x86/pgtable: unify pagetable accessors, #6
[linux-2.6/verdex.git] / include / asm-x86 / pgtable_64.h
blob84f47f9d7896e3502e31557d11e4324af1d787db
1 #ifndef _X86_64_PGTABLE_H
2 #define _X86_64_PGTABLE_H
4 #include <linux/const.h>
5 #ifndef __ASSEMBLY__
7 /*
8 * This file contains the functions and defines necessary to modify and use
9 * the x86-64 page table tree.
11 #include <asm/processor.h>
12 #include <linux/bitops.h>
13 #include <linux/threads.h>
14 #include <asm/pda.h>
16 extern pud_t level3_kernel_pgt[512];
17 extern pud_t level3_ident_pgt[512];
18 extern pmd_t level2_kernel_pgt[512];
19 extern pgd_t init_level4_pgt[];
20 extern unsigned long __supported_pte_mask;
22 #define swapper_pg_dir init_level4_pgt
24 extern void paging_init(void);
25 extern void clear_kernel_mapping(unsigned long addr, unsigned long size);
28 * ZERO_PAGE is a global shared page that is always zero: used
29 * for zero-mapped memory areas etc..
31 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
32 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
34 #endif /* !__ASSEMBLY__ */
37 * PGDIR_SHIFT determines what a top-level page table entry can map
39 #define PGDIR_SHIFT 39
40 #define PTRS_PER_PGD 512
43 * 3rd level page
45 #define PUD_SHIFT 30
46 #define PTRS_PER_PUD 512
49 * PMD_SHIFT determines the size of the area a middle-level
50 * page table can map
52 #define PMD_SHIFT 21
53 #define PTRS_PER_PMD 512
56 * entries per page directory level
58 #define PTRS_PER_PTE 512
60 #ifndef __ASSEMBLY__
62 #define pte_ERROR(e) \
63 printk("%s:%d: bad pte %p(%016lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
64 #define pmd_ERROR(e) \
65 printk("%s:%d: bad pmd %p(%016lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
66 #define pud_ERROR(e) \
67 printk("%s:%d: bad pud %p(%016lx).\n", __FILE__, __LINE__, &(e), pud_val(e))
68 #define pgd_ERROR(e) \
69 printk("%s:%d: bad pgd %p(%016lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
71 #define pgd_none(x) (!pgd_val(x))
72 #define pud_none(x) (!pud_val(x))
74 static inline void set_pte(pte_t *dst, pte_t val)
76 pte_val(*dst) = pte_val(val);
78 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
80 static inline void set_pmd(pmd_t *dst, pmd_t val)
82 *dst = val;
85 static inline void set_pud(pud_t *dst, pud_t val)
87 *dst = val;
90 static inline void pud_clear (pud_t *pud)
92 set_pud(pud, __pud(0));
95 static inline void set_pgd(pgd_t *dst, pgd_t val)
97 *dst = val;
100 static inline void pgd_clear (pgd_t * pgd)
102 set_pgd(pgd, __pgd(0));
105 #define ptep_get_and_clear(mm,addr,xp) __pte(xchg(&(xp)->pte, 0))
107 struct mm_struct;
109 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
111 pte_t pte;
112 if (full) {
113 pte = *ptep;
114 *ptep = __pte(0);
115 } else {
116 pte = ptep_get_and_clear(mm, addr, ptep);
118 return pte;
121 #define pte_same(a, b) ((a).pte == (b).pte)
123 #define pte_pgprot(a) (__pgprot((a).pte & ~PHYSICAL_PAGE_MASK))
125 #endif /* !__ASSEMBLY__ */
127 #define PMD_SIZE (_AC(1,UL) << PMD_SHIFT)
128 #define PMD_MASK (~(PMD_SIZE-1))
129 #define PUD_SIZE (_AC(1,UL) << PUD_SHIFT)
130 #define PUD_MASK (~(PUD_SIZE-1))
131 #define PGDIR_SIZE (_AC(1,UL) << PGDIR_SHIFT)
132 #define PGDIR_MASK (~(PGDIR_SIZE-1))
135 #define MAXMEM _AC(0x3fffffffffff, UL)
136 #define VMALLOC_START _AC(0xffffc20000000000, UL)
137 #define VMALLOC_END _AC(0xffffe1ffffffffff, UL)
138 #define VMEMMAP_START _AC(0xffffe20000000000, UL)
139 #define MODULES_VADDR _AC(0xffffffff88000000, UL)
140 #define MODULES_END _AC(0xfffffffffff00000, UL)
141 #define MODULES_LEN (MODULES_END - MODULES_VADDR)
143 #ifndef __ASSEMBLY__
145 static inline unsigned long pgd_bad(pgd_t pgd)
147 return pgd_val(pgd) & ~(PTE_MASK | _KERNPG_TABLE | _PAGE_USER);
150 static inline unsigned long pud_bad(pud_t pud)
152 return pud_val(pud) & ~(PTE_MASK | _KERNPG_TABLE | _PAGE_USER);
155 static inline unsigned long pmd_bad(pmd_t pmd)
157 return pmd_val(pmd) & ~(PTE_MASK | _KERNPG_TABLE | _PAGE_USER);
160 #define pte_none(x) (!pte_val(x))
161 #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
162 #define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
164 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* FIXME: is this right? */
165 #define pte_page(x) pfn_to_page(pte_pfn(x))
166 #define pte_pfn(x) ((pte_val(x) & __PHYSICAL_MASK) >> PAGE_SHIFT)
168 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
170 pte_t pte;
171 pte_val(pte) = (page_nr << PAGE_SHIFT);
172 pte_val(pte) |= pgprot_val(pgprot);
173 pte_val(pte) &= __supported_pte_mask;
174 return pte;
176 struct vm_area_struct;
178 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
180 if (!pte_young(*ptep))
181 return 0;
182 return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte);
185 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
187 clear_bit(_PAGE_BIT_RW, &ptep->pte);
191 * Macro to mark a page protection value as "uncacheable".
193 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT))
197 * Conversion functions: convert a page and protection to a page entry,
198 * and a page entry and page directory to the page they refer to.
202 * Level 4 access.
204 #define pgd_page_vaddr(pgd) ((unsigned long) __va((unsigned long)pgd_val(pgd) & PTE_MASK))
205 #define pgd_page(pgd) (pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT))
206 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
207 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
208 #define pgd_offset_k(address) (init_level4_pgt + pgd_index(address))
209 #define pgd_present(pgd) (pgd_val(pgd) & _PAGE_PRESENT)
210 #define mk_kernel_pgd(address) ((pgd_t){ (address) | _KERNPG_TABLE })
212 /* PUD - Level3 access */
213 /* to find an entry in a page-table-directory. */
214 #define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & PHYSICAL_PAGE_MASK))
215 #define pud_page(pud) (pfn_to_page(pud_val(pud) >> PAGE_SHIFT))
216 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
217 #define pud_offset(pgd, address) ((pud_t *) pgd_page_vaddr(*(pgd)) + pud_index(address))
218 #define pud_present(pud) (pud_val(pud) & _PAGE_PRESENT)
220 /* PMD - Level 2 access */
221 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PTE_MASK))
222 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
224 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
225 #define pmd_offset(dir, address) ((pmd_t *) pud_page_vaddr(*(dir)) + \
226 pmd_index(address))
227 #define pmd_none(x) (!pmd_val(x))
228 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
229 #define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
230 #define pfn_pmd(nr,prot) (__pmd(((nr) << PAGE_SHIFT) | pgprot_val(prot)))
231 #define pmd_pfn(x) ((pmd_val(x) & __PHYSICAL_MASK) >> PAGE_SHIFT)
233 #define pte_to_pgoff(pte) ((pte_val(pte) & PHYSICAL_PAGE_MASK) >> PAGE_SHIFT)
234 #define pgoff_to_pte(off) ((pte_t) { ((off) << PAGE_SHIFT) | _PAGE_FILE })
235 #define PTE_FILE_MAX_BITS __PHYSICAL_MASK_SHIFT
237 /* PTE - Level 1 access. */
239 /* page, protection -> pte */
240 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
242 /* Change flags of a PTE */
243 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
245 pte_val(pte) &= _PAGE_CHG_MASK;
246 pte_val(pte) |= pgprot_val(newprot);
247 pte_val(pte) &= __supported_pte_mask;
248 return pte;
251 #define pte_index(address) \
252 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
253 #define pte_offset_kernel(dir, address) ((pte_t *) pmd_page_vaddr(*(dir)) + \
254 pte_index(address))
256 /* x86-64 always has all page tables mapped. */
257 #define pte_offset_map(dir,address) pte_offset_kernel(dir,address)
258 #define pte_offset_map_nested(dir,address) pte_offset_kernel(dir,address)
259 #define pte_unmap(pte) /* NOP */
260 #define pte_unmap_nested(pte) /* NOP */
262 #define update_mmu_cache(vma,address,pte) do { } while (0)
264 /* We only update the dirty/accessed state if we set
265 * the dirty bit by hand in the kernel, since the hardware
266 * will do the accessed bit for us, and we don't want to
267 * race with other CPU's that might be updating the dirty
268 * bit at the same time. */
269 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
270 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
271 ({ \
272 int __changed = !pte_same(*(__ptep), __entry); \
273 if (__changed && __dirty) { \
274 set_pte(__ptep, __entry); \
275 flush_tlb_page(__vma, __address); \
277 __changed; \
280 /* Encode and de-code a swap entry */
281 #define __swp_type(x) (((x).val >> 1) & 0x3f)
282 #define __swp_offset(x) ((x).val >> 8)
283 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
284 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
285 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
287 extern spinlock_t pgd_lock;
288 extern struct list_head pgd_list;
290 extern int kern_addr_valid(unsigned long addr);
292 pte_t *lookup_address(unsigned long addr);
294 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
295 remap_pfn_range(vma, vaddr, pfn, size, prot)
297 #define HAVE_ARCH_UNMAPPED_AREA
298 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
300 #define pgtable_cache_init() do { } while (0)
301 #define check_pgt_cache() do { } while (0)
303 #define PAGE_AGP PAGE_KERNEL_NOCACHE
304 #define HAVE_PAGE_AGP 1
306 /* fs/proc/kcore.c */
307 #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK)
308 #define kc_offset_to_vaddr(o) \
309 (((o) & (1UL << (__VIRTUAL_MASK_SHIFT-1))) ? ((o) | (~__VIRTUAL_MASK)) : (o))
311 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
312 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
313 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
314 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
315 #define __HAVE_ARCH_PTE_SAME
316 #include <asm-generic/pgtable.h>
317 #endif /* !__ASSEMBLY__ */
319 #endif /* _X86_64_PGTABLE_H */