNT_TASK_CLOCK:
2539 * If the user instantiates this as a per-cpu counter,
2540 * use the cpu_clock counter instead.
2542 if (counter->ctx->task)
2543 hw_ops = &perf_ops_task_clock;
2544 else
2545 hw_ops = &perf_ops_cpu_clock;
2547 if (hw_event->irq_period && hw_event->irq_period < 10000)
2548 hw_event->irq_period = 10000;
2549 break;
2550 case PERF_COUNT_PAGE_FAULTS:
2551 case PERF_COUNT_PAGE_FAULTS_MIN:
2552 case PERF_COUNT_PAGE_FAULTS_MAJ:
2553 case PERF_COUNT_CONTEXT_SWITCHES:
2554 hw_ops = &perf_ops_generic;
2555 break;
2556 case PERF_COUNT_CPU_MIGRATIONS:
2557 if (!counter->hw_event.exclude_kernel)
2558 hw_ops = &perf_ops_cpu_migrations;
2559 break;
2562 if (hw_ops)
2563 hwc->irq_period = hw_event->irq_period;
2565 return hw_ops;
2569 * Allocate and initialize a counter structure
2571 static struct perf_counter *
2572 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2573 int cpu,
2574 struct perf_counter_context *ctx,
2575 struct perf_counter *group_leader,
2576 gfp_t gfpflags)
2578 const struct hw_perf_counter_ops *hw_ops;
2579 struct perf_counter *counter;
2580 long err;
2582 counter = kzalloc(sizeof(*counter), gfpflags);
2583 if (!counter)
2584 return ERR_PTR(-ENOMEM);
2587 * Single counters are their own group leaders, with an
2588 * empty sibling list:
2590 if (!group_leader)
2591 group_leader = counter;
2593 mutex_init(&counter->mutex);
2594 INIT_LIST_HEAD(&counter->list_entry);
2595 INIT_LIST_HEAD(&counter->event_entry);
2596 INIT_LIST_HEAD(&counter->sibling_list);
2597 init_waitqueue_head(&counter->waitq);
2599 mutex_init(&counter->mmap_mutex);
2601 INIT_LIST_HEAD(&counter->child_list);
2603 counter->cpu = cpu;
2604 counter->hw_event = *hw_event;
2605 counter->group_leader = group_leader;
2606 counter->hw_ops = NULL;
2607 counter->ctx = ctx;
2609 counter->state = PERF_COUNTER_STATE_INACTIVE;
2610 if (hw_event->disabled)
2611 counter->state = PERF_COUNTER_STATE_OFF;
2613 hw_ops = NULL;
2615 if (perf_event_raw(hw_event)) {
2616 hw_ops = hw_perf_counter_init(counter);
2617 goto done;
2620 switch (perf_event_type(hw_event)) {
2621 case PERF_TYPE_HARDWARE:
2622 hw_ops = hw_perf_counter_init(counter);
2623 break;
2625 case PERF_TYPE_SOFTWARE:
2626 hw_ops = sw_perf_counter_init(counter);
2627 break;
2629 case PERF_TYPE_TRACEPOINT:
2630 hw_ops = tp_perf_counter_init(counter);
2631 break;
2633 done:
2634 err = 0;
2635 if (!hw_ops)
2636 err = -EINVAL;
2637 else if (IS_ERR(hw_ops))
2638 err = PTR_ERR(hw_ops);
2640 if (err) {
2641 kfree(counter);
2642 return ERR_PTR(err);
2645 counter->hw_ops = hw_ops;
2647 return counter;
2651 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2653 * @hw_event_uptr: event type attributes for monitoring/sampling
2654 * @pid: target pid
2655 * @cpu: target cpu
2656 * @group_fd: group leader counter fd
2658 SYSCALL_DEFINE5(perf_counter_open,
2659 const struct perf_counter_hw_event __user *, hw_event_uptr,
2660 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2662 struct perf_counter *counter, *group_leader;
2663 struct perf_counter_hw_event hw_event;
2664 struct perf_counter_context *ctx;
2665 struct file *counter_file = NULL;
2666 struct file *group_file = NULL;
2667 int fput_needed = 0;
2668 int fput_needed2 = 0;
2669 int ret;
2671 /* for future expandability... */
2672 if (flags)
2673 return -EINVAL;
2675 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2676 return -EFAULT;
2679 * Get the target context (task or percpu):
2681 ctx = find_get_context(pid, cpu);
2682 if (IS_ERR(ctx))
2683 return PTR_ERR(ctx);
2686 * Look up the group leader (we will attach this counter to it):
2688 group_leader = NULL;
2689 if (group_fd != -1) {
2690 ret = -EINVAL;
2691 group_file = fget_light(group_fd, &fput_needed);
2692 if (!group_file)
2693 goto err_put_context;
2694 if (group_file->f_op != &perf_fops)
2695 goto err_put_context;
2697 group_leader = group_file->private_data;
2699 * Do not allow a recursive hierarchy (this new sibling
2700 * becoming part of another group-sibling):
2702 if (group_leader->group_leader != group_leader)
2703 goto err_put_context;
2705 * Do not allow to attach to a group in a different
2706 * task or CPU context:
2708 if (group_leader->ctx != ctx)
2709 goto err_put_context;
2711 * Only a group leader can be exclusive or pinned
2713 if (hw_event.exclusive || hw_event.pinned)
2714 goto err_put_context;
2717 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2718 GFP_KERNEL);
2719 ret = PTR_ERR(counter);
2720 if (IS_ERR(counter))
2721 goto err_put_context;
2723 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2724 if (ret < 0)
2725 goto err_free_put_context;
2727 counter_file = fget_light(ret, &fput_needed2);
2728 if (!counter_file)
2729 goto err_free_put_context;
2731 counter->filp = counter_file;
2732 mutex_lock(&ctx->mutex);
2733 perf_install_in_context(ctx, counter, cpu);
2734 mutex_unlock(&ctx->mutex);
2736 fput_light(counter_file, fput_needed2);
2738 out_fput:
2739 fput_light(group_file, fput_needed);
2741 return ret;
2743 err_free_put_context:
2744 kfree(counter);
2746 err_put_context:
2747 put_context(ctx);
2749 goto out_fput;
2753 * Initialize the perf_counter context in a task_struct:
2755 static void
2756 __perf_counter_init_context(struct perf_counter_context *ctx,
2757 struct task_struct *task)
2759 memset(ctx, 0, sizeof(*ctx));
2760 spin_lock_init(&ctx->lock);
2761 mutex_init(&ctx->mutex);
2762 INIT_LIST_HEAD(&ctx->counter_list);
2763 INIT_LIST_HEAD(&ctx->event_list);
2764 ctx->task = task;
2768 * inherit a counter from parent task to child task:
2770 static struct perf_counter *
2771 inherit_counter(struct perf_counter *parent_counter,
2772 struct task_struct *parent,
2773 struct perf_counter_context *parent_ctx,
2774 struct task_struct *child,
2775 struct perf_counter *group_leader,
2776 struct perf_counter_context *child_ctx)
2778 struct perf_counter *child_counter;
2781 * Instead of creating recursive hierarchies of counters,
2782 * we link inherited counters back to the original parent,
2783 * which has a filp for sure, which we use as the reference
2784 * count:
2786 if (parent_counter->parent)
2787 parent_counter = parent_counter->parent;
2789 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2790 parent_counter->cpu, child_ctx,
2791 group_leader, GFP_KERNEL);
2792 if (IS_ERR(child_counter))
2793 return child_counter;
2796 * Link it up in the child's context:
2798 child_counter->task = child;
2799 add_counter_to_ctx(child_counter, child_ctx);
2801 child_counter->parent = parent_counter;
2803 * inherit into child's child as well:
2805 child_counter->hw_event.inherit = 1;
2808 * Get a reference to the parent filp - we will fput it
2809 * when the child counter exits. This is safe to do because
2810 * we are in the parent and we know that the filp still
2811 * exists and has a nonzero count:
2813 atomic_long_inc(&parent_counter->filp->f_count);
2816 * Link this into the parent counter's child list
2818 mutex_lock(&parent_counter->mutex);
2819 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2822 * Make the child state follow the state of the parent counter,
2823 * not its hw_event.disabled bit. We hold the parent's mutex,
2824 * so we won't race with perf_counter_{en,dis}able_family.
2826 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2827 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2828 else
2829 child_counter->state = PERF_COUNTER_STATE_OFF;
2831 mutex_unlock(&parent_counter->mutex);
2833 return child_counter;
2836 static int inherit_group(struct perf_counter *parent_counter,
2837 struct task_struct *parent,
2838 struct perf_counter_context *parent_ctx,
2839 struct task_struct *child,
2840 struct perf_counter_context *child_ctx)
2842 struct perf_counter *leader;
2843 struct perf_counter *sub;
2844 struct perf_counter *child_ctr;
2846 leader = inherit_counter(parent_counter, parent, parent_ctx,
2847 child, NULL, child_ctx);
2848 if (IS_ERR(leader))
2849 return PTR_ERR(leader);
2850 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2851 child_ctr = inherit_counter(sub, parent, parent_ctx,
2852 child, leader, child_ctx);
2853 if (IS_ERR(child_ctr))
2854 return PTR_ERR(child_ctr);
2856 return 0;
2859 static void sync_child_counter(struct perf_counter *child_counter,
2860 struct perf_counter *parent_counter)
2862 u64 parent_val, child_val;
2864 parent_val = atomic64_read(&parent_counter->count);
2865 child_val = atomic64_read(&child_counter->count);
2868 * Add back the child's count to the parent's count:
2870 atomic64_add(child_val, &parent_counter->count);
2871 atomic64_add(child_counter->total_time_enabled,
2872 &parent_counter->child_total_time_enabled);
2873 atomic64_add(child_counter->total_time_running,
2874 &parent_counter->child_total_time_running);
2877 * Remove this counter from the parent's list
2879 mutex_lock(&parent_counter->mutex);
2880 list_del_init(&child_counter->child_list);
2881 mutex_unlock(&parent_counter->mutex);
2884 * Release the parent counter, if this was the last
2885 * reference to it.
2887 fput(parent_counter->filp);
2890 static void
2891 __perf_counter_exit_task(struct task_struct *child,
2892 struct perf_counter *child_counter,
2893 struct perf_counter_context *child_ctx)
2895 struct perf_counter *parent_counter;
2896 struct perf_counter *sub, *tmp;
2899 * If we do not self-reap then we have to wait for the
2900 * child task to unschedule (it will happen for sure),
2901 * so that its counter is at its final count. (This
2902 * condition triggers rarely - child tasks usually get
2903 * off their CPU before the parent has a chance to
2904 * get this far into the reaping action)
2906 if (child != current) {
2907 wait_task_inactive(child, 0);
2908 list_del_init(&child_counter->list_entry);
2909 update_counter_times(child_counter);
2910 } else {
2911 struct perf_cpu_context *cpuctx;
2912 unsigned long flags;
2913 u64 perf_flags;
2916 * Disable and unlink this counter.
2918 * Be careful about zapping the list - IRQ/NMI context
2919 * could still be processing it:
2921 curr_rq_lock_irq_save(&flags);
2922 perf_flags = hw_perf_save_disable();
2924 cpuctx = &__get_cpu_var(perf_cpu_context);
2926 group_sched_out(child_counter, cpuctx, child_ctx);
2927 update_counter_times(child_counter);
2929 list_del_init(&child_counter->list_entry);
2931 child_ctx->nr_counters--;
2933 hw_perf_restore(perf_flags);
2934 curr_rq_unlock_irq_restore(&flags);
2937 parent_counter = child_counter->parent;
2939 * It can happen that parent exits first, and has counters
2940 * that are still around due to the child reference. These
2941 * counters need to be zapped - but otherwise linger.
2943 if (parent_counter) {
2944 sync_child_counter(child_counter, parent_counter);
2945 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2946 list_entry) {
2947 if (sub->parent) {
2948 sync_child_counter(sub, sub->parent);
2949 free_counter(sub);
2952 free_counter(child_counter);
2957 * When a child task exits, feed back counter values to parent counters.
2959 * Note: we may be running in child context, but the PID is not hashed
2960 * anymore so new counters will not be added.
2962 void perf_counter_exit_task(struct task_struct *child)
2964 struct perf_counter *child_counter, *tmp;
2965 struct perf_counter_context *child_ctx;
2967 child_ctx = &child->perf_counter_ctx;
2969 if (likely(!child_ctx->nr_counters))
2970 return;
2972 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2973 list_entry)
2974 __perf_counter_exit_task(child, child_counter, child_ctx);
2978 * Initialize the perf_counter context in task_struct
2980 void perf_counter_init_task(struct task_struct *child)
2982 struct perf_counter_context *child_ctx, *parent_ctx;
2983 struct perf_counter *counter;
2984 struct task_struct *parent = current;
2986 child_ctx = &child->perf_counter_ctx;
2987 parent_ctx = &parent->perf_counter_ctx;
2989 __perf_counter_init_context(child_ctx, child);
2992 * This is executed from the parent task context, so inherit
2993 * counters that have been marked for cloning:
2996 if (likely(!parent_ctx->nr_counters))
2997 return;
3000 * Lock the parent list. No need to lock the child - not PID
3001 * hashed yet and not running, so nobody can access it.
3003 mutex_lock(&parent_ctx->mutex);
3006 * We dont have to disable NMIs - we are only looking at
3007 * the list, not manipulating it:
3009 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3010 if (!counter->hw_event.inherit)
3011 continue;
3013 if (inherit_group(counter, parent,
3014 parent_ctx, child, child_ctx))
3015 break;
3018 mutex_unlock(&parent_ctx->mutex);
3021 static void __cpuinit perf_counter_init_cpu(int cpu)
3023 struct perf_cpu_context *cpuctx;
3025 cpuctx = &per_cpu(perf_cpu_context, cpu);
3026 __perf_counter_init_context(&cpuctx->ctx, NULL);
3028 mutex_lock(&perf_resource_mutex);
3029 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3030 mutex_unlock(&perf_resource_mutex);
3032 hw_perf_counter_setup(cpu);
3035 #ifdef CONFIG_HOTPLUG_CPU
3036 static void __perf_counter_exit_cpu(void *info)
3038 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3039 struct perf_counter_context *ctx = &cpuctx->ctx;
3040 struct perf_counter *counter, *tmp;
3042 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3043 __perf_counter_remove_from_context(counter);
3045 static void perf_counter_exit_cpu(int cpu)
3047 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3048 struct perf_counter_context *ctx = &cpuctx->ctx;
3050 mutex_lock(&ctx->mutex);
3051 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3052 mutex_unlock(&ctx->mutex);
3054 #else
3055 static inline void perf_counter_exit_cpu(int cpu) { }
3056 #endif
3058 static int __cpuinit
3059 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3061 unsigned int cpu = (long)hcpu;
3063 switch (action) {
3065 case CPU_UP_PREPARE:
3066 case CPU_UP_PREPARE_FROZEN:
3067 perf_counter_init_cpu(cpu);
3068 break;
3070 case CPU_DOWN_PREPARE:
3071 case CPU_DOWN_PREPARE_FROZEN:
3072 perf_counter_exit_cpu(cpu);
3073 break;
3075 default:
3076 break;
3079 return NOTIFY_OK;
3082 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3083 .notifier_call = perf_cpu_notify,
3086 static int __init perf_counter_init(void)
3088 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3089 (void *)(long)smp_processor_id());
3090 register_cpu_notifier(&perf_cpu_nb);
3092 return 0;
3094 early_initcall(perf_counter_init);
3096 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3098 return sprintf(buf, "%d\n", perf_reserved_percpu);
3101 static ssize_t
3102 perf_set_reserve_percpu(struct sysdev_class *class,
3103 const char *buf,
3104 size_t count)
3106 struct perf_cpu_context *cpuctx;
3107 unsigned long val;
3108 int err, cpu, mpt;
3110 err = strict_strtoul(buf, 10, &val);
3111 if (err)
3112 return err;
3113 if (val > perf_max_counters)
3114 return -EINVAL;
3116 mutex_lock(&perf_resource_mutex);
3117 perf_reserved_percpu = val;
3118 for_each_online_cpu(cpu) {
3119 cpuctx = &per_cpu(perf_cpu_context, cpu);
3120 spin_lock_irq(&cpuctx->ctx.lock);
3121 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3122 perf_max_counters - perf_reserved_percpu);
3123 cpuctx->max_pertask = mpt;
3124 spin_unlock_irq(&cpuctx->ctx.lock);
3126 mutex_unlock(&perf_resource_mutex);
3128 return count;
3131 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3133 return sprintf(buf, "%d\n", perf_overcommit);
3136 static ssize_t
3137 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3139 unsigned long val;
3140 int err;
3142 err = strict_strtoul(buf, 10, &val);
3143 if (err)
3144 return err;
3145 if (val > 1)
3146 return -EINVAL;
3148 mutex_lock(&perf_resource_mutex);
3149 perf_overcommit = val;
3150 mutex_unlock(&perf_resource_mutex);
3152 return count;
3155 static SYSDEV_CLASS_ATTR(
3156 reserve_percpu,
3157 0644,
3158 perf_show_reserve_percpu,
3159 perf_set_reserve_percpu
3162 static SYSDEV_CLASS_ATTR(
3163 overcommit,
3164 0644,
3165 perf_show_overcommit,
3166 perf_set_overcommit
3169 static struct attribute *perfclass_attrs[] = {
3170 &attr_reserve_percpu.attr,
3171 &attr_overcommit.attr,
3172 NULL
3175 static struct attribute_group perfclass_attr_group = {
3176 .attrs = perfclass_attrs,
3177 .name = "perf_counters",
3180 static int __init perf_counter_sysfs_init(void)
3182 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3183 &perfclass_attr_group);
3185 device_initcall(perf_counter_sysfs_init);