1 /*****************************************************************************/
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/interrupt.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial.h>
28 #include <linux/seq_file.h>
29 #include <linux/cdk.h>
30 #include <linux/comstats.h>
31 #include <linux/istallion.h>
32 #include <linux/ioport.h>
33 #include <linux/delay.h>
34 #include <linux/init.h>
35 #include <linux/device.h>
36 #include <linux/wait.h>
37 #include <linux/eisa.h>
38 #include <linux/ctype.h>
41 #include <asm/uaccess.h>
43 #include <linux/pci.h>
45 /*****************************************************************************/
48 * Define different board types. Not all of the following board types
49 * are supported by this driver. But I will use the standard "assigned"
50 * board numbers. Currently supported boards are abbreviated as:
51 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
55 #define BRD_STALLION 1
57 #define BRD_ONBOARD2 3
59 #define BRD_ONBOARDE 7
65 #define BRD_BRUMBY BRD_BRUMBY4
68 * Define a configuration structure to hold the board configuration.
69 * Need to set this up in the code (for now) with the boards that are
70 * to be configured into the system. This is what needs to be modified
71 * when adding/removing/modifying boards. Each line entry in the
72 * stli_brdconf[] array is a board. Each line contains io/irq/memory
73 * ranges for that board (as well as what type of board it is).
75 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
76 * This line will configure an EasyConnection 8/64 at io address 2a0,
77 * and shared memory address of cc000. Multiple EasyConnection 8/64
78 * boards can share the same shared memory address space. No interrupt
79 * is required for this board type.
81 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
82 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
83 * shared memory address of 0x80000000 (2 GByte). Multiple
84 * EasyConnection 8/64 EISA boards can share the same shared memory
85 * address space. No interrupt is required for this board type.
87 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
88 * This line will configure an ONboard (ISA type) at io address 240,
89 * and shared memory address of d0000. Multiple ONboards can share
90 * the same shared memory address space. No interrupt required.
92 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
93 * This line will configure a Brumby board (any number of ports!) at
94 * io address 360 and shared memory address of c8000. All Brumby boards
95 * configured into a system must have their own separate io and memory
96 * addresses. No interrupt is required.
98 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
99 * This line will configure an original Stallion board at io address 330
100 * and shared memory address d0000 (this would only be valid for a "V4.0"
101 * or Rev.O Stallion board). All Stallion boards configured into the
102 * system must have their own separate io and memory addresses. No
103 * interrupt is required.
110 unsigned long memaddr
;
115 static unsigned int stli_nrbrds
;
117 /* stli_lock must NOT be taken holding brd_lock */
118 static spinlock_t stli_lock
; /* TTY logic lock */
119 static spinlock_t brd_lock
; /* Board logic lock */
122 * There is some experimental EISA board detection code in this driver.
123 * By default it is disabled, but for those that want to try it out,
124 * then set the define below to be 1.
126 #define STLI_EISAPROBE 0
128 /*****************************************************************************/
131 * Define some important driver characteristics. Device major numbers
132 * allocated as per Linux Device Registry.
134 #ifndef STL_SIOMEMMAJOR
135 #define STL_SIOMEMMAJOR 28
137 #ifndef STL_SERIALMAJOR
138 #define STL_SERIALMAJOR 24
140 #ifndef STL_CALLOUTMAJOR
141 #define STL_CALLOUTMAJOR 25
144 /*****************************************************************************/
147 * Define our local driver identity first. Set up stuff to deal with
148 * all the local structures required by a serial tty driver.
150 static char *stli_drvtitle
= "Stallion Intelligent Multiport Serial Driver";
151 static char *stli_drvname
= "istallion";
152 static char *stli_drvversion
= "5.6.0";
153 static char *stli_serialname
= "ttyE";
155 static struct tty_driver
*stli_serial
;
156 static const struct tty_port_operations stli_port_ops
;
158 #define STLI_TXBUFSIZE 4096
161 * Use a fast local buffer for cooked characters. Typically a whole
162 * bunch of cooked characters come in for a port, 1 at a time. So we
163 * save those up into a local buffer, then write out the whole lot
164 * with a large memcpy. Just use 1 buffer for all ports, since its
165 * use it is only need for short periods of time by each port.
167 static char *stli_txcookbuf
;
168 static int stli_txcooksize
;
169 static int stli_txcookrealsize
;
170 static struct tty_struct
*stli_txcooktty
;
173 * Define a local default termios struct. All ports will be created
174 * with this termios initially. Basically all it defines is a raw port
175 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
177 static struct ktermios stli_deftermios
= {
178 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
185 * Define global stats structures. Not used often, and can be
186 * re-used for each stats call.
188 static comstats_t stli_comstats
;
189 static combrd_t stli_brdstats
;
190 static struct asystats stli_cdkstats
;
192 /*****************************************************************************/
194 static DEFINE_MUTEX(stli_brdslock
);
195 static struct stlibrd
*stli_brds
[STL_MAXBRDS
];
197 static int stli_shared
;
200 * Per board state flags. Used with the state field of the board struct.
201 * Not really much here... All we need to do is keep track of whether
202 * the board has been detected, and whether it is actually running a slave
205 #define BST_FOUND 0x1
206 #define BST_STARTED 0x2
207 #define BST_PROBED 0x4
210 * Define the set of port state flags. These are marked for internal
211 * state purposes only, usually to do with the state of communications
212 * with the slave. Most of them need to be updated atomically, so always
213 * use the bit setting operations (unless protected by cli/sti).
215 #define ST_INITIALIZING 1
221 #define ST_DOFLUSHRX 7
222 #define ST_DOFLUSHTX 8
225 #define ST_GETSIGS 11
228 * Define an array of board names as printable strings. Handy for
229 * referencing boards when printing trace and stuff.
231 static char *stli_brdnames
[] = {
264 /*****************************************************************************/
267 * Define some string labels for arguments passed from the module
268 * load line. These allow for easy board definitions, and easy
269 * modification of the io, memory and irq resoucres.
272 static char *board0
[8];
273 static char *board1
[8];
274 static char *board2
[8];
275 static char *board3
[8];
277 static char **stli_brdsp
[] = {
285 * Define a set of common board names, and types. This is used to
286 * parse any module arguments.
289 static struct stlibrdtype
{
293 { "stallion", BRD_STALLION
},
294 { "1", BRD_STALLION
},
295 { "brumby", BRD_BRUMBY
},
296 { "brumby4", BRD_BRUMBY
},
297 { "brumby/4", BRD_BRUMBY
},
298 { "brumby-4", BRD_BRUMBY
},
299 { "brumby8", BRD_BRUMBY
},
300 { "brumby/8", BRD_BRUMBY
},
301 { "brumby-8", BRD_BRUMBY
},
302 { "brumby16", BRD_BRUMBY
},
303 { "brumby/16", BRD_BRUMBY
},
304 { "brumby-16", BRD_BRUMBY
},
306 { "onboard2", BRD_ONBOARD2
},
307 { "onboard-2", BRD_ONBOARD2
},
308 { "onboard/2", BRD_ONBOARD2
},
309 { "onboard-mc", BRD_ONBOARD2
},
310 { "onboard/mc", BRD_ONBOARD2
},
311 { "onboard-mca", BRD_ONBOARD2
},
312 { "onboard/mca", BRD_ONBOARD2
},
313 { "3", BRD_ONBOARD2
},
314 { "onboard", BRD_ONBOARD
},
315 { "onboardat", BRD_ONBOARD
},
316 { "4", BRD_ONBOARD
},
317 { "onboarde", BRD_ONBOARDE
},
318 { "onboard-e", BRD_ONBOARDE
},
319 { "onboard/e", BRD_ONBOARDE
},
320 { "onboard-ei", BRD_ONBOARDE
},
321 { "onboard/ei", BRD_ONBOARDE
},
322 { "7", BRD_ONBOARDE
},
324 { "ecpat", BRD_ECP
},
325 { "ec8/64", BRD_ECP
},
326 { "ec8/64-at", BRD_ECP
},
327 { "ec8/64-isa", BRD_ECP
},
329 { "ecpe", BRD_ECPE
},
330 { "ecpei", BRD_ECPE
},
331 { "ec8/64-e", BRD_ECPE
},
332 { "ec8/64-ei", BRD_ECPE
},
334 { "ecpmc", BRD_ECPMC
},
335 { "ec8/64-mc", BRD_ECPMC
},
336 { "ec8/64-mca", BRD_ECPMC
},
338 { "ecppci", BRD_ECPPCI
},
339 { "ec/ra", BRD_ECPPCI
},
340 { "ec/ra-pc", BRD_ECPPCI
},
341 { "ec/ra-pci", BRD_ECPPCI
},
342 { "29", BRD_ECPPCI
},
346 * Define the module agruments.
348 MODULE_AUTHOR("Greg Ungerer");
349 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
350 MODULE_LICENSE("GPL");
353 module_param_array(board0
, charp
, NULL
, 0);
354 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board1
, charp
, NULL
, 0);
356 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board2
, charp
, NULL
, 0);
358 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,memaddr]");
359 module_param_array(board3
, charp
, NULL
, 0);
360 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,memaddr]");
362 #if STLI_EISAPROBE != 0
364 * Set up a default memory address table for EISA board probing.
365 * The default addresses are all bellow 1Mbyte, which has to be the
366 * case anyway. They should be safe, since we only read values from
367 * them, and interrupts are disabled while we do it. If the higher
368 * memory support is compiled in then we also try probing around
369 * the 1Gb, 2Gb and 3Gb areas as well...
371 static unsigned long stli_eisamemprobeaddrs
[] = {
372 0xc0000, 0xd0000, 0xe0000, 0xf0000,
373 0x80000000, 0x80010000, 0x80020000, 0x80030000,
374 0x40000000, 0x40010000, 0x40020000, 0x40030000,
375 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
376 0xff000000, 0xff010000, 0xff020000, 0xff030000,
379 static int stli_eisamempsize
= ARRAY_SIZE(stli_eisamemprobeaddrs
);
383 * Define the Stallion PCI vendor and device IDs.
385 #ifndef PCI_DEVICE_ID_ECRA
386 #define PCI_DEVICE_ID_ECRA 0x0004
389 static struct pci_device_id istallion_pci_tbl
[] = {
390 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECRA
), },
393 MODULE_DEVICE_TABLE(pci
, istallion_pci_tbl
);
395 static struct pci_driver stli_pcidriver
;
397 /*****************************************************************************/
400 * Hardware configuration info for ECP boards. These defines apply
401 * to the directly accessible io ports of the ECP. There is a set of
402 * defines for each ECP board type, ISA, EISA, MCA and PCI.
406 #define ECP_MEMSIZE (128 * 1024)
407 #define ECP_PCIMEMSIZE (256 * 1024)
409 #define ECP_ATPAGESIZE (4 * 1024)
410 #define ECP_MCPAGESIZE (4 * 1024)
411 #define ECP_EIPAGESIZE (64 * 1024)
412 #define ECP_PCIPAGESIZE (64 * 1024)
414 #define STL_EISAID 0x8c4e
417 * Important defines for the ISA class of ECP board.
420 #define ECP_ATCONFR 1
421 #define ECP_ATMEMAR 2
422 #define ECP_ATMEMPR 3
423 #define ECP_ATSTOP 0x1
424 #define ECP_ATINTENAB 0x10
425 #define ECP_ATENABLE 0x20
426 #define ECP_ATDISABLE 0x00
427 #define ECP_ATADDRMASK 0x3f000
428 #define ECP_ATADDRSHFT 12
431 * Important defines for the EISA class of ECP board.
434 #define ECP_EIMEMARL 1
435 #define ECP_EICONFR 2
436 #define ECP_EIMEMARH 3
437 #define ECP_EIENABLE 0x1
438 #define ECP_EIDISABLE 0x0
439 #define ECP_EISTOP 0x4
440 #define ECP_EIEDGE 0x00
441 #define ECP_EILEVEL 0x80
442 #define ECP_EIADDRMASKL 0x00ff0000
443 #define ECP_EIADDRSHFTL 16
444 #define ECP_EIADDRMASKH 0xff000000
445 #define ECP_EIADDRSHFTH 24
446 #define ECP_EIBRDENAB 0xc84
448 #define ECP_EISAID 0x4
451 * Important defines for the Micro-channel class of ECP board.
452 * (It has a lot in common with the ISA boards.)
455 #define ECP_MCCONFR 1
456 #define ECP_MCSTOP 0x20
457 #define ECP_MCENABLE 0x80
458 #define ECP_MCDISABLE 0x00
461 * Important defines for the PCI class of ECP board.
462 * (It has a lot in common with the other ECP boards.)
464 #define ECP_PCIIREG 0
465 #define ECP_PCICONFR 1
466 #define ECP_PCISTOP 0x01
469 * Hardware configuration info for ONboard and Brumby boards. These
470 * defines apply to the directly accessible io ports of these boards.
472 #define ONB_IOSIZE 16
473 #define ONB_MEMSIZE (64 * 1024)
474 #define ONB_ATPAGESIZE (64 * 1024)
475 #define ONB_MCPAGESIZE (64 * 1024)
476 #define ONB_EIMEMSIZE (128 * 1024)
477 #define ONB_EIPAGESIZE (64 * 1024)
480 * Important defines for the ISA class of ONboard board.
483 #define ONB_ATMEMAR 1
484 #define ONB_ATCONFR 2
485 #define ONB_ATSTOP 0x4
486 #define ONB_ATENABLE 0x01
487 #define ONB_ATDISABLE 0x00
488 #define ONB_ATADDRMASK 0xff0000
489 #define ONB_ATADDRSHFT 16
491 #define ONB_MEMENABLO 0
492 #define ONB_MEMENABHI 0x02
495 * Important defines for the EISA class of ONboard board.
498 #define ONB_EIMEMARL 1
499 #define ONB_EICONFR 2
500 #define ONB_EIMEMARH 3
501 #define ONB_EIENABLE 0x1
502 #define ONB_EIDISABLE 0x0
503 #define ONB_EISTOP 0x4
504 #define ONB_EIEDGE 0x00
505 #define ONB_EILEVEL 0x80
506 #define ONB_EIADDRMASKL 0x00ff0000
507 #define ONB_EIADDRSHFTL 16
508 #define ONB_EIADDRMASKH 0xff000000
509 #define ONB_EIADDRSHFTH 24
510 #define ONB_EIBRDENAB 0xc84
512 #define ONB_EISAID 0x1
515 * Important defines for the Brumby boards. They are pretty simple,
516 * there is not much that is programmably configurable.
518 #define BBY_IOSIZE 16
519 #define BBY_MEMSIZE (64 * 1024)
520 #define BBY_PAGESIZE (16 * 1024)
523 #define BBY_ATCONFR 1
524 #define BBY_ATSTOP 0x4
527 * Important defines for the Stallion boards. They are pretty simple,
528 * there is not much that is programmably configurable.
530 #define STAL_IOSIZE 16
531 #define STAL_MEMSIZE (64 * 1024)
532 #define STAL_PAGESIZE (64 * 1024)
535 * Define the set of status register values for EasyConnection panels.
536 * The signature will return with the status value for each panel. From
537 * this we can determine what is attached to the board - before we have
538 * actually down loaded any code to it.
540 #define ECH_PNLSTATUS 2
541 #define ECH_PNL16PORT 0x20
542 #define ECH_PNLIDMASK 0x07
543 #define ECH_PNLXPID 0x40
544 #define ECH_PNLINTRPEND 0x80
547 * Define some macros to do things to the board. Even those these boards
548 * are somewhat related there is often significantly different ways of
549 * doing some operation on it (like enable, paging, reset, etc). So each
550 * board class has a set of functions which do the commonly required
551 * operations. The macros below basically just call these functions,
552 * generally checking for a NULL function - which means that the board
553 * needs nothing done to it to achieve this operation!
555 #define EBRDINIT(brdp) \
556 if (brdp->init != NULL) \
559 #define EBRDENABLE(brdp) \
560 if (brdp->enable != NULL) \
561 (* brdp->enable)(brdp);
563 #define EBRDDISABLE(brdp) \
564 if (brdp->disable != NULL) \
565 (* brdp->disable)(brdp);
567 #define EBRDINTR(brdp) \
568 if (brdp->intr != NULL) \
569 (* brdp->intr)(brdp);
571 #define EBRDRESET(brdp) \
572 if (brdp->reset != NULL) \
573 (* brdp->reset)(brdp);
575 #define EBRDGETMEMPTR(brdp,offset) \
576 (* brdp->getmemptr)(brdp, offset, __LINE__)
579 * Define the maximal baud rate, and the default baud base for ports.
581 #define STL_MAXBAUD 460800
582 #define STL_BAUDBASE 115200
583 #define STL_CLOSEDELAY (5 * HZ / 10)
585 /*****************************************************************************/
588 * Define macros to extract a brd or port number from a minor number.
590 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
591 #define MINOR2PORT(min) ((min) & 0x3f)
593 /*****************************************************************************/
596 * Prototype all functions in this driver!
599 static int stli_parsebrd(struct stlconf
*confp
, char **argp
);
600 static int stli_open(struct tty_struct
*tty
, struct file
*filp
);
601 static void stli_close(struct tty_struct
*tty
, struct file
*filp
);
602 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
);
603 static int stli_putchar(struct tty_struct
*tty
, unsigned char ch
);
604 static void stli_flushchars(struct tty_struct
*tty
);
605 static int stli_writeroom(struct tty_struct
*tty
);
606 static int stli_charsinbuffer(struct tty_struct
*tty
);
607 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
);
608 static void stli_settermios(struct tty_struct
*tty
, struct ktermios
*old
);
609 static void stli_throttle(struct tty_struct
*tty
);
610 static void stli_unthrottle(struct tty_struct
*tty
);
611 static void stli_stop(struct tty_struct
*tty
);
612 static void stli_start(struct tty_struct
*tty
);
613 static void stli_flushbuffer(struct tty_struct
*tty
);
614 static int stli_breakctl(struct tty_struct
*tty
, int state
);
615 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
);
616 static void stli_sendxchar(struct tty_struct
*tty
, char ch
);
617 static void stli_hangup(struct tty_struct
*tty
);
619 static int stli_brdinit(struct stlibrd
*brdp
);
620 static int stli_startbrd(struct stlibrd
*brdp
);
621 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
);
622 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
);
623 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
);
624 static void stli_brdpoll(struct stlibrd
*brdp
, cdkhdr_t __iomem
*hdrp
);
625 static void stli_poll(unsigned long arg
);
626 static int stli_hostcmd(struct stlibrd
*brdp
, struct stliport
*portp
);
627 static int stli_initopen(struct tty_struct
*tty
, struct stlibrd
*brdp
, struct stliport
*portp
);
628 static int stli_rawopen(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long arg
, int wait
);
629 static int stli_rawclose(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long arg
, int wait
);
630 static int stli_setport(struct tty_struct
*tty
);
631 static int stli_cmdwait(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
632 static void stli_sendcmd(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
633 static void __stli_sendcmd(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
);
634 static void stli_dodelaycmd(struct stliport
*portp
, cdkctrl_t __iomem
*cp
);
635 static void stli_mkasyport(struct tty_struct
*tty
, struct stliport
*portp
, asyport_t
*pp
, struct ktermios
*tiosp
);
636 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
);
637 static long stli_mktiocm(unsigned long sigvalue
);
638 static void stli_read(struct stlibrd
*brdp
, struct stliport
*portp
);
639 static int stli_getserial(struct stliport
*portp
, struct serial_struct __user
*sp
);
640 static int stli_setserial(struct tty_struct
*tty
, struct serial_struct __user
*sp
);
641 static int stli_getbrdstats(combrd_t __user
*bp
);
642 static int stli_getportstats(struct tty_struct
*tty
, struct stliport
*portp
, comstats_t __user
*cp
);
643 static int stli_portcmdstats(struct tty_struct
*tty
, struct stliport
*portp
);
644 static int stli_clrportstats(struct stliport
*portp
, comstats_t __user
*cp
);
645 static int stli_getportstruct(struct stliport __user
*arg
);
646 static int stli_getbrdstruct(struct stlibrd __user
*arg
);
647 static struct stlibrd
*stli_allocbrd(void);
649 static void stli_ecpinit(struct stlibrd
*brdp
);
650 static void stli_ecpenable(struct stlibrd
*brdp
);
651 static void stli_ecpdisable(struct stlibrd
*brdp
);
652 static void __iomem
*stli_ecpgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
653 static void stli_ecpreset(struct stlibrd
*brdp
);
654 static void stli_ecpintr(struct stlibrd
*brdp
);
655 static void stli_ecpeiinit(struct stlibrd
*brdp
);
656 static void stli_ecpeienable(struct stlibrd
*brdp
);
657 static void stli_ecpeidisable(struct stlibrd
*brdp
);
658 static void __iomem
*stli_ecpeigetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
659 static void stli_ecpeireset(struct stlibrd
*brdp
);
660 static void stli_ecpmcenable(struct stlibrd
*brdp
);
661 static void stli_ecpmcdisable(struct stlibrd
*brdp
);
662 static void __iomem
*stli_ecpmcgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
663 static void stli_ecpmcreset(struct stlibrd
*brdp
);
664 static void stli_ecppciinit(struct stlibrd
*brdp
);
665 static void __iomem
*stli_ecppcigetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
666 static void stli_ecppcireset(struct stlibrd
*brdp
);
668 static void stli_onbinit(struct stlibrd
*brdp
);
669 static void stli_onbenable(struct stlibrd
*brdp
);
670 static void stli_onbdisable(struct stlibrd
*brdp
);
671 static void __iomem
*stli_onbgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
672 static void stli_onbreset(struct stlibrd
*brdp
);
673 static void stli_onbeinit(struct stlibrd
*brdp
);
674 static void stli_onbeenable(struct stlibrd
*brdp
);
675 static void stli_onbedisable(struct stlibrd
*brdp
);
676 static void __iomem
*stli_onbegetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
677 static void stli_onbereset(struct stlibrd
*brdp
);
678 static void stli_bbyinit(struct stlibrd
*brdp
);
679 static void __iomem
*stli_bbygetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
680 static void stli_bbyreset(struct stlibrd
*brdp
);
681 static void stli_stalinit(struct stlibrd
*brdp
);
682 static void __iomem
*stli_stalgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
);
683 static void stli_stalreset(struct stlibrd
*brdp
);
685 static struct stliport
*stli_getport(unsigned int brdnr
, unsigned int panelnr
, unsigned int portnr
);
687 static int stli_initecp(struct stlibrd
*brdp
);
688 static int stli_initonb(struct stlibrd
*brdp
);
689 #if STLI_EISAPROBE != 0
690 static int stli_eisamemprobe(struct stlibrd
*brdp
);
692 static int stli_initports(struct stlibrd
*brdp
);
694 /*****************************************************************************/
697 * Define the driver info for a user level shared memory device. This
698 * device will work sort of like the /dev/kmem device - except that it
699 * will give access to the shared memory on the Stallion intelligent
700 * board. This is also a very useful debugging tool.
702 static const struct file_operations stli_fsiomem
= {
703 .owner
= THIS_MODULE
,
704 .read
= stli_memread
,
705 .write
= stli_memwrite
,
706 .ioctl
= stli_memioctl
,
709 /*****************************************************************************/
712 * Define a timer_list entry for our poll routine. The slave board
713 * is polled every so often to see if anything needs doing. This is
714 * much cheaper on host cpu than using interrupts. It turns out to
715 * not increase character latency by much either...
717 static DEFINE_TIMER(stli_timerlist
, stli_poll
, 0, 0);
719 static int stli_timeron
;
722 * Define the calculation for the timeout routine.
724 #define STLI_TIMEOUT (jiffies + 1)
726 /*****************************************************************************/
728 static struct class *istallion_class
;
730 static void stli_cleanup_ports(struct stlibrd
*brdp
)
732 struct stliport
*portp
;
734 struct tty_struct
*tty
;
736 for (j
= 0; j
< STL_MAXPORTS
; j
++) {
737 portp
= brdp
->ports
[j
];
739 tty
= tty_port_tty_get(&portp
->port
);
749 /*****************************************************************************/
752 * Parse the supplied argument string, into the board conf struct.
755 static int stli_parsebrd(struct stlconf
*confp
, char **argp
)
760 if (argp
[0] == NULL
|| *argp
[0] == 0)
763 for (sp
= argp
[0], i
= 0; ((*sp
!= 0) && (i
< 25)); sp
++, i
++)
766 for (i
= 0; i
< ARRAY_SIZE(stli_brdstr
); i
++) {
767 if (strcmp(stli_brdstr
[i
].name
, argp
[0]) == 0)
770 if (i
== ARRAY_SIZE(stli_brdstr
)) {
771 printk(KERN_WARNING
"istallion: unknown board name, %s?\n", argp
[0]);
775 confp
->brdtype
= stli_brdstr
[i
].type
;
776 if (argp
[1] != NULL
&& *argp
[1] != 0)
777 confp
->ioaddr1
= simple_strtoul(argp
[1], NULL
, 0);
778 if (argp
[2] != NULL
&& *argp
[2] != 0)
779 confp
->memaddr
= simple_strtoul(argp
[2], NULL
, 0);
783 /*****************************************************************************/
785 static int stli_open(struct tty_struct
*tty
, struct file
*filp
)
787 struct stlibrd
*brdp
;
788 struct stliport
*portp
;
789 struct tty_port
*port
;
790 unsigned int minordev
, brdnr
, portnr
;
793 minordev
= tty
->index
;
794 brdnr
= MINOR2BRD(minordev
);
795 if (brdnr
>= stli_nrbrds
)
797 brdp
= stli_brds
[brdnr
];
800 if ((brdp
->state
& BST_STARTED
) == 0)
802 portnr
= MINOR2PORT(minordev
);
803 if (portnr
> brdp
->nrports
)
806 portp
= brdp
->ports
[portnr
];
809 if (portp
->devnr
< 1)
814 * On the first open of the device setup the port hardware, and
815 * initialize the per port data structure. Since initializing the port
816 * requires several commands to the board we will need to wait for any
817 * other open that is already initializing the port.
821 tty_port_tty_set(port
, tty
);
822 tty
->driver_data
= portp
;
825 wait_event_interruptible(portp
->raw_wait
,
826 !test_bit(ST_INITIALIZING
, &portp
->state
));
827 if (signal_pending(current
))
830 if ((portp
->port
.flags
& ASYNC_INITIALIZED
) == 0) {
831 set_bit(ST_INITIALIZING
, &portp
->state
);
832 if ((rc
= stli_initopen(tty
, brdp
, portp
)) >= 0) {
834 port
->flags
|= ASYNC_INITIALIZED
;
835 clear_bit(TTY_IO_ERROR
, &tty
->flags
);
837 clear_bit(ST_INITIALIZING
, &portp
->state
);
838 wake_up_interruptible(&portp
->raw_wait
);
842 return tty_port_block_til_ready(&portp
->port
, tty
, filp
);
845 /*****************************************************************************/
847 static void stli_close(struct tty_struct
*tty
, struct file
*filp
)
849 struct stlibrd
*brdp
;
850 struct stliport
*portp
;
851 struct tty_port
*port
;
854 portp
= tty
->driver_data
;
859 if (tty_port_close_start(port
, tty
, filp
) == 0)
863 * May want to wait for data to drain before closing. The BUSY flag
864 * keeps track of whether we are still transmitting or not. It is
865 * updated by messages from the slave - indicating when all chars
866 * really have drained.
868 spin_lock_irqsave(&stli_lock
, flags
);
869 if (tty
== stli_txcooktty
)
870 stli_flushchars(tty
);
871 spin_unlock_irqrestore(&stli_lock
, flags
);
873 /* We end up doing this twice for the moment. This needs looking at
874 eventually. Note we still use portp->closing_wait as a result */
875 if (portp
->closing_wait
!= ASYNC_CLOSING_WAIT_NONE
)
876 tty_wait_until_sent(tty
, portp
->closing_wait
);
878 /* FIXME: port locking here needs attending to */
879 port
->flags
&= ~ASYNC_INITIALIZED
;
881 brdp
= stli_brds
[portp
->brdnr
];
882 stli_rawclose(brdp
, portp
, 0, 0);
883 if (tty
->termios
->c_cflag
& HUPCL
) {
884 stli_mkasysigs(&portp
->asig
, 0, 0);
885 if (test_bit(ST_CMDING
, &portp
->state
))
886 set_bit(ST_DOSIGS
, &portp
->state
);
888 stli_sendcmd(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
889 sizeof(asysigs_t
), 0);
891 clear_bit(ST_TXBUSY
, &portp
->state
);
892 clear_bit(ST_RXSTOP
, &portp
->state
);
893 set_bit(TTY_IO_ERROR
, &tty
->flags
);
894 tty_ldisc_flush(tty
);
895 set_bit(ST_DOFLUSHRX
, &portp
->state
);
896 stli_flushbuffer(tty
);
898 tty_port_close_end(port
, tty
);
899 tty_port_tty_set(port
, NULL
);
902 /*****************************************************************************/
905 * Carry out first open operations on a port. This involves a number of
906 * commands to be sent to the slave. We need to open the port, set the
907 * notification events, set the initial port settings, get and set the
908 * initial signal values. We sleep and wait in between each one. But
909 * this still all happens pretty quickly.
912 static int stli_initopen(struct tty_struct
*tty
,
913 struct stlibrd
*brdp
, struct stliport
*portp
)
919 if ((rc
= stli_rawopen(brdp
, portp
, 0, 1)) < 0)
922 memset(&nt
, 0, sizeof(asynotify_t
));
923 nt
.data
= (DT_TXLOW
| DT_TXEMPTY
| DT_RXBUSY
| DT_RXBREAK
);
925 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETNOTIFY
, &nt
,
926 sizeof(asynotify_t
), 0)) < 0)
929 stli_mkasyport(tty
, portp
, &aport
, tty
->termios
);
930 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
,
931 sizeof(asyport_t
), 0)) < 0)
934 set_bit(ST_GETSIGS
, &portp
->state
);
935 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
, &portp
->asig
,
936 sizeof(asysigs_t
), 1)) < 0)
938 if (test_and_clear_bit(ST_GETSIGS
, &portp
->state
))
939 portp
->sigs
= stli_mktiocm(portp
->asig
.sigvalue
);
940 stli_mkasysigs(&portp
->asig
, 1, 1);
941 if ((rc
= stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
942 sizeof(asysigs_t
), 0)) < 0)
948 /*****************************************************************************/
951 * Send an open message to the slave. This will sleep waiting for the
952 * acknowledgement, so must have user context. We need to co-ordinate
953 * with close events here, since we don't want open and close events
957 static int stli_rawopen(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long arg
, int wait
)
959 cdkhdr_t __iomem
*hdrp
;
960 cdkctrl_t __iomem
*cp
;
961 unsigned char __iomem
*bits
;
966 * Send a message to the slave to open this port.
970 * Slave is already closing this port. This can happen if a hangup
971 * occurs on this port. So we must wait until it is complete. The
972 * order of opens and closes may not be preserved across shared
973 * memory, so we must wait until it is complete.
975 wait_event_interruptible(portp
->raw_wait
,
976 !test_bit(ST_CLOSING
, &portp
->state
));
977 if (signal_pending(current
)) {
982 * Everything is ready now, so write the open message into shared
983 * memory. Once the message is in set the service bits to say that
984 * this port wants service.
986 spin_lock_irqsave(&brd_lock
, flags
);
988 cp
= &((cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
989 writel(arg
, &cp
->openarg
);
990 writeb(1, &cp
->open
);
991 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
992 bits
= ((unsigned char __iomem
*) hdrp
) + brdp
->slaveoffset
+
994 writeb(readb(bits
) | portp
->portbit
, bits
);
998 spin_unlock_irqrestore(&brd_lock
, flags
);
1003 * Slave is in action, so now we must wait for the open acknowledgment
1007 set_bit(ST_OPENING
, &portp
->state
);
1008 spin_unlock_irqrestore(&brd_lock
, flags
);
1010 wait_event_interruptible(portp
->raw_wait
,
1011 !test_bit(ST_OPENING
, &portp
->state
));
1012 if (signal_pending(current
))
1015 if ((rc
== 0) && (portp
->rc
!= 0))
1020 /*****************************************************************************/
1023 * Send a close message to the slave. Normally this will sleep waiting
1024 * for the acknowledgement, but if wait parameter is 0 it will not. If
1025 * wait is true then must have user context (to sleep).
1028 static int stli_rawclose(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long arg
, int wait
)
1030 cdkhdr_t __iomem
*hdrp
;
1031 cdkctrl_t __iomem
*cp
;
1032 unsigned char __iomem
*bits
;
1033 unsigned long flags
;
1037 * Slave is already closing this port. This can happen if a hangup
1038 * occurs on this port.
1041 wait_event_interruptible(portp
->raw_wait
,
1042 !test_bit(ST_CLOSING
, &portp
->state
));
1043 if (signal_pending(current
)) {
1044 return -ERESTARTSYS
;
1049 * Write the close command into shared memory.
1051 spin_lock_irqsave(&brd_lock
, flags
);
1053 cp
= &((cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
1054 writel(arg
, &cp
->closearg
);
1055 writeb(1, &cp
->close
);
1056 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1057 bits
= ((unsigned char __iomem
*) hdrp
) + brdp
->slaveoffset
+
1059 writeb(readb(bits
) |portp
->portbit
, bits
);
1062 set_bit(ST_CLOSING
, &portp
->state
);
1063 spin_unlock_irqrestore(&brd_lock
, flags
);
1069 * Slave is in action, so now we must wait for the open acknowledgment
1073 wait_event_interruptible(portp
->raw_wait
,
1074 !test_bit(ST_CLOSING
, &portp
->state
));
1075 if (signal_pending(current
))
1078 if ((rc
== 0) && (portp
->rc
!= 0))
1083 /*****************************************************************************/
1086 * Send a command to the slave and wait for the response. This must
1087 * have user context (it sleeps). This routine is generic in that it
1088 * can send any type of command. Its purpose is to wait for that command
1089 * to complete (as opposed to initiating the command then returning).
1092 static int stli_cmdwait(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
1094 wait_event_interruptible(portp
->raw_wait
,
1095 !test_bit(ST_CMDING
, &portp
->state
));
1096 if (signal_pending(current
))
1097 return -ERESTARTSYS
;
1099 stli_sendcmd(brdp
, portp
, cmd
, arg
, size
, copyback
);
1101 wait_event_interruptible(portp
->raw_wait
,
1102 !test_bit(ST_CMDING
, &portp
->state
));
1103 if (signal_pending(current
))
1104 return -ERESTARTSYS
;
1111 /*****************************************************************************/
1114 * Send the termios settings for this port to the slave. This sleeps
1115 * waiting for the command to complete - so must have user context.
1118 static int stli_setport(struct tty_struct
*tty
)
1120 struct stliport
*portp
= tty
->driver_data
;
1121 struct stlibrd
*brdp
;
1126 if (portp
->brdnr
>= stli_nrbrds
)
1128 brdp
= stli_brds
[portp
->brdnr
];
1132 stli_mkasyport(tty
, portp
, &aport
, tty
->termios
);
1133 return(stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0));
1136 /*****************************************************************************/
1138 static int stli_carrier_raised(struct tty_port
*port
)
1140 struct stliport
*portp
= container_of(port
, struct stliport
, port
);
1141 return (portp
->sigs
& TIOCM_CD
) ? 1 : 0;
1144 static void stli_dtr_rts(struct tty_port
*port
, int on
)
1146 struct stliport
*portp
= container_of(port
, struct stliport
, port
);
1147 struct stlibrd
*brdp
= stli_brds
[portp
->brdnr
];
1148 stli_mkasysigs(&portp
->asig
, on
, on
);
1149 if (stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1150 sizeof(asysigs_t
), 0) < 0)
1151 printk(KERN_WARNING
"istallion: dtr set failed.\n");
1155 /*****************************************************************************/
1158 * Write routine. Take the data and put it in the shared memory ring
1159 * queue. If port is not already sending chars then need to mark the
1160 * service bits for this port.
1163 static int stli_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
1165 cdkasy_t __iomem
*ap
;
1166 cdkhdr_t __iomem
*hdrp
;
1167 unsigned char __iomem
*bits
;
1168 unsigned char __iomem
*shbuf
;
1169 unsigned char *chbuf
;
1170 struct stliport
*portp
;
1171 struct stlibrd
*brdp
;
1172 unsigned int len
, stlen
, head
, tail
, size
;
1173 unsigned long flags
;
1175 if (tty
== stli_txcooktty
)
1176 stli_flushchars(tty
);
1177 portp
= tty
->driver_data
;
1180 if (portp
->brdnr
>= stli_nrbrds
)
1182 brdp
= stli_brds
[portp
->brdnr
];
1185 chbuf
= (unsigned char *) buf
;
1188 * All data is now local, shove as much as possible into shared memory.
1190 spin_lock_irqsave(&brd_lock
, flags
);
1192 ap
= (cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1193 head
= (unsigned int) readw(&ap
->txq
.head
);
1194 tail
= (unsigned int) readw(&ap
->txq
.tail
);
1195 if (tail
!= ((unsigned int) readw(&ap
->txq
.tail
)))
1196 tail
= (unsigned int) readw(&ap
->txq
.tail
);
1197 size
= portp
->txsize
;
1199 len
= size
- (head
- tail
) - 1;
1200 stlen
= size
- head
;
1202 len
= tail
- head
- 1;
1206 len
= min(len
, (unsigned int)count
);
1208 shbuf
= (char __iomem
*) EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1211 stlen
= min(len
, stlen
);
1212 memcpy_toio(shbuf
+ head
, chbuf
, stlen
);
1223 ap
= (cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1224 writew(head
, &ap
->txq
.head
);
1225 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1226 if (readl(&ap
->changed
.data
) & DT_TXEMPTY
)
1227 writel(readl(&ap
->changed
.data
) & ~DT_TXEMPTY
, &ap
->changed
.data
);
1229 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1230 bits
= ((unsigned char __iomem
*) hdrp
) + brdp
->slaveoffset
+
1232 writeb(readb(bits
) | portp
->portbit
, bits
);
1233 set_bit(ST_TXBUSY
, &portp
->state
);
1235 spin_unlock_irqrestore(&brd_lock
, flags
);
1240 /*****************************************************************************/
1243 * Output a single character. We put it into a temporary local buffer
1244 * (for speed) then write out that buffer when the flushchars routine
1245 * is called. There is a safety catch here so that if some other port
1246 * writes chars before the current buffer has been, then we write them
1247 * first them do the new ports.
1250 static int stli_putchar(struct tty_struct
*tty
, unsigned char ch
)
1252 if (tty
!= stli_txcooktty
) {
1253 if (stli_txcooktty
!= NULL
)
1254 stli_flushchars(stli_txcooktty
);
1255 stli_txcooktty
= tty
;
1258 stli_txcookbuf
[stli_txcooksize
++] = ch
;
1262 /*****************************************************************************/
1265 * Transfer characters from the local TX cooking buffer to the board.
1266 * We sort of ignore the tty that gets passed in here. We rely on the
1267 * info stored with the TX cook buffer to tell us which port to flush
1268 * the data on. In any case we clean out the TX cook buffer, for re-use
1272 static void stli_flushchars(struct tty_struct
*tty
)
1274 cdkhdr_t __iomem
*hdrp
;
1275 unsigned char __iomem
*bits
;
1276 cdkasy_t __iomem
*ap
;
1277 struct tty_struct
*cooktty
;
1278 struct stliport
*portp
;
1279 struct stlibrd
*brdp
;
1280 unsigned int len
, stlen
, head
, tail
, size
, count
, cooksize
;
1282 unsigned char __iomem
*shbuf
;
1283 unsigned long flags
;
1285 cooksize
= stli_txcooksize
;
1286 cooktty
= stli_txcooktty
;
1287 stli_txcooksize
= 0;
1288 stli_txcookrealsize
= 0;
1289 stli_txcooktty
= NULL
;
1291 if (cooktty
== NULL
)
1298 portp
= tty
->driver_data
;
1301 if (portp
->brdnr
>= stli_nrbrds
)
1303 brdp
= stli_brds
[portp
->brdnr
];
1307 spin_lock_irqsave(&brd_lock
, flags
);
1310 ap
= (cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1311 head
= (unsigned int) readw(&ap
->txq
.head
);
1312 tail
= (unsigned int) readw(&ap
->txq
.tail
);
1313 if (tail
!= ((unsigned int) readw(&ap
->txq
.tail
)))
1314 tail
= (unsigned int) readw(&ap
->txq
.tail
);
1315 size
= portp
->txsize
;
1317 len
= size
- (head
- tail
) - 1;
1318 stlen
= size
- head
;
1320 len
= tail
- head
- 1;
1324 len
= min(len
, cooksize
);
1326 shbuf
= EBRDGETMEMPTR(brdp
, portp
->txoffset
);
1327 buf
= stli_txcookbuf
;
1330 stlen
= min(len
, stlen
);
1331 memcpy_toio(shbuf
+ head
, buf
, stlen
);
1342 ap
= (cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
1343 writew(head
, &ap
->txq
.head
);
1345 if (test_bit(ST_TXBUSY
, &portp
->state
)) {
1346 if (readl(&ap
->changed
.data
) & DT_TXEMPTY
)
1347 writel(readl(&ap
->changed
.data
) & ~DT_TXEMPTY
, &ap
->changed
.data
);
1349 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
1350 bits
= ((unsigned char __iomem
*) hdrp
) + brdp
->slaveoffset
+
1352 writeb(readb(bits
) | portp
->portbit
, bits
);
1353 set_bit(ST_TXBUSY
, &portp
->state
);
1356 spin_unlock_irqrestore(&brd_lock
, flags
);
1359 /*****************************************************************************/
1361 static int stli_writeroom(struct tty_struct
*tty
)
1363 cdkasyrq_t __iomem
*rp
;
1364 struct stliport
*portp
;
1365 struct stlibrd
*brdp
;
1366 unsigned int head
, tail
, len
;
1367 unsigned long flags
;
1369 if (tty
== stli_txcooktty
) {
1370 if (stli_txcookrealsize
!= 0) {
1371 len
= stli_txcookrealsize
- stli_txcooksize
;
1376 portp
= tty
->driver_data
;
1379 if (portp
->brdnr
>= stli_nrbrds
)
1381 brdp
= stli_brds
[portp
->brdnr
];
1385 spin_lock_irqsave(&brd_lock
, flags
);
1387 rp
= &((cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1388 head
= (unsigned int) readw(&rp
->head
);
1389 tail
= (unsigned int) readw(&rp
->tail
);
1390 if (tail
!= ((unsigned int) readw(&rp
->tail
)))
1391 tail
= (unsigned int) readw(&rp
->tail
);
1392 len
= (head
>= tail
) ? (portp
->txsize
- (head
- tail
)) : (tail
- head
);
1395 spin_unlock_irqrestore(&brd_lock
, flags
);
1397 if (tty
== stli_txcooktty
) {
1398 stli_txcookrealsize
= len
;
1399 len
-= stli_txcooksize
;
1404 /*****************************************************************************/
1407 * Return the number of characters in the transmit buffer. Normally we
1408 * will return the number of chars in the shared memory ring queue.
1409 * We need to kludge around the case where the shared memory buffer is
1410 * empty but not all characters have drained yet, for this case just
1411 * return that there is 1 character in the buffer!
1414 static int stli_charsinbuffer(struct tty_struct
*tty
)
1416 cdkasyrq_t __iomem
*rp
;
1417 struct stliport
*portp
;
1418 struct stlibrd
*brdp
;
1419 unsigned int head
, tail
, len
;
1420 unsigned long flags
;
1422 if (tty
== stli_txcooktty
)
1423 stli_flushchars(tty
);
1424 portp
= tty
->driver_data
;
1427 if (portp
->brdnr
>= stli_nrbrds
)
1429 brdp
= stli_brds
[portp
->brdnr
];
1433 spin_lock_irqsave(&brd_lock
, flags
);
1435 rp
= &((cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->txq
;
1436 head
= (unsigned int) readw(&rp
->head
);
1437 tail
= (unsigned int) readw(&rp
->tail
);
1438 if (tail
!= ((unsigned int) readw(&rp
->tail
)))
1439 tail
= (unsigned int) readw(&rp
->tail
);
1440 len
= (head
>= tail
) ? (head
- tail
) : (portp
->txsize
- (tail
- head
));
1441 if ((len
== 0) && test_bit(ST_TXBUSY
, &portp
->state
))
1444 spin_unlock_irqrestore(&brd_lock
, flags
);
1449 /*****************************************************************************/
1452 * Generate the serial struct info.
1455 static int stli_getserial(struct stliport
*portp
, struct serial_struct __user
*sp
)
1457 struct serial_struct sio
;
1458 struct stlibrd
*brdp
;
1460 memset(&sio
, 0, sizeof(struct serial_struct
));
1461 sio
.type
= PORT_UNKNOWN
;
1462 sio
.line
= portp
->portnr
;
1464 sio
.flags
= portp
->port
.flags
;
1465 sio
.baud_base
= portp
->baud_base
;
1466 sio
.close_delay
= portp
->port
.close_delay
;
1467 sio
.closing_wait
= portp
->closing_wait
;
1468 sio
.custom_divisor
= portp
->custom_divisor
;
1469 sio
.xmit_fifo_size
= 0;
1472 brdp
= stli_brds
[portp
->brdnr
];
1474 sio
.port
= brdp
->iobase
;
1476 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ?
1480 /*****************************************************************************/
1483 * Set port according to the serial struct info.
1484 * At this point we do not do any auto-configure stuff, so we will
1485 * just quietly ignore any requests to change irq, etc.
1488 static int stli_setserial(struct tty_struct
*tty
, struct serial_struct __user
*sp
)
1490 struct serial_struct sio
;
1492 struct stliport
*portp
= tty
->driver_data
;
1494 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1496 if (!capable(CAP_SYS_ADMIN
)) {
1497 if ((sio
.baud_base
!= portp
->baud_base
) ||
1498 (sio
.close_delay
!= portp
->port
.close_delay
) ||
1499 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1500 (portp
->port
.flags
& ~ASYNC_USR_MASK
)))
1504 portp
->port
.flags
= (portp
->port
.flags
& ~ASYNC_USR_MASK
) |
1505 (sio
.flags
& ASYNC_USR_MASK
);
1506 portp
->baud_base
= sio
.baud_base
;
1507 portp
->port
.close_delay
= sio
.close_delay
;
1508 portp
->closing_wait
= sio
.closing_wait
;
1509 portp
->custom_divisor
= sio
.custom_divisor
;
1511 if ((rc
= stli_setport(tty
)) < 0)
1516 /*****************************************************************************/
1518 static int stli_tiocmget(struct tty_struct
*tty
, struct file
*file
)
1520 struct stliport
*portp
= tty
->driver_data
;
1521 struct stlibrd
*brdp
;
1526 if (portp
->brdnr
>= stli_nrbrds
)
1528 brdp
= stli_brds
[portp
->brdnr
];
1531 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1534 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSIGNALS
,
1535 &portp
->asig
, sizeof(asysigs_t
), 1)) < 0)
1538 return stli_mktiocm(portp
->asig
.sigvalue
);
1541 static int stli_tiocmset(struct tty_struct
*tty
, struct file
*file
,
1542 unsigned int set
, unsigned int clear
)
1544 struct stliport
*portp
= tty
->driver_data
;
1545 struct stlibrd
*brdp
;
1546 int rts
= -1, dtr
= -1;
1550 if (portp
->brdnr
>= stli_nrbrds
)
1552 brdp
= stli_brds
[portp
->brdnr
];
1555 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1558 if (set
& TIOCM_RTS
)
1560 if (set
& TIOCM_DTR
)
1562 if (clear
& TIOCM_RTS
)
1564 if (clear
& TIOCM_DTR
)
1567 stli_mkasysigs(&portp
->asig
, dtr
, rts
);
1569 return stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1570 sizeof(asysigs_t
), 0);
1573 static int stli_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1575 struct stliport
*portp
;
1576 struct stlibrd
*brdp
;
1578 void __user
*argp
= (void __user
*)arg
;
1580 portp
= tty
->driver_data
;
1583 if (portp
->brdnr
>= stli_nrbrds
)
1585 brdp
= stli_brds
[portp
->brdnr
];
1589 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
1590 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
)) {
1591 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1599 rc
= stli_getserial(portp
, argp
);
1602 rc
= stli_setserial(tty
, argp
);
1605 rc
= put_user(portp
->pflag
, (unsigned __user
*)argp
);
1608 if ((rc
= get_user(portp
->pflag
, (unsigned __user
*)argp
)) == 0)
1611 case COM_GETPORTSTATS
:
1612 rc
= stli_getportstats(tty
, portp
, argp
);
1614 case COM_CLRPORTSTATS
:
1615 rc
= stli_clrportstats(portp
, argp
);
1621 case TIOCSERGSTRUCT
:
1622 case TIOCSERGETMULTI
:
1623 case TIOCSERSETMULTI
:
1632 /*****************************************************************************/
1635 * This routine assumes that we have user context and can sleep.
1636 * Looks like it is true for the current ttys implementation..!!
1639 static void stli_settermios(struct tty_struct
*tty
, struct ktermios
*old
)
1641 struct stliport
*portp
;
1642 struct stlibrd
*brdp
;
1643 struct ktermios
*tiosp
;
1646 portp
= tty
->driver_data
;
1649 if (portp
->brdnr
>= stli_nrbrds
)
1651 brdp
= stli_brds
[portp
->brdnr
];
1655 tiosp
= tty
->termios
;
1657 stli_mkasyport(tty
, portp
, &aport
, tiosp
);
1658 stli_cmdwait(brdp
, portp
, A_SETPORT
, &aport
, sizeof(asyport_t
), 0);
1659 stli_mkasysigs(&portp
->asig
, ((tiosp
->c_cflag
& CBAUD
) ? 1 : 0), -1);
1660 stli_cmdwait(brdp
, portp
, A_SETSIGNALS
, &portp
->asig
,
1661 sizeof(asysigs_t
), 0);
1662 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0))
1663 tty
->hw_stopped
= 0;
1664 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
1665 wake_up_interruptible(&portp
->port
.open_wait
);
1668 /*****************************************************************************/
1671 * Attempt to flow control who ever is sending us data. We won't really
1672 * do any flow control action here. We can't directly, and even if we
1673 * wanted to we would have to send a command to the slave. The slave
1674 * knows how to flow control, and will do so when its buffers reach its
1675 * internal high water marks. So what we will do is set a local state
1676 * bit that will stop us sending any RX data up from the poll routine
1677 * (which is the place where RX data from the slave is handled).
1680 static void stli_throttle(struct tty_struct
*tty
)
1682 struct stliport
*portp
= tty
->driver_data
;
1685 set_bit(ST_RXSTOP
, &portp
->state
);
1688 /*****************************************************************************/
1691 * Unflow control the device sending us data... That means that all
1692 * we have to do is clear the RXSTOP state bit. The next poll call
1693 * will then be able to pass the RX data back up.
1696 static void stli_unthrottle(struct tty_struct
*tty
)
1698 struct stliport
*portp
= tty
->driver_data
;
1701 clear_bit(ST_RXSTOP
, &portp
->state
);
1704 /*****************************************************************************/
1707 * Stop the transmitter.
1710 static void stli_stop(struct tty_struct
*tty
)
1714 /*****************************************************************************/
1717 * Start the transmitter again.
1720 static void stli_start(struct tty_struct
*tty
)
1724 /*****************************************************************************/
1727 * Hangup this port. This is pretty much like closing the port, only
1728 * a little more brutal. No waiting for data to drain. Shutdown the
1729 * port and maybe drop signals. This is rather tricky really. We want
1730 * to close the port as well.
1733 static void stli_hangup(struct tty_struct
*tty
)
1735 struct stliport
*portp
;
1736 struct stlibrd
*brdp
;
1737 struct tty_port
*port
;
1738 unsigned long flags
;
1740 portp
= tty
->driver_data
;
1743 if (portp
->brdnr
>= stli_nrbrds
)
1745 brdp
= stli_brds
[portp
->brdnr
];
1748 port
= &portp
->port
;
1750 spin_lock_irqsave(&port
->lock
, flags
);
1751 port
->flags
&= ~ASYNC_INITIALIZED
;
1752 spin_unlock_irqrestore(&port
->lock
, flags
);
1754 if (!test_bit(ST_CLOSING
, &portp
->state
))
1755 stli_rawclose(brdp
, portp
, 0, 0);
1757 spin_lock_irqsave(&stli_lock
, flags
);
1758 if (tty
->termios
->c_cflag
& HUPCL
) {
1759 stli_mkasysigs(&portp
->asig
, 0, 0);
1760 if (test_bit(ST_CMDING
, &portp
->state
)) {
1761 set_bit(ST_DOSIGS
, &portp
->state
);
1762 set_bit(ST_DOFLUSHTX
, &portp
->state
);
1763 set_bit(ST_DOFLUSHRX
, &portp
->state
);
1765 stli_sendcmd(brdp
, portp
, A_SETSIGNALSF
,
1766 &portp
->asig
, sizeof(asysigs_t
), 0);
1770 clear_bit(ST_TXBUSY
, &portp
->state
);
1771 clear_bit(ST_RXSTOP
, &portp
->state
);
1772 set_bit(TTY_IO_ERROR
, &tty
->flags
);
1773 spin_unlock_irqrestore(&stli_lock
, flags
);
1775 tty_port_hangup(port
);
1778 /*****************************************************************************/
1781 * Flush characters from the lower buffer. We may not have user context
1782 * so we cannot sleep waiting for it to complete. Also we need to check
1783 * if there is chars for this port in the TX cook buffer, and flush them
1787 static void stli_flushbuffer(struct tty_struct
*tty
)
1789 struct stliport
*portp
;
1790 struct stlibrd
*brdp
;
1791 unsigned long ftype
, flags
;
1793 portp
= tty
->driver_data
;
1796 if (portp
->brdnr
>= stli_nrbrds
)
1798 brdp
= stli_brds
[portp
->brdnr
];
1802 spin_lock_irqsave(&brd_lock
, flags
);
1803 if (tty
== stli_txcooktty
) {
1804 stli_txcooktty
= NULL
;
1805 stli_txcooksize
= 0;
1806 stli_txcookrealsize
= 0;
1808 if (test_bit(ST_CMDING
, &portp
->state
)) {
1809 set_bit(ST_DOFLUSHTX
, &portp
->state
);
1812 if (test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
1814 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
1816 __stli_sendcmd(brdp
, portp
, A_FLUSH
, &ftype
, sizeof(u32
), 0);
1818 spin_unlock_irqrestore(&brd_lock
, flags
);
1822 /*****************************************************************************/
1824 static int stli_breakctl(struct tty_struct
*tty
, int state
)
1826 struct stlibrd
*brdp
;
1827 struct stliport
*portp
;
1830 portp
= tty
->driver_data
;
1833 if (portp
->brdnr
>= stli_nrbrds
)
1835 brdp
= stli_brds
[portp
->brdnr
];
1839 arg
= (state
== -1) ? BREAKON
: BREAKOFF
;
1840 stli_cmdwait(brdp
, portp
, A_BREAK
, &arg
, sizeof(long), 0);
1844 /*****************************************************************************/
1846 static void stli_waituntilsent(struct tty_struct
*tty
, int timeout
)
1848 struct stliport
*portp
;
1851 portp
= tty
->driver_data
;
1857 tend
= jiffies
+ timeout
;
1859 while (test_bit(ST_TXBUSY
, &portp
->state
)) {
1860 if (signal_pending(current
))
1862 msleep_interruptible(20);
1863 if (time_after_eq(jiffies
, tend
))
1868 /*****************************************************************************/
1870 static void stli_sendxchar(struct tty_struct
*tty
, char ch
)
1872 struct stlibrd
*brdp
;
1873 struct stliport
*portp
;
1876 portp
= tty
->driver_data
;
1879 if (portp
->brdnr
>= stli_nrbrds
)
1881 brdp
= stli_brds
[portp
->brdnr
];
1885 memset(&actrl
, 0, sizeof(asyctrl_t
));
1886 if (ch
== STOP_CHAR(tty
)) {
1887 actrl
.rxctrl
= CT_STOPFLOW
;
1888 } else if (ch
== START_CHAR(tty
)) {
1889 actrl
.rxctrl
= CT_STARTFLOW
;
1891 actrl
.txctrl
= CT_SENDCHR
;
1894 stli_cmdwait(brdp
, portp
, A_PORTCTRL
, &actrl
, sizeof(asyctrl_t
), 0);
1897 static void stli_portinfo(struct seq_file
*m
, struct stlibrd
*brdp
, struct stliport
*portp
, int portnr
)
1902 rc
= stli_portcmdstats(NULL
, portp
);
1905 if (brdp
->state
& BST_STARTED
) {
1906 switch (stli_comstats
.hwid
) {
1907 case 0: uart
= "2681"; break;
1908 case 1: uart
= "SC26198"; break;
1909 default:uart
= "CD1400"; break;
1912 seq_printf(m
, "%d: uart:%s ", portnr
, uart
);
1914 if ((brdp
->state
& BST_STARTED
) && (rc
>= 0)) {
1917 seq_printf(m
, "tx:%d rx:%d", (int) stli_comstats
.txtotal
,
1918 (int) stli_comstats
.rxtotal
);
1920 if (stli_comstats
.rxframing
)
1921 seq_printf(m
, " fe:%d",
1922 (int) stli_comstats
.rxframing
);
1923 if (stli_comstats
.rxparity
)
1924 seq_printf(m
, " pe:%d",
1925 (int) stli_comstats
.rxparity
);
1926 if (stli_comstats
.rxbreaks
)
1927 seq_printf(m
, " brk:%d",
1928 (int) stli_comstats
.rxbreaks
);
1929 if (stli_comstats
.rxoverrun
)
1930 seq_printf(m
, " oe:%d",
1931 (int) stli_comstats
.rxoverrun
);
1934 if (stli_comstats
.signals
& TIOCM_RTS
) {
1935 seq_printf(m
, "%c%s", sep
, "RTS");
1938 if (stli_comstats
.signals
& TIOCM_CTS
) {
1939 seq_printf(m
, "%c%s", sep
, "CTS");
1942 if (stli_comstats
.signals
& TIOCM_DTR
) {
1943 seq_printf(m
, "%c%s", sep
, "DTR");
1946 if (stli_comstats
.signals
& TIOCM_CD
) {
1947 seq_printf(m
, "%c%s", sep
, "DCD");
1950 if (stli_comstats
.signals
& TIOCM_DSR
) {
1951 seq_printf(m
, "%c%s", sep
, "DSR");
1958 /*****************************************************************************/
1961 * Port info, read from the /proc file system.
1964 static int stli_proc_show(struct seq_file
*m
, void *v
)
1966 struct stlibrd
*brdp
;
1967 struct stliport
*portp
;
1968 unsigned int brdnr
, portnr
, totalport
;
1972 seq_printf(m
, "%s: version %s\n", stli_drvtitle
, stli_drvversion
);
1975 * We scan through for each board, panel and port. The offset is
1976 * calculated on the fly, and irrelevant ports are skipped.
1978 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
1979 brdp
= stli_brds
[brdnr
];
1982 if (brdp
->state
== 0)
1985 totalport
= brdnr
* STL_MAXPORTS
;
1986 for (portnr
= 0; (portnr
< brdp
->nrports
); portnr
++,
1988 portp
= brdp
->ports
[portnr
];
1991 stli_portinfo(m
, brdp
, portp
, totalport
);
1997 static int stli_proc_open(struct inode
*inode
, struct file
*file
)
1999 return single_open(file
, stli_proc_show
, NULL
);
2002 static const struct file_operations stli_proc_fops
= {
2003 .owner
= THIS_MODULE
,
2004 .open
= stli_proc_open
,
2006 .llseek
= seq_lseek
,
2007 .release
= single_release
,
2010 /*****************************************************************************/
2013 * Generic send command routine. This will send a message to the slave,
2014 * of the specified type with the specified argument. Must be very
2015 * careful of data that will be copied out from shared memory -
2016 * containing command results. The command completion is all done from
2017 * a poll routine that does not have user context. Therefore you cannot
2018 * copy back directly into user space, or to the kernel stack of a
2019 * process. This routine does not sleep, so can be called from anywhere.
2021 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2025 static void __stli_sendcmd(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
2027 cdkhdr_t __iomem
*hdrp
;
2028 cdkctrl_t __iomem
*cp
;
2029 unsigned char __iomem
*bits
;
2031 if (test_bit(ST_CMDING
, &portp
->state
)) {
2032 printk(KERN_ERR
"istallion: command already busy, cmd=%x!\n",
2038 cp
= &((cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->ctrl
;
2040 memcpy_toio((void __iomem
*) &(cp
->args
[0]), arg
, size
);
2043 portp
->argsize
= size
;
2046 writel(0, &cp
->status
);
2047 writel(cmd
, &cp
->cmd
);
2048 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
2049 bits
= ((unsigned char __iomem
*) hdrp
) + brdp
->slaveoffset
+
2051 writeb(readb(bits
) | portp
->portbit
, bits
);
2052 set_bit(ST_CMDING
, &portp
->state
);
2056 static void stli_sendcmd(struct stlibrd
*brdp
, struct stliport
*portp
, unsigned long cmd
, void *arg
, int size
, int copyback
)
2058 unsigned long flags
;
2060 spin_lock_irqsave(&brd_lock
, flags
);
2061 __stli_sendcmd(brdp
, portp
, cmd
, arg
, size
, copyback
);
2062 spin_unlock_irqrestore(&brd_lock
, flags
);
2065 /*****************************************************************************/
2068 * Read data from shared memory. This assumes that the shared memory
2069 * is enabled and that interrupts are off. Basically we just empty out
2070 * the shared memory buffer into the tty buffer. Must be careful to
2071 * handle the case where we fill up the tty buffer, but still have
2072 * more chars to unload.
2075 static void stli_read(struct stlibrd
*brdp
, struct stliport
*portp
)
2077 cdkasyrq_t __iomem
*rp
;
2078 char __iomem
*shbuf
;
2079 struct tty_struct
*tty
;
2080 unsigned int head
, tail
, size
;
2081 unsigned int len
, stlen
;
2083 if (test_bit(ST_RXSTOP
, &portp
->state
))
2085 tty
= tty_port_tty_get(&portp
->port
);
2089 rp
= &((cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2090 head
= (unsigned int) readw(&rp
->head
);
2091 if (head
!= ((unsigned int) readw(&rp
->head
)))
2092 head
= (unsigned int) readw(&rp
->head
);
2093 tail
= (unsigned int) readw(&rp
->tail
);
2094 size
= portp
->rxsize
;
2099 len
= size
- (tail
- head
);
2100 stlen
= size
- tail
;
2103 len
= tty_buffer_request_room(tty
, len
);
2105 shbuf
= (char __iomem
*) EBRDGETMEMPTR(brdp
, portp
->rxoffset
);
2108 unsigned char *cptr
;
2110 stlen
= min(len
, stlen
);
2111 tty_prepare_flip_string(tty
, &cptr
, stlen
);
2112 memcpy_fromio(cptr
, shbuf
+ tail
, stlen
);
2120 rp
= &((cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
))->rxq
;
2121 writew(tail
, &rp
->tail
);
2124 set_bit(ST_RXING
, &portp
->state
);
2126 tty_schedule_flip(tty
);
2130 /*****************************************************************************/
2133 * Set up and carry out any delayed commands. There is only a small set
2134 * of slave commands that can be done "off-level". So it is not too
2135 * difficult to deal with them here.
2138 static void stli_dodelaycmd(struct stliport
*portp
, cdkctrl_t __iomem
*cp
)
2142 if (test_bit(ST_DOSIGS
, &portp
->state
)) {
2143 if (test_bit(ST_DOFLUSHTX
, &portp
->state
) &&
2144 test_bit(ST_DOFLUSHRX
, &portp
->state
))
2145 cmd
= A_SETSIGNALSF
;
2146 else if (test_bit(ST_DOFLUSHTX
, &portp
->state
))
2147 cmd
= A_SETSIGNALSFTX
;
2148 else if (test_bit(ST_DOFLUSHRX
, &portp
->state
))
2149 cmd
= A_SETSIGNALSFRX
;
2152 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2153 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2154 clear_bit(ST_DOSIGS
, &portp
->state
);
2155 memcpy_toio((void __iomem
*) &(cp
->args
[0]), (void *) &portp
->asig
,
2157 writel(0, &cp
->status
);
2158 writel(cmd
, &cp
->cmd
);
2159 set_bit(ST_CMDING
, &portp
->state
);
2160 } else if (test_bit(ST_DOFLUSHTX
, &portp
->state
) ||
2161 test_bit(ST_DOFLUSHRX
, &portp
->state
)) {
2162 cmd
= ((test_bit(ST_DOFLUSHTX
, &portp
->state
)) ? FLUSHTX
: 0);
2163 cmd
|= ((test_bit(ST_DOFLUSHRX
, &portp
->state
)) ? FLUSHRX
: 0);
2164 clear_bit(ST_DOFLUSHTX
, &portp
->state
);
2165 clear_bit(ST_DOFLUSHRX
, &portp
->state
);
2166 memcpy_toio((void __iomem
*) &(cp
->args
[0]), (void *) &cmd
, sizeof(int));
2167 writel(0, &cp
->status
);
2168 writel(A_FLUSH
, &cp
->cmd
);
2169 set_bit(ST_CMDING
, &portp
->state
);
2173 /*****************************************************************************/
2176 * Host command service checking. This handles commands or messages
2177 * coming from the slave to the host. Must have board shared memory
2178 * enabled and interrupts off when called. Notice that by servicing the
2179 * read data last we don't need to change the shared memory pointer
2180 * during processing (which is a slow IO operation).
2181 * Return value indicates if this port is still awaiting actions from
2182 * the slave (like open, command, or even TX data being sent). If 0
2183 * then port is still busy, otherwise no longer busy.
2186 static int stli_hostcmd(struct stlibrd
*brdp
, struct stliport
*portp
)
2188 cdkasy_t __iomem
*ap
;
2189 cdkctrl_t __iomem
*cp
;
2190 struct tty_struct
*tty
;
2192 unsigned long oldsigs
;
2195 ap
= (cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
2199 * Check if we are waiting for an open completion message.
2201 if (test_bit(ST_OPENING
, &portp
->state
)) {
2202 rc
= readl(&cp
->openarg
);
2203 if (readb(&cp
->open
) == 0 && rc
!= 0) {
2206 writel(0, &cp
->openarg
);
2208 clear_bit(ST_OPENING
, &portp
->state
);
2209 wake_up_interruptible(&portp
->raw_wait
);
2214 * Check if we are waiting for a close completion message.
2216 if (test_bit(ST_CLOSING
, &portp
->state
)) {
2217 rc
= (int) readl(&cp
->closearg
);
2218 if (readb(&cp
->close
) == 0 && rc
!= 0) {
2221 writel(0, &cp
->closearg
);
2223 clear_bit(ST_CLOSING
, &portp
->state
);
2224 wake_up_interruptible(&portp
->raw_wait
);
2229 * Check if we are waiting for a command completion message. We may
2230 * need to copy out the command results associated with this command.
2232 if (test_bit(ST_CMDING
, &portp
->state
)) {
2233 rc
= readl(&cp
->status
);
2234 if (readl(&cp
->cmd
) == 0 && rc
!= 0) {
2237 if (portp
->argp
!= NULL
) {
2238 memcpy_fromio(portp
->argp
, (void __iomem
*) &(cp
->args
[0]),
2242 writel(0, &cp
->status
);
2244 clear_bit(ST_CMDING
, &portp
->state
);
2245 stli_dodelaycmd(portp
, cp
);
2246 wake_up_interruptible(&portp
->raw_wait
);
2251 * Check for any notification messages ready. This includes lots of
2252 * different types of events - RX chars ready, RX break received,
2253 * TX data low or empty in the slave, modem signals changed state.
2260 tty
= tty_port_tty_get(&portp
->port
);
2262 if (nt
.signal
& SG_DCD
) {
2263 oldsigs
= portp
->sigs
;
2264 portp
->sigs
= stli_mktiocm(nt
.sigvalue
);
2265 clear_bit(ST_GETSIGS
, &portp
->state
);
2266 if ((portp
->sigs
& TIOCM_CD
) &&
2267 ((oldsigs
& TIOCM_CD
) == 0))
2268 wake_up_interruptible(&portp
->port
.open_wait
);
2269 if ((oldsigs
& TIOCM_CD
) &&
2270 ((portp
->sigs
& TIOCM_CD
) == 0)) {
2271 if (portp
->port
.flags
& ASYNC_CHECK_CD
) {
2278 if (nt
.data
& DT_TXEMPTY
)
2279 clear_bit(ST_TXBUSY
, &portp
->state
);
2280 if (nt
.data
& (DT_TXEMPTY
| DT_TXLOW
)) {
2287 if ((nt
.data
& DT_RXBREAK
) && (portp
->rxmarkmsk
& BRKINT
)) {
2289 tty_insert_flip_char(tty
, 0, TTY_BREAK
);
2290 if (portp
->port
.flags
& ASYNC_SAK
) {
2294 tty_schedule_flip(tty
);
2299 if (nt
.data
& DT_RXBUSY
) {
2301 stli_read(brdp
, portp
);
2306 * It might seem odd that we are checking for more RX chars here.
2307 * But, we need to handle the case where the tty buffer was previously
2308 * filled, but we had more characters to pass up. The slave will not
2309 * send any more RX notify messages until the RX buffer has been emptied.
2310 * But it will leave the service bits on (since the buffer is not empty).
2311 * So from here we can try to process more RX chars.
2313 if ((!donerx
) && test_bit(ST_RXING
, &portp
->state
)) {
2314 clear_bit(ST_RXING
, &portp
->state
);
2315 stli_read(brdp
, portp
);
2318 return((test_bit(ST_OPENING
, &portp
->state
) ||
2319 test_bit(ST_CLOSING
, &portp
->state
) ||
2320 test_bit(ST_CMDING
, &portp
->state
) ||
2321 test_bit(ST_TXBUSY
, &portp
->state
) ||
2322 test_bit(ST_RXING
, &portp
->state
)) ? 0 : 1);
2325 /*****************************************************************************/
2328 * Service all ports on a particular board. Assumes that the boards
2329 * shared memory is enabled, and that the page pointer is pointed
2330 * at the cdk header structure.
2333 static void stli_brdpoll(struct stlibrd
*brdp
, cdkhdr_t __iomem
*hdrp
)
2335 struct stliport
*portp
;
2336 unsigned char hostbits
[(STL_MAXCHANS
/ 8) + 1];
2337 unsigned char slavebits
[(STL_MAXCHANS
/ 8) + 1];
2338 unsigned char __iomem
*slavep
;
2339 int bitpos
, bitat
, bitsize
;
2340 int channr
, nrdevs
, slavebitchange
;
2342 bitsize
= brdp
->bitsize
;
2343 nrdevs
= brdp
->nrdevs
;
2346 * Check if slave wants any service. Basically we try to do as
2347 * little work as possible here. There are 2 levels of service
2348 * bits. So if there is nothing to do we bail early. We check
2349 * 8 service bits at a time in the inner loop, so we can bypass
2350 * the lot if none of them want service.
2352 memcpy_fromio(&hostbits
[0], (((unsigned char __iomem
*) hdrp
) + brdp
->hostoffset
),
2355 memset(&slavebits
[0], 0, bitsize
);
2358 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
2359 if (hostbits
[bitpos
] == 0)
2361 channr
= bitpos
* 8;
2362 for (bitat
= 0x1; (channr
< nrdevs
); channr
++, bitat
<<= 1) {
2363 if (hostbits
[bitpos
] & bitat
) {
2364 portp
= brdp
->ports
[(channr
- 1)];
2365 if (stli_hostcmd(brdp
, portp
)) {
2367 slavebits
[bitpos
] |= bitat
;
2374 * If any of the ports are no longer busy then update them in the
2375 * slave request bits. We need to do this after, since a host port
2376 * service may initiate more slave requests.
2378 if (slavebitchange
) {
2379 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
2380 slavep
= ((unsigned char __iomem
*) hdrp
) + brdp
->slaveoffset
;
2381 for (bitpos
= 0; (bitpos
< bitsize
); bitpos
++) {
2382 if (readb(slavebits
+ bitpos
))
2383 writeb(readb(slavep
+ bitpos
) & ~slavebits
[bitpos
], slavebits
+ bitpos
);
2388 /*****************************************************************************/
2391 * Driver poll routine. This routine polls the boards in use and passes
2392 * messages back up to host when necessary. This is actually very
2393 * CPU efficient, since we will always have the kernel poll clock, it
2394 * adds only a few cycles when idle (since board service can be
2395 * determined very easily), but when loaded generates no interrupts
2396 * (with their expensive associated context change).
2399 static void stli_poll(unsigned long arg
)
2401 cdkhdr_t __iomem
*hdrp
;
2402 struct stlibrd
*brdp
;
2405 mod_timer(&stli_timerlist
, STLI_TIMEOUT
);
2408 * Check each board and do any servicing required.
2410 for (brdnr
= 0; (brdnr
< stli_nrbrds
); brdnr
++) {
2411 brdp
= stli_brds
[brdnr
];
2414 if ((brdp
->state
& BST_STARTED
) == 0)
2417 spin_lock(&brd_lock
);
2419 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
2420 if (readb(&hdrp
->hostreq
))
2421 stli_brdpoll(brdp
, hdrp
);
2423 spin_unlock(&brd_lock
);
2427 /*****************************************************************************/
2430 * Translate the termios settings into the port setting structure of
2434 static void stli_mkasyport(struct tty_struct
*tty
, struct stliport
*portp
,
2435 asyport_t
*pp
, struct ktermios
*tiosp
)
2437 memset(pp
, 0, sizeof(asyport_t
));
2440 * Start of by setting the baud, char size, parity and stop bit info.
2442 pp
->baudout
= tty_get_baud_rate(tty
);
2443 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
2444 if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
2445 pp
->baudout
= 57600;
2446 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
2447 pp
->baudout
= 115200;
2448 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
2449 pp
->baudout
= 230400;
2450 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
2451 pp
->baudout
= 460800;
2452 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
2453 pp
->baudout
= (portp
->baud_base
/ portp
->custom_divisor
);
2455 if (pp
->baudout
> STL_MAXBAUD
)
2456 pp
->baudout
= STL_MAXBAUD
;
2457 pp
->baudin
= pp
->baudout
;
2459 switch (tiosp
->c_cflag
& CSIZE
) {
2474 if (tiosp
->c_cflag
& CSTOPB
)
2475 pp
->stopbs
= PT_STOP2
;
2477 pp
->stopbs
= PT_STOP1
;
2479 if (tiosp
->c_cflag
& PARENB
) {
2480 if (tiosp
->c_cflag
& PARODD
)
2481 pp
->parity
= PT_ODDPARITY
;
2483 pp
->parity
= PT_EVENPARITY
;
2485 pp
->parity
= PT_NOPARITY
;
2489 * Set up any flow control options enabled.
2491 if (tiosp
->c_iflag
& IXON
) {
2493 if (tiosp
->c_iflag
& IXANY
)
2494 pp
->flow
|= F_IXANY
;
2496 if (tiosp
->c_cflag
& CRTSCTS
)
2497 pp
->flow
|= (F_RTSFLOW
| F_CTSFLOW
);
2499 pp
->startin
= tiosp
->c_cc
[VSTART
];
2500 pp
->stopin
= tiosp
->c_cc
[VSTOP
];
2501 pp
->startout
= tiosp
->c_cc
[VSTART
];
2502 pp
->stopout
= tiosp
->c_cc
[VSTOP
];
2505 * Set up the RX char marking mask with those RX error types we must
2506 * catch. We can get the slave to help us out a little here, it will
2507 * ignore parity errors and breaks for us, and mark parity errors in
2510 if (tiosp
->c_iflag
& IGNPAR
)
2511 pp
->iflag
|= FI_IGNRXERRS
;
2512 if (tiosp
->c_iflag
& IGNBRK
)
2513 pp
->iflag
|= FI_IGNBREAK
;
2515 portp
->rxmarkmsk
= 0;
2516 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
2517 pp
->iflag
|= FI_1MARKRXERRS
;
2518 if (tiosp
->c_iflag
& BRKINT
)
2519 portp
->rxmarkmsk
|= BRKINT
;
2522 * Set up clocal processing as required.
2524 if (tiosp
->c_cflag
& CLOCAL
)
2525 portp
->port
.flags
&= ~ASYNC_CHECK_CD
;
2527 portp
->port
.flags
|= ASYNC_CHECK_CD
;
2530 * Transfer any persistent flags into the asyport structure.
2532 pp
->pflag
= (portp
->pflag
& 0xffff);
2533 pp
->vmin
= (portp
->pflag
& P_RXIMIN
) ? 1 : 0;
2534 pp
->vtime
= (portp
->pflag
& P_RXITIME
) ? 1 : 0;
2535 pp
->cc
[1] = (portp
->pflag
& P_RXTHOLD
) ? 1 : 0;
2538 /*****************************************************************************/
2541 * Construct a slave signals structure for setting the DTR and RTS
2542 * signals as specified.
2545 static void stli_mkasysigs(asysigs_t
*sp
, int dtr
, int rts
)
2547 memset(sp
, 0, sizeof(asysigs_t
));
2549 sp
->signal
|= SG_DTR
;
2550 sp
->sigvalue
|= ((dtr
> 0) ? SG_DTR
: 0);
2553 sp
->signal
|= SG_RTS
;
2554 sp
->sigvalue
|= ((rts
> 0) ? SG_RTS
: 0);
2558 /*****************************************************************************/
2561 * Convert the signals returned from the slave into a local TIOCM type
2562 * signals value. We keep them locally in TIOCM format.
2565 static long stli_mktiocm(unsigned long sigvalue
)
2568 tiocm
|= ((sigvalue
& SG_DCD
) ? TIOCM_CD
: 0);
2569 tiocm
|= ((sigvalue
& SG_CTS
) ? TIOCM_CTS
: 0);
2570 tiocm
|= ((sigvalue
& SG_RI
) ? TIOCM_RI
: 0);
2571 tiocm
|= ((sigvalue
& SG_DSR
) ? TIOCM_DSR
: 0);
2572 tiocm
|= ((sigvalue
& SG_DTR
) ? TIOCM_DTR
: 0);
2573 tiocm
|= ((sigvalue
& SG_RTS
) ? TIOCM_RTS
: 0);
2577 /*****************************************************************************/
2580 * All panels and ports actually attached have been worked out. All
2581 * we need to do here is set up the appropriate per port data structures.
2584 static int stli_initports(struct stlibrd
*brdp
)
2586 struct stliport
*portp
;
2587 unsigned int i
, panelnr
, panelport
;
2589 for (i
= 0, panelnr
= 0, panelport
= 0; (i
< brdp
->nrports
); i
++) {
2590 portp
= kzalloc(sizeof(struct stliport
), GFP_KERNEL
);
2592 printk(KERN_WARNING
"istallion: failed to allocate port structure\n");
2595 tty_port_init(&portp
->port
);
2596 portp
->port
.ops
= &stli_port_ops
;
2597 portp
->magic
= STLI_PORTMAGIC
;
2599 portp
->brdnr
= brdp
->brdnr
;
2600 portp
->panelnr
= panelnr
;
2601 portp
->baud_base
= STL_BAUDBASE
;
2602 portp
->port
.close_delay
= STL_CLOSEDELAY
;
2603 portp
->closing_wait
= 30 * HZ
;
2604 init_waitqueue_head(&portp
->port
.open_wait
);
2605 init_waitqueue_head(&portp
->port
.close_wait
);
2606 init_waitqueue_head(&portp
->raw_wait
);
2608 if (panelport
>= brdp
->panels
[panelnr
]) {
2612 brdp
->ports
[i
] = portp
;
2618 /*****************************************************************************/
2621 * All the following routines are board specific hardware operations.
2624 static void stli_ecpinit(struct stlibrd
*brdp
)
2626 unsigned long memconf
;
2628 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
2630 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
2633 memconf
= (brdp
->memaddr
& ECP_ATADDRMASK
) >> ECP_ATADDRSHFT
;
2634 outb(memconf
, (brdp
->iobase
+ ECP_ATMEMAR
));
2637 /*****************************************************************************/
2639 static void stli_ecpenable(struct stlibrd
*brdp
)
2641 outb(ECP_ATENABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
2644 /*****************************************************************************/
2646 static void stli_ecpdisable(struct stlibrd
*brdp
)
2648 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
2651 /*****************************************************************************/
2653 static void __iomem
*stli_ecpgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
2658 if (offset
> brdp
->memsize
) {
2659 printk(KERN_ERR
"istallion: shared memory pointer=%x out of "
2660 "range at line=%d(%d), brd=%d\n",
2661 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
2665 ptr
= brdp
->membase
+ (offset
% ECP_ATPAGESIZE
);
2666 val
= (unsigned char) (offset
/ ECP_ATPAGESIZE
);
2668 outb(val
, (brdp
->iobase
+ ECP_ATMEMPR
));
2672 /*****************************************************************************/
2674 static void stli_ecpreset(struct stlibrd
*brdp
)
2676 outb(ECP_ATSTOP
, (brdp
->iobase
+ ECP_ATCONFR
));
2678 outb(ECP_ATDISABLE
, (brdp
->iobase
+ ECP_ATCONFR
));
2682 /*****************************************************************************/
2684 static void stli_ecpintr(struct stlibrd
*brdp
)
2686 outb(0x1, brdp
->iobase
);
2689 /*****************************************************************************/
2692 * The following set of functions act on ECP EISA boards.
2695 static void stli_ecpeiinit(struct stlibrd
*brdp
)
2697 unsigned long memconf
;
2699 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
2700 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
2702 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
2705 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKL
) >> ECP_EIADDRSHFTL
;
2706 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARL
));
2707 memconf
= (brdp
->memaddr
& ECP_EIADDRMASKH
) >> ECP_EIADDRSHFTH
;
2708 outb(memconf
, (brdp
->iobase
+ ECP_EIMEMARH
));
2711 /*****************************************************************************/
2713 static void stli_ecpeienable(struct stlibrd
*brdp
)
2715 outb(ECP_EIENABLE
, (brdp
->iobase
+ ECP_EICONFR
));
2718 /*****************************************************************************/
2720 static void stli_ecpeidisable(struct stlibrd
*brdp
)
2722 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
2725 /*****************************************************************************/
2727 static void __iomem
*stli_ecpeigetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
2732 if (offset
> brdp
->memsize
) {
2733 printk(KERN_ERR
"istallion: shared memory pointer=%x out of "
2734 "range at line=%d(%d), brd=%d\n",
2735 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
2739 ptr
= brdp
->membase
+ (offset
% ECP_EIPAGESIZE
);
2740 if (offset
< ECP_EIPAGESIZE
)
2743 val
= ECP_EIENABLE
| 0x40;
2745 outb(val
, (brdp
->iobase
+ ECP_EICONFR
));
2749 /*****************************************************************************/
2751 static void stli_ecpeireset(struct stlibrd
*brdp
)
2753 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
2755 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
2759 /*****************************************************************************/
2762 * The following set of functions act on ECP MCA boards.
2765 static void stli_ecpmcenable(struct stlibrd
*brdp
)
2767 outb(ECP_MCENABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
2770 /*****************************************************************************/
2772 static void stli_ecpmcdisable(struct stlibrd
*brdp
)
2774 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
2777 /*****************************************************************************/
2779 static void __iomem
*stli_ecpmcgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
2784 if (offset
> brdp
->memsize
) {
2785 printk(KERN_ERR
"istallion: shared memory pointer=%x out of "
2786 "range at line=%d(%d), brd=%d\n",
2787 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
2791 ptr
= brdp
->membase
+ (offset
% ECP_MCPAGESIZE
);
2792 val
= ((unsigned char) (offset
/ ECP_MCPAGESIZE
)) | ECP_MCENABLE
;
2794 outb(val
, (brdp
->iobase
+ ECP_MCCONFR
));
2798 /*****************************************************************************/
2800 static void stli_ecpmcreset(struct stlibrd
*brdp
)
2802 outb(ECP_MCSTOP
, (brdp
->iobase
+ ECP_MCCONFR
));
2804 outb(ECP_MCDISABLE
, (brdp
->iobase
+ ECP_MCCONFR
));
2808 /*****************************************************************************/
2811 * The following set of functions act on ECP PCI boards.
2814 static void stli_ecppciinit(struct stlibrd
*brdp
)
2816 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
2818 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
2822 /*****************************************************************************/
2824 static void __iomem
*stli_ecppcigetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
2829 if (offset
> brdp
->memsize
) {
2830 printk(KERN_ERR
"istallion: shared memory pointer=%x out of "
2831 "range at line=%d(%d), board=%d\n",
2832 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
2836 ptr
= brdp
->membase
+ (offset
% ECP_PCIPAGESIZE
);
2837 val
= (offset
/ ECP_PCIPAGESIZE
) << 1;
2839 outb(val
, (brdp
->iobase
+ ECP_PCICONFR
));
2843 /*****************************************************************************/
2845 static void stli_ecppcireset(struct stlibrd
*brdp
)
2847 outb(ECP_PCISTOP
, (brdp
->iobase
+ ECP_PCICONFR
));
2849 outb(0, (brdp
->iobase
+ ECP_PCICONFR
));
2853 /*****************************************************************************/
2856 * The following routines act on ONboards.
2859 static void stli_onbinit(struct stlibrd
*brdp
)
2861 unsigned long memconf
;
2863 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
2865 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
2868 memconf
= (brdp
->memaddr
& ONB_ATADDRMASK
) >> ONB_ATADDRSHFT
;
2869 outb(memconf
, (brdp
->iobase
+ ONB_ATMEMAR
));
2870 outb(0x1, brdp
->iobase
);
2874 /*****************************************************************************/
2876 static void stli_onbenable(struct stlibrd
*brdp
)
2878 outb((brdp
->enabval
| ONB_ATENABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
2881 /*****************************************************************************/
2883 static void stli_onbdisable(struct stlibrd
*brdp
)
2885 outb((brdp
->enabval
| ONB_ATDISABLE
), (brdp
->iobase
+ ONB_ATCONFR
));
2888 /*****************************************************************************/
2890 static void __iomem
*stli_onbgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
2894 if (offset
> brdp
->memsize
) {
2895 printk(KERN_ERR
"istallion: shared memory pointer=%x out of "
2896 "range at line=%d(%d), brd=%d\n",
2897 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
2900 ptr
= brdp
->membase
+ (offset
% ONB_ATPAGESIZE
);
2905 /*****************************************************************************/
2907 static void stli_onbreset(struct stlibrd
*brdp
)
2909 outb(ONB_ATSTOP
, (brdp
->iobase
+ ONB_ATCONFR
));
2911 outb(ONB_ATDISABLE
, (brdp
->iobase
+ ONB_ATCONFR
));
2915 /*****************************************************************************/
2918 * The following routines act on ONboard EISA.
2921 static void stli_onbeinit(struct stlibrd
*brdp
)
2923 unsigned long memconf
;
2925 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
2926 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
2928 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
2931 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKL
) >> ONB_EIADDRSHFTL
;
2932 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARL
));
2933 memconf
= (brdp
->memaddr
& ONB_EIADDRMASKH
) >> ONB_EIADDRSHFTH
;
2934 outb(memconf
, (brdp
->iobase
+ ONB_EIMEMARH
));
2935 outb(0x1, brdp
->iobase
);
2939 /*****************************************************************************/
2941 static void stli_onbeenable(struct stlibrd
*brdp
)
2943 outb(ONB_EIENABLE
, (brdp
->iobase
+ ONB_EICONFR
));
2946 /*****************************************************************************/
2948 static void stli_onbedisable(struct stlibrd
*brdp
)
2950 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
2953 /*****************************************************************************/
2955 static void __iomem
*stli_onbegetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
2960 if (offset
> brdp
->memsize
) {
2961 printk(KERN_ERR
"istallion: shared memory pointer=%x out of "
2962 "range at line=%d(%d), brd=%d\n",
2963 (int) offset
, line
, __LINE__
, brdp
->brdnr
);
2967 ptr
= brdp
->membase
+ (offset
% ONB_EIPAGESIZE
);
2968 if (offset
< ONB_EIPAGESIZE
)
2971 val
= ONB_EIENABLE
| 0x40;
2973 outb(val
, (brdp
->iobase
+ ONB_EICONFR
));
2977 /*****************************************************************************/
2979 static void stli_onbereset(struct stlibrd
*brdp
)
2981 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
2983 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
2987 /*****************************************************************************/
2990 * The following routines act on Brumby boards.
2993 static void stli_bbyinit(struct stlibrd
*brdp
)
2995 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
2997 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
2999 outb(0x1, brdp
->iobase
);
3003 /*****************************************************************************/
3005 static void __iomem
*stli_bbygetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
3010 BUG_ON(offset
> brdp
->memsize
);
3012 ptr
= brdp
->membase
+ (offset
% BBY_PAGESIZE
);
3013 val
= (unsigned char) (offset
/ BBY_PAGESIZE
);
3014 outb(val
, (brdp
->iobase
+ BBY_ATCONFR
));
3018 /*****************************************************************************/
3020 static void stli_bbyreset(struct stlibrd
*brdp
)
3022 outb(BBY_ATSTOP
, (brdp
->iobase
+ BBY_ATCONFR
));
3024 outb(0, (brdp
->iobase
+ BBY_ATCONFR
));
3028 /*****************************************************************************/
3031 * The following routines act on original old Stallion boards.
3034 static void stli_stalinit(struct stlibrd
*brdp
)
3036 outb(0x1, brdp
->iobase
);
3040 /*****************************************************************************/
3042 static void __iomem
*stli_stalgetmemptr(struct stlibrd
*brdp
, unsigned long offset
, int line
)
3044 BUG_ON(offset
> brdp
->memsize
);
3045 return brdp
->membase
+ (offset
% STAL_PAGESIZE
);
3048 /*****************************************************************************/
3050 static void stli_stalreset(struct stlibrd
*brdp
)
3054 vecp
= (u32 __iomem
*) (brdp
->membase
+ 0x30);
3055 writel(0xffff0000, vecp
);
3056 outb(0, brdp
->iobase
);
3060 /*****************************************************************************/
3063 * Try to find an ECP board and initialize it. This handles only ECP
3067 static int stli_initecp(struct stlibrd
*brdp
)
3070 cdkecpsig_t __iomem
*sigsp
;
3071 unsigned int status
, nxtid
;
3073 int retval
, panelnr
, nrports
;
3075 if ((brdp
->iobase
== 0) || (brdp
->memaddr
== 0)) {
3080 brdp
->iosize
= ECP_IOSIZE
;
3082 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion")) {
3088 * Based on the specific board type setup the common vars to access
3089 * and enable shared memory. Set all board specific information now
3092 switch (brdp
->brdtype
) {
3094 brdp
->memsize
= ECP_MEMSIZE
;
3095 brdp
->pagesize
= ECP_ATPAGESIZE
;
3096 brdp
->init
= stli_ecpinit
;
3097 brdp
->enable
= stli_ecpenable
;
3098 brdp
->reenable
= stli_ecpenable
;
3099 brdp
->disable
= stli_ecpdisable
;
3100 brdp
->getmemptr
= stli_ecpgetmemptr
;
3101 brdp
->intr
= stli_ecpintr
;
3102 brdp
->reset
= stli_ecpreset
;
3103 name
= "serial(EC8/64)";
3107 brdp
->memsize
= ECP_MEMSIZE
;
3108 brdp
->pagesize
= ECP_EIPAGESIZE
;
3109 brdp
->init
= stli_ecpeiinit
;
3110 brdp
->enable
= stli_ecpeienable
;
3111 brdp
->reenable
= stli_ecpeienable
;
3112 brdp
->disable
= stli_ecpeidisable
;
3113 brdp
->getmemptr
= stli_ecpeigetmemptr
;
3114 brdp
->intr
= stli_ecpintr
;
3115 brdp
->reset
= stli_ecpeireset
;
3116 name
= "serial(EC8/64-EI)";
3120 brdp
->memsize
= ECP_MEMSIZE
;
3121 brdp
->pagesize
= ECP_MCPAGESIZE
;
3123 brdp
->enable
= stli_ecpmcenable
;
3124 brdp
->reenable
= stli_ecpmcenable
;
3125 brdp
->disable
= stli_ecpmcdisable
;
3126 brdp
->getmemptr
= stli_ecpmcgetmemptr
;
3127 brdp
->intr
= stli_ecpintr
;
3128 brdp
->reset
= stli_ecpmcreset
;
3129 name
= "serial(EC8/64-MCA)";
3133 brdp
->memsize
= ECP_PCIMEMSIZE
;
3134 brdp
->pagesize
= ECP_PCIPAGESIZE
;
3135 brdp
->init
= stli_ecppciinit
;
3136 brdp
->enable
= NULL
;
3137 brdp
->reenable
= NULL
;
3138 brdp
->disable
= NULL
;
3139 brdp
->getmemptr
= stli_ecppcigetmemptr
;
3140 brdp
->intr
= stli_ecpintr
;
3141 brdp
->reset
= stli_ecppcireset
;
3142 name
= "serial(EC/RA-PCI)";
3151 * The per-board operations structure is all set up, so now let's go
3152 * and get the board operational. Firstly initialize board configuration
3153 * registers. Set the memory mapping info so we can get at the boards
3158 brdp
->membase
= ioremap_nocache(brdp
->memaddr
, brdp
->memsize
);
3159 if (brdp
->membase
== NULL
) {
3165 * Now that all specific code is set up, enable the shared memory and
3166 * look for the a signature area that will tell us exactly what board
3167 * this is, and what it is connected to it.
3170 sigsp
= (cdkecpsig_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
3171 memcpy_fromio(&sig
, sigsp
, sizeof(cdkecpsig_t
));
3174 if (sig
.magic
!= cpu_to_le32(ECP_MAGIC
)) {
3180 * Scan through the signature looking at the panels connected to the
3181 * board. Calculate the total number of ports as we go.
3183 for (panelnr
= 0, nxtid
= 0; (panelnr
< STL_MAXPANELS
); panelnr
++) {
3184 status
= sig
.panelid
[nxtid
];
3185 if ((status
& ECH_PNLIDMASK
) != nxtid
)
3188 brdp
->panelids
[panelnr
] = status
;
3189 nrports
= (status
& ECH_PNL16PORT
) ? 16 : 8;
3190 if ((nrports
== 16) && ((status
& ECH_PNLXPID
) == 0))
3192 brdp
->panels
[panelnr
] = nrports
;
3193 brdp
->nrports
+= nrports
;
3199 brdp
->state
|= BST_FOUND
;
3202 iounmap(brdp
->membase
);
3203 brdp
->membase
= NULL
;
3205 release_region(brdp
->iobase
, brdp
->iosize
);
3210 /*****************************************************************************/
3213 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3214 * This handles only these board types.
3217 static int stli_initonb(struct stlibrd
*brdp
)
3220 cdkonbsig_t __iomem
*sigsp
;
3225 * Do a basic sanity check on the IO and memory addresses.
3227 if (brdp
->iobase
== 0 || brdp
->memaddr
== 0) {
3232 brdp
->iosize
= ONB_IOSIZE
;
3234 if (!request_region(brdp
->iobase
, brdp
->iosize
, "istallion")) {
3240 * Based on the specific board type setup the common vars to access
3241 * and enable shared memory. Set all board specific information now
3244 switch (brdp
->brdtype
) {
3247 brdp
->memsize
= ONB_MEMSIZE
;
3248 brdp
->pagesize
= ONB_ATPAGESIZE
;
3249 brdp
->init
= stli_onbinit
;
3250 brdp
->enable
= stli_onbenable
;
3251 brdp
->reenable
= stli_onbenable
;
3252 brdp
->disable
= stli_onbdisable
;
3253 brdp
->getmemptr
= stli_onbgetmemptr
;
3254 brdp
->intr
= stli_ecpintr
;
3255 brdp
->reset
= stli_onbreset
;
3256 if (brdp
->memaddr
> 0x100000)
3257 brdp
->enabval
= ONB_MEMENABHI
;
3259 brdp
->enabval
= ONB_MEMENABLO
;
3260 name
= "serial(ONBoard)";
3264 brdp
->memsize
= ONB_EIMEMSIZE
;
3265 brdp
->pagesize
= ONB_EIPAGESIZE
;
3266 brdp
->init
= stli_onbeinit
;
3267 brdp
->enable
= stli_onbeenable
;
3268 brdp
->reenable
= stli_onbeenable
;
3269 brdp
->disable
= stli_onbedisable
;
3270 brdp
->getmemptr
= stli_onbegetmemptr
;
3271 brdp
->intr
= stli_ecpintr
;
3272 brdp
->reset
= stli_onbereset
;
3273 name
= "serial(ONBoard/E)";
3277 brdp
->memsize
= BBY_MEMSIZE
;
3278 brdp
->pagesize
= BBY_PAGESIZE
;
3279 brdp
->init
= stli_bbyinit
;
3280 brdp
->enable
= NULL
;
3281 brdp
->reenable
= NULL
;
3282 brdp
->disable
= NULL
;
3283 brdp
->getmemptr
= stli_bbygetmemptr
;
3284 brdp
->intr
= stli_ecpintr
;
3285 brdp
->reset
= stli_bbyreset
;
3286 name
= "serial(Brumby)";
3290 brdp
->memsize
= STAL_MEMSIZE
;
3291 brdp
->pagesize
= STAL_PAGESIZE
;
3292 brdp
->init
= stli_stalinit
;
3293 brdp
->enable
= NULL
;
3294 brdp
->reenable
= NULL
;
3295 brdp
->disable
= NULL
;
3296 brdp
->getmemptr
= stli_stalgetmemptr
;
3297 brdp
->intr
= stli_ecpintr
;
3298 brdp
->reset
= stli_stalreset
;
3299 name
= "serial(Stallion)";
3308 * The per-board operations structure is all set up, so now let's go
3309 * and get the board operational. Firstly initialize board configuration
3310 * registers. Set the memory mapping info so we can get at the boards
3315 brdp
->membase
= ioremap_nocache(brdp
->memaddr
, brdp
->memsize
);
3316 if (brdp
->membase
== NULL
) {
3322 * Now that all specific code is set up, enable the shared memory and
3323 * look for the a signature area that will tell us exactly what board
3324 * this is, and how many ports.
3327 sigsp
= (cdkonbsig_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_SIGADDR
);
3328 memcpy_fromio(&sig
, sigsp
, sizeof(cdkonbsig_t
));
3331 if (sig
.magic0
!= cpu_to_le16(ONB_MAGIC0
) ||
3332 sig
.magic1
!= cpu_to_le16(ONB_MAGIC1
) ||
3333 sig
.magic2
!= cpu_to_le16(ONB_MAGIC2
) ||
3334 sig
.magic3
!= cpu_to_le16(ONB_MAGIC3
)) {
3340 * Scan through the signature alive mask and calculate how many ports
3341 * there are on this board.
3347 for (i
= 0; (i
< 16); i
++) {
3348 if (((sig
.amask0
<< i
) & 0x8000) == 0)
3353 brdp
->panels
[0] = brdp
->nrports
;
3356 brdp
->state
|= BST_FOUND
;
3359 iounmap(brdp
->membase
);
3360 brdp
->membase
= NULL
;
3362 release_region(brdp
->iobase
, brdp
->iosize
);
3367 /*****************************************************************************/
3370 * Start up a running board. This routine is only called after the
3371 * code has been down loaded to the board and is operational. It will
3372 * read in the memory map, and get the show on the road...
3375 static int stli_startbrd(struct stlibrd
*brdp
)
3377 cdkhdr_t __iomem
*hdrp
;
3378 cdkmem_t __iomem
*memp
;
3379 cdkasy_t __iomem
*ap
;
3380 unsigned long flags
;
3381 unsigned int portnr
, nrdevs
, i
;
3382 struct stliport
*portp
;
3386 spin_lock_irqsave(&brd_lock
, flags
);
3388 hdrp
= (cdkhdr_t __iomem
*) EBRDGETMEMPTR(brdp
, CDK_CDKADDR
);
3389 nrdevs
= hdrp
->nrdevs
;
3392 printk("%s(%d): CDK version %d.%d.%d --> "
3393 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3394 __FILE__
, __LINE__
, readb(&hdrp
->ver_release
), readb(&hdrp
->ver_modification
),
3395 readb(&hdrp
->ver_fix
), nrdevs
, (int) readl(&hdrp
->memp
), readl(&hdrp
->hostp
),
3396 readl(&hdrp
->slavep
));
3399 if (nrdevs
< (brdp
->nrports
+ 1)) {
3400 printk(KERN_ERR
"istallion: slave failed to allocate memory for "
3401 "all devices, devices=%d\n", nrdevs
);
3402 brdp
->nrports
= nrdevs
- 1;
3404 brdp
->nrdevs
= nrdevs
;
3405 brdp
->hostoffset
= hdrp
->hostp
- CDK_CDKADDR
;
3406 brdp
->slaveoffset
= hdrp
->slavep
- CDK_CDKADDR
;
3407 brdp
->bitsize
= (nrdevs
+ 7) / 8;
3408 memoff
= readl(&hdrp
->memp
);
3409 if (memoff
> brdp
->memsize
) {
3410 printk(KERN_ERR
"istallion: corrupted shared memory region?\n");
3412 goto stli_donestartup
;
3414 memp
= (cdkmem_t __iomem
*) EBRDGETMEMPTR(brdp
, memoff
);
3415 if (readw(&memp
->dtype
) != TYP_ASYNCTRL
) {
3416 printk(KERN_ERR
"istallion: no slave control device found\n");
3417 goto stli_donestartup
;
3422 * Cycle through memory allocation of each port. We are guaranteed to
3423 * have all ports inside the first page of slave window, so no need to
3424 * change pages while reading memory map.
3426 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++, memp
++) {
3427 if (readw(&memp
->dtype
) != TYP_ASYNC
)
3429 portp
= brdp
->ports
[portnr
];
3433 portp
->addr
= readl(&memp
->offset
);
3434 portp
->reqbit
= (unsigned char) (0x1 << (i
* 8 / nrdevs
));
3435 portp
->portidx
= (unsigned char) (i
/ 8);
3436 portp
->portbit
= (unsigned char) (0x1 << (i
% 8));
3439 writeb(0xff, &hdrp
->slavereq
);
3442 * For each port setup a local copy of the RX and TX buffer offsets
3443 * and sizes. We do this separate from the above, because we need to
3444 * move the shared memory page...
3446 for (i
= 1, portnr
= 0; (i
< nrdevs
); i
++, portnr
++) {
3447 portp
= brdp
->ports
[portnr
];
3450 if (portp
->addr
== 0)
3452 ap
= (cdkasy_t __iomem
*) EBRDGETMEMPTR(brdp
, portp
->addr
);
3454 portp
->rxsize
= readw(&ap
->rxq
.size
);
3455 portp
->txsize
= readw(&ap
->txq
.size
);
3456 portp
->rxoffset
= readl(&ap
->rxq
.offset
);
3457 portp
->txoffset
= readl(&ap
->txq
.offset
);
3463 spin_unlock_irqrestore(&brd_lock
, flags
);
3466 brdp
->state
|= BST_STARTED
;
3468 if (! stli_timeron
) {
3470 mod_timer(&stli_timerlist
, STLI_TIMEOUT
);
3476 /*****************************************************************************/
3479 * Probe and initialize the specified board.
3482 static int __devinit
stli_brdinit(struct stlibrd
*brdp
)
3486 switch (brdp
->brdtype
) {
3491 retval
= stli_initecp(brdp
);
3498 retval
= stli_initonb(brdp
);
3501 printk(KERN_ERR
"istallion: board=%d is unknown board "
3502 "type=%d\n", brdp
->brdnr
, brdp
->brdtype
);
3509 stli_initports(brdp
);
3510 printk(KERN_INFO
"istallion: %s found, board=%d io=%x mem=%x "
3511 "nrpanels=%d nrports=%d\n", stli_brdnames
[brdp
->brdtype
],
3512 brdp
->brdnr
, brdp
->iobase
, (int) brdp
->memaddr
,
3513 brdp
->nrpanels
, brdp
->nrports
);
3517 #if STLI_EISAPROBE != 0
3518 /*****************************************************************************/
3521 * Probe around trying to find where the EISA boards shared memory
3522 * might be. This is a bit if hack, but it is the best we can do.
3525 static int stli_eisamemprobe(struct stlibrd
*brdp
)
3527 cdkecpsig_t ecpsig
, __iomem
*ecpsigp
;
3528 cdkonbsig_t onbsig
, __iomem
*onbsigp
;
3532 * First up we reset the board, to get it into a known state. There
3533 * is only 2 board types here we need to worry about. Don;t use the
3534 * standard board init routine here, it programs up the shared
3535 * memory address, and we don't know it yet...
3537 if (brdp
->brdtype
== BRD_ECPE
) {
3538 outb(0x1, (brdp
->iobase
+ ECP_EIBRDENAB
));
3539 outb(ECP_EISTOP
, (brdp
->iobase
+ ECP_EICONFR
));
3541 outb(ECP_EIDISABLE
, (brdp
->iobase
+ ECP_EICONFR
));
3543 stli_ecpeienable(brdp
);
3544 } else if (brdp
->brdtype
== BRD_ONBOARDE
) {
3545 outb(0x1, (brdp
->iobase
+ ONB_EIBRDENAB
));
3546 outb(ONB_EISTOP
, (brdp
->iobase
+ ONB_EICONFR
));
3548 outb(ONB_EIDISABLE
, (brdp
->iobase
+ ONB_EICONFR
));
3550 outb(0x1, brdp
->iobase
);
3552 stli_onbeenable(brdp
);
3558 brdp
->memsize
= ECP_MEMSIZE
;
3561 * Board shared memory is enabled, so now we have a poke around and
3562 * see if we can find it.
3564 for (i
= 0; (i
< stli_eisamempsize
); i
++) {
3565 brdp
->memaddr
= stli_eisamemprobeaddrs
[i
];
3566 brdp
->membase
= ioremap_nocache(brdp
->memaddr
, brdp
->memsize
);
3567 if (brdp
->membase
== NULL
)
3570 if (brdp
->brdtype
== BRD_ECPE
) {
3571 ecpsigp
= stli_ecpeigetmemptr(brdp
,
3572 CDK_SIGADDR
, __LINE__
);
3573 memcpy_fromio(&ecpsig
, ecpsigp
, sizeof(cdkecpsig_t
));
3574 if (ecpsig
.magic
== cpu_to_le32(ECP_MAGIC
))
3577 onbsigp
= (cdkonbsig_t __iomem
*) stli_onbegetmemptr(brdp
,
3578 CDK_SIGADDR
, __LINE__
);
3579 memcpy_fromio(&onbsig
, onbsigp
, sizeof(cdkonbsig_t
));
3580 if ((onbsig
.magic0
== cpu_to_le16(ONB_MAGIC0
)) &&
3581 (onbsig
.magic1
== cpu_to_le16(ONB_MAGIC1
)) &&
3582 (onbsig
.magic2
== cpu_to_le16(ONB_MAGIC2
)) &&
3583 (onbsig
.magic3
== cpu_to_le16(ONB_MAGIC3
)))
3587 iounmap(brdp
->membase
);
3593 * Regardless of whether we found the shared memory or not we must
3594 * disable the region. After that return success or failure.
3596 if (brdp
->brdtype
== BRD_ECPE
)
3597 stli_ecpeidisable(brdp
);
3599 stli_onbedisable(brdp
);
3603 brdp
->membase
= NULL
;
3604 printk(KERN_ERR
"istallion: failed to probe shared memory "
3605 "region for %s in EISA slot=%d\n",
3606 stli_brdnames
[brdp
->brdtype
], (brdp
->iobase
>> 12));
3613 static int stli_getbrdnr(void)
3617 for (i
= 0; i
< STL_MAXBRDS
; i
++) {
3618 if (!stli_brds
[i
]) {
3619 if (i
>= stli_nrbrds
)
3620 stli_nrbrds
= i
+ 1;
3627 #if STLI_EISAPROBE != 0
3628 /*****************************************************************************/
3631 * Probe around and try to find any EISA boards in system. The biggest
3632 * problem here is finding out what memory address is associated with
3633 * an EISA board after it is found. The registers of the ECPE and
3634 * ONboardE are not readable - so we can't read them from there. We
3635 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3636 * actually have any way to find out the real value. The best we can
3637 * do is go probing around in the usual places hoping we can find it.
3640 static int __init
stli_findeisabrds(void)
3642 struct stlibrd
*brdp
;
3643 unsigned int iobase
, eid
, i
;
3644 int brdnr
, found
= 0;
3647 * Firstly check if this is an EISA system. If this is not an EISA system then
3648 * don't bother going any further!
3654 * Looks like an EISA system, so go searching for EISA boards.
3656 for (iobase
= 0x1000; (iobase
<= 0xc000); iobase
+= 0x1000) {
3657 outb(0xff, (iobase
+ 0xc80));
3658 eid
= inb(iobase
+ 0xc80);
3659 eid
|= inb(iobase
+ 0xc81) << 8;
3660 if (eid
!= STL_EISAID
)
3664 * We have found a board. Need to check if this board was
3665 * statically configured already (just in case!).
3667 for (i
= 0; (i
< STL_MAXBRDS
); i
++) {
3668 brdp
= stli_brds
[i
];
3671 if (brdp
->iobase
== iobase
)
3674 if (i
< STL_MAXBRDS
)
3678 * We have found a Stallion board and it is not configured already.
3679 * Allocate a board structure and initialize it.
3681 if ((brdp
= stli_allocbrd()) == NULL
)
3682 return found
? : -ENOMEM
;
3683 brdnr
= stli_getbrdnr();
3685 return found
? : -ENOMEM
;
3686 brdp
->brdnr
= (unsigned int)brdnr
;
3687 eid
= inb(iobase
+ 0xc82);
3688 if (eid
== ECP_EISAID
)
3689 brdp
->brdtype
= BRD_ECPE
;
3690 else if (eid
== ONB_EISAID
)
3691 brdp
->brdtype
= BRD_ONBOARDE
;
3693 brdp
->brdtype
= BRD_UNKNOWN
;
3694 brdp
->iobase
= iobase
;
3695 outb(0x1, (iobase
+ 0xc84));
3696 if (stli_eisamemprobe(brdp
))
3697 outb(0, (iobase
+ 0xc84));
3698 if (stli_brdinit(brdp
) < 0) {
3703 stli_brds
[brdp
->brdnr
] = brdp
;
3706 for (i
= 0; i
< brdp
->nrports
; i
++)
3707 tty_register_device(stli_serial
,
3708 brdp
->brdnr
* STL_MAXPORTS
+ i
, NULL
);
3714 static inline int stli_findeisabrds(void) { return 0; }
3717 /*****************************************************************************/
3720 * Find the next available board number that is free.
3723 /*****************************************************************************/
3726 * We have a Stallion board. Allocate a board structure and
3727 * initialize it. Read its IO and MEMORY resources from PCI
3728 * configuration space.
3731 static int __devinit
stli_pciprobe(struct pci_dev
*pdev
,
3732 const struct pci_device_id
*ent
)
3734 struct stlibrd
*brdp
;
3736 int brdnr
, retval
= -EIO
;
3738 retval
= pci_enable_device(pdev
);
3741 brdp
= stli_allocbrd();
3746 mutex_lock(&stli_brdslock
);
3747 brdnr
= stli_getbrdnr();
3749 printk(KERN_INFO
"istallion: too many boards found, "
3750 "maximum supported %d\n", STL_MAXBRDS
);
3751 mutex_unlock(&stli_brdslock
);
3755 brdp
->brdnr
= (unsigned int)brdnr
;
3756 stli_brds
[brdp
->brdnr
] = brdp
;
3757 mutex_unlock(&stli_brdslock
);
3758 brdp
->brdtype
= BRD_ECPPCI
;
3760 * We have all resources from the board, so lets setup the actual
3761 * board structure now.
3763 brdp
->iobase
= pci_resource_start(pdev
, 3);
3764 brdp
->memaddr
= pci_resource_start(pdev
, 2);
3765 retval
= stli_brdinit(brdp
);
3769 brdp
->state
|= BST_PROBED
;
3770 pci_set_drvdata(pdev
, brdp
);
3773 brdp
->enable
= NULL
;
3774 brdp
->disable
= NULL
;
3776 for (i
= 0; i
< brdp
->nrports
; i
++)
3777 tty_register_device(stli_serial
, brdp
->brdnr
* STL_MAXPORTS
+ i
,
3782 stli_brds
[brdp
->brdnr
] = NULL
;
3789 static void __devexit
stli_pciremove(struct pci_dev
*pdev
)
3791 struct stlibrd
*brdp
= pci_get_drvdata(pdev
);
3793 stli_cleanup_ports(brdp
);
3795 iounmap(brdp
->membase
);
3796 if (brdp
->iosize
> 0)
3797 release_region(brdp
->iobase
, brdp
->iosize
);
3799 stli_brds
[brdp
->brdnr
] = NULL
;
3803 static struct pci_driver stli_pcidriver
= {
3804 .name
= "istallion",
3805 .id_table
= istallion_pci_tbl
,
3806 .probe
= stli_pciprobe
,
3807 .remove
= __devexit_p(stli_pciremove
)
3809 /*****************************************************************************/
3812 * Allocate a new board structure. Fill out the basic info in it.
3815 static struct stlibrd
*stli_allocbrd(void)
3817 struct stlibrd
*brdp
;
3819 brdp
= kzalloc(sizeof(struct stlibrd
), GFP_KERNEL
);
3821 printk(KERN_ERR
"istallion: failed to allocate memory "
3822 "(size=%Zd)\n", sizeof(struct stlibrd
));
3825 brdp
->magic
= STLI_BOARDMAGIC
;
3829 /*****************************************************************************/
3832 * Scan through all the boards in the configuration and see what we
3836 static int __init
stli_initbrds(void)
3838 struct stlibrd
*brdp
, *nxtbrdp
;
3839 struct stlconf conf
;
3840 unsigned int i
, j
, found
= 0;
3843 for (stli_nrbrds
= 0; stli_nrbrds
< ARRAY_SIZE(stli_brdsp
);
3845 memset(&conf
, 0, sizeof(conf
));
3846 if (stli_parsebrd(&conf
, stli_brdsp
[stli_nrbrds
]) == 0)
3848 if ((brdp
= stli_allocbrd()) == NULL
)
3850 brdp
->brdnr
= stli_nrbrds
;
3851 brdp
->brdtype
= conf
.brdtype
;
3852 brdp
->iobase
= conf
.ioaddr1
;
3853 brdp
->memaddr
= conf
.memaddr
;
3854 if (stli_brdinit(brdp
) < 0) {
3858 stli_brds
[brdp
->brdnr
] = brdp
;
3861 for (i
= 0; i
< brdp
->nrports
; i
++)
3862 tty_register_device(stli_serial
,
3863 brdp
->brdnr
* STL_MAXPORTS
+ i
, NULL
);
3866 retval
= stli_findeisabrds();
3871 * All found boards are initialized. Now for a little optimization, if
3872 * no boards are sharing the "shared memory" regions then we can just
3873 * leave them all enabled. This is in fact the usual case.
3876 if (stli_nrbrds
> 1) {
3877 for (i
= 0; (i
< stli_nrbrds
); i
++) {
3878 brdp
= stli_brds
[i
];
3881 for (j
= i
+ 1; (j
< stli_nrbrds
); j
++) {
3882 nxtbrdp
= stli_brds
[j
];
3883 if (nxtbrdp
== NULL
)
3885 if ((brdp
->membase
>= nxtbrdp
->membase
) &&
3886 (brdp
->membase
<= (nxtbrdp
->membase
+
3887 nxtbrdp
->memsize
- 1))) {
3895 if (stli_shared
== 0) {
3896 for (i
= 0; (i
< stli_nrbrds
); i
++) {
3897 brdp
= stli_brds
[i
];
3900 if (brdp
->state
& BST_FOUND
) {
3902 brdp
->enable
= NULL
;
3903 brdp
->disable
= NULL
;
3908 retval
= pci_register_driver(&stli_pcidriver
);
3909 if (retval
&& found
== 0) {
3910 printk(KERN_ERR
"Neither isa nor eisa cards found nor pci "
3911 "driver can be registered!\n");
3920 /*****************************************************************************/
3923 * Code to handle an "staliomem" read operation. This device is the
3924 * contents of the board shared memory. It is used for down loading
3925 * the slave image (and debugging :-)
3928 static ssize_t
stli_memread(struct file
*fp
, char __user
*buf
, size_t count
, loff_t
*offp
)
3930 unsigned long flags
;
3931 void __iomem
*memptr
;
3932 struct stlibrd
*brdp
;
3938 brdnr
= iminor(fp
->f_path
.dentry
->d_inode
);
3939 if (brdnr
>= stli_nrbrds
)
3941 brdp
= stli_brds
[brdnr
];
3944 if (brdp
->state
== 0)
3946 if (off
>= brdp
->memsize
|| off
+ count
< off
)
3949 size
= min(count
, (size_t)(brdp
->memsize
- off
));
3952 * Copy the data a page at a time
3955 p
= (void *)__get_free_page(GFP_KERNEL
);
3960 spin_lock_irqsave(&brd_lock
, flags
);
3962 memptr
= EBRDGETMEMPTR(brdp
, off
);
3963 n
= min(size
, (int)(brdp
->pagesize
- (((unsigned long) off
) % brdp
->pagesize
)));
3964 n
= min(n
, (int)PAGE_SIZE
);
3965 memcpy_fromio(p
, memptr
, n
);
3967 spin_unlock_irqrestore(&brd_lock
, flags
);
3968 if (copy_to_user(buf
, p
, n
)) {
3978 free_page((unsigned long)p
);
3982 /*****************************************************************************/
3985 * Code to handle an "staliomem" write operation. This device is the
3986 * contents of the board shared memory. It is used for down loading
3987 * the slave image (and debugging :-)
3989 * FIXME: copy under lock
3992 static ssize_t
stli_memwrite(struct file
*fp
, const char __user
*buf
, size_t count
, loff_t
*offp
)
3994 unsigned long flags
;
3995 void __iomem
*memptr
;
3996 struct stlibrd
*brdp
;
4003 brdnr
= iminor(fp
->f_path
.dentry
->d_inode
);
4005 if (brdnr
>= stli_nrbrds
)
4007 brdp
= stli_brds
[brdnr
];
4010 if (brdp
->state
== 0)
4012 if (off
>= brdp
->memsize
|| off
+ count
< off
)
4015 chbuf
= (char __user
*) buf
;
4016 size
= min(count
, (size_t)(brdp
->memsize
- off
));
4019 * Copy the data a page at a time
4022 p
= (void *)__get_free_page(GFP_KERNEL
);
4027 n
= min(size
, (int)(brdp
->pagesize
- (((unsigned long) off
) % brdp
->pagesize
)));
4028 n
= min(n
, (int)PAGE_SIZE
);
4029 if (copy_from_user(p
, chbuf
, n
)) {
4034 spin_lock_irqsave(&brd_lock
, flags
);
4036 memptr
= EBRDGETMEMPTR(brdp
, off
);
4037 memcpy_toio(memptr
, p
, n
);
4039 spin_unlock_irqrestore(&brd_lock
, flags
);
4045 free_page((unsigned long) p
);
4050 /*****************************************************************************/
4053 * Return the board stats structure to user app.
4056 static int stli_getbrdstats(combrd_t __user
*bp
)
4058 struct stlibrd
*brdp
;
4061 if (copy_from_user(&stli_brdstats
, bp
, sizeof(combrd_t
)))
4063 if (stli_brdstats
.brd
>= STL_MAXBRDS
)
4065 brdp
= stli_brds
[stli_brdstats
.brd
];
4069 memset(&stli_brdstats
, 0, sizeof(combrd_t
));
4070 stli_brdstats
.brd
= brdp
->brdnr
;
4071 stli_brdstats
.type
= brdp
->brdtype
;
4072 stli_brdstats
.hwid
= 0;
4073 stli_brdstats
.state
= brdp
->state
;
4074 stli_brdstats
.ioaddr
= brdp
->iobase
;
4075 stli_brdstats
.memaddr
= brdp
->memaddr
;
4076 stli_brdstats
.nrpanels
= brdp
->nrpanels
;
4077 stli_brdstats
.nrports
= brdp
->nrports
;
4078 for (i
= 0; (i
< brdp
->nrpanels
); i
++) {
4079 stli_brdstats
.panels
[i
].panel
= i
;
4080 stli_brdstats
.panels
[i
].hwid
= brdp
->panelids
[i
];
4081 stli_brdstats
.panels
[i
].nrports
= brdp
->panels
[i
];
4084 if (copy_to_user(bp
, &stli_brdstats
, sizeof(combrd_t
)))
4089 /*****************************************************************************/
4092 * Resolve the referenced port number into a port struct pointer.
4095 static struct stliport
*stli_getport(unsigned int brdnr
, unsigned int panelnr
,
4096 unsigned int portnr
)
4098 struct stlibrd
*brdp
;
4101 if (brdnr
>= STL_MAXBRDS
)
4103 brdp
= stli_brds
[brdnr
];
4106 for (i
= 0; (i
< panelnr
); i
++)
4107 portnr
+= brdp
->panels
[i
];
4108 if (portnr
>= brdp
->nrports
)
4110 return brdp
->ports
[portnr
];
4113 /*****************************************************************************/
4116 * Return the port stats structure to user app. A NULL port struct
4117 * pointer passed in means that we need to find out from the app
4118 * what port to get stats for (used through board control device).
4121 static int stli_portcmdstats(struct tty_struct
*tty
, struct stliport
*portp
)
4123 unsigned long flags
;
4124 struct stlibrd
*brdp
;
4127 memset(&stli_comstats
, 0, sizeof(comstats_t
));
4131 brdp
= stli_brds
[portp
->brdnr
];
4135 if (brdp
->state
& BST_STARTED
) {
4136 if ((rc
= stli_cmdwait(brdp
, portp
, A_GETSTATS
,
4137 &stli_cdkstats
, sizeof(asystats_t
), 1)) < 0)
4140 memset(&stli_cdkstats
, 0, sizeof(asystats_t
));
4143 stli_comstats
.brd
= portp
->brdnr
;
4144 stli_comstats
.panel
= portp
->panelnr
;
4145 stli_comstats
.port
= portp
->portnr
;
4146 stli_comstats
.state
= portp
->state
;
4147 stli_comstats
.flags
= portp
->port
.flags
;
4149 spin_lock_irqsave(&brd_lock
, flags
);
4151 if (portp
->port
.tty
== tty
) {
4152 stli_comstats
.ttystate
= tty
->flags
;
4153 stli_comstats
.rxbuffered
= -1;
4154 if (tty
->termios
!= NULL
) {
4155 stli_comstats
.cflags
= tty
->termios
->c_cflag
;
4156 stli_comstats
.iflags
= tty
->termios
->c_iflag
;
4157 stli_comstats
.oflags
= tty
->termios
->c_oflag
;
4158 stli_comstats
.lflags
= tty
->termios
->c_lflag
;
4162 spin_unlock_irqrestore(&brd_lock
, flags
);
4164 stli_comstats
.txtotal
= stli_cdkstats
.txchars
;
4165 stli_comstats
.rxtotal
= stli_cdkstats
.rxchars
+ stli_cdkstats
.ringover
;
4166 stli_comstats
.txbuffered
= stli_cdkstats
.txringq
;
4167 stli_comstats
.rxbuffered
+= stli_cdkstats
.rxringq
;
4168 stli_comstats
.rxoverrun
= stli_cdkstats
.overruns
;
4169 stli_comstats
.rxparity
= stli_cdkstats
.parity
;
4170 stli_comstats
.rxframing
= stli_cdkstats
.framing
;
4171 stli_comstats
.rxlost
= stli_cdkstats
.ringover
;
4172 stli_comstats
.rxbreaks
= stli_cdkstats
.rxbreaks
;
4173 stli_comstats
.txbreaks
= stli_cdkstats
.txbreaks
;
4174 stli_comstats
.txxon
= stli_cdkstats
.txstart
;
4175 stli_comstats
.txxoff
= stli_cdkstats
.txstop
;
4176 stli_comstats
.rxxon
= stli_cdkstats
.rxstart
;
4177 stli_comstats
.rxxoff
= stli_cdkstats
.rxstop
;
4178 stli_comstats
.rxrtsoff
= stli_cdkstats
.rtscnt
/ 2;
4179 stli_comstats
.rxrtson
= stli_cdkstats
.rtscnt
- stli_comstats
.rxrtsoff
;
4180 stli_comstats
.modem
= stli_cdkstats
.dcdcnt
;
4181 stli_comstats
.hwid
= stli_cdkstats
.hwid
;
4182 stli_comstats
.signals
= stli_mktiocm(stli_cdkstats
.signals
);
4187 /*****************************************************************************/
4190 * Return the port stats structure to user app. A NULL port struct
4191 * pointer passed in means that we need to find out from the app
4192 * what port to get stats for (used through board control device).
4195 static int stli_getportstats(struct tty_struct
*tty
, struct stliport
*portp
,
4196 comstats_t __user
*cp
)
4198 struct stlibrd
*brdp
;
4202 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
4204 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
4205 stli_comstats
.port
);
4210 brdp
= stli_brds
[portp
->brdnr
];
4214 if ((rc
= stli_portcmdstats(tty
, portp
)) < 0)
4217 return copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)) ?
4221 /*****************************************************************************/
4224 * Clear the port stats structure. We also return it zeroed out...
4227 static int stli_clrportstats(struct stliport
*portp
, comstats_t __user
*cp
)
4229 struct stlibrd
*brdp
;
4233 if (copy_from_user(&stli_comstats
, cp
, sizeof(comstats_t
)))
4235 portp
= stli_getport(stli_comstats
.brd
, stli_comstats
.panel
,
4236 stli_comstats
.port
);
4241 brdp
= stli_brds
[portp
->brdnr
];
4245 if (brdp
->state
& BST_STARTED
) {
4246 if ((rc
= stli_cmdwait(brdp
, portp
, A_CLEARSTATS
, NULL
, 0, 0)) < 0)
4250 memset(&stli_comstats
, 0, sizeof(comstats_t
));
4251 stli_comstats
.brd
= portp
->brdnr
;
4252 stli_comstats
.panel
= portp
->panelnr
;
4253 stli_comstats
.port
= portp
->portnr
;
4255 if (copy_to_user(cp
, &stli_comstats
, sizeof(comstats_t
)))
4260 /*****************************************************************************/
4263 * Return the entire driver ports structure to a user app.
4266 static int stli_getportstruct(struct stliport __user
*arg
)
4268 struct stliport stli_dummyport
;
4269 struct stliport
*portp
;
4271 if (copy_from_user(&stli_dummyport
, arg
, sizeof(struct stliport
)))
4273 portp
= stli_getport(stli_dummyport
.brdnr
, stli_dummyport
.panelnr
,
4274 stli_dummyport
.portnr
);
4277 if (copy_to_user(arg
, portp
, sizeof(struct stliport
)))
4282 /*****************************************************************************/
4285 * Return the entire driver board structure to a user app.
4288 static int stli_getbrdstruct(struct stlibrd __user
*arg
)
4290 struct stlibrd stli_dummybrd
;
4291 struct stlibrd
*brdp
;
4293 if (copy_from_user(&stli_dummybrd
, arg
, sizeof(struct stlibrd
)))
4295 if (stli_dummybrd
.brdnr
>= STL_MAXBRDS
)
4297 brdp
= stli_brds
[stli_dummybrd
.brdnr
];
4300 if (copy_to_user(arg
, brdp
, sizeof(struct stlibrd
)))
4305 /*****************************************************************************/
4308 * The "staliomem" device is also required to do some special operations on
4309 * the board. We need to be able to send an interrupt to the board,
4310 * reset it, and start/stop it.
4313 static int stli_memioctl(struct inode
*ip
, struct file
*fp
, unsigned int cmd
, unsigned long arg
)
4315 struct stlibrd
*brdp
;
4316 int brdnr
, rc
, done
;
4317 void __user
*argp
= (void __user
*)arg
;
4320 * First up handle the board independent ioctls.
4328 case COM_GETPORTSTATS
:
4329 rc
= stli_getportstats(NULL
, NULL
, argp
);
4332 case COM_CLRPORTSTATS
:
4333 rc
= stli_clrportstats(NULL
, argp
);
4336 case COM_GETBRDSTATS
:
4337 rc
= stli_getbrdstats(argp
);
4341 rc
= stli_getportstruct(argp
);
4345 rc
= stli_getbrdstruct(argp
);
4355 * Now handle the board specific ioctls. These all depend on the
4356 * minor number of the device they were called from.
4359 if (brdnr
>= STL_MAXBRDS
)
4361 brdp
= stli_brds
[brdnr
];
4364 if (brdp
->state
== 0)
4374 rc
= stli_startbrd(brdp
);
4377 brdp
->state
&= ~BST_STARTED
;
4380 brdp
->state
&= ~BST_STARTED
;
4382 if (stli_shared
== 0) {
4383 if (brdp
->reenable
!= NULL
)
4384 (* brdp
->reenable
)(brdp
);
4395 static const struct tty_operations stli_ops
= {
4397 .close
= stli_close
,
4398 .write
= stli_write
,
4399 .put_char
= stli_putchar
,
4400 .flush_chars
= stli_flushchars
,
4401 .write_room
= stli_writeroom
,
4402 .chars_in_buffer
= stli_charsinbuffer
,
4403 .ioctl
= stli_ioctl
,
4404 .set_termios
= stli_settermios
,
4405 .throttle
= stli_throttle
,
4406 .unthrottle
= stli_unthrottle
,
4408 .start
= stli_start
,
4409 .hangup
= stli_hangup
,
4410 .flush_buffer
= stli_flushbuffer
,
4411 .break_ctl
= stli_breakctl
,
4412 .wait_until_sent
= stli_waituntilsent
,
4413 .send_xchar
= stli_sendxchar
,
4414 .tiocmget
= stli_tiocmget
,
4415 .tiocmset
= stli_tiocmset
,
4416 .proc_fops
= &stli_proc_fops
,
4419 static const struct tty_port_operations stli_port_ops
= {
4420 .carrier_raised
= stli_carrier_raised
,
4421 .dtr_rts
= stli_dtr_rts
,
4424 /*****************************************************************************/
4426 * Loadable module initialization stuff.
4429 static void istallion_cleanup_isa(void)
4431 struct stlibrd
*brdp
;
4434 for (j
= 0; (j
< stli_nrbrds
); j
++) {
4435 if ((brdp
= stli_brds
[j
]) == NULL
|| (brdp
->state
& BST_PROBED
))
4438 stli_cleanup_ports(brdp
);
4440 iounmap(brdp
->membase
);
4441 if (brdp
->iosize
> 0)
4442 release_region(brdp
->iobase
, brdp
->iosize
);
4444 stli_brds
[j
] = NULL
;
4448 static int __init
istallion_module_init(void)
4453 printk(KERN_INFO
"%s: version %s\n", stli_drvtitle
, stli_drvversion
);
4455 spin_lock_init(&stli_lock
);
4456 spin_lock_init(&brd_lock
);
4458 stli_txcookbuf
= kmalloc(STLI_TXBUFSIZE
, GFP_KERNEL
);
4459 if (!stli_txcookbuf
) {
4460 printk(KERN_ERR
"istallion: failed to allocate memory "
4461 "(size=%d)\n", STLI_TXBUFSIZE
);
4466 stli_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
4472 stli_serial
->owner
= THIS_MODULE
;
4473 stli_serial
->driver_name
= stli_drvname
;
4474 stli_serial
->name
= stli_serialname
;
4475 stli_serial
->major
= STL_SERIALMAJOR
;
4476 stli_serial
->minor_start
= 0;
4477 stli_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
4478 stli_serial
->subtype
= SERIAL_TYPE_NORMAL
;
4479 stli_serial
->init_termios
= stli_deftermios
;
4480 stli_serial
->flags
= TTY_DRIVER_REAL_RAW
| TTY_DRIVER_DYNAMIC_DEV
;
4481 tty_set_operations(stli_serial
, &stli_ops
);
4483 retval
= tty_register_driver(stli_serial
);
4485 printk(KERN_ERR
"istallion: failed to register serial driver\n");
4489 retval
= stli_initbrds();
4494 * Set up a character driver for the shared memory region. We need this
4495 * to down load the slave code image. Also it is a useful debugging tool.
4497 retval
= register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stli_fsiomem
);
4499 printk(KERN_ERR
"istallion: failed to register serial memory "
4504 istallion_class
= class_create(THIS_MODULE
, "staliomem");
4505 for (i
= 0; i
< 4; i
++)
4506 device_create(istallion_class
, NULL
, MKDEV(STL_SIOMEMMAJOR
, i
),
4507 NULL
, "staliomem%d", i
);
4511 pci_unregister_driver(&stli_pcidriver
);
4512 istallion_cleanup_isa();
4514 tty_unregister_driver(stli_serial
);
4516 put_tty_driver(stli_serial
);
4518 kfree(stli_txcookbuf
);
4523 /*****************************************************************************/
4525 static void __exit
istallion_module_exit(void)
4529 printk(KERN_INFO
"Unloading %s: version %s\n", stli_drvtitle
,
4534 del_timer_sync(&stli_timerlist
);
4537 unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem");
4539 for (j
= 0; j
< 4; j
++)
4540 device_destroy(istallion_class
, MKDEV(STL_SIOMEMMAJOR
, j
));
4541 class_destroy(istallion_class
);
4543 pci_unregister_driver(&stli_pcidriver
);
4544 istallion_cleanup_isa();
4546 tty_unregister_driver(stli_serial
);
4547 put_tty_driver(stli_serial
);
4549 kfree(stli_txcookbuf
);
4552 module_init(istallion_module_init
);
4553 module_exit(istallion_module_exit
);