perf_counter: Remove perf_counter_context::nr_enabled
[linux-2.6/verdex.git] / kernel / perf_counter.c
blobcb4062559b47c66c8b696809e8945f4166d47ddc
1 /*
2 * Performance counter core code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU counters:
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
51 * Lock for (sysadmin-configurable) counter reservations:
53 static DEFINE_SPINLOCK(perf_resource_lock);
56 * Architecture provided APIs - weak aliases:
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 return NULL;
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
71 return 0;
74 void __weak perf_counter_print_debug(void) { }
76 static DEFINE_PER_CPU(int, disable_count);
78 void __perf_disable(void)
80 __get_cpu_var(disable_count)++;
83 bool __perf_enable(void)
85 return !--__get_cpu_var(disable_count);
88 void perf_disable(void)
90 __perf_disable();
91 hw_perf_disable();
94 void perf_enable(void)
96 if (__perf_enable())
97 hw_perf_enable();
100 static void get_ctx(struct perf_counter_context *ctx)
102 atomic_inc(&ctx->refcount);
105 static void put_ctx(struct perf_counter_context *ctx)
107 if (atomic_dec_and_test(&ctx->refcount)) {
108 if (ctx->parent_ctx)
109 put_ctx(ctx->parent_ctx);
110 kfree(ctx);
115 * Add a counter from the lists for its context.
116 * Must be called with ctx->mutex and ctx->lock held.
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
121 struct perf_counter *group_leader = counter->group_leader;
124 * Depending on whether it is a standalone or sibling counter,
125 * add it straight to the context's counter list, or to the group
126 * leader's sibling list:
128 if (group_leader == counter)
129 list_add_tail(&counter->list_entry, &ctx->counter_list);
130 else {
131 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132 group_leader->nr_siblings++;
135 list_add_rcu(&counter->event_entry, &ctx->event_list);
136 ctx->nr_counters++;
140 * Remove a counter from the lists for its context.
141 * Must be called with ctx->mutex and ctx->lock held.
143 static void
144 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
146 struct perf_counter *sibling, *tmp;
148 if (list_empty(&counter->list_entry))
149 return;
150 ctx->nr_counters--;
152 list_del_init(&counter->list_entry);
153 list_del_rcu(&counter->event_entry);
155 if (counter->group_leader != counter)
156 counter->group_leader->nr_siblings--;
159 * If this was a group counter with sibling counters then
160 * upgrade the siblings to singleton counters by adding them
161 * to the context list directly:
163 list_for_each_entry_safe(sibling, tmp,
164 &counter->sibling_list, list_entry) {
166 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167 sibling->group_leader = sibling;
171 static void
172 counter_sched_out(struct perf_counter *counter,
173 struct perf_cpu_context *cpuctx,
174 struct perf_counter_context *ctx)
176 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177 return;
179 counter->state = PERF_COUNTER_STATE_INACTIVE;
180 counter->tstamp_stopped = ctx->time;
181 counter->pmu->disable(counter);
182 counter->oncpu = -1;
184 if (!is_software_counter(counter))
185 cpuctx->active_oncpu--;
186 ctx->nr_active--;
187 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188 cpuctx->exclusive = 0;
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193 struct perf_cpu_context *cpuctx,
194 struct perf_counter_context *ctx)
196 struct perf_counter *counter;
198 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199 return;
201 counter_sched_out(group_counter, cpuctx, ctx);
204 * Schedule out siblings (if any):
206 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207 counter_sched_out(counter, cpuctx, ctx);
209 if (group_counter->hw_event.exclusive)
210 cpuctx->exclusive = 0;
214 * Mark this context as not being a clone of another.
215 * Called when counters are added to or removed from this context.
216 * We also increment our generation number so that anything that
217 * was cloned from this context before this will not match anything
218 * cloned from this context after this.
220 static void unclone_ctx(struct perf_counter_context *ctx)
222 ++ctx->generation;
223 if (!ctx->parent_ctx)
224 return;
225 put_ctx(ctx->parent_ctx);
226 ctx->parent_ctx = NULL;
230 * Cross CPU call to remove a performance counter
232 * We disable the counter on the hardware level first. After that we
233 * remove it from the context list.
235 static void __perf_counter_remove_from_context(void *info)
237 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238 struct perf_counter *counter = info;
239 struct perf_counter_context *ctx = counter->ctx;
240 unsigned long flags;
243 * If this is a task context, we need to check whether it is
244 * the current task context of this cpu. If not it has been
245 * scheduled out before the smp call arrived.
247 if (ctx->task && cpuctx->task_ctx != ctx)
248 return;
250 spin_lock_irqsave(&ctx->lock, flags);
252 * Protect the list operation against NMI by disabling the
253 * counters on a global level.
255 perf_disable();
257 counter_sched_out(counter, cpuctx, ctx);
259 list_del_counter(counter, ctx);
261 if (!ctx->task) {
263 * Allow more per task counters with respect to the
264 * reservation:
266 cpuctx->max_pertask =
267 min(perf_max_counters - ctx->nr_counters,
268 perf_max_counters - perf_reserved_percpu);
271 perf_enable();
272 spin_unlock_irqrestore(&ctx->lock, flags);
277 * Remove the counter from a task's (or a CPU's) list of counters.
279 * Must be called with ctx->mutex held.
281 * CPU counters are removed with a smp call. For task counters we only
282 * call when the task is on a CPU.
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
286 struct perf_counter_context *ctx = counter->ctx;
287 struct task_struct *task = ctx->task;
289 unclone_ctx(ctx);
290 if (!task) {
292 * Per cpu counters are removed via an smp call and
293 * the removal is always sucessful.
295 smp_call_function_single(counter->cpu,
296 __perf_counter_remove_from_context,
297 counter, 1);
298 return;
301 retry:
302 task_oncpu_function_call(task, __perf_counter_remove_from_context,
303 counter);
305 spin_lock_irq(&ctx->lock);
307 * If the context is active we need to retry the smp call.
309 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310 spin_unlock_irq(&ctx->lock);
311 goto retry;
315 * The lock prevents that this context is scheduled in so we
316 * can remove the counter safely, if the call above did not
317 * succeed.
319 if (!list_empty(&counter->list_entry)) {
320 list_del_counter(counter, ctx);
322 spin_unlock_irq(&ctx->lock);
325 static inline u64 perf_clock(void)
327 return cpu_clock(smp_processor_id());
331 * Update the record of the current time in a context.
333 static void update_context_time(struct perf_counter_context *ctx)
335 u64 now = perf_clock();
337 ctx->time += now - ctx->timestamp;
338 ctx->timestamp = now;
342 * Update the total_time_enabled and total_time_running fields for a counter.
344 static void update_counter_times(struct perf_counter *counter)
346 struct perf_counter_context *ctx = counter->ctx;
347 u64 run_end;
349 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350 return;
352 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
354 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355 run_end = counter->tstamp_stopped;
356 else
357 run_end = ctx->time;
359 counter->total_time_running = run_end - counter->tstamp_running;
363 * Update total_time_enabled and total_time_running for all counters in a group.
365 static void update_group_times(struct perf_counter *leader)
367 struct perf_counter *counter;
369 update_counter_times(leader);
370 list_for_each_entry(counter, &leader->sibling_list, list_entry)
371 update_counter_times(counter);
375 * Cross CPU call to disable a performance counter
377 static void __perf_counter_disable(void *info)
379 struct perf_counter *counter = info;
380 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381 struct perf_counter_context *ctx = counter->ctx;
382 unsigned long flags;
385 * If this is a per-task counter, need to check whether this
386 * counter's task is the current task on this cpu.
388 if (ctx->task && cpuctx->task_ctx != ctx)
389 return;
391 spin_lock_irqsave(&ctx->lock, flags);
394 * If the counter is on, turn it off.
395 * If it is in error state, leave it in error state.
397 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398 update_context_time(ctx);
399 update_counter_times(counter);
400 if (counter == counter->group_leader)
401 group_sched_out(counter, cpuctx, ctx);
402 else
403 counter_sched_out(counter, cpuctx, ctx);
404 counter->state = PERF_COUNTER_STATE_OFF;
407 spin_unlock_irqrestore(&ctx->lock, flags);
411 * Disable a counter.
413 static void perf_counter_disable(struct perf_counter *counter)
415 struct perf_counter_context *ctx = counter->ctx;
416 struct task_struct *task = ctx->task;
418 if (!task) {
420 * Disable the counter on the cpu that it's on
422 smp_call_function_single(counter->cpu, __perf_counter_disable,
423 counter, 1);
424 return;
427 retry:
428 task_oncpu_function_call(task, __perf_counter_disable, counter);
430 spin_lock_irq(&ctx->lock);
432 * If the counter is still active, we need to retry the cross-call.
434 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
435 spin_unlock_irq(&ctx->lock);
436 goto retry;
440 * Since we have the lock this context can't be scheduled
441 * in, so we can change the state safely.
443 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
444 update_counter_times(counter);
445 counter->state = PERF_COUNTER_STATE_OFF;
448 spin_unlock_irq(&ctx->lock);
451 static int
452 counter_sched_in(struct perf_counter *counter,
453 struct perf_cpu_context *cpuctx,
454 struct perf_counter_context *ctx,
455 int cpu)
457 if (counter->state <= PERF_COUNTER_STATE_OFF)
458 return 0;
460 counter->state = PERF_COUNTER_STATE_ACTIVE;
461 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
463 * The new state must be visible before we turn it on in the hardware:
465 smp_wmb();
467 if (counter->pmu->enable(counter)) {
468 counter->state = PERF_COUNTER_STATE_INACTIVE;
469 counter->oncpu = -1;
470 return -EAGAIN;
473 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
475 if (!is_software_counter(counter))
476 cpuctx->active_oncpu++;
477 ctx->nr_active++;
479 if (counter->hw_event.exclusive)
480 cpuctx->exclusive = 1;
482 return 0;
485 static int
486 group_sched_in(struct perf_counter *group_counter,
487 struct perf_cpu_context *cpuctx,
488 struct perf_counter_context *ctx,
489 int cpu)
491 struct perf_counter *counter, *partial_group;
492 int ret;
494 if (group_counter->state == PERF_COUNTER_STATE_OFF)
495 return 0;
497 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
498 if (ret)
499 return ret < 0 ? ret : 0;
501 group_counter->prev_state = group_counter->state;
502 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
503 return -EAGAIN;
506 * Schedule in siblings as one group (if any):
508 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
509 counter->prev_state = counter->state;
510 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
511 partial_group = counter;
512 goto group_error;
516 return 0;
518 group_error:
520 * Groups can be scheduled in as one unit only, so undo any
521 * partial group before returning:
523 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
524 if (counter == partial_group)
525 break;
526 counter_sched_out(counter, cpuctx, ctx);
528 counter_sched_out(group_counter, cpuctx, ctx);
530 return -EAGAIN;
534 * Return 1 for a group consisting entirely of software counters,
535 * 0 if the group contains any hardware counters.
537 static int is_software_only_group(struct perf_counter *leader)
539 struct perf_counter *counter;
541 if (!is_software_counter(leader))
542 return 0;
544 list_for_each_entry(counter, &leader->sibling_list, list_entry)
545 if (!is_software_counter(counter))
546 return 0;
548 return 1;
552 * Work out whether we can put this counter group on the CPU now.
554 static int group_can_go_on(struct perf_counter *counter,
555 struct perf_cpu_context *cpuctx,
556 int can_add_hw)
559 * Groups consisting entirely of software counters can always go on.
561 if (is_software_only_group(counter))
562 return 1;
564 * If an exclusive group is already on, no other hardware
565 * counters can go on.
567 if (cpuctx->exclusive)
568 return 0;
570 * If this group is exclusive and there are already
571 * counters on the CPU, it can't go on.
573 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
574 return 0;
576 * Otherwise, try to add it if all previous groups were able
577 * to go on.
579 return can_add_hw;
582 static void add_counter_to_ctx(struct perf_counter *counter,
583 struct perf_counter_context *ctx)
585 list_add_counter(counter, ctx);
586 counter->prev_state = PERF_COUNTER_STATE_OFF;
587 counter->tstamp_enabled = ctx->time;
588 counter->tstamp_running = ctx->time;
589 counter->tstamp_stopped = ctx->time;
593 * Cross CPU call to install and enable a performance counter
595 * Must be called with ctx->mutex held
597 static void __perf_install_in_context(void *info)
599 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600 struct perf_counter *counter = info;
601 struct perf_counter_context *ctx = counter->ctx;
602 struct perf_counter *leader = counter->group_leader;
603 int cpu = smp_processor_id();
604 unsigned long flags;
605 int err;
608 * If this is a task context, we need to check whether it is
609 * the current task context of this cpu. If not it has been
610 * scheduled out before the smp call arrived.
611 * Or possibly this is the right context but it isn't
612 * on this cpu because it had no counters.
614 if (ctx->task && cpuctx->task_ctx != ctx) {
615 if (cpuctx->task_ctx || ctx->task != current)
616 return;
617 cpuctx->task_ctx = ctx;
620 spin_lock_irqsave(&ctx->lock, flags);
621 ctx->is_active = 1;
622 update_context_time(ctx);
625 * Protect the list operation against NMI by disabling the
626 * counters on a global level. NOP for non NMI based counters.
628 perf_disable();
630 add_counter_to_ctx(counter, ctx);
633 * Don't put the counter on if it is disabled or if
634 * it is in a group and the group isn't on.
636 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638 goto unlock;
641 * An exclusive counter can't go on if there are already active
642 * hardware counters, and no hardware counter can go on if there
643 * is already an exclusive counter on.
645 if (!group_can_go_on(counter, cpuctx, 1))
646 err = -EEXIST;
647 else
648 err = counter_sched_in(counter, cpuctx, ctx, cpu);
650 if (err) {
652 * This counter couldn't go on. If it is in a group
653 * then we have to pull the whole group off.
654 * If the counter group is pinned then put it in error state.
656 if (leader != counter)
657 group_sched_out(leader, cpuctx, ctx);
658 if (leader->hw_event.pinned) {
659 update_group_times(leader);
660 leader->state = PERF_COUNTER_STATE_ERROR;
664 if (!err && !ctx->task && cpuctx->max_pertask)
665 cpuctx->max_pertask--;
667 unlock:
668 perf_enable();
670 spin_unlock_irqrestore(&ctx->lock, flags);
674 * Attach a performance counter to a context
676 * First we add the counter to the list with the hardware enable bit
677 * in counter->hw_config cleared.
679 * If the counter is attached to a task which is on a CPU we use a smp
680 * call to enable it in the task context. The task might have been
681 * scheduled away, but we check this in the smp call again.
683 * Must be called with ctx->mutex held.
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687 struct perf_counter *counter,
688 int cpu)
690 struct task_struct *task = ctx->task;
692 if (!task) {
694 * Per cpu counters are installed via an smp call and
695 * the install is always sucessful.
697 smp_call_function_single(cpu, __perf_install_in_context,
698 counter, 1);
699 return;
702 retry:
703 task_oncpu_function_call(task, __perf_install_in_context,
704 counter);
706 spin_lock_irq(&ctx->lock);
708 * we need to retry the smp call.
710 if (ctx->is_active && list_empty(&counter->list_entry)) {
711 spin_unlock_irq(&ctx->lock);
712 goto retry;
716 * The lock prevents that this context is scheduled in so we
717 * can add the counter safely, if it the call above did not
718 * succeed.
720 if (list_empty(&counter->list_entry))
721 add_counter_to_ctx(counter, ctx);
722 spin_unlock_irq(&ctx->lock);
726 * Cross CPU call to enable a performance counter
728 static void __perf_counter_enable(void *info)
730 struct perf_counter *counter = info;
731 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732 struct perf_counter_context *ctx = counter->ctx;
733 struct perf_counter *leader = counter->group_leader;
734 unsigned long flags;
735 int err;
738 * If this is a per-task counter, need to check whether this
739 * counter's task is the current task on this cpu.
741 if (ctx->task && cpuctx->task_ctx != ctx) {
742 if (cpuctx->task_ctx || ctx->task != current)
743 return;
744 cpuctx->task_ctx = ctx;
747 spin_lock_irqsave(&ctx->lock, flags);
748 ctx->is_active = 1;
749 update_context_time(ctx);
751 counter->prev_state = counter->state;
752 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753 goto unlock;
754 counter->state = PERF_COUNTER_STATE_INACTIVE;
755 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
758 * If the counter is in a group and isn't the group leader,
759 * then don't put it on unless the group is on.
761 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
762 goto unlock;
764 if (!group_can_go_on(counter, cpuctx, 1)) {
765 err = -EEXIST;
766 } else {
767 perf_disable();
768 if (counter == leader)
769 err = group_sched_in(counter, cpuctx, ctx,
770 smp_processor_id());
771 else
772 err = counter_sched_in(counter, cpuctx, ctx,
773 smp_processor_id());
774 perf_enable();
777 if (err) {
779 * If this counter can't go on and it's part of a
780 * group, then the whole group has to come off.
782 if (leader != counter)
783 group_sched_out(leader, cpuctx, ctx);
784 if (leader->hw_event.pinned) {
785 update_group_times(leader);
786 leader->state = PERF_COUNTER_STATE_ERROR;
790 unlock:
791 spin_unlock_irqrestore(&ctx->lock, flags);
795 * Enable a counter.
797 static void perf_counter_enable(struct perf_counter *counter)
799 struct perf_counter_context *ctx = counter->ctx;
800 struct task_struct *task = ctx->task;
802 if (!task) {
804 * Enable the counter on the cpu that it's on
806 smp_call_function_single(counter->cpu, __perf_counter_enable,
807 counter, 1);
808 return;
811 spin_lock_irq(&ctx->lock);
812 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
813 goto out;
816 * If the counter is in error state, clear that first.
817 * That way, if we see the counter in error state below, we
818 * know that it has gone back into error state, as distinct
819 * from the task having been scheduled away before the
820 * cross-call arrived.
822 if (counter->state == PERF_COUNTER_STATE_ERROR)
823 counter->state = PERF_COUNTER_STATE_OFF;
825 retry:
826 spin_unlock_irq(&ctx->lock);
827 task_oncpu_function_call(task, __perf_counter_enable, counter);
829 spin_lock_irq(&ctx->lock);
832 * If the context is active and the counter is still off,
833 * we need to retry the cross-call.
835 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
836 goto retry;
839 * Since we have the lock this context can't be scheduled
840 * in, so we can change the state safely.
842 if (counter->state == PERF_COUNTER_STATE_OFF) {
843 counter->state = PERF_COUNTER_STATE_INACTIVE;
844 counter->tstamp_enabled =
845 ctx->time - counter->total_time_enabled;
847 out:
848 spin_unlock_irq(&ctx->lock);
851 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
854 * not supported on inherited counters
856 if (counter->hw_event.inherit)
857 return -EINVAL;
859 atomic_add(refresh, &counter->event_limit);
860 perf_counter_enable(counter);
862 return 0;
865 void __perf_counter_sched_out(struct perf_counter_context *ctx,
866 struct perf_cpu_context *cpuctx)
868 struct perf_counter *counter;
870 spin_lock(&ctx->lock);
871 ctx->is_active = 0;
872 if (likely(!ctx->nr_counters))
873 goto out;
874 update_context_time(ctx);
876 perf_disable();
877 if (ctx->nr_active) {
878 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
879 if (counter != counter->group_leader)
880 counter_sched_out(counter, cpuctx, ctx);
881 else
882 group_sched_out(counter, cpuctx, ctx);
885 perf_enable();
886 out:
887 spin_unlock(&ctx->lock);
891 * Test whether two contexts are equivalent, i.e. whether they
892 * have both been cloned from the same version of the same context
893 * and they both have the same number of enabled counters.
894 * If the number of enabled counters is the same, then the set
895 * of enabled counters should be the same, because these are both
896 * inherited contexts, therefore we can't access individual counters
897 * in them directly with an fd; we can only enable/disable all
898 * counters via prctl, or enable/disable all counters in a family
899 * via ioctl, which will have the same effect on both contexts.
901 static int context_equiv(struct perf_counter_context *ctx1,
902 struct perf_counter_context *ctx2)
904 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
905 && ctx1->parent_gen == ctx2->parent_gen;
909 * Called from scheduler to remove the counters of the current task,
910 * with interrupts disabled.
912 * We stop each counter and update the counter value in counter->count.
914 * This does not protect us against NMI, but disable()
915 * sets the disabled bit in the control field of counter _before_
916 * accessing the counter control register. If a NMI hits, then it will
917 * not restart the counter.
919 void perf_counter_task_sched_out(struct task_struct *task,
920 struct task_struct *next, int cpu)
922 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923 struct perf_counter_context *ctx = task->perf_counter_ctxp;
924 struct perf_counter_context *next_ctx;
925 struct pt_regs *regs;
927 if (likely(!ctx || !cpuctx->task_ctx))
928 return;
930 update_context_time(ctx);
932 regs = task_pt_regs(task);
933 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
935 next_ctx = next->perf_counter_ctxp;
936 if (next_ctx && context_equiv(ctx, next_ctx)) {
937 task->perf_counter_ctxp = next_ctx;
938 next->perf_counter_ctxp = ctx;
939 ctx->task = next;
940 next_ctx->task = task;
941 return;
944 __perf_counter_sched_out(ctx, cpuctx);
946 cpuctx->task_ctx = NULL;
949 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
951 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
953 if (!cpuctx->task_ctx)
954 return;
955 __perf_counter_sched_out(ctx, cpuctx);
956 cpuctx->task_ctx = NULL;
959 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
961 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
964 static void
965 __perf_counter_sched_in(struct perf_counter_context *ctx,
966 struct perf_cpu_context *cpuctx, int cpu)
968 struct perf_counter *counter;
969 int can_add_hw = 1;
971 spin_lock(&ctx->lock);
972 ctx->is_active = 1;
973 if (likely(!ctx->nr_counters))
974 goto out;
976 ctx->timestamp = perf_clock();
978 perf_disable();
981 * First go through the list and put on any pinned groups
982 * in order to give them the best chance of going on.
984 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
985 if (counter->state <= PERF_COUNTER_STATE_OFF ||
986 !counter->hw_event.pinned)
987 continue;
988 if (counter->cpu != -1 && counter->cpu != cpu)
989 continue;
991 if (counter != counter->group_leader)
992 counter_sched_in(counter, cpuctx, ctx, cpu);
993 else {
994 if (group_can_go_on(counter, cpuctx, 1))
995 group_sched_in(counter, cpuctx, ctx, cpu);
999 * If this pinned group hasn't been scheduled,
1000 * put it in error state.
1002 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1003 update_group_times(counter);
1004 counter->state = PERF_COUNTER_STATE_ERROR;
1008 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1010 * Ignore counters in OFF or ERROR state, and
1011 * ignore pinned counters since we did them already.
1013 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1014 counter->hw_event.pinned)
1015 continue;
1018 * Listen to the 'cpu' scheduling filter constraint
1019 * of counters:
1021 if (counter->cpu != -1 && counter->cpu != cpu)
1022 continue;
1024 if (counter != counter->group_leader) {
1025 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1026 can_add_hw = 0;
1027 } else {
1028 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1029 if (group_sched_in(counter, cpuctx, ctx, cpu))
1030 can_add_hw = 0;
1034 perf_enable();
1035 out:
1036 spin_unlock(&ctx->lock);
1040 * Called from scheduler to add the counters of the current task
1041 * with interrupts disabled.
1043 * We restore the counter value and then enable it.
1045 * This does not protect us against NMI, but enable()
1046 * sets the enabled bit in the control field of counter _before_
1047 * accessing the counter control register. If a NMI hits, then it will
1048 * keep the counter running.
1050 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1052 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1053 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1055 if (likely(!ctx))
1056 return;
1057 if (cpuctx->task_ctx == ctx)
1058 return;
1059 __perf_counter_sched_in(ctx, cpuctx, cpu);
1060 cpuctx->task_ctx = ctx;
1063 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1065 struct perf_counter_context *ctx = &cpuctx->ctx;
1067 __perf_counter_sched_in(ctx, cpuctx, cpu);
1070 int perf_counter_task_enable(void)
1072 struct perf_counter *counter;
1074 mutex_lock(&current->perf_counter_mutex);
1075 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1076 perf_counter_enable(counter);
1077 mutex_unlock(&current->perf_counter_mutex);
1079 return 0;
1082 int perf_counter_task_disable(void)
1084 struct perf_counter *counter;
1086 mutex_lock(&current->perf_counter_mutex);
1087 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1088 perf_counter_disable(counter);
1089 mutex_unlock(&current->perf_counter_mutex);
1091 return 0;
1094 static void perf_log_period(struct perf_counter *counter, u64 period);
1096 static void perf_adjust_freq(struct perf_counter_context *ctx)
1098 struct perf_counter *counter;
1099 u64 irq_period;
1100 u64 events, period;
1101 s64 delta;
1103 spin_lock(&ctx->lock);
1104 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1105 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1106 continue;
1108 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1109 continue;
1111 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1112 period = div64_u64(events, counter->hw_event.irq_freq);
1114 delta = (s64)(1 + period - counter->hw.irq_period);
1115 delta >>= 1;
1117 irq_period = counter->hw.irq_period + delta;
1119 if (!irq_period)
1120 irq_period = 1;
1122 perf_log_period(counter, irq_period);
1124 counter->hw.irq_period = irq_period;
1125 counter->hw.interrupts = 0;
1127 spin_unlock(&ctx->lock);
1131 * Round-robin a context's counters:
1133 static void rotate_ctx(struct perf_counter_context *ctx)
1135 struct perf_counter *counter;
1137 if (!ctx->nr_counters)
1138 return;
1140 spin_lock(&ctx->lock);
1142 * Rotate the first entry last (works just fine for group counters too):
1144 perf_disable();
1145 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1146 list_move_tail(&counter->list_entry, &ctx->counter_list);
1147 break;
1149 perf_enable();
1151 spin_unlock(&ctx->lock);
1154 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1156 struct perf_cpu_context *cpuctx;
1157 struct perf_counter_context *ctx;
1159 if (!atomic_read(&nr_counters))
1160 return;
1162 cpuctx = &per_cpu(perf_cpu_context, cpu);
1163 ctx = curr->perf_counter_ctxp;
1165 perf_adjust_freq(&cpuctx->ctx);
1166 if (ctx)
1167 perf_adjust_freq(ctx);
1169 perf_counter_cpu_sched_out(cpuctx);
1170 if (ctx)
1171 __perf_counter_task_sched_out(ctx);
1173 rotate_ctx(&cpuctx->ctx);
1174 if (ctx)
1175 rotate_ctx(ctx);
1177 perf_counter_cpu_sched_in(cpuctx, cpu);
1178 if (ctx)
1179 perf_counter_task_sched_in(curr, cpu);
1183 * Cross CPU call to read the hardware counter
1185 static void __read(void *info)
1187 struct perf_counter *counter = info;
1188 struct perf_counter_context *ctx = counter->ctx;
1189 unsigned long flags;
1191 local_irq_save(flags);
1192 if (ctx->is_active)
1193 update_context_time(ctx);
1194 counter->pmu->read(counter);
1195 update_counter_times(counter);
1196 local_irq_restore(flags);
1199 static u64 perf_counter_read(struct perf_counter *counter)
1202 * If counter is enabled and currently active on a CPU, update the
1203 * value in the counter structure:
1205 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1206 smp_call_function_single(counter->oncpu,
1207 __read, counter, 1);
1208 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1209 update_counter_times(counter);
1212 return atomic64_read(&counter->count);
1216 * Initialize the perf_counter context in a task_struct:
1218 static void
1219 __perf_counter_init_context(struct perf_counter_context *ctx,
1220 struct task_struct *task)
1222 memset(ctx, 0, sizeof(*ctx));
1223 spin_lock_init(&ctx->lock);
1224 mutex_init(&ctx->mutex);
1225 INIT_LIST_HEAD(&ctx->counter_list);
1226 INIT_LIST_HEAD(&ctx->event_list);
1227 atomic_set(&ctx->refcount, 1);
1228 ctx->task = task;
1231 static void put_context(struct perf_counter_context *ctx)
1233 if (ctx->task)
1234 put_task_struct(ctx->task);
1237 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1239 struct perf_cpu_context *cpuctx;
1240 struct perf_counter_context *ctx;
1241 struct perf_counter_context *tctx;
1242 struct task_struct *task;
1245 * If cpu is not a wildcard then this is a percpu counter:
1247 if (cpu != -1) {
1248 /* Must be root to operate on a CPU counter: */
1249 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1250 return ERR_PTR(-EACCES);
1252 if (cpu < 0 || cpu > num_possible_cpus())
1253 return ERR_PTR(-EINVAL);
1256 * We could be clever and allow to attach a counter to an
1257 * offline CPU and activate it when the CPU comes up, but
1258 * that's for later.
1260 if (!cpu_isset(cpu, cpu_online_map))
1261 return ERR_PTR(-ENODEV);
1263 cpuctx = &per_cpu(perf_cpu_context, cpu);
1264 ctx = &cpuctx->ctx;
1266 return ctx;
1269 rcu_read_lock();
1270 if (!pid)
1271 task = current;
1272 else
1273 task = find_task_by_vpid(pid);
1274 if (task)
1275 get_task_struct(task);
1276 rcu_read_unlock();
1278 if (!task)
1279 return ERR_PTR(-ESRCH);
1281 /* Reuse ptrace permission checks for now. */
1282 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1283 put_task_struct(task);
1284 return ERR_PTR(-EACCES);
1287 ctx = task->perf_counter_ctxp;
1288 if (!ctx) {
1289 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1290 if (!ctx) {
1291 put_task_struct(task);
1292 return ERR_PTR(-ENOMEM);
1294 __perf_counter_init_context(ctx, task);
1296 * Make sure other cpus see correct values for *ctx
1297 * once task->perf_counter_ctxp is visible to them.
1299 smp_wmb();
1300 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1301 if (tctx) {
1303 * We raced with some other task; use
1304 * the context they set.
1306 kfree(ctx);
1307 ctx = tctx;
1311 return ctx;
1314 static void free_counter_rcu(struct rcu_head *head)
1316 struct perf_counter *counter;
1318 counter = container_of(head, struct perf_counter, rcu_head);
1319 put_ctx(counter->ctx);
1320 kfree(counter);
1323 static void perf_pending_sync(struct perf_counter *counter);
1325 static void free_counter(struct perf_counter *counter)
1327 perf_pending_sync(counter);
1329 atomic_dec(&nr_counters);
1330 if (counter->hw_event.mmap)
1331 atomic_dec(&nr_mmap_tracking);
1332 if (counter->hw_event.munmap)
1333 atomic_dec(&nr_munmap_tracking);
1334 if (counter->hw_event.comm)
1335 atomic_dec(&nr_comm_tracking);
1337 if (counter->destroy)
1338 counter->destroy(counter);
1340 call_rcu(&counter->rcu_head, free_counter_rcu);
1344 * Called when the last reference to the file is gone.
1346 static int perf_release(struct inode *inode, struct file *file)
1348 struct perf_counter *counter = file->private_data;
1349 struct perf_counter_context *ctx = counter->ctx;
1351 file->private_data = NULL;
1353 mutex_lock(&ctx->mutex);
1354 perf_counter_remove_from_context(counter);
1355 mutex_unlock(&ctx->mutex);
1357 mutex_lock(&counter->owner->perf_counter_mutex);
1358 list_del_init(&counter->owner_entry);
1359 mutex_unlock(&counter->owner->perf_counter_mutex);
1360 put_task_struct(counter->owner);
1362 free_counter(counter);
1363 put_context(ctx);
1365 return 0;
1369 * Read the performance counter - simple non blocking version for now
1371 static ssize_t
1372 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1374 u64 values[3];
1375 int n;
1378 * Return end-of-file for a read on a counter that is in
1379 * error state (i.e. because it was pinned but it couldn't be
1380 * scheduled on to the CPU at some point).
1382 if (counter->state == PERF_COUNTER_STATE_ERROR)
1383 return 0;
1385 mutex_lock(&counter->child_mutex);
1386 values[0] = perf_counter_read(counter);
1387 n = 1;
1388 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1389 values[n++] = counter->total_time_enabled +
1390 atomic64_read(&counter->child_total_time_enabled);
1391 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1392 values[n++] = counter->total_time_running +
1393 atomic64_read(&counter->child_total_time_running);
1394 mutex_unlock(&counter->child_mutex);
1396 if (count < n * sizeof(u64))
1397 return -EINVAL;
1398 count = n * sizeof(u64);
1400 if (copy_to_user(buf, values, count))
1401 return -EFAULT;
1403 return count;
1406 static ssize_t
1407 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1409 struct perf_counter *counter = file->private_data;
1411 return perf_read_hw(counter, buf, count);
1414 static unsigned int perf_poll(struct file *file, poll_table *wait)
1416 struct perf_counter *counter = file->private_data;
1417 struct perf_mmap_data *data;
1418 unsigned int events = POLL_HUP;
1420 rcu_read_lock();
1421 data = rcu_dereference(counter->data);
1422 if (data)
1423 events = atomic_xchg(&data->poll, 0);
1424 rcu_read_unlock();
1426 poll_wait(file, &counter->waitq, wait);
1428 return events;
1431 static void perf_counter_reset(struct perf_counter *counter)
1433 (void)perf_counter_read(counter);
1434 atomic64_set(&counter->count, 0);
1435 perf_counter_update_userpage(counter);
1438 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1439 void (*func)(struct perf_counter *))
1441 struct perf_counter_context *ctx = counter->ctx;
1442 struct perf_counter *sibling;
1444 mutex_lock(&ctx->mutex);
1445 counter = counter->group_leader;
1447 func(counter);
1448 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1449 func(sibling);
1450 mutex_unlock(&ctx->mutex);
1453 static void perf_counter_for_each_child(struct perf_counter *counter,
1454 void (*func)(struct perf_counter *))
1456 struct perf_counter *child;
1458 mutex_lock(&counter->child_mutex);
1459 func(counter);
1460 list_for_each_entry(child, &counter->child_list, child_list)
1461 func(child);
1462 mutex_unlock(&counter->child_mutex);
1465 static void perf_counter_for_each(struct perf_counter *counter,
1466 void (*func)(struct perf_counter *))
1468 struct perf_counter *child;
1470 mutex_lock(&counter->child_mutex);
1471 perf_counter_for_each_sibling(counter, func);
1472 list_for_each_entry(child, &counter->child_list, child_list)
1473 perf_counter_for_each_sibling(child, func);
1474 mutex_unlock(&counter->child_mutex);
1477 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1479 struct perf_counter *counter = file->private_data;
1480 void (*func)(struct perf_counter *);
1481 u32 flags = arg;
1483 switch (cmd) {
1484 case PERF_COUNTER_IOC_ENABLE:
1485 func = perf_counter_enable;
1486 break;
1487 case PERF_COUNTER_IOC_DISABLE:
1488 func = perf_counter_disable;
1489 break;
1490 case PERF_COUNTER_IOC_RESET:
1491 func = perf_counter_reset;
1492 break;
1494 case PERF_COUNTER_IOC_REFRESH:
1495 return perf_counter_refresh(counter, arg);
1496 default:
1497 return -ENOTTY;
1500 if (flags & PERF_IOC_FLAG_GROUP)
1501 perf_counter_for_each(counter, func);
1502 else
1503 perf_counter_for_each_child(counter, func);
1505 return 0;
1509 * Callers need to ensure there can be no nesting of this function, otherwise
1510 * the seqlock logic goes bad. We can not serialize this because the arch
1511 * code calls this from NMI context.
1513 void perf_counter_update_userpage(struct perf_counter *counter)
1515 struct perf_mmap_data *data;
1516 struct perf_counter_mmap_page *userpg;
1518 rcu_read_lock();
1519 data = rcu_dereference(counter->data);
1520 if (!data)
1521 goto unlock;
1523 userpg = data->user_page;
1526 * Disable preemption so as to not let the corresponding user-space
1527 * spin too long if we get preempted.
1529 preempt_disable();
1530 ++userpg->lock;
1531 barrier();
1532 userpg->index = counter->hw.idx;
1533 userpg->offset = atomic64_read(&counter->count);
1534 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1535 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1537 barrier();
1538 ++userpg->lock;
1539 preempt_enable();
1540 unlock:
1541 rcu_read_unlock();
1544 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1546 struct perf_counter *counter = vma->vm_file->private_data;
1547 struct perf_mmap_data *data;
1548 int ret = VM_FAULT_SIGBUS;
1550 rcu_read_lock();
1551 data = rcu_dereference(counter->data);
1552 if (!data)
1553 goto unlock;
1555 if (vmf->pgoff == 0) {
1556 vmf->page = virt_to_page(data->user_page);
1557 } else {
1558 int nr = vmf->pgoff - 1;
1560 if ((unsigned)nr > data->nr_pages)
1561 goto unlock;
1563 vmf->page = virt_to_page(data->data_pages[nr]);
1565 get_page(vmf->page);
1566 ret = 0;
1567 unlock:
1568 rcu_read_unlock();
1570 return ret;
1573 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1575 struct perf_mmap_data *data;
1576 unsigned long size;
1577 int i;
1579 WARN_ON(atomic_read(&counter->mmap_count));
1581 size = sizeof(struct perf_mmap_data);
1582 size += nr_pages * sizeof(void *);
1584 data = kzalloc(size, GFP_KERNEL);
1585 if (!data)
1586 goto fail;
1588 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1589 if (!data->user_page)
1590 goto fail_user_page;
1592 for (i = 0; i < nr_pages; i++) {
1593 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1594 if (!data->data_pages[i])
1595 goto fail_data_pages;
1598 data->nr_pages = nr_pages;
1599 atomic_set(&data->lock, -1);
1601 rcu_assign_pointer(counter->data, data);
1603 return 0;
1605 fail_data_pages:
1606 for (i--; i >= 0; i--)
1607 free_page((unsigned long)data->data_pages[i]);
1609 free_page((unsigned long)data->user_page);
1611 fail_user_page:
1612 kfree(data);
1614 fail:
1615 return -ENOMEM;
1618 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1620 struct perf_mmap_data *data = container_of(rcu_head,
1621 struct perf_mmap_data, rcu_head);
1622 int i;
1624 free_page((unsigned long)data->user_page);
1625 for (i = 0; i < data->nr_pages; i++)
1626 free_page((unsigned long)data->data_pages[i]);
1627 kfree(data);
1630 static void perf_mmap_data_free(struct perf_counter *counter)
1632 struct perf_mmap_data *data = counter->data;
1634 WARN_ON(atomic_read(&counter->mmap_count));
1636 rcu_assign_pointer(counter->data, NULL);
1637 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1640 static void perf_mmap_open(struct vm_area_struct *vma)
1642 struct perf_counter *counter = vma->vm_file->private_data;
1644 atomic_inc(&counter->mmap_count);
1647 static void perf_mmap_close(struct vm_area_struct *vma)
1649 struct perf_counter *counter = vma->vm_file->private_data;
1651 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1652 &counter->mmap_mutex)) {
1653 struct user_struct *user = current_user();
1655 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1656 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1657 perf_mmap_data_free(counter);
1658 mutex_unlock(&counter->mmap_mutex);
1662 static struct vm_operations_struct perf_mmap_vmops = {
1663 .open = perf_mmap_open,
1664 .close = perf_mmap_close,
1665 .fault = perf_mmap_fault,
1668 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1670 struct perf_counter *counter = file->private_data;
1671 struct user_struct *user = current_user();
1672 unsigned long vma_size;
1673 unsigned long nr_pages;
1674 unsigned long user_locked, user_lock_limit;
1675 unsigned long locked, lock_limit;
1676 long user_extra, extra;
1677 int ret = 0;
1679 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1680 return -EINVAL;
1682 vma_size = vma->vm_end - vma->vm_start;
1683 nr_pages = (vma_size / PAGE_SIZE) - 1;
1686 * If we have data pages ensure they're a power-of-two number, so we
1687 * can do bitmasks instead of modulo.
1689 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1690 return -EINVAL;
1692 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1693 return -EINVAL;
1695 if (vma->vm_pgoff != 0)
1696 return -EINVAL;
1698 mutex_lock(&counter->mmap_mutex);
1699 if (atomic_inc_not_zero(&counter->mmap_count)) {
1700 if (nr_pages != counter->data->nr_pages)
1701 ret = -EINVAL;
1702 goto unlock;
1705 user_extra = nr_pages + 1;
1706 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1707 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1709 extra = 0;
1710 if (user_locked > user_lock_limit)
1711 extra = user_locked - user_lock_limit;
1713 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1714 lock_limit >>= PAGE_SHIFT;
1715 locked = vma->vm_mm->locked_vm + extra;
1717 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1718 ret = -EPERM;
1719 goto unlock;
1722 WARN_ON(counter->data);
1723 ret = perf_mmap_data_alloc(counter, nr_pages);
1724 if (ret)
1725 goto unlock;
1727 atomic_set(&counter->mmap_count, 1);
1728 atomic_long_add(user_extra, &user->locked_vm);
1729 vma->vm_mm->locked_vm += extra;
1730 counter->data->nr_locked = extra;
1731 unlock:
1732 mutex_unlock(&counter->mmap_mutex);
1734 vma->vm_flags &= ~VM_MAYWRITE;
1735 vma->vm_flags |= VM_RESERVED;
1736 vma->vm_ops = &perf_mmap_vmops;
1738 return ret;
1741 static int perf_fasync(int fd, struct file *filp, int on)
1743 struct perf_counter *counter = filp->private_data;
1744 struct inode *inode = filp->f_path.dentry->d_inode;
1745 int retval;
1747 mutex_lock(&inode->i_mutex);
1748 retval = fasync_helper(fd, filp, on, &counter->fasync);
1749 mutex_unlock(&inode->i_mutex);
1751 if (retval < 0)
1752 return retval;
1754 return 0;
1757 static const struct file_operations perf_fops = {
1758 .release = perf_release,
1759 .read = perf_read,
1760 .poll = perf_poll,
1761 .unlocked_ioctl = perf_ioctl,
1762 .compat_ioctl = perf_ioctl,
1763 .mmap = perf_mmap,
1764 .fasync = perf_fasync,
1768 * Perf counter wakeup
1770 * If there's data, ensure we set the poll() state and publish everything
1771 * to user-space before waking everybody up.
1774 void perf_counter_wakeup(struct perf_counter *counter)
1776 wake_up_all(&counter->waitq);
1778 if (counter->pending_kill) {
1779 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1780 counter->pending_kill = 0;
1785 * Pending wakeups
1787 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1789 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1790 * single linked list and use cmpxchg() to add entries lockless.
1793 static void perf_pending_counter(struct perf_pending_entry *entry)
1795 struct perf_counter *counter = container_of(entry,
1796 struct perf_counter, pending);
1798 if (counter->pending_disable) {
1799 counter->pending_disable = 0;
1800 perf_counter_disable(counter);
1803 if (counter->pending_wakeup) {
1804 counter->pending_wakeup = 0;
1805 perf_counter_wakeup(counter);
1809 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1811 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1812 PENDING_TAIL,
1815 static void perf_pending_queue(struct perf_pending_entry *entry,
1816 void (*func)(struct perf_pending_entry *))
1818 struct perf_pending_entry **head;
1820 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1821 return;
1823 entry->func = func;
1825 head = &get_cpu_var(perf_pending_head);
1827 do {
1828 entry->next = *head;
1829 } while (cmpxchg(head, entry->next, entry) != entry->next);
1831 set_perf_counter_pending();
1833 put_cpu_var(perf_pending_head);
1836 static int __perf_pending_run(void)
1838 struct perf_pending_entry *list;
1839 int nr = 0;
1841 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1842 while (list != PENDING_TAIL) {
1843 void (*func)(struct perf_pending_entry *);
1844 struct perf_pending_entry *entry = list;
1846 list = list->next;
1848 func = entry->func;
1849 entry->next = NULL;
1851 * Ensure we observe the unqueue before we issue the wakeup,
1852 * so that we won't be waiting forever.
1853 * -- see perf_not_pending().
1855 smp_wmb();
1857 func(entry);
1858 nr++;
1861 return nr;
1864 static inline int perf_not_pending(struct perf_counter *counter)
1867 * If we flush on whatever cpu we run, there is a chance we don't
1868 * need to wait.
1870 get_cpu();
1871 __perf_pending_run();
1872 put_cpu();
1875 * Ensure we see the proper queue state before going to sleep
1876 * so that we do not miss the wakeup. -- see perf_pending_handle()
1878 smp_rmb();
1879 return counter->pending.next == NULL;
1882 static void perf_pending_sync(struct perf_counter *counter)
1884 wait_event(counter->waitq, perf_not_pending(counter));
1887 void perf_counter_do_pending(void)
1889 __perf_pending_run();
1893 * Callchain support -- arch specific
1896 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1898 return NULL;
1902 * Output
1905 struct perf_output_handle {
1906 struct perf_counter *counter;
1907 struct perf_mmap_data *data;
1908 unsigned int offset;
1909 unsigned int head;
1910 int nmi;
1911 int overflow;
1912 int locked;
1913 unsigned long flags;
1916 static void perf_output_wakeup(struct perf_output_handle *handle)
1918 atomic_set(&handle->data->poll, POLL_IN);
1920 if (handle->nmi) {
1921 handle->counter->pending_wakeup = 1;
1922 perf_pending_queue(&handle->counter->pending,
1923 perf_pending_counter);
1924 } else
1925 perf_counter_wakeup(handle->counter);
1929 * Curious locking construct.
1931 * We need to ensure a later event doesn't publish a head when a former
1932 * event isn't done writing. However since we need to deal with NMIs we
1933 * cannot fully serialize things.
1935 * What we do is serialize between CPUs so we only have to deal with NMI
1936 * nesting on a single CPU.
1938 * We only publish the head (and generate a wakeup) when the outer-most
1939 * event completes.
1941 static void perf_output_lock(struct perf_output_handle *handle)
1943 struct perf_mmap_data *data = handle->data;
1944 int cpu;
1946 handle->locked = 0;
1948 local_irq_save(handle->flags);
1949 cpu = smp_processor_id();
1951 if (in_nmi() && atomic_read(&data->lock) == cpu)
1952 return;
1954 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1955 cpu_relax();
1957 handle->locked = 1;
1960 static void perf_output_unlock(struct perf_output_handle *handle)
1962 struct perf_mmap_data *data = handle->data;
1963 int head, cpu;
1965 data->done_head = data->head;
1967 if (!handle->locked)
1968 goto out;
1970 again:
1972 * The xchg implies a full barrier that ensures all writes are done
1973 * before we publish the new head, matched by a rmb() in userspace when
1974 * reading this position.
1976 while ((head = atomic_xchg(&data->done_head, 0)))
1977 data->user_page->data_head = head;
1980 * NMI can happen here, which means we can miss a done_head update.
1983 cpu = atomic_xchg(&data->lock, -1);
1984 WARN_ON_ONCE(cpu != smp_processor_id());
1987 * Therefore we have to validate we did not indeed do so.
1989 if (unlikely(atomic_read(&data->done_head))) {
1991 * Since we had it locked, we can lock it again.
1993 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1994 cpu_relax();
1996 goto again;
1999 if (atomic_xchg(&data->wakeup, 0))
2000 perf_output_wakeup(handle);
2001 out:
2002 local_irq_restore(handle->flags);
2005 static int perf_output_begin(struct perf_output_handle *handle,
2006 struct perf_counter *counter, unsigned int size,
2007 int nmi, int overflow)
2009 struct perf_mmap_data *data;
2010 unsigned int offset, head;
2013 * For inherited counters we send all the output towards the parent.
2015 if (counter->parent)
2016 counter = counter->parent;
2018 rcu_read_lock();
2019 data = rcu_dereference(counter->data);
2020 if (!data)
2021 goto out;
2023 handle->data = data;
2024 handle->counter = counter;
2025 handle->nmi = nmi;
2026 handle->overflow = overflow;
2028 if (!data->nr_pages)
2029 goto fail;
2031 perf_output_lock(handle);
2033 do {
2034 offset = head = atomic_read(&data->head);
2035 head += size;
2036 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2038 handle->offset = offset;
2039 handle->head = head;
2041 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2042 atomic_set(&data->wakeup, 1);
2044 return 0;
2046 fail:
2047 perf_output_wakeup(handle);
2048 out:
2049 rcu_read_unlock();
2051 return -ENOSPC;
2054 static void perf_output_copy(struct perf_output_handle *handle,
2055 void *buf, unsigned int len)
2057 unsigned int pages_mask;
2058 unsigned int offset;
2059 unsigned int size;
2060 void **pages;
2062 offset = handle->offset;
2063 pages_mask = handle->data->nr_pages - 1;
2064 pages = handle->data->data_pages;
2066 do {
2067 unsigned int page_offset;
2068 int nr;
2070 nr = (offset >> PAGE_SHIFT) & pages_mask;
2071 page_offset = offset & (PAGE_SIZE - 1);
2072 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2074 memcpy(pages[nr] + page_offset, buf, size);
2076 len -= size;
2077 buf += size;
2078 offset += size;
2079 } while (len);
2081 handle->offset = offset;
2084 * Check we didn't copy past our reservation window, taking the
2085 * possible unsigned int wrap into account.
2087 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2090 #define perf_output_put(handle, x) \
2091 perf_output_copy((handle), &(x), sizeof(x))
2093 static void perf_output_end(struct perf_output_handle *handle)
2095 struct perf_counter *counter = handle->counter;
2096 struct perf_mmap_data *data = handle->data;
2098 int wakeup_events = counter->hw_event.wakeup_events;
2100 if (handle->overflow && wakeup_events) {
2101 int events = atomic_inc_return(&data->events);
2102 if (events >= wakeup_events) {
2103 atomic_sub(wakeup_events, &data->events);
2104 atomic_set(&data->wakeup, 1);
2108 perf_output_unlock(handle);
2109 rcu_read_unlock();
2112 static void perf_counter_output(struct perf_counter *counter,
2113 int nmi, struct pt_regs *regs, u64 addr)
2115 int ret;
2116 u64 record_type = counter->hw_event.record_type;
2117 struct perf_output_handle handle;
2118 struct perf_event_header header;
2119 u64 ip;
2120 struct {
2121 u32 pid, tid;
2122 } tid_entry;
2123 struct {
2124 u64 event;
2125 u64 counter;
2126 } group_entry;
2127 struct perf_callchain_entry *callchain = NULL;
2128 int callchain_size = 0;
2129 u64 time;
2130 struct {
2131 u32 cpu, reserved;
2132 } cpu_entry;
2134 header.type = 0;
2135 header.size = sizeof(header);
2137 header.misc = PERF_EVENT_MISC_OVERFLOW;
2138 header.misc |= perf_misc_flags(regs);
2140 if (record_type & PERF_RECORD_IP) {
2141 ip = perf_instruction_pointer(regs);
2142 header.type |= PERF_RECORD_IP;
2143 header.size += sizeof(ip);
2146 if (record_type & PERF_RECORD_TID) {
2147 /* namespace issues */
2148 tid_entry.pid = current->group_leader->pid;
2149 tid_entry.tid = current->pid;
2151 header.type |= PERF_RECORD_TID;
2152 header.size += sizeof(tid_entry);
2155 if (record_type & PERF_RECORD_TIME) {
2157 * Maybe do better on x86 and provide cpu_clock_nmi()
2159 time = sched_clock();
2161 header.type |= PERF_RECORD_TIME;
2162 header.size += sizeof(u64);
2165 if (record_type & PERF_RECORD_ADDR) {
2166 header.type |= PERF_RECORD_ADDR;
2167 header.size += sizeof(u64);
2170 if (record_type & PERF_RECORD_CONFIG) {
2171 header.type |= PERF_RECORD_CONFIG;
2172 header.size += sizeof(u64);
2175 if (record_type & PERF_RECORD_CPU) {
2176 header.type |= PERF_RECORD_CPU;
2177 header.size += sizeof(cpu_entry);
2179 cpu_entry.cpu = raw_smp_processor_id();
2182 if (record_type & PERF_RECORD_GROUP) {
2183 header.type |= PERF_RECORD_GROUP;
2184 header.size += sizeof(u64) +
2185 counter->nr_siblings * sizeof(group_entry);
2188 if (record_type & PERF_RECORD_CALLCHAIN) {
2189 callchain = perf_callchain(regs);
2191 if (callchain) {
2192 callchain_size = (1 + callchain->nr) * sizeof(u64);
2194 header.type |= PERF_RECORD_CALLCHAIN;
2195 header.size += callchain_size;
2199 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2200 if (ret)
2201 return;
2203 perf_output_put(&handle, header);
2205 if (record_type & PERF_RECORD_IP)
2206 perf_output_put(&handle, ip);
2208 if (record_type & PERF_RECORD_TID)
2209 perf_output_put(&handle, tid_entry);
2211 if (record_type & PERF_RECORD_TIME)
2212 perf_output_put(&handle, time);
2214 if (record_type & PERF_RECORD_ADDR)
2215 perf_output_put(&handle, addr);
2217 if (record_type & PERF_RECORD_CONFIG)
2218 perf_output_put(&handle, counter->hw_event.config);
2220 if (record_type & PERF_RECORD_CPU)
2221 perf_output_put(&handle, cpu_entry);
2224 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2226 if (record_type & PERF_RECORD_GROUP) {
2227 struct perf_counter *leader, *sub;
2228 u64 nr = counter->nr_siblings;
2230 perf_output_put(&handle, nr);
2232 leader = counter->group_leader;
2233 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2234 if (sub != counter)
2235 sub->pmu->read(sub);
2237 group_entry.event = sub->hw_event.config;
2238 group_entry.counter = atomic64_read(&sub->count);
2240 perf_output_put(&handle, group_entry);
2244 if (callchain)
2245 perf_output_copy(&handle, callchain, callchain_size);
2247 perf_output_end(&handle);
2251 * comm tracking
2254 struct perf_comm_event {
2255 struct task_struct *task;
2256 char *comm;
2257 int comm_size;
2259 struct {
2260 struct perf_event_header header;
2262 u32 pid;
2263 u32 tid;
2264 } event;
2267 static void perf_counter_comm_output(struct perf_counter *counter,
2268 struct perf_comm_event *comm_event)
2270 struct perf_output_handle handle;
2271 int size = comm_event->event.header.size;
2272 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2274 if (ret)
2275 return;
2277 perf_output_put(&handle, comm_event->event);
2278 perf_output_copy(&handle, comm_event->comm,
2279 comm_event->comm_size);
2280 perf_output_end(&handle);
2283 static int perf_counter_comm_match(struct perf_counter *counter,
2284 struct perf_comm_event *comm_event)
2286 if (counter->hw_event.comm &&
2287 comm_event->event.header.type == PERF_EVENT_COMM)
2288 return 1;
2290 return 0;
2293 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2294 struct perf_comm_event *comm_event)
2296 struct perf_counter *counter;
2298 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2299 return;
2301 rcu_read_lock();
2302 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2303 if (perf_counter_comm_match(counter, comm_event))
2304 perf_counter_comm_output(counter, comm_event);
2306 rcu_read_unlock();
2309 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2311 struct perf_cpu_context *cpuctx;
2312 unsigned int size;
2313 char *comm = comm_event->task->comm;
2315 size = ALIGN(strlen(comm)+1, sizeof(u64));
2317 comm_event->comm = comm;
2318 comm_event->comm_size = size;
2320 comm_event->event.header.size = sizeof(comm_event->event) + size;
2322 cpuctx = &get_cpu_var(perf_cpu_context);
2323 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2324 put_cpu_var(perf_cpu_context);
2326 perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2329 void perf_counter_comm(struct task_struct *task)
2331 struct perf_comm_event comm_event;
2333 if (!atomic_read(&nr_comm_tracking))
2334 return;
2335 if (!current->perf_counter_ctxp)
2336 return;
2338 comm_event = (struct perf_comm_event){
2339 .task = task,
2340 .event = {
2341 .header = { .type = PERF_EVENT_COMM, },
2342 .pid = task->group_leader->pid,
2343 .tid = task->pid,
2347 perf_counter_comm_event(&comm_event);
2351 * mmap tracking
2354 struct perf_mmap_event {
2355 struct file *file;
2356 char *file_name;
2357 int file_size;
2359 struct {
2360 struct perf_event_header header;
2362 u32 pid;
2363 u32 tid;
2364 u64 start;
2365 u64 len;
2366 u64 pgoff;
2367 } event;
2370 static void perf_counter_mmap_output(struct perf_counter *counter,
2371 struct perf_mmap_event *mmap_event)
2373 struct perf_output_handle handle;
2374 int size = mmap_event->event.header.size;
2375 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2377 if (ret)
2378 return;
2380 perf_output_put(&handle, mmap_event->event);
2381 perf_output_copy(&handle, mmap_event->file_name,
2382 mmap_event->file_size);
2383 perf_output_end(&handle);
2386 static int perf_counter_mmap_match(struct perf_counter *counter,
2387 struct perf_mmap_event *mmap_event)
2389 if (counter->hw_event.mmap &&
2390 mmap_event->event.header.type == PERF_EVENT_MMAP)
2391 return 1;
2393 if (counter->hw_event.munmap &&
2394 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2395 return 1;
2397 return 0;
2400 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2401 struct perf_mmap_event *mmap_event)
2403 struct perf_counter *counter;
2405 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2406 return;
2408 rcu_read_lock();
2409 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2410 if (perf_counter_mmap_match(counter, mmap_event))
2411 perf_counter_mmap_output(counter, mmap_event);
2413 rcu_read_unlock();
2416 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2418 struct perf_cpu_context *cpuctx;
2419 struct file *file = mmap_event->file;
2420 unsigned int size;
2421 char tmp[16];
2422 char *buf = NULL;
2423 char *name;
2425 if (file) {
2426 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2427 if (!buf) {
2428 name = strncpy(tmp, "//enomem", sizeof(tmp));
2429 goto got_name;
2431 name = d_path(&file->f_path, buf, PATH_MAX);
2432 if (IS_ERR(name)) {
2433 name = strncpy(tmp, "//toolong", sizeof(tmp));
2434 goto got_name;
2436 } else {
2437 name = strncpy(tmp, "//anon", sizeof(tmp));
2438 goto got_name;
2441 got_name:
2442 size = ALIGN(strlen(name)+1, sizeof(u64));
2444 mmap_event->file_name = name;
2445 mmap_event->file_size = size;
2447 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2449 cpuctx = &get_cpu_var(perf_cpu_context);
2450 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2451 put_cpu_var(perf_cpu_context);
2453 perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2455 kfree(buf);
2458 void perf_counter_mmap(unsigned long addr, unsigned long len,
2459 unsigned long pgoff, struct file *file)
2461 struct perf_mmap_event mmap_event;
2463 if (!atomic_read(&nr_mmap_tracking))
2464 return;
2465 if (!current->perf_counter_ctxp)
2466 return;
2468 mmap_event = (struct perf_mmap_event){
2469 .file = file,
2470 .event = {
2471 .header = { .type = PERF_EVENT_MMAP, },
2472 .pid = current->group_leader->pid,
2473 .tid = current->pid,
2474 .start = addr,
2475 .len = len,
2476 .pgoff = pgoff,
2480 perf_counter_mmap_event(&mmap_event);
2483 void perf_counter_munmap(unsigned long addr, unsigned long len,
2484 unsigned long pgoff, struct file *file)
2486 struct perf_mmap_event mmap_event;
2488 if (!atomic_read(&nr_munmap_tracking))
2489 return;
2491 mmap_event = (struct perf_mmap_event){
2492 .file = file,
2493 .event = {
2494 .header = { .type = PERF_EVENT_MUNMAP, },
2495 .pid = current->group_leader->pid,
2496 .tid = current->pid,
2497 .start = addr,
2498 .len = len,
2499 .pgoff = pgoff,
2503 perf_counter_mmap_event(&mmap_event);
2507 * Log irq_period changes so that analyzing tools can re-normalize the
2508 * event flow.
2511 static void perf_log_period(struct perf_counter *counter, u64 period)
2513 struct perf_output_handle handle;
2514 int ret;
2516 struct {
2517 struct perf_event_header header;
2518 u64 time;
2519 u64 period;
2520 } freq_event = {
2521 .header = {
2522 .type = PERF_EVENT_PERIOD,
2523 .misc = 0,
2524 .size = sizeof(freq_event),
2526 .time = sched_clock(),
2527 .period = period,
2530 if (counter->hw.irq_period == period)
2531 return;
2533 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2534 if (ret)
2535 return;
2537 perf_output_put(&handle, freq_event);
2538 perf_output_end(&handle);
2542 * Generic counter overflow handling.
2545 int perf_counter_overflow(struct perf_counter *counter,
2546 int nmi, struct pt_regs *regs, u64 addr)
2548 int events = atomic_read(&counter->event_limit);
2549 int ret = 0;
2551 counter->hw.interrupts++;
2554 * XXX event_limit might not quite work as expected on inherited
2555 * counters
2558 counter->pending_kill = POLL_IN;
2559 if (events && atomic_dec_and_test(&counter->event_limit)) {
2560 ret = 1;
2561 counter->pending_kill = POLL_HUP;
2562 if (nmi) {
2563 counter->pending_disable = 1;
2564 perf_pending_queue(&counter->pending,
2565 perf_pending_counter);
2566 } else
2567 perf_counter_disable(counter);
2570 perf_counter_output(counter, nmi, regs, addr);
2571 return ret;
2575 * Generic software counter infrastructure
2578 static void perf_swcounter_update(struct perf_counter *counter)
2580 struct hw_perf_counter *hwc = &counter->hw;
2581 u64 prev, now;
2582 s64 delta;
2584 again:
2585 prev = atomic64_read(&hwc->prev_count);
2586 now = atomic64_read(&hwc->count);
2587 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2588 goto again;
2590 delta = now - prev;
2592 atomic64_add(delta, &counter->count);
2593 atomic64_sub(delta, &hwc->period_left);
2596 static void perf_swcounter_set_period(struct perf_counter *counter)
2598 struct hw_perf_counter *hwc = &counter->hw;
2599 s64 left = atomic64_read(&hwc->period_left);
2600 s64 period = hwc->irq_period;
2602 if (unlikely(left <= -period)) {
2603 left = period;
2604 atomic64_set(&hwc->period_left, left);
2607 if (unlikely(left <= 0)) {
2608 left += period;
2609 atomic64_add(period, &hwc->period_left);
2612 atomic64_set(&hwc->prev_count, -left);
2613 atomic64_set(&hwc->count, -left);
2616 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2618 enum hrtimer_restart ret = HRTIMER_RESTART;
2619 struct perf_counter *counter;
2620 struct pt_regs *regs;
2621 u64 period;
2623 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2624 counter->pmu->read(counter);
2626 regs = get_irq_regs();
2628 * In case we exclude kernel IPs or are somehow not in interrupt
2629 * context, provide the next best thing, the user IP.
2631 if ((counter->hw_event.exclude_kernel || !regs) &&
2632 !counter->hw_event.exclude_user)
2633 regs = task_pt_regs(current);
2635 if (regs) {
2636 if (perf_counter_overflow(counter, 0, regs, 0))
2637 ret = HRTIMER_NORESTART;
2640 period = max_t(u64, 10000, counter->hw.irq_period);
2641 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2643 return ret;
2646 static void perf_swcounter_overflow(struct perf_counter *counter,
2647 int nmi, struct pt_regs *regs, u64 addr)
2649 perf_swcounter_update(counter);
2650 perf_swcounter_set_period(counter);
2651 if (perf_counter_overflow(counter, nmi, regs, addr))
2652 /* soft-disable the counter */
2657 static int perf_swcounter_match(struct perf_counter *counter,
2658 enum perf_event_types type,
2659 u32 event, struct pt_regs *regs)
2661 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2662 return 0;
2664 if (perf_event_raw(&counter->hw_event))
2665 return 0;
2667 if (perf_event_type(&counter->hw_event) != type)
2668 return 0;
2670 if (perf_event_id(&counter->hw_event) != event)
2671 return 0;
2673 if (counter->hw_event.exclude_user && user_mode(regs))
2674 return 0;
2676 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2677 return 0;
2679 return 1;
2682 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2683 int nmi, struct pt_regs *regs, u64 addr)
2685 int neg = atomic64_add_negative(nr, &counter->hw.count);
2686 if (counter->hw.irq_period && !neg)
2687 perf_swcounter_overflow(counter, nmi, regs, addr);
2690 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2691 enum perf_event_types type, u32 event,
2692 u64 nr, int nmi, struct pt_regs *regs,
2693 u64 addr)
2695 struct perf_counter *counter;
2697 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2698 return;
2700 rcu_read_lock();
2701 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2702 if (perf_swcounter_match(counter, type, event, regs))
2703 perf_swcounter_add(counter, nr, nmi, regs, addr);
2705 rcu_read_unlock();
2708 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2710 if (in_nmi())
2711 return &cpuctx->recursion[3];
2713 if (in_irq())
2714 return &cpuctx->recursion[2];
2716 if (in_softirq())
2717 return &cpuctx->recursion[1];
2719 return &cpuctx->recursion[0];
2722 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2723 u64 nr, int nmi, struct pt_regs *regs,
2724 u64 addr)
2726 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2727 int *recursion = perf_swcounter_recursion_context(cpuctx);
2729 if (*recursion)
2730 goto out;
2732 (*recursion)++;
2733 barrier();
2735 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2736 nr, nmi, regs, addr);
2737 if (cpuctx->task_ctx) {
2738 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2739 nr, nmi, regs, addr);
2742 barrier();
2743 (*recursion)--;
2745 out:
2746 put_cpu_var(perf_cpu_context);
2749 void
2750 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2752 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2755 static void perf_swcounter_read(struct perf_counter *counter)
2757 perf_swcounter_update(counter);
2760 static int perf_swcounter_enable(struct perf_counter *counter)
2762 perf_swcounter_set_period(counter);
2763 return 0;
2766 static void perf_swcounter_disable(struct perf_counter *counter)
2768 perf_swcounter_update(counter);
2771 static const struct pmu perf_ops_generic = {
2772 .enable = perf_swcounter_enable,
2773 .disable = perf_swcounter_disable,
2774 .read = perf_swcounter_read,
2778 * Software counter: cpu wall time clock
2781 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2783 int cpu = raw_smp_processor_id();
2784 s64 prev;
2785 u64 now;
2787 now = cpu_clock(cpu);
2788 prev = atomic64_read(&counter->hw.prev_count);
2789 atomic64_set(&counter->hw.prev_count, now);
2790 atomic64_add(now - prev, &counter->count);
2793 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2795 struct hw_perf_counter *hwc = &counter->hw;
2796 int cpu = raw_smp_processor_id();
2798 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2799 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2800 hwc->hrtimer.function = perf_swcounter_hrtimer;
2801 if (hwc->irq_period) {
2802 u64 period = max_t(u64, 10000, hwc->irq_period);
2803 __hrtimer_start_range_ns(&hwc->hrtimer,
2804 ns_to_ktime(period), 0,
2805 HRTIMER_MODE_REL, 0);
2808 return 0;
2811 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2813 if (counter->hw.irq_period)
2814 hrtimer_cancel(&counter->hw.hrtimer);
2815 cpu_clock_perf_counter_update(counter);
2818 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2820 cpu_clock_perf_counter_update(counter);
2823 static const struct pmu perf_ops_cpu_clock = {
2824 .enable = cpu_clock_perf_counter_enable,
2825 .disable = cpu_clock_perf_counter_disable,
2826 .read = cpu_clock_perf_counter_read,
2830 * Software counter: task time clock
2833 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2835 u64 prev;
2836 s64 delta;
2838 prev = atomic64_xchg(&counter->hw.prev_count, now);
2839 delta = now - prev;
2840 atomic64_add(delta, &counter->count);
2843 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2845 struct hw_perf_counter *hwc = &counter->hw;
2846 u64 now;
2848 now = counter->ctx->time;
2850 atomic64_set(&hwc->prev_count, now);
2851 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2852 hwc->hrtimer.function = perf_swcounter_hrtimer;
2853 if (hwc->irq_period) {
2854 u64 period = max_t(u64, 10000, hwc->irq_period);
2855 __hrtimer_start_range_ns(&hwc->hrtimer,
2856 ns_to_ktime(period), 0,
2857 HRTIMER_MODE_REL, 0);
2860 return 0;
2863 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2865 if (counter->hw.irq_period)
2866 hrtimer_cancel(&counter->hw.hrtimer);
2867 task_clock_perf_counter_update(counter, counter->ctx->time);
2871 static void task_clock_perf_counter_read(struct perf_counter *counter)
2873 u64 time;
2875 if (!in_nmi()) {
2876 update_context_time(counter->ctx);
2877 time = counter->ctx->time;
2878 } else {
2879 u64 now = perf_clock();
2880 u64 delta = now - counter->ctx->timestamp;
2881 time = counter->ctx->time + delta;
2884 task_clock_perf_counter_update(counter, time);
2887 static const struct pmu perf_ops_task_clock = {
2888 .enable = task_clock_perf_counter_enable,
2889 .disable = task_clock_perf_counter_disable,
2890 .read = task_clock_perf_counter_read,
2894 * Software counter: cpu migrations
2897 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2899 struct task_struct *curr = counter->ctx->task;
2901 if (curr)
2902 return curr->se.nr_migrations;
2903 return cpu_nr_migrations(smp_processor_id());
2906 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2908 u64 prev, now;
2909 s64 delta;
2911 prev = atomic64_read(&counter->hw.prev_count);
2912 now = get_cpu_migrations(counter);
2914 atomic64_set(&counter->hw.prev_count, now);
2916 delta = now - prev;
2918 atomic64_add(delta, &counter->count);
2921 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2923 cpu_migrations_perf_counter_update(counter);
2926 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2928 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2929 atomic64_set(&counter->hw.prev_count,
2930 get_cpu_migrations(counter));
2931 return 0;
2934 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2936 cpu_migrations_perf_counter_update(counter);
2939 static const struct pmu perf_ops_cpu_migrations = {
2940 .enable = cpu_migrations_perf_counter_enable,
2941 .disable = cpu_migrations_perf_counter_disable,
2942 .read = cpu_migrations_perf_counter_read,
2945 #ifdef CONFIG_EVENT_PROFILE
2946 void perf_tpcounter_event(int event_id)
2948 struct pt_regs *regs = get_irq_regs();
2950 if (!regs)
2951 regs = task_pt_regs(current);
2953 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2955 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2957 extern int ftrace_profile_enable(int);
2958 extern void ftrace_profile_disable(int);
2960 static void tp_perf_counter_destroy(struct perf_counter *counter)
2962 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2965 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2967 int event_id = perf_event_id(&counter->hw_event);
2968 int ret;
2970 ret = ftrace_profile_enable(event_id);
2971 if (ret)
2972 return NULL;
2974 counter->destroy = tp_perf_counter_destroy;
2975 counter->hw.irq_period = counter->hw_event.irq_period;
2977 return &perf_ops_generic;
2979 #else
2980 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2982 return NULL;
2984 #endif
2986 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2988 const struct pmu *pmu = NULL;
2991 * Software counters (currently) can't in general distinguish
2992 * between user, kernel and hypervisor events.
2993 * However, context switches and cpu migrations are considered
2994 * to be kernel events, and page faults are never hypervisor
2995 * events.
2997 switch (perf_event_id(&counter->hw_event)) {
2998 case PERF_COUNT_CPU_CLOCK:
2999 pmu = &perf_ops_cpu_clock;
3001 break;
3002 case PERF_COUNT_TASK_CLOCK:
3004 * If the user instantiates this as a per-cpu counter,
3005 * use the cpu_clock counter instead.
3007 if (counter->ctx->task)
3008 pmu = &perf_ops_task_clock;
3009 else
3010 pmu = &perf_ops_cpu_clock;
3012 break;
3013 case PERF_COUNT_PAGE_FAULTS:
3014 case PERF_COUNT_PAGE_FAULTS_MIN:
3015 case PERF_COUNT_PAGE_FAULTS_MAJ:
3016 case PERF_COUNT_CONTEXT_SWITCHES:
3017 pmu = &perf_ops_generic;
3018 break;
3019 case PERF_COUNT_CPU_MIGRATIONS:
3020 if (!counter->hw_event.exclude_kernel)
3021 pmu = &perf_ops_cpu_migrations;
3022 break;
3025 return pmu;
3029 * Allocate and initialize a counter structure
3031 static struct perf_counter *
3032 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3033 int cpu,
3034 struct perf_counter_context *ctx,
3035 struct perf_counter *group_leader,
3036 gfp_t gfpflags)
3038 const struct pmu *pmu;
3039 struct perf_counter *counter;
3040 struct hw_perf_counter *hwc;
3041 long err;
3043 counter = kzalloc(sizeof(*counter), gfpflags);
3044 if (!counter)
3045 return ERR_PTR(-ENOMEM);
3048 * Single counters are their own group leaders, with an
3049 * empty sibling list:
3051 if (!group_leader)
3052 group_leader = counter;
3054 mutex_init(&counter->child_mutex);
3055 INIT_LIST_HEAD(&counter->child_list);
3057 INIT_LIST_HEAD(&counter->list_entry);
3058 INIT_LIST_HEAD(&counter->event_entry);
3059 INIT_LIST_HEAD(&counter->sibling_list);
3060 init_waitqueue_head(&counter->waitq);
3062 mutex_init(&counter->mmap_mutex);
3064 counter->cpu = cpu;
3065 counter->hw_event = *hw_event;
3066 counter->group_leader = group_leader;
3067 counter->pmu = NULL;
3068 counter->ctx = ctx;
3069 get_ctx(ctx);
3071 counter->state = PERF_COUNTER_STATE_INACTIVE;
3072 if (hw_event->disabled)
3073 counter->state = PERF_COUNTER_STATE_OFF;
3075 pmu = NULL;
3077 hwc = &counter->hw;
3078 if (hw_event->freq && hw_event->irq_freq)
3079 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3080 else
3081 hwc->irq_period = hw_event->irq_period;
3084 * we currently do not support PERF_RECORD_GROUP on inherited counters
3086 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3087 goto done;
3089 if (perf_event_raw(hw_event)) {
3090 pmu = hw_perf_counter_init(counter);
3091 goto done;
3094 switch (perf_event_type(hw_event)) {
3095 case PERF_TYPE_HARDWARE:
3096 pmu = hw_perf_counter_init(counter);
3097 break;
3099 case PERF_TYPE_SOFTWARE:
3100 pmu = sw_perf_counter_init(counter);
3101 break;
3103 case PERF_TYPE_TRACEPOINT:
3104 pmu = tp_perf_counter_init(counter);
3105 break;
3107 done:
3108 err = 0;
3109 if (!pmu)
3110 err = -EINVAL;
3111 else if (IS_ERR(pmu))
3112 err = PTR_ERR(pmu);
3114 if (err) {
3115 kfree(counter);
3116 return ERR_PTR(err);
3119 counter->pmu = pmu;
3121 atomic_inc(&nr_counters);
3122 if (counter->hw_event.mmap)
3123 atomic_inc(&nr_mmap_tracking);
3124 if (counter->hw_event.munmap)
3125 atomic_inc(&nr_munmap_tracking);
3126 if (counter->hw_event.comm)
3127 atomic_inc(&nr_comm_tracking);
3129 return counter;
3133 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3135 * @hw_event_uptr: event type attributes for monitoring/sampling
3136 * @pid: target pid
3137 * @cpu: target cpu
3138 * @group_fd: group leader counter fd
3140 SYSCALL_DEFINE5(perf_counter_open,
3141 const struct perf_counter_hw_event __user *, hw_event_uptr,
3142 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3144 struct perf_counter *counter, *group_leader;
3145 struct perf_counter_hw_event hw_event;
3146 struct perf_counter_context *ctx;
3147 struct file *counter_file = NULL;
3148 struct file *group_file = NULL;
3149 int fput_needed = 0;
3150 int fput_needed2 = 0;
3151 int ret;
3153 /* for future expandability... */
3154 if (flags)
3155 return -EINVAL;
3157 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3158 return -EFAULT;
3161 * Get the target context (task or percpu):
3163 ctx = find_get_context(pid, cpu);
3164 if (IS_ERR(ctx))
3165 return PTR_ERR(ctx);
3168 * Look up the group leader (we will attach this counter to it):
3170 group_leader = NULL;
3171 if (group_fd != -1) {
3172 ret = -EINVAL;
3173 group_file = fget_light(group_fd, &fput_needed);
3174 if (!group_file)
3175 goto err_put_context;
3176 if (group_file->f_op != &perf_fops)
3177 goto err_put_context;
3179 group_leader = group_file->private_data;
3181 * Do not allow a recursive hierarchy (this new sibling
3182 * becoming part of another group-sibling):
3184 if (group_leader->group_leader != group_leader)
3185 goto err_put_context;
3187 * Do not allow to attach to a group in a different
3188 * task or CPU context:
3190 if (group_leader->ctx != ctx)
3191 goto err_put_context;
3193 * Only a group leader can be exclusive or pinned
3195 if (hw_event.exclusive || hw_event.pinned)
3196 goto err_put_context;
3199 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3200 GFP_KERNEL);
3201 ret = PTR_ERR(counter);
3202 if (IS_ERR(counter))
3203 goto err_put_context;
3205 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3206 if (ret < 0)
3207 goto err_free_put_context;
3209 counter_file = fget_light(ret, &fput_needed2);
3210 if (!counter_file)
3211 goto err_free_put_context;
3213 counter->filp = counter_file;
3214 mutex_lock(&ctx->mutex);
3215 perf_install_in_context(ctx, counter, cpu);
3216 mutex_unlock(&ctx->mutex);
3218 counter->owner = current;
3219 get_task_struct(current);
3220 mutex_lock(&current->perf_counter_mutex);
3221 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3222 mutex_unlock(&current->perf_counter_mutex);
3224 fput_light(counter_file, fput_needed2);
3226 out_fput:
3227 fput_light(group_file, fput_needed);
3229 return ret;
3231 err_free_put_context:
3232 kfree(counter);
3234 err_put_context:
3235 put_context(ctx);
3237 goto out_fput;
3241 * inherit a counter from parent task to child task:
3243 static struct perf_counter *
3244 inherit_counter(struct perf_counter *parent_counter,
3245 struct task_struct *parent,
3246 struct perf_counter_context *parent_ctx,
3247 struct task_struct *child,
3248 struct perf_counter *group_leader,
3249 struct perf_counter_context *child_ctx)
3251 struct perf_counter *child_counter;
3254 * Instead of creating recursive hierarchies of counters,
3255 * we link inherited counters back to the original parent,
3256 * which has a filp for sure, which we use as the reference
3257 * count:
3259 if (parent_counter->parent)
3260 parent_counter = parent_counter->parent;
3262 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3263 parent_counter->cpu, child_ctx,
3264 group_leader, GFP_KERNEL);
3265 if (IS_ERR(child_counter))
3266 return child_counter;
3269 * Make the child state follow the state of the parent counter,
3270 * not its hw_event.disabled bit. We hold the parent's mutex,
3271 * so we won't race with perf_counter_{en,dis}able_family.
3273 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3274 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3275 else
3276 child_counter->state = PERF_COUNTER_STATE_OFF;
3279 * Link it up in the child's context:
3281 add_counter_to_ctx(child_counter, child_ctx);
3283 child_counter->parent = parent_counter;
3285 * inherit into child's child as well:
3287 child_counter->hw_event.inherit = 1;
3290 * Get a reference to the parent filp - we will fput it
3291 * when the child counter exits. This is safe to do because
3292 * we are in the parent and we know that the filp still
3293 * exists and has a nonzero count:
3295 atomic_long_inc(&parent_counter->filp->f_count);
3298 * Link this into the parent counter's child list
3300 mutex_lock(&parent_counter->child_mutex);
3301 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3302 mutex_unlock(&parent_counter->child_mutex);
3304 return child_counter;
3307 static int inherit_group(struct perf_counter *parent_counter,
3308 struct task_struct *parent,
3309 struct perf_counter_context *parent_ctx,
3310 struct task_struct *child,
3311 struct perf_counter_context *child_ctx)
3313 struct perf_counter *leader;
3314 struct perf_counter *sub;
3315 struct perf_counter *child_ctr;
3317 leader = inherit_counter(parent_counter, parent, parent_ctx,
3318 child, NULL, child_ctx);
3319 if (IS_ERR(leader))
3320 return PTR_ERR(leader);
3321 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3322 child_ctr = inherit_counter(sub, parent, parent_ctx,
3323 child, leader, child_ctx);
3324 if (IS_ERR(child_ctr))
3325 return PTR_ERR(child_ctr);
3327 return 0;
3330 static void sync_child_counter(struct perf_counter *child_counter,
3331 struct perf_counter *parent_counter)
3333 u64 child_val;
3335 child_val = atomic64_read(&child_counter->count);
3338 * Add back the child's count to the parent's count:
3340 atomic64_add(child_val, &parent_counter->count);
3341 atomic64_add(child_counter->total_time_enabled,
3342 &parent_counter->child_total_time_enabled);
3343 atomic64_add(child_counter->total_time_running,
3344 &parent_counter->child_total_time_running);
3347 * Remove this counter from the parent's list
3349 mutex_lock(&parent_counter->child_mutex);
3350 list_del_init(&child_counter->child_list);
3351 mutex_unlock(&parent_counter->child_mutex);
3354 * Release the parent counter, if this was the last
3355 * reference to it.
3357 fput(parent_counter->filp);
3360 static void
3361 __perf_counter_exit_task(struct task_struct *child,
3362 struct perf_counter *child_counter,
3363 struct perf_counter_context *child_ctx)
3365 struct perf_counter *parent_counter;
3367 update_counter_times(child_counter);
3368 perf_counter_remove_from_context(child_counter);
3370 parent_counter = child_counter->parent;
3372 * It can happen that parent exits first, and has counters
3373 * that are still around due to the child reference. These
3374 * counters need to be zapped - but otherwise linger.
3376 if (parent_counter) {
3377 sync_child_counter(child_counter, parent_counter);
3378 free_counter(child_counter);
3383 * When a child task exits, feed back counter values to parent counters.
3385 * Note: we may be running in child context, but the PID is not hashed
3386 * anymore so new counters will not be added.
3387 * (XXX not sure that is true when we get called from flush_old_exec.
3388 * -- paulus)
3390 void perf_counter_exit_task(struct task_struct *child)
3392 struct perf_counter *child_counter, *tmp;
3393 struct perf_counter_context *child_ctx;
3394 unsigned long flags;
3396 WARN_ON_ONCE(child != current);
3398 child_ctx = child->perf_counter_ctxp;
3400 if (likely(!child_ctx))
3401 return;
3403 local_irq_save(flags);
3404 __perf_counter_task_sched_out(child_ctx);
3405 child->perf_counter_ctxp = NULL;
3406 local_irq_restore(flags);
3408 mutex_lock(&child_ctx->mutex);
3410 again:
3411 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3412 list_entry)
3413 __perf_counter_exit_task(child, child_counter, child_ctx);
3416 * If the last counter was a group counter, it will have appended all
3417 * its siblings to the list, but we obtained 'tmp' before that which
3418 * will still point to the list head terminating the iteration.
3420 if (!list_empty(&child_ctx->counter_list))
3421 goto again;
3423 mutex_unlock(&child_ctx->mutex);
3425 put_ctx(child_ctx);
3429 * Initialize the perf_counter context in task_struct
3431 void perf_counter_init_task(struct task_struct *child)
3433 struct perf_counter_context *child_ctx, *parent_ctx;
3434 struct perf_counter *counter;
3435 struct task_struct *parent = current;
3436 int inherited_all = 1;
3438 child->perf_counter_ctxp = NULL;
3440 mutex_init(&child->perf_counter_mutex);
3441 INIT_LIST_HEAD(&child->perf_counter_list);
3444 * This is executed from the parent task context, so inherit
3445 * counters that have been marked for cloning.
3446 * First allocate and initialize a context for the child.
3449 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3450 if (!child_ctx)
3451 return;
3453 parent_ctx = parent->perf_counter_ctxp;
3454 if (likely(!parent_ctx || !parent_ctx->nr_counters))
3455 return;
3457 __perf_counter_init_context(child_ctx, child);
3458 child->perf_counter_ctxp = child_ctx;
3461 * Lock the parent list. No need to lock the child - not PID
3462 * hashed yet and not running, so nobody can access it.
3464 mutex_lock(&parent_ctx->mutex);
3467 * We dont have to disable NMIs - we are only looking at
3468 * the list, not manipulating it:
3470 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3471 if (counter != counter->group_leader)
3472 continue;
3474 if (!counter->hw_event.inherit) {
3475 inherited_all = 0;
3476 continue;
3479 if (inherit_group(counter, parent,
3480 parent_ctx, child, child_ctx)) {
3481 inherited_all = 0;
3482 break;
3486 if (inherited_all) {
3488 * Mark the child context as a clone of the parent
3489 * context, or of whatever the parent is a clone of.
3491 if (parent_ctx->parent_ctx) {
3492 child_ctx->parent_ctx = parent_ctx->parent_ctx;
3493 child_ctx->parent_gen = parent_ctx->parent_gen;
3494 } else {
3495 child_ctx->parent_ctx = parent_ctx;
3496 child_ctx->parent_gen = parent_ctx->generation;
3498 get_ctx(child_ctx->parent_ctx);
3501 mutex_unlock(&parent_ctx->mutex);
3504 static void __cpuinit perf_counter_init_cpu(int cpu)
3506 struct perf_cpu_context *cpuctx;
3508 cpuctx = &per_cpu(perf_cpu_context, cpu);
3509 __perf_counter_init_context(&cpuctx->ctx, NULL);
3511 spin_lock(&perf_resource_lock);
3512 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3513 spin_unlock(&perf_resource_lock);
3515 hw_perf_counter_setup(cpu);
3518 #ifdef CONFIG_HOTPLUG_CPU
3519 static void __perf_counter_exit_cpu(void *info)
3521 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3522 struct perf_counter_context *ctx = &cpuctx->ctx;
3523 struct perf_counter *counter, *tmp;
3525 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3526 __perf_counter_remove_from_context(counter);
3528 static void perf_counter_exit_cpu(int cpu)
3530 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3531 struct perf_counter_context *ctx = &cpuctx->ctx;
3533 mutex_lock(&ctx->mutex);
3534 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3535 mutex_unlock(&ctx->mutex);
3537 #else
3538 static inline void perf_counter_exit_cpu(int cpu) { }
3539 #endif
3541 static int __cpuinit
3542 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3544 unsigned int cpu = (long)hcpu;
3546 switch (action) {
3548 case CPU_UP_PREPARE:
3549 case CPU_UP_PREPARE_FROZEN:
3550 perf_counter_init_cpu(cpu);
3551 break;
3553 case CPU_DOWN_PREPARE:
3554 case CPU_DOWN_PREPARE_FROZEN:
3555 perf_counter_exit_cpu(cpu);
3556 break;
3558 default:
3559 break;
3562 return NOTIFY_OK;
3565 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3566 .notifier_call = perf_cpu_notify,
3569 void __init perf_counter_init(void)
3571 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3572 (void *)(long)smp_processor_id());
3573 register_cpu_notifier(&perf_cpu_nb);
3576 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3578 return sprintf(buf, "%d\n", perf_reserved_percpu);
3581 static ssize_t
3582 perf_set_reserve_percpu(struct sysdev_class *class,
3583 const char *buf,
3584 size_t count)
3586 struct perf_cpu_context *cpuctx;
3587 unsigned long val;
3588 int err, cpu, mpt;
3590 err = strict_strtoul(buf, 10, &val);
3591 if (err)
3592 return err;
3593 if (val > perf_max_counters)
3594 return -EINVAL;
3596 spin_lock(&perf_resource_lock);
3597 perf_reserved_percpu = val;
3598 for_each_online_cpu(cpu) {
3599 cpuctx = &per_cpu(perf_cpu_context, cpu);
3600 spin_lock_irq(&cpuctx->ctx.lock);
3601 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3602 perf_max_counters - perf_reserved_percpu);
3603 cpuctx->max_pertask = mpt;
3604 spin_unlock_irq(&cpuctx->ctx.lock);
3606 spin_unlock(&perf_resource_lock);
3608 return count;
3611 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3613 return sprintf(buf, "%d\n", perf_overcommit);
3616 static ssize_t
3617 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3619 unsigned long val;
3620 int err;
3622 err = strict_strtoul(buf, 10, &val);
3623 if (err)
3624 return err;
3625 if (val > 1)
3626 return -EINVAL;
3628 spin_lock(&perf_resource_lock);
3629 perf_overcommit = val;
3630 spin_unlock(&perf_resource_lock);
3632 return count;
3635 static SYSDEV_CLASS_ATTR(
3636 reserve_percpu,
3637 0644,
3638 perf_show_reserve_percpu,
3639 perf_set_reserve_percpu
3642 static SYSDEV_CLASS_ATTR(
3643 overcommit,
3644 0644,
3645 perf_show_overcommit,
3646 perf_set_overcommit
3649 static struct attribute *perfclass_attrs[] = {
3650 &attr_reserve_percpu.attr,
3651 &attr_overcommit.attr,
3652 NULL
3655 static struct attribute_group perfclass_attr_group = {
3656 .attrs = perfclass_attrs,
3657 .name = "perf_counters",
3660 static int __init perf_counter_sysfs_init(void)
3662 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3663 &perfclass_attr_group);
3665 device_initcall(perf_counter_sysfs_init);