sched: reduce schedstat variable overhead a bit
[linux-2.6/verdex.git] / kernel / time.c
blob2d5b6a682138d12af18eb2b93caeca9c4443c56f
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/syscalls.h>
35 #include <linux/security.h>
36 #include <linux/fs.h>
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
41 /*
42 * The timezone where the local system is located. Used as a default by some
43 * programs who obtain this value by using gettimeofday.
45 struct timezone sys_tz;
47 EXPORT_SYMBOL(sys_tz);
49 #ifdef __ARCH_WANT_SYS_TIME
52 * sys_time() can be implemented in user-level using
53 * sys_gettimeofday(). Is this for backwards compatibility? If so,
54 * why not move it into the appropriate arch directory (for those
55 * architectures that need it).
57 asmlinkage long sys_time(time_t __user * tloc)
59 time_t i = get_seconds();
61 if (tloc) {
62 if (put_user(i,tloc))
63 i = -EFAULT;
65 return i;
69 * sys_stime() can be implemented in user-level using
70 * sys_settimeofday(). Is this for backwards compatibility? If so,
71 * why not move it into the appropriate arch directory (for those
72 * architectures that need it).
75 asmlinkage long sys_stime(time_t __user *tptr)
77 struct timespec tv;
78 int err;
80 if (get_user(tv.tv_sec, tptr))
81 return -EFAULT;
83 tv.tv_nsec = 0;
85 err = security_settime(&tv, NULL);
86 if (err)
87 return err;
89 do_settimeofday(&tv);
90 return 0;
93 #endif /* __ARCH_WANT_SYS_TIME */
95 asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
97 if (likely(tv != NULL)) {
98 struct timeval ktv;
99 do_gettimeofday(&ktv);
100 if (copy_to_user(tv, &ktv, sizeof(ktv)))
101 return -EFAULT;
103 if (unlikely(tz != NULL)) {
104 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
105 return -EFAULT;
107 return 0;
111 * Adjust the time obtained from the CMOS to be UTC time instead of
112 * local time.
114 * This is ugly, but preferable to the alternatives. Otherwise we
115 * would either need to write a program to do it in /etc/rc (and risk
116 * confusion if the program gets run more than once; it would also be
117 * hard to make the program warp the clock precisely n hours) or
118 * compile in the timezone information into the kernel. Bad, bad....
120 * - TYT, 1992-01-01
122 * The best thing to do is to keep the CMOS clock in universal time (UTC)
123 * as real UNIX machines always do it. This avoids all headaches about
124 * daylight saving times and warping kernel clocks.
126 static inline void warp_clock(void)
128 write_seqlock_irq(&xtime_lock);
129 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
130 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
131 write_sequnlock_irq(&xtime_lock);
132 clock_was_set();
136 * In case for some reason the CMOS clock has not already been running
137 * in UTC, but in some local time: The first time we set the timezone,
138 * we will warp the clock so that it is ticking UTC time instead of
139 * local time. Presumably, if someone is setting the timezone then we
140 * are running in an environment where the programs understand about
141 * timezones. This should be done at boot time in the /etc/rc script,
142 * as soon as possible, so that the clock can be set right. Otherwise,
143 * various programs will get confused when the clock gets warped.
146 int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
148 static int firsttime = 1;
149 int error = 0;
151 if (tv && !timespec_valid(tv))
152 return -EINVAL;
154 error = security_settime(tv, tz);
155 if (error)
156 return error;
158 if (tz) {
159 /* SMP safe, global irq locking makes it work. */
160 sys_tz = *tz;
161 if (firsttime) {
162 firsttime = 0;
163 if (!tv)
164 warp_clock();
167 if (tv)
169 /* SMP safe, again the code in arch/foo/time.c should
170 * globally block out interrupts when it runs.
172 return do_settimeofday(tv);
174 return 0;
177 asmlinkage long sys_settimeofday(struct timeval __user *tv,
178 struct timezone __user *tz)
180 struct timeval user_tv;
181 struct timespec new_ts;
182 struct timezone new_tz;
184 if (tv) {
185 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
186 return -EFAULT;
187 new_ts.tv_sec = user_tv.tv_sec;
188 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
190 if (tz) {
191 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
192 return -EFAULT;
195 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
198 asmlinkage long sys_adjtimex(struct timex __user *txc_p)
200 struct timex txc; /* Local copy of parameter */
201 int ret;
203 /* Copy the user data space into the kernel copy
204 * structure. But bear in mind that the structures
205 * may change
207 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
208 return -EFAULT;
209 ret = do_adjtimex(&txc);
210 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
214 * current_fs_time - Return FS time
215 * @sb: Superblock.
217 * Return the current time truncated to the time granularity supported by
218 * the fs.
220 struct timespec current_fs_time(struct super_block *sb)
222 struct timespec now = current_kernel_time();
223 return timespec_trunc(now, sb->s_time_gran);
225 EXPORT_SYMBOL(current_fs_time);
228 * Convert jiffies to milliseconds and back.
230 * Avoid unnecessary multiplications/divisions in the
231 * two most common HZ cases:
233 unsigned int inline jiffies_to_msecs(const unsigned long j)
235 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
236 return (MSEC_PER_SEC / HZ) * j;
237 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
238 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
239 #else
240 return (j * MSEC_PER_SEC) / HZ;
241 #endif
243 EXPORT_SYMBOL(jiffies_to_msecs);
245 unsigned int inline jiffies_to_usecs(const unsigned long j)
247 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
248 return (USEC_PER_SEC / HZ) * j;
249 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
250 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
251 #else
252 return (j * USEC_PER_SEC) / HZ;
253 #endif
255 EXPORT_SYMBOL(jiffies_to_usecs);
258 * timespec_trunc - Truncate timespec to a granularity
259 * @t: Timespec
260 * @gran: Granularity in ns.
262 * Truncate a timespec to a granularity. gran must be smaller than a second.
263 * Always rounds down.
265 * This function should be only used for timestamps returned by
266 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
267 * it doesn't handle the better resolution of the later.
269 struct timespec timespec_trunc(struct timespec t, unsigned gran)
272 * Division is pretty slow so avoid it for common cases.
273 * Currently current_kernel_time() never returns better than
274 * jiffies resolution. Exploit that.
276 if (gran <= jiffies_to_usecs(1) * 1000) {
277 /* nothing */
278 } else if (gran == 1000000000) {
279 t.tv_nsec = 0;
280 } else {
281 t.tv_nsec -= t.tv_nsec % gran;
283 return t;
285 EXPORT_SYMBOL(timespec_trunc);
287 #ifndef CONFIG_GENERIC_TIME
289 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
290 * and therefore only yields usec accuracy
292 void getnstimeofday(struct timespec *tv)
294 struct timeval x;
296 do_gettimeofday(&x);
297 tv->tv_sec = x.tv_sec;
298 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
300 EXPORT_SYMBOL_GPL(getnstimeofday);
301 #endif
303 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
304 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
305 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
307 * [For the Julian calendar (which was used in Russia before 1917,
308 * Britain & colonies before 1752, anywhere else before 1582,
309 * and is still in use by some communities) leave out the
310 * -year/100+year/400 terms, and add 10.]
312 * This algorithm was first published by Gauss (I think).
314 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
315 * machines were long is 32-bit! (However, as time_t is signed, we
316 * will already get problems at other places on 2038-01-19 03:14:08)
318 unsigned long
319 mktime(const unsigned int year0, const unsigned int mon0,
320 const unsigned int day, const unsigned int hour,
321 const unsigned int min, const unsigned int sec)
323 unsigned int mon = mon0, year = year0;
325 /* 1..12 -> 11,12,1..10 */
326 if (0 >= (int) (mon -= 2)) {
327 mon += 12; /* Puts Feb last since it has leap day */
328 year -= 1;
331 return ((((unsigned long)
332 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
333 year*365 - 719499
334 )*24 + hour /* now have hours */
335 )*60 + min /* now have minutes */
336 )*60 + sec; /* finally seconds */
339 EXPORT_SYMBOL(mktime);
342 * set_normalized_timespec - set timespec sec and nsec parts and normalize
344 * @ts: pointer to timespec variable to be set
345 * @sec: seconds to set
346 * @nsec: nanoseconds to set
348 * Set seconds and nanoseconds field of a timespec variable and
349 * normalize to the timespec storage format
351 * Note: The tv_nsec part is always in the range of
352 * 0 <= tv_nsec < NSEC_PER_SEC
353 * For negative values only the tv_sec field is negative !
355 void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
357 while (nsec >= NSEC_PER_SEC) {
358 nsec -= NSEC_PER_SEC;
359 ++sec;
361 while (nsec < 0) {
362 nsec += NSEC_PER_SEC;
363 --sec;
365 ts->tv_sec = sec;
366 ts->tv_nsec = nsec;
370 * ns_to_timespec - Convert nanoseconds to timespec
371 * @nsec: the nanoseconds value to be converted
373 * Returns the timespec representation of the nsec parameter.
375 struct timespec ns_to_timespec(const s64 nsec)
377 struct timespec ts;
379 if (!nsec)
380 return (struct timespec) {0, 0};
382 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
383 if (unlikely(nsec < 0))
384 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
386 return ts;
388 EXPORT_SYMBOL(ns_to_timespec);
391 * ns_to_timeval - Convert nanoseconds to timeval
392 * @nsec: the nanoseconds value to be converted
394 * Returns the timeval representation of the nsec parameter.
396 struct timeval ns_to_timeval(const s64 nsec)
398 struct timespec ts = ns_to_timespec(nsec);
399 struct timeval tv;
401 tv.tv_sec = ts.tv_sec;
402 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
404 return tv;
406 EXPORT_SYMBOL(ns_to_timeval);
409 * When we convert to jiffies then we interpret incoming values
410 * the following way:
412 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
414 * - 'too large' values [that would result in larger than
415 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
417 * - all other values are converted to jiffies by either multiplying
418 * the input value by a factor or dividing it with a factor
420 * We must also be careful about 32-bit overflows.
422 unsigned long msecs_to_jiffies(const unsigned int m)
425 * Negative value, means infinite timeout:
427 if ((int)m < 0)
428 return MAX_JIFFY_OFFSET;
430 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
432 * HZ is equal to or smaller than 1000, and 1000 is a nice
433 * round multiple of HZ, divide with the factor between them,
434 * but round upwards:
436 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
437 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
439 * HZ is larger than 1000, and HZ is a nice round multiple of
440 * 1000 - simply multiply with the factor between them.
442 * But first make sure the multiplication result cannot
443 * overflow:
445 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
446 return MAX_JIFFY_OFFSET;
448 return m * (HZ / MSEC_PER_SEC);
449 #else
451 * Generic case - multiply, round and divide. But first
452 * check that if we are doing a net multiplication, that
453 * we wouldnt overflow:
455 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
456 return MAX_JIFFY_OFFSET;
458 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
459 #endif
461 EXPORT_SYMBOL(msecs_to_jiffies);
463 unsigned long usecs_to_jiffies(const unsigned int u)
465 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
466 return MAX_JIFFY_OFFSET;
467 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
468 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
469 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
470 return u * (HZ / USEC_PER_SEC);
471 #else
472 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
473 #endif
475 EXPORT_SYMBOL(usecs_to_jiffies);
478 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
479 * that a remainder subtract here would not do the right thing as the
480 * resolution values don't fall on second boundries. I.e. the line:
481 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
483 * Rather, we just shift the bits off the right.
485 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
486 * value to a scaled second value.
488 unsigned long
489 timespec_to_jiffies(const struct timespec *value)
491 unsigned long sec = value->tv_sec;
492 long nsec = value->tv_nsec + TICK_NSEC - 1;
494 if (sec >= MAX_SEC_IN_JIFFIES){
495 sec = MAX_SEC_IN_JIFFIES;
496 nsec = 0;
498 return (((u64)sec * SEC_CONVERSION) +
499 (((u64)nsec * NSEC_CONVERSION) >>
500 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
503 EXPORT_SYMBOL(timespec_to_jiffies);
505 void
506 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
509 * Convert jiffies to nanoseconds and separate with
510 * one divide.
512 u64 nsec = (u64)jiffies * TICK_NSEC;
513 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
515 EXPORT_SYMBOL(jiffies_to_timespec);
517 /* Same for "timeval"
519 * Well, almost. The problem here is that the real system resolution is
520 * in nanoseconds and the value being converted is in micro seconds.
521 * Also for some machines (those that use HZ = 1024, in-particular),
522 * there is a LARGE error in the tick size in microseconds.
524 * The solution we use is to do the rounding AFTER we convert the
525 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
526 * Instruction wise, this should cost only an additional add with carry
527 * instruction above the way it was done above.
529 unsigned long
530 timeval_to_jiffies(const struct timeval *value)
532 unsigned long sec = value->tv_sec;
533 long usec = value->tv_usec;
535 if (sec >= MAX_SEC_IN_JIFFIES){
536 sec = MAX_SEC_IN_JIFFIES;
537 usec = 0;
539 return (((u64)sec * SEC_CONVERSION) +
540 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
541 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
543 EXPORT_SYMBOL(timeval_to_jiffies);
545 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
548 * Convert jiffies to nanoseconds and separate with
549 * one divide.
551 u64 nsec = (u64)jiffies * TICK_NSEC;
552 long tv_usec;
554 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
555 tv_usec /= NSEC_PER_USEC;
556 value->tv_usec = tv_usec;
558 EXPORT_SYMBOL(jiffies_to_timeval);
561 * Convert jiffies/jiffies_64 to clock_t and back.
563 clock_t jiffies_to_clock_t(long x)
565 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
566 return x / (HZ / USER_HZ);
567 #else
568 u64 tmp = (u64)x * TICK_NSEC;
569 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
570 return (long)tmp;
571 #endif
573 EXPORT_SYMBOL(jiffies_to_clock_t);
575 unsigned long clock_t_to_jiffies(unsigned long x)
577 #if (HZ % USER_HZ)==0
578 if (x >= ~0UL / (HZ / USER_HZ))
579 return ~0UL;
580 return x * (HZ / USER_HZ);
581 #else
582 u64 jif;
584 /* Don't worry about loss of precision here .. */
585 if (x >= ~0UL / HZ * USER_HZ)
586 return ~0UL;
588 /* .. but do try to contain it here */
589 jif = x * (u64) HZ;
590 do_div(jif, USER_HZ);
591 return jif;
592 #endif
594 EXPORT_SYMBOL(clock_t_to_jiffies);
596 u64 jiffies_64_to_clock_t(u64 x)
598 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
599 do_div(x, HZ / USER_HZ);
600 #else
602 * There are better ways that don't overflow early,
603 * but even this doesn't overflow in hundreds of years
604 * in 64 bits, so..
606 x *= TICK_NSEC;
607 do_div(x, (NSEC_PER_SEC / USER_HZ));
608 #endif
609 return x;
612 EXPORT_SYMBOL(jiffies_64_to_clock_t);
614 u64 nsec_to_clock_t(u64 x)
616 #if (NSEC_PER_SEC % USER_HZ) == 0
617 do_div(x, (NSEC_PER_SEC / USER_HZ));
618 #elif (USER_HZ % 512) == 0
619 x *= USER_HZ/512;
620 do_div(x, (NSEC_PER_SEC / 512));
621 #else
623 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
624 * overflow after 64.99 years.
625 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
627 x *= 9;
628 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
629 USER_HZ));
630 #endif
631 return x;
634 #if (BITS_PER_LONG < 64)
635 u64 get_jiffies_64(void)
637 unsigned long seq;
638 u64 ret;
640 do {
641 seq = read_seqbegin(&xtime_lock);
642 ret = jiffies_64;
643 } while (read_seqretry(&xtime_lock, seq));
644 return ret;
647 EXPORT_SYMBOL(get_jiffies_64);
648 #endif
650 EXPORT_SYMBOL(jiffies);