printk: add KERN_CONT annotation
[linux-2.6/verdex.git] / fs / exec.c
blobaa470a93540a727f127c6a474e65f63b438461f7
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
67 EXPORT_SYMBOL(suid_dumpable);
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
73 int register_binfmt(struct linux_binfmt * fmt)
75 if (!fmt)
76 return -EINVAL;
77 write_lock(&binfmt_lock);
78 list_add(&fmt->lh, &formats);
79 write_unlock(&binfmt_lock);
80 return 0;
83 EXPORT_SYMBOL(register_binfmt);
85 void unregister_binfmt(struct linux_binfmt * fmt)
87 write_lock(&binfmt_lock);
88 list_del(&fmt->lh);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(unregister_binfmt);
94 static inline void put_binfmt(struct linux_binfmt * fmt)
96 module_put(fmt->module);
100 * Note that a shared library must be both readable and executable due to
101 * security reasons.
103 * Also note that we take the address to load from from the file itself.
105 asmlinkage long sys_uselib(const char __user * library)
107 struct file * file;
108 struct nameidata nd;
109 int error;
111 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
112 if (error)
113 goto out;
115 error = -EINVAL;
116 if (!S_ISREG(nd.dentry->d_inode->i_mode))
117 goto exit;
119 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
120 if (error)
121 goto exit;
123 file = nameidata_to_filp(&nd, O_RDONLY);
124 error = PTR_ERR(file);
125 if (IS_ERR(file))
126 goto out;
128 error = -ENOEXEC;
129 if(file->f_op) {
130 struct linux_binfmt * fmt;
132 read_lock(&binfmt_lock);
133 list_for_each_entry(fmt, &formats, lh) {
134 if (!fmt->load_shlib)
135 continue;
136 if (!try_module_get(fmt->module))
137 continue;
138 read_unlock(&binfmt_lock);
139 error = fmt->load_shlib(file);
140 read_lock(&binfmt_lock);
141 put_binfmt(fmt);
142 if (error != -ENOEXEC)
143 break;
145 read_unlock(&binfmt_lock);
147 fput(file);
148 out:
149 return error;
150 exit:
151 release_open_intent(&nd);
152 path_release(&nd);
153 goto out;
156 #ifdef CONFIG_MMU
158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
159 int write)
161 struct page *page;
162 int ret;
164 #ifdef CONFIG_STACK_GROWSUP
165 if (write) {
166 ret = expand_stack_downwards(bprm->vma, pos);
167 if (ret < 0)
168 return NULL;
170 #endif
171 ret = get_user_pages(current, bprm->mm, pos,
172 1, write, 1, &page, NULL);
173 if (ret <= 0)
174 return NULL;
176 if (write) {
177 struct rlimit *rlim = current->signal->rlim;
178 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 * Limit to 1/4-th the stack size for the argv+env strings.
182 * This ensures that:
183 * - the remaining binfmt code will not run out of stack space,
184 * - the program will have a reasonable amount of stack left
185 * to work from.
187 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
188 put_page(page);
189 return NULL;
193 return page;
196 static void put_arg_page(struct page *page)
198 put_page(page);
201 static void free_arg_page(struct linux_binprm *bprm, int i)
205 static void free_arg_pages(struct linux_binprm *bprm)
209 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
210 struct page *page)
212 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
215 static int __bprm_mm_init(struct linux_binprm *bprm)
217 int err = -ENOMEM;
218 struct vm_area_struct *vma = NULL;
219 struct mm_struct *mm = bprm->mm;
221 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
222 if (!vma)
223 goto err;
225 down_write(&mm->mmap_sem);
226 vma->vm_mm = mm;
229 * Place the stack at the largest stack address the architecture
230 * supports. Later, we'll move this to an appropriate place. We don't
231 * use STACK_TOP because that can depend on attributes which aren't
232 * configured yet.
234 vma->vm_end = STACK_TOP_MAX;
235 vma->vm_start = vma->vm_end - PAGE_SIZE;
237 vma->vm_flags = VM_STACK_FLAGS;
238 vma->vm_page_prot = protection_map[vma->vm_flags & 0x7];
239 err = insert_vm_struct(mm, vma);
240 if (err) {
241 up_write(&mm->mmap_sem);
242 goto err;
245 mm->stack_vm = mm->total_vm = 1;
246 up_write(&mm->mmap_sem);
248 bprm->p = vma->vm_end - sizeof(void *);
250 return 0;
252 err:
253 if (vma) {
254 bprm->vma = NULL;
255 kmem_cache_free(vm_area_cachep, vma);
258 return err;
261 static bool valid_arg_len(struct linux_binprm *bprm, long len)
263 return len <= MAX_ARG_STRLEN;
266 #else
268 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
269 int write)
271 struct page *page;
273 page = bprm->page[pos / PAGE_SIZE];
274 if (!page && write) {
275 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
276 if (!page)
277 return NULL;
278 bprm->page[pos / PAGE_SIZE] = page;
281 return page;
284 static void put_arg_page(struct page *page)
288 static void free_arg_page(struct linux_binprm *bprm, int i)
290 if (bprm->page[i]) {
291 __free_page(bprm->page[i]);
292 bprm->page[i] = NULL;
296 static void free_arg_pages(struct linux_binprm *bprm)
298 int i;
300 for (i = 0; i < MAX_ARG_PAGES; i++)
301 free_arg_page(bprm, i);
304 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 struct page *page)
309 static int __bprm_mm_init(struct linux_binprm *bprm)
311 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
312 return 0;
315 static bool valid_arg_len(struct linux_binprm *bprm, long len)
317 return len <= bprm->p;
320 #endif /* CONFIG_MMU */
323 * Create a new mm_struct and populate it with a temporary stack
324 * vm_area_struct. We don't have enough context at this point to set the stack
325 * flags, permissions, and offset, so we use temporary values. We'll update
326 * them later in setup_arg_pages().
328 int bprm_mm_init(struct linux_binprm *bprm)
330 int err;
331 struct mm_struct *mm = NULL;
333 bprm->mm = mm = mm_alloc();
334 err = -ENOMEM;
335 if (!mm)
336 goto err;
338 err = init_new_context(current, mm);
339 if (err)
340 goto err;
342 err = __bprm_mm_init(bprm);
343 if (err)
344 goto err;
346 return 0;
348 err:
349 if (mm) {
350 bprm->mm = NULL;
351 mmdrop(mm);
354 return err;
358 * count() counts the number of strings in array ARGV.
360 static int count(char __user * __user * argv, int max)
362 int i = 0;
364 if (argv != NULL) {
365 for (;;) {
366 char __user * p;
368 if (get_user(p, argv))
369 return -EFAULT;
370 if (!p)
371 break;
372 argv++;
373 if(++i > max)
374 return -E2BIG;
375 cond_resched();
378 return i;
382 * 'copy_strings()' copies argument/environment strings from the old
383 * processes's memory to the new process's stack. The call to get_user_pages()
384 * ensures the destination page is created and not swapped out.
386 static int copy_strings(int argc, char __user * __user * argv,
387 struct linux_binprm *bprm)
389 struct page *kmapped_page = NULL;
390 char *kaddr = NULL;
391 unsigned long kpos = 0;
392 int ret;
394 while (argc-- > 0) {
395 char __user *str;
396 int len;
397 unsigned long pos;
399 if (get_user(str, argv+argc) ||
400 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
401 ret = -EFAULT;
402 goto out;
405 if (!valid_arg_len(bprm, len)) {
406 ret = -E2BIG;
407 goto out;
410 /* We're going to work our way backwords. */
411 pos = bprm->p;
412 str += len;
413 bprm->p -= len;
415 while (len > 0) {
416 int offset, bytes_to_copy;
418 offset = pos % PAGE_SIZE;
419 if (offset == 0)
420 offset = PAGE_SIZE;
422 bytes_to_copy = offset;
423 if (bytes_to_copy > len)
424 bytes_to_copy = len;
426 offset -= bytes_to_copy;
427 pos -= bytes_to_copy;
428 str -= bytes_to_copy;
429 len -= bytes_to_copy;
431 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
432 struct page *page;
434 page = get_arg_page(bprm, pos, 1);
435 if (!page) {
436 ret = -E2BIG;
437 goto out;
440 if (kmapped_page) {
441 flush_kernel_dcache_page(kmapped_page);
442 kunmap(kmapped_page);
443 put_arg_page(kmapped_page);
445 kmapped_page = page;
446 kaddr = kmap(kmapped_page);
447 kpos = pos & PAGE_MASK;
448 flush_arg_page(bprm, kpos, kmapped_page);
450 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
451 ret = -EFAULT;
452 goto out;
456 ret = 0;
457 out:
458 if (kmapped_page) {
459 flush_kernel_dcache_page(kmapped_page);
460 kunmap(kmapped_page);
461 put_arg_page(kmapped_page);
463 return ret;
467 * Like copy_strings, but get argv and its values from kernel memory.
469 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
471 int r;
472 mm_segment_t oldfs = get_fs();
473 set_fs(KERNEL_DS);
474 r = copy_strings(argc, (char __user * __user *)argv, bprm);
475 set_fs(oldfs);
476 return r;
478 EXPORT_SYMBOL(copy_strings_kernel);
480 #ifdef CONFIG_MMU
483 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
484 * the binfmt code determines where the new stack should reside, we shift it to
485 * its final location. The process proceeds as follows:
487 * 1) Use shift to calculate the new vma endpoints.
488 * 2) Extend vma to cover both the old and new ranges. This ensures the
489 * arguments passed to subsequent functions are consistent.
490 * 3) Move vma's page tables to the new range.
491 * 4) Free up any cleared pgd range.
492 * 5) Shrink the vma to cover only the new range.
494 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
496 struct mm_struct *mm = vma->vm_mm;
497 unsigned long old_start = vma->vm_start;
498 unsigned long old_end = vma->vm_end;
499 unsigned long length = old_end - old_start;
500 unsigned long new_start = old_start - shift;
501 unsigned long new_end = old_end - shift;
502 struct mmu_gather *tlb;
504 BUG_ON(new_start > new_end);
507 * ensure there are no vmas between where we want to go
508 * and where we are
510 if (vma != find_vma(mm, new_start))
511 return -EFAULT;
514 * cover the whole range: [new_start, old_end)
516 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
519 * move the page tables downwards, on failure we rely on
520 * process cleanup to remove whatever mess we made.
522 if (length != move_page_tables(vma, old_start,
523 vma, new_start, length))
524 return -ENOMEM;
526 lru_add_drain();
527 tlb = tlb_gather_mmu(mm, 0);
528 if (new_end > old_start) {
530 * when the old and new regions overlap clear from new_end.
532 free_pgd_range(&tlb, new_end, old_end, new_end,
533 vma->vm_next ? vma->vm_next->vm_start : 0);
534 } else {
536 * otherwise, clean from old_start; this is done to not touch
537 * the address space in [new_end, old_start) some architectures
538 * have constraints on va-space that make this illegal (IA64) -
539 * for the others its just a little faster.
541 free_pgd_range(&tlb, old_start, old_end, new_end,
542 vma->vm_next ? vma->vm_next->vm_start : 0);
544 tlb_finish_mmu(tlb, new_end, old_end);
547 * shrink the vma to just the new range.
549 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
551 return 0;
554 #define EXTRA_STACK_VM_PAGES 20 /* random */
557 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
558 * the stack is optionally relocated, and some extra space is added.
560 int setup_arg_pages(struct linux_binprm *bprm,
561 unsigned long stack_top,
562 int executable_stack)
564 unsigned long ret;
565 unsigned long stack_shift;
566 struct mm_struct *mm = current->mm;
567 struct vm_area_struct *vma = bprm->vma;
568 struct vm_area_struct *prev = NULL;
569 unsigned long vm_flags;
570 unsigned long stack_base;
572 #ifdef CONFIG_STACK_GROWSUP
573 /* Limit stack size to 1GB */
574 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
575 if (stack_base > (1 << 30))
576 stack_base = 1 << 30;
578 /* Make sure we didn't let the argument array grow too large. */
579 if (vma->vm_end - vma->vm_start > stack_base)
580 return -ENOMEM;
582 stack_base = PAGE_ALIGN(stack_top - stack_base);
584 stack_shift = vma->vm_start - stack_base;
585 mm->arg_start = bprm->p - stack_shift;
586 bprm->p = vma->vm_end - stack_shift;
587 #else
588 stack_top = arch_align_stack(stack_top);
589 stack_top = PAGE_ALIGN(stack_top);
590 stack_shift = vma->vm_end - stack_top;
592 bprm->p -= stack_shift;
593 mm->arg_start = bprm->p;
594 #endif
596 if (bprm->loader)
597 bprm->loader -= stack_shift;
598 bprm->exec -= stack_shift;
600 down_write(&mm->mmap_sem);
601 vm_flags = vma->vm_flags;
604 * Adjust stack execute permissions; explicitly enable for
605 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
606 * (arch default) otherwise.
608 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
609 vm_flags |= VM_EXEC;
610 else if (executable_stack == EXSTACK_DISABLE_X)
611 vm_flags &= ~VM_EXEC;
612 vm_flags |= mm->def_flags;
614 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
615 vm_flags);
616 if (ret)
617 goto out_unlock;
618 BUG_ON(prev != vma);
620 /* Move stack pages down in memory. */
621 if (stack_shift) {
622 ret = shift_arg_pages(vma, stack_shift);
623 if (ret) {
624 up_write(&mm->mmap_sem);
625 return ret;
629 #ifdef CONFIG_STACK_GROWSUP
630 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
631 #else
632 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
633 #endif
634 ret = expand_stack(vma, stack_base);
635 if (ret)
636 ret = -EFAULT;
638 out_unlock:
639 up_write(&mm->mmap_sem);
640 return 0;
642 EXPORT_SYMBOL(setup_arg_pages);
644 #endif /* CONFIG_MMU */
646 struct file *open_exec(const char *name)
648 struct nameidata nd;
649 int err;
650 struct file *file;
652 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
653 file = ERR_PTR(err);
655 if (!err) {
656 struct inode *inode = nd.dentry->d_inode;
657 file = ERR_PTR(-EACCES);
658 if (S_ISREG(inode->i_mode)) {
659 int err = vfs_permission(&nd, MAY_EXEC);
660 file = ERR_PTR(err);
661 if (!err) {
662 file = nameidata_to_filp(&nd, O_RDONLY);
663 if (!IS_ERR(file)) {
664 err = deny_write_access(file);
665 if (err) {
666 fput(file);
667 file = ERR_PTR(err);
670 out:
671 return file;
674 release_open_intent(&nd);
675 path_release(&nd);
677 goto out;
680 EXPORT_SYMBOL(open_exec);
682 int kernel_read(struct file *file, unsigned long offset,
683 char *addr, unsigned long count)
685 mm_segment_t old_fs;
686 loff_t pos = offset;
687 int result;
689 old_fs = get_fs();
690 set_fs(get_ds());
691 /* The cast to a user pointer is valid due to the set_fs() */
692 result = vfs_read(file, (void __user *)addr, count, &pos);
693 set_fs(old_fs);
694 return result;
697 EXPORT_SYMBOL(kernel_read);
699 static int exec_mmap(struct mm_struct *mm)
701 struct task_struct *tsk;
702 struct mm_struct * old_mm, *active_mm;
704 /* Notify parent that we're no longer interested in the old VM */
705 tsk = current;
706 old_mm = current->mm;
707 mm_release(tsk, old_mm);
709 if (old_mm) {
711 * Make sure that if there is a core dump in progress
712 * for the old mm, we get out and die instead of going
713 * through with the exec. We must hold mmap_sem around
714 * checking core_waiters and changing tsk->mm. The
715 * core-inducing thread will increment core_waiters for
716 * each thread whose ->mm == old_mm.
718 down_read(&old_mm->mmap_sem);
719 if (unlikely(old_mm->core_waiters)) {
720 up_read(&old_mm->mmap_sem);
721 return -EINTR;
724 task_lock(tsk);
725 active_mm = tsk->active_mm;
726 tsk->mm = mm;
727 tsk->active_mm = mm;
728 activate_mm(active_mm, mm);
729 task_unlock(tsk);
730 arch_pick_mmap_layout(mm);
731 if (old_mm) {
732 up_read(&old_mm->mmap_sem);
733 BUG_ON(active_mm != old_mm);
734 mmput(old_mm);
735 return 0;
737 mmdrop(active_mm);
738 return 0;
742 * This function makes sure the current process has its own signal table,
743 * so that flush_signal_handlers can later reset the handlers without
744 * disturbing other processes. (Other processes might share the signal
745 * table via the CLONE_SIGHAND option to clone().)
747 static int de_thread(struct task_struct *tsk)
749 struct signal_struct *sig = tsk->signal;
750 struct sighand_struct *oldsighand = tsk->sighand;
751 spinlock_t *lock = &oldsighand->siglock;
752 struct task_struct *leader = NULL;
753 int count;
755 if (thread_group_empty(tsk))
756 goto no_thread_group;
759 * Kill all other threads in the thread group.
760 * We must hold tasklist_lock to call zap_other_threads.
762 read_lock(&tasklist_lock);
763 spin_lock_irq(lock);
764 if (sig->flags & SIGNAL_GROUP_EXIT) {
766 * Another group action in progress, just
767 * return so that the signal is processed.
769 spin_unlock_irq(lock);
770 read_unlock(&tasklist_lock);
771 return -EAGAIN;
775 * child_reaper ignores SIGKILL, change it now.
776 * Reparenting needs write_lock on tasklist_lock,
777 * so it is safe to do it under read_lock.
779 if (unlikely(tsk->group_leader == child_reaper(tsk)))
780 tsk->nsproxy->pid_ns->child_reaper = tsk;
782 zap_other_threads(tsk);
783 read_unlock(&tasklist_lock);
786 * Account for the thread group leader hanging around:
788 count = 1;
789 if (!thread_group_leader(tsk)) {
790 count = 2;
792 * The SIGALRM timer survives the exec, but needs to point
793 * at us as the new group leader now. We have a race with
794 * a timer firing now getting the old leader, so we need to
795 * synchronize with any firing (by calling del_timer_sync)
796 * before we can safely let the old group leader die.
798 sig->tsk = tsk;
799 spin_unlock_irq(lock);
800 if (hrtimer_cancel(&sig->real_timer))
801 hrtimer_restart(&sig->real_timer);
802 spin_lock_irq(lock);
805 sig->notify_count = count;
806 sig->group_exit_task = tsk;
807 while (atomic_read(&sig->count) > count) {
808 __set_current_state(TASK_UNINTERRUPTIBLE);
809 spin_unlock_irq(lock);
810 schedule();
811 spin_lock_irq(lock);
813 spin_unlock_irq(lock);
816 * At this point all other threads have exited, all we have to
817 * do is to wait for the thread group leader to become inactive,
818 * and to assume its PID:
820 if (!thread_group_leader(tsk)) {
821 leader = tsk->group_leader;
823 sig->notify_count = -1;
824 for (;;) {
825 write_lock_irq(&tasklist_lock);
826 if (likely(leader->exit_state))
827 break;
828 __set_current_state(TASK_UNINTERRUPTIBLE);
829 write_unlock_irq(&tasklist_lock);
830 schedule();
834 * The only record we have of the real-time age of a
835 * process, regardless of execs it's done, is start_time.
836 * All the past CPU time is accumulated in signal_struct
837 * from sister threads now dead. But in this non-leader
838 * exec, nothing survives from the original leader thread,
839 * whose birth marks the true age of this process now.
840 * When we take on its identity by switching to its PID, we
841 * also take its birthdate (always earlier than our own).
843 tsk->start_time = leader->start_time;
845 BUG_ON(leader->tgid != tsk->tgid);
846 BUG_ON(tsk->pid == tsk->tgid);
848 * An exec() starts a new thread group with the
849 * TGID of the previous thread group. Rehash the
850 * two threads with a switched PID, and release
851 * the former thread group leader:
854 /* Become a process group leader with the old leader's pid.
855 * The old leader becomes a thread of the this thread group.
856 * Note: The old leader also uses this pid until release_task
857 * is called. Odd but simple and correct.
859 detach_pid(tsk, PIDTYPE_PID);
860 tsk->pid = leader->pid;
861 attach_pid(tsk, PIDTYPE_PID, find_pid(tsk->pid));
862 transfer_pid(leader, tsk, PIDTYPE_PGID);
863 transfer_pid(leader, tsk, PIDTYPE_SID);
864 list_replace_rcu(&leader->tasks, &tsk->tasks);
866 tsk->group_leader = tsk;
867 leader->group_leader = tsk;
869 tsk->exit_signal = SIGCHLD;
871 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
872 leader->exit_state = EXIT_DEAD;
874 write_unlock_irq(&tasklist_lock);
877 sig->group_exit_task = NULL;
878 sig->notify_count = 0;
880 * There may be one thread left which is just exiting,
881 * but it's safe to stop telling the group to kill themselves.
883 sig->flags = 0;
885 no_thread_group:
886 exit_itimers(sig);
887 if (leader)
888 release_task(leader);
890 if (atomic_read(&oldsighand->count) != 1) {
891 struct sighand_struct *newsighand;
893 * This ->sighand is shared with the CLONE_SIGHAND
894 * but not CLONE_THREAD task, switch to the new one.
896 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
897 if (!newsighand)
898 return -ENOMEM;
900 atomic_set(&newsighand->count, 1);
901 memcpy(newsighand->action, oldsighand->action,
902 sizeof(newsighand->action));
904 write_lock_irq(&tasklist_lock);
905 spin_lock(&oldsighand->siglock);
906 rcu_assign_pointer(tsk->sighand, newsighand);
907 spin_unlock(&oldsighand->siglock);
908 write_unlock_irq(&tasklist_lock);
910 __cleanup_sighand(oldsighand);
913 BUG_ON(!thread_group_leader(tsk));
914 return 0;
918 * These functions flushes out all traces of the currently running executable
919 * so that a new one can be started
921 static void flush_old_files(struct files_struct * files)
923 long j = -1;
924 struct fdtable *fdt;
926 spin_lock(&files->file_lock);
927 for (;;) {
928 unsigned long set, i;
930 j++;
931 i = j * __NFDBITS;
932 fdt = files_fdtable(files);
933 if (i >= fdt->max_fds)
934 break;
935 set = fdt->close_on_exec->fds_bits[j];
936 if (!set)
937 continue;
938 fdt->close_on_exec->fds_bits[j] = 0;
939 spin_unlock(&files->file_lock);
940 for ( ; set ; i++,set >>= 1) {
941 if (set & 1) {
942 sys_close(i);
945 spin_lock(&files->file_lock);
948 spin_unlock(&files->file_lock);
951 void get_task_comm(char *buf, struct task_struct *tsk)
953 /* buf must be at least sizeof(tsk->comm) in size */
954 task_lock(tsk);
955 strncpy(buf, tsk->comm, sizeof(tsk->comm));
956 task_unlock(tsk);
959 void set_task_comm(struct task_struct *tsk, char *buf)
961 task_lock(tsk);
962 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
963 task_unlock(tsk);
966 int flush_old_exec(struct linux_binprm * bprm)
968 char * name;
969 int i, ch, retval;
970 struct files_struct *files;
971 char tcomm[sizeof(current->comm)];
974 * Make sure we have a private signal table and that
975 * we are unassociated from the previous thread group.
977 retval = de_thread(current);
978 if (retval)
979 goto out;
982 * Make sure we have private file handles. Ask the
983 * fork helper to do the work for us and the exit
984 * helper to do the cleanup of the old one.
986 files = current->files; /* refcounted so safe to hold */
987 retval = unshare_files();
988 if (retval)
989 goto out;
991 * Release all of the old mmap stuff
993 retval = exec_mmap(bprm->mm);
994 if (retval)
995 goto mmap_failed;
997 bprm->mm = NULL; /* We're using it now */
999 /* This is the point of no return */
1000 put_files_struct(files);
1002 current->sas_ss_sp = current->sas_ss_size = 0;
1004 if (current->euid == current->uid && current->egid == current->gid)
1005 set_dumpable(current->mm, 1);
1006 else
1007 set_dumpable(current->mm, suid_dumpable);
1009 name = bprm->filename;
1011 /* Copies the binary name from after last slash */
1012 for (i=0; (ch = *(name++)) != '\0';) {
1013 if (ch == '/')
1014 i = 0; /* overwrite what we wrote */
1015 else
1016 if (i < (sizeof(tcomm) - 1))
1017 tcomm[i++] = ch;
1019 tcomm[i] = '\0';
1020 set_task_comm(current, tcomm);
1022 current->flags &= ~PF_RANDOMIZE;
1023 flush_thread();
1025 /* Set the new mm task size. We have to do that late because it may
1026 * depend on TIF_32BIT which is only updated in flush_thread() on
1027 * some architectures like powerpc
1029 current->mm->task_size = TASK_SIZE;
1031 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1032 suid_keys(current);
1033 set_dumpable(current->mm, suid_dumpable);
1034 current->pdeath_signal = 0;
1035 } else if (file_permission(bprm->file, MAY_READ) ||
1036 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1037 suid_keys(current);
1038 set_dumpable(current->mm, suid_dumpable);
1041 /* An exec changes our domain. We are no longer part of the thread
1042 group */
1044 current->self_exec_id++;
1046 flush_signal_handlers(current, 0);
1047 flush_old_files(current->files);
1049 return 0;
1051 mmap_failed:
1052 reset_files_struct(current, files);
1053 out:
1054 return retval;
1057 EXPORT_SYMBOL(flush_old_exec);
1060 * Fill the binprm structure from the inode.
1061 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1063 int prepare_binprm(struct linux_binprm *bprm)
1065 int mode;
1066 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1067 int retval;
1069 mode = inode->i_mode;
1070 if (bprm->file->f_op == NULL)
1071 return -EACCES;
1073 bprm->e_uid = current->euid;
1074 bprm->e_gid = current->egid;
1076 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1077 /* Set-uid? */
1078 if (mode & S_ISUID) {
1079 current->personality &= ~PER_CLEAR_ON_SETID;
1080 bprm->e_uid = inode->i_uid;
1083 /* Set-gid? */
1085 * If setgid is set but no group execute bit then this
1086 * is a candidate for mandatory locking, not a setgid
1087 * executable.
1089 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1090 current->personality &= ~PER_CLEAR_ON_SETID;
1091 bprm->e_gid = inode->i_gid;
1095 /* fill in binprm security blob */
1096 retval = security_bprm_set(bprm);
1097 if (retval)
1098 return retval;
1100 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1101 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1104 EXPORT_SYMBOL(prepare_binprm);
1106 static int unsafe_exec(struct task_struct *p)
1108 int unsafe = 0;
1109 if (p->ptrace & PT_PTRACED) {
1110 if (p->ptrace & PT_PTRACE_CAP)
1111 unsafe |= LSM_UNSAFE_PTRACE_CAP;
1112 else
1113 unsafe |= LSM_UNSAFE_PTRACE;
1115 if (atomic_read(&p->fs->count) > 1 ||
1116 atomic_read(&p->files->count) > 1 ||
1117 atomic_read(&p->sighand->count) > 1)
1118 unsafe |= LSM_UNSAFE_SHARE;
1120 return unsafe;
1123 void compute_creds(struct linux_binprm *bprm)
1125 int unsafe;
1127 if (bprm->e_uid != current->uid) {
1128 suid_keys(current);
1129 current->pdeath_signal = 0;
1131 exec_keys(current);
1133 task_lock(current);
1134 unsafe = unsafe_exec(current);
1135 security_bprm_apply_creds(bprm, unsafe);
1136 task_unlock(current);
1137 security_bprm_post_apply_creds(bprm);
1139 EXPORT_SYMBOL(compute_creds);
1142 * Arguments are '\0' separated strings found at the location bprm->p
1143 * points to; chop off the first by relocating brpm->p to right after
1144 * the first '\0' encountered.
1146 int remove_arg_zero(struct linux_binprm *bprm)
1148 int ret = 0;
1149 unsigned long offset;
1150 char *kaddr;
1151 struct page *page;
1153 if (!bprm->argc)
1154 return 0;
1156 do {
1157 offset = bprm->p & ~PAGE_MASK;
1158 page = get_arg_page(bprm, bprm->p, 0);
1159 if (!page) {
1160 ret = -EFAULT;
1161 goto out;
1163 kaddr = kmap_atomic(page, KM_USER0);
1165 for (; offset < PAGE_SIZE && kaddr[offset];
1166 offset++, bprm->p++)
1169 kunmap_atomic(kaddr, KM_USER0);
1170 put_arg_page(page);
1172 if (offset == PAGE_SIZE)
1173 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1174 } while (offset == PAGE_SIZE);
1176 bprm->p++;
1177 bprm->argc--;
1178 ret = 0;
1180 out:
1181 return ret;
1183 EXPORT_SYMBOL(remove_arg_zero);
1186 * cycle the list of binary formats handler, until one recognizes the image
1188 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1190 int try,retval;
1191 struct linux_binfmt *fmt;
1192 #ifdef __alpha__
1193 /* handle /sbin/loader.. */
1195 struct exec * eh = (struct exec *) bprm->buf;
1197 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1198 (eh->fh.f_flags & 0x3000) == 0x3000)
1200 struct file * file;
1201 unsigned long loader;
1203 allow_write_access(bprm->file);
1204 fput(bprm->file);
1205 bprm->file = NULL;
1207 loader = bprm->vma->vm_end - sizeof(void *);
1209 file = open_exec("/sbin/loader");
1210 retval = PTR_ERR(file);
1211 if (IS_ERR(file))
1212 return retval;
1214 /* Remember if the application is TASO. */
1215 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1217 bprm->file = file;
1218 bprm->loader = loader;
1219 retval = prepare_binprm(bprm);
1220 if (retval<0)
1221 return retval;
1222 /* should call search_binary_handler recursively here,
1223 but it does not matter */
1226 #endif
1227 retval = security_bprm_check(bprm);
1228 if (retval)
1229 return retval;
1231 /* kernel module loader fixup */
1232 /* so we don't try to load run modprobe in kernel space. */
1233 set_fs(USER_DS);
1235 retval = audit_bprm(bprm);
1236 if (retval)
1237 return retval;
1239 retval = -ENOENT;
1240 for (try=0; try<2; try++) {
1241 read_lock(&binfmt_lock);
1242 list_for_each_entry(fmt, &formats, lh) {
1243 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1244 if (!fn)
1245 continue;
1246 if (!try_module_get(fmt->module))
1247 continue;
1248 read_unlock(&binfmt_lock);
1249 retval = fn(bprm, regs);
1250 if (retval >= 0) {
1251 put_binfmt(fmt);
1252 allow_write_access(bprm->file);
1253 if (bprm->file)
1254 fput(bprm->file);
1255 bprm->file = NULL;
1256 current->did_exec = 1;
1257 proc_exec_connector(current);
1258 return retval;
1260 read_lock(&binfmt_lock);
1261 put_binfmt(fmt);
1262 if (retval != -ENOEXEC || bprm->mm == NULL)
1263 break;
1264 if (!bprm->file) {
1265 read_unlock(&binfmt_lock);
1266 return retval;
1269 read_unlock(&binfmt_lock);
1270 if (retval != -ENOEXEC || bprm->mm == NULL) {
1271 break;
1272 #ifdef CONFIG_KMOD
1273 }else{
1274 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1275 if (printable(bprm->buf[0]) &&
1276 printable(bprm->buf[1]) &&
1277 printable(bprm->buf[2]) &&
1278 printable(bprm->buf[3]))
1279 break; /* -ENOEXEC */
1280 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1281 #endif
1284 return retval;
1287 EXPORT_SYMBOL(search_binary_handler);
1290 * sys_execve() executes a new program.
1292 int do_execve(char * filename,
1293 char __user *__user *argv,
1294 char __user *__user *envp,
1295 struct pt_regs * regs)
1297 struct linux_binprm *bprm;
1298 struct file *file;
1299 unsigned long env_p;
1300 int retval;
1302 retval = -ENOMEM;
1303 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1304 if (!bprm)
1305 goto out_ret;
1307 file = open_exec(filename);
1308 retval = PTR_ERR(file);
1309 if (IS_ERR(file))
1310 goto out_kfree;
1312 sched_exec();
1314 bprm->file = file;
1315 bprm->filename = filename;
1316 bprm->interp = filename;
1318 retval = bprm_mm_init(bprm);
1319 if (retval)
1320 goto out_file;
1322 bprm->argc = count(argv, MAX_ARG_STRINGS);
1323 if ((retval = bprm->argc) < 0)
1324 goto out_mm;
1326 bprm->envc = count(envp, MAX_ARG_STRINGS);
1327 if ((retval = bprm->envc) < 0)
1328 goto out_mm;
1330 retval = security_bprm_alloc(bprm);
1331 if (retval)
1332 goto out;
1334 retval = prepare_binprm(bprm);
1335 if (retval < 0)
1336 goto out;
1338 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1339 if (retval < 0)
1340 goto out;
1342 bprm->exec = bprm->p;
1343 retval = copy_strings(bprm->envc, envp, bprm);
1344 if (retval < 0)
1345 goto out;
1347 env_p = bprm->p;
1348 retval = copy_strings(bprm->argc, argv, bprm);
1349 if (retval < 0)
1350 goto out;
1351 bprm->argv_len = env_p - bprm->p;
1353 retval = search_binary_handler(bprm,regs);
1354 if (retval >= 0) {
1355 /* execve success */
1356 free_arg_pages(bprm);
1357 security_bprm_free(bprm);
1358 acct_update_integrals(current);
1359 kfree(bprm);
1360 return retval;
1363 out:
1364 free_arg_pages(bprm);
1365 if (bprm->security)
1366 security_bprm_free(bprm);
1368 out_mm:
1369 if (bprm->mm)
1370 mmput (bprm->mm);
1372 out_file:
1373 if (bprm->file) {
1374 allow_write_access(bprm->file);
1375 fput(bprm->file);
1377 out_kfree:
1378 kfree(bprm);
1380 out_ret:
1381 return retval;
1384 int set_binfmt(struct linux_binfmt *new)
1386 struct linux_binfmt *old = current->binfmt;
1388 if (new) {
1389 if (!try_module_get(new->module))
1390 return -1;
1392 current->binfmt = new;
1393 if (old)
1394 module_put(old->module);
1395 return 0;
1398 EXPORT_SYMBOL(set_binfmt);
1400 /* format_corename will inspect the pattern parameter, and output a
1401 * name into corename, which must have space for at least
1402 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1404 static int format_corename(char *corename, const char *pattern, long signr)
1406 const char *pat_ptr = pattern;
1407 char *out_ptr = corename;
1408 char *const out_end = corename + CORENAME_MAX_SIZE;
1409 int rc;
1410 int pid_in_pattern = 0;
1411 int ispipe = 0;
1413 if (*pattern == '|')
1414 ispipe = 1;
1416 /* Repeat as long as we have more pattern to process and more output
1417 space */
1418 while (*pat_ptr) {
1419 if (*pat_ptr != '%') {
1420 if (out_ptr == out_end)
1421 goto out;
1422 *out_ptr++ = *pat_ptr++;
1423 } else {
1424 switch (*++pat_ptr) {
1425 case 0:
1426 goto out;
1427 /* Double percent, output one percent */
1428 case '%':
1429 if (out_ptr == out_end)
1430 goto out;
1431 *out_ptr++ = '%';
1432 break;
1433 /* pid */
1434 case 'p':
1435 pid_in_pattern = 1;
1436 rc = snprintf(out_ptr, out_end - out_ptr,
1437 "%d", current->tgid);
1438 if (rc > out_end - out_ptr)
1439 goto out;
1440 out_ptr += rc;
1441 break;
1442 /* uid */
1443 case 'u':
1444 rc = snprintf(out_ptr, out_end - out_ptr,
1445 "%d", current->uid);
1446 if (rc > out_end - out_ptr)
1447 goto out;
1448 out_ptr += rc;
1449 break;
1450 /* gid */
1451 case 'g':
1452 rc = snprintf(out_ptr, out_end - out_ptr,
1453 "%d", current->gid);
1454 if (rc > out_end - out_ptr)
1455 goto out;
1456 out_ptr += rc;
1457 break;
1458 /* signal that caused the coredump */
1459 case 's':
1460 rc = snprintf(out_ptr, out_end - out_ptr,
1461 "%ld", signr);
1462 if (rc > out_end - out_ptr)
1463 goto out;
1464 out_ptr += rc;
1465 break;
1466 /* UNIX time of coredump */
1467 case 't': {
1468 struct timeval tv;
1469 do_gettimeofday(&tv);
1470 rc = snprintf(out_ptr, out_end - out_ptr,
1471 "%lu", tv.tv_sec);
1472 if (rc > out_end - out_ptr)
1473 goto out;
1474 out_ptr += rc;
1475 break;
1477 /* hostname */
1478 case 'h':
1479 down_read(&uts_sem);
1480 rc = snprintf(out_ptr, out_end - out_ptr,
1481 "%s", utsname()->nodename);
1482 up_read(&uts_sem);
1483 if (rc > out_end - out_ptr)
1484 goto out;
1485 out_ptr += rc;
1486 break;
1487 /* executable */
1488 case 'e':
1489 rc = snprintf(out_ptr, out_end - out_ptr,
1490 "%s", current->comm);
1491 if (rc > out_end - out_ptr)
1492 goto out;
1493 out_ptr += rc;
1494 break;
1495 /* core limit size */
1496 case 'c':
1497 rc = snprintf(out_ptr, out_end - out_ptr,
1498 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1499 if (rc > out_end - out_ptr)
1500 goto out;
1501 out_ptr += rc;
1502 break;
1503 default:
1504 break;
1506 ++pat_ptr;
1509 /* Backward compatibility with core_uses_pid:
1511 * If core_pattern does not include a %p (as is the default)
1512 * and core_uses_pid is set, then .%pid will be appended to
1513 * the filename. Do not do this for piped commands. */
1514 if (!ispipe && !pid_in_pattern
1515 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1516 rc = snprintf(out_ptr, out_end - out_ptr,
1517 ".%d", current->tgid);
1518 if (rc > out_end - out_ptr)
1519 goto out;
1520 out_ptr += rc;
1522 out:
1523 *out_ptr = 0;
1524 return ispipe;
1527 static void zap_process(struct task_struct *start)
1529 struct task_struct *t;
1531 start->signal->flags = SIGNAL_GROUP_EXIT;
1532 start->signal->group_stop_count = 0;
1534 t = start;
1535 do {
1536 if (t != current && t->mm) {
1537 t->mm->core_waiters++;
1538 sigaddset(&t->pending.signal, SIGKILL);
1539 signal_wake_up(t, 1);
1541 } while ((t = next_thread(t)) != start);
1544 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1545 int exit_code)
1547 struct task_struct *g, *p;
1548 unsigned long flags;
1549 int err = -EAGAIN;
1551 spin_lock_irq(&tsk->sighand->siglock);
1552 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1553 tsk->signal->group_exit_code = exit_code;
1554 zap_process(tsk);
1555 err = 0;
1557 spin_unlock_irq(&tsk->sighand->siglock);
1558 if (err)
1559 return err;
1561 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1562 goto done;
1564 rcu_read_lock();
1565 for_each_process(g) {
1566 if (g == tsk->group_leader)
1567 continue;
1569 p = g;
1570 do {
1571 if (p->mm) {
1572 if (p->mm == mm) {
1574 * p->sighand can't disappear, but
1575 * may be changed by de_thread()
1577 lock_task_sighand(p, &flags);
1578 zap_process(p);
1579 unlock_task_sighand(p, &flags);
1581 break;
1583 } while ((p = next_thread(p)) != g);
1585 rcu_read_unlock();
1586 done:
1587 return mm->core_waiters;
1590 static int coredump_wait(int exit_code)
1592 struct task_struct *tsk = current;
1593 struct mm_struct *mm = tsk->mm;
1594 struct completion startup_done;
1595 struct completion *vfork_done;
1596 int core_waiters;
1598 init_completion(&mm->core_done);
1599 init_completion(&startup_done);
1600 mm->core_startup_done = &startup_done;
1602 core_waiters = zap_threads(tsk, mm, exit_code);
1603 up_write(&mm->mmap_sem);
1605 if (unlikely(core_waiters < 0))
1606 goto fail;
1609 * Make sure nobody is waiting for us to release the VM,
1610 * otherwise we can deadlock when we wait on each other
1612 vfork_done = tsk->vfork_done;
1613 if (vfork_done) {
1614 tsk->vfork_done = NULL;
1615 complete(vfork_done);
1618 if (core_waiters)
1619 wait_for_completion(&startup_done);
1620 fail:
1621 BUG_ON(mm->core_waiters);
1622 return core_waiters;
1626 * set_dumpable converts traditional three-value dumpable to two flags and
1627 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1628 * these bits are not changed atomically. So get_dumpable can observe the
1629 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1630 * return either old dumpable or new one by paying attention to the order of
1631 * modifying the bits.
1633 * dumpable | mm->flags (binary)
1634 * old new | initial interim final
1635 * ---------+-----------------------
1636 * 0 1 | 00 01 01
1637 * 0 2 | 00 10(*) 11
1638 * 1 0 | 01 00 00
1639 * 1 2 | 01 11 11
1640 * 2 0 | 11 10(*) 00
1641 * 2 1 | 11 11 01
1643 * (*) get_dumpable regards interim value of 10 as 11.
1645 void set_dumpable(struct mm_struct *mm, int value)
1647 switch (value) {
1648 case 0:
1649 clear_bit(MMF_DUMPABLE, &mm->flags);
1650 smp_wmb();
1651 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1652 break;
1653 case 1:
1654 set_bit(MMF_DUMPABLE, &mm->flags);
1655 smp_wmb();
1656 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1657 break;
1658 case 2:
1659 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1660 smp_wmb();
1661 set_bit(MMF_DUMPABLE, &mm->flags);
1662 break;
1665 EXPORT_SYMBOL_GPL(set_dumpable);
1667 int get_dumpable(struct mm_struct *mm)
1669 int ret;
1671 ret = mm->flags & 0x3;
1672 return (ret >= 2) ? 2 : ret;
1675 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1677 char corename[CORENAME_MAX_SIZE + 1];
1678 struct mm_struct *mm = current->mm;
1679 struct linux_binfmt * binfmt;
1680 struct inode * inode;
1681 struct file * file;
1682 int retval = 0;
1683 int fsuid = current->fsuid;
1684 int flag = 0;
1685 int ispipe = 0;
1686 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1687 char **helper_argv = NULL;
1688 int helper_argc = 0;
1689 char *delimit;
1691 audit_core_dumps(signr);
1693 binfmt = current->binfmt;
1694 if (!binfmt || !binfmt->core_dump)
1695 goto fail;
1696 down_write(&mm->mmap_sem);
1697 if (!get_dumpable(mm)) {
1698 up_write(&mm->mmap_sem);
1699 goto fail;
1703 * We cannot trust fsuid as being the "true" uid of the
1704 * process nor do we know its entire history. We only know it
1705 * was tainted so we dump it as root in mode 2.
1707 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1708 flag = O_EXCL; /* Stop rewrite attacks */
1709 current->fsuid = 0; /* Dump root private */
1711 set_dumpable(mm, 0);
1713 retval = coredump_wait(exit_code);
1714 if (retval < 0)
1715 goto fail;
1718 * Clear any false indication of pending signals that might
1719 * be seen by the filesystem code called to write the core file.
1721 clear_thread_flag(TIF_SIGPENDING);
1724 * lock_kernel() because format_corename() is controlled by sysctl, which
1725 * uses lock_kernel()
1727 lock_kernel();
1728 ispipe = format_corename(corename, core_pattern, signr);
1729 unlock_kernel();
1731 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1732 * to a pipe. Since we're not writing directly to the filesystem
1733 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1734 * created unless the pipe reader choses to write out the core file
1735 * at which point file size limits and permissions will be imposed
1736 * as it does with any other process
1738 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1739 goto fail_unlock;
1741 if (ispipe) {
1742 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1743 /* Terminate the string before the first option */
1744 delimit = strchr(corename, ' ');
1745 if (delimit)
1746 *delimit = '\0';
1747 delimit = strrchr(helper_argv[0], '/');
1748 if (delimit)
1749 delimit++;
1750 else
1751 delimit = helper_argv[0];
1752 if (!strcmp(delimit, current->comm)) {
1753 printk(KERN_NOTICE "Recursive core dump detected, "
1754 "aborting\n");
1755 goto fail_unlock;
1758 core_limit = RLIM_INFINITY;
1760 /* SIGPIPE can happen, but it's just never processed */
1761 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1762 &file)) {
1763 printk(KERN_INFO "Core dump to %s pipe failed\n",
1764 corename);
1765 goto fail_unlock;
1767 } else
1768 file = filp_open(corename,
1769 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1770 0600);
1771 if (IS_ERR(file))
1772 goto fail_unlock;
1773 inode = file->f_path.dentry->d_inode;
1774 if (inode->i_nlink > 1)
1775 goto close_fail; /* multiple links - don't dump */
1776 if (!ispipe && d_unhashed(file->f_path.dentry))
1777 goto close_fail;
1779 /* AK: actually i see no reason to not allow this for named pipes etc.,
1780 but keep the previous behaviour for now. */
1781 if (!ispipe && !S_ISREG(inode->i_mode))
1782 goto close_fail;
1783 if (!file->f_op)
1784 goto close_fail;
1785 if (!file->f_op->write)
1786 goto close_fail;
1787 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1788 goto close_fail;
1790 retval = binfmt->core_dump(signr, regs, file, core_limit);
1792 if (retval)
1793 current->signal->group_exit_code |= 0x80;
1794 close_fail:
1795 filp_close(file, NULL);
1796 fail_unlock:
1797 if (helper_argv)
1798 argv_free(helper_argv);
1800 current->fsuid = fsuid;
1801 complete_all(&mm->core_done);
1802 fail:
1803 return retval;