2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
97 #include "fsl_pq_mdio.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name
[] = "Gianfar Ethernet";
104 const char gfar_driver_version
[] = "1.3";
106 static int gfar_enet_open(struct net_device
*dev
);
107 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
108 static void gfar_reset_task(struct work_struct
*work
);
109 static void gfar_timeout(struct net_device
*dev
);
110 static int gfar_close(struct net_device
*dev
);
111 struct sk_buff
*gfar_new_skb(struct net_device
*dev
);
112 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
113 struct sk_buff
*skb
);
114 static int gfar_set_mac_address(struct net_device
*dev
);
115 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
116 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
117 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
118 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
119 static void adjust_link(struct net_device
*dev
);
120 static void init_registers(struct net_device
*dev
);
121 static int init_phy(struct net_device
*dev
);
122 static int gfar_probe(struct of_device
*ofdev
,
123 const struct of_device_id
*match
);
124 static int gfar_remove(struct of_device
*ofdev
);
125 static void free_skb_resources(struct gfar_private
*priv
);
126 static void gfar_set_multi(struct net_device
*dev
);
127 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
128 static void gfar_configure_serdes(struct net_device
*dev
);
129 static int gfar_poll(struct napi_struct
*napi
, int budget
);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device
*dev
);
133 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
134 static int gfar_clean_tx_ring(struct net_device
*dev
);
135 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
137 static void gfar_vlan_rx_register(struct net_device
*netdev
,
138 struct vlan_group
*grp
);
139 void gfar_halt(struct net_device
*dev
);
140 static void gfar_halt_nodisable(struct net_device
*dev
);
141 void gfar_start(struct net_device
*dev
);
142 static void gfar_clear_exact_match(struct net_device
*dev
);
143 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
144 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 static const struct net_device_ops gfar_netdev_ops
= {
151 .ndo_open
= gfar_enet_open
,
152 .ndo_start_xmit
= gfar_start_xmit
,
153 .ndo_stop
= gfar_close
,
154 .ndo_change_mtu
= gfar_change_mtu
,
155 .ndo_set_multicast_list
= gfar_set_multi
,
156 .ndo_tx_timeout
= gfar_timeout
,
157 .ndo_do_ioctl
= gfar_ioctl
,
158 .ndo_vlan_rx_register
= gfar_vlan_rx_register
,
159 .ndo_set_mac_address
= eth_mac_addr
,
160 .ndo_validate_addr
= eth_validate_addr
,
161 #ifdef CONFIG_NET_POLL_CONTROLLER
162 .ndo_poll_controller
= gfar_netpoll
,
166 /* Returns 1 if incoming frames use an FCB */
167 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
169 return priv
->vlgrp
|| priv
->rx_csum_enable
;
172 static int gfar_of_init(struct net_device
*dev
)
176 const void *mac_addr
;
179 struct gfar_private
*priv
= netdev_priv(dev
);
180 struct device_node
*np
= priv
->node
;
182 const u32
*stash_len
;
183 const u32
*stash_idx
;
185 if (!np
|| !of_device_is_available(np
))
188 /* get a pointer to the register memory */
189 addr
= of_translate_address(np
, of_get_address(np
, 0, &size
, NULL
));
190 priv
->regs
= ioremap(addr
, size
);
192 if (priv
->regs
== NULL
)
195 priv
->interruptTransmit
= irq_of_parse_and_map(np
, 0);
197 model
= of_get_property(np
, "model", NULL
);
199 /* If we aren't the FEC we have multiple interrupts */
200 if (model
&& strcasecmp(model
, "FEC")) {
201 priv
->interruptReceive
= irq_of_parse_and_map(np
, 1);
203 priv
->interruptError
= irq_of_parse_and_map(np
, 2);
205 if (priv
->interruptTransmit
< 0 ||
206 priv
->interruptReceive
< 0 ||
207 priv
->interruptError
< 0) {
213 stash
= of_get_property(np
, "bd-stash", NULL
);
216 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
217 priv
->bd_stash_en
= 1;
220 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
223 priv
->rx_stash_size
= *stash_len
;
225 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
228 priv
->rx_stash_index
= *stash_idx
;
230 if (stash_len
|| stash_idx
)
231 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
233 mac_addr
= of_get_mac_address(np
);
235 memcpy(dev
->dev_addr
, mac_addr
, MAC_ADDR_LEN
);
237 if (model
&& !strcasecmp(model
, "TSEC"))
239 FSL_GIANFAR_DEV_HAS_GIGABIT
|
240 FSL_GIANFAR_DEV_HAS_COALESCE
|
241 FSL_GIANFAR_DEV_HAS_RMON
|
242 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
243 if (model
&& !strcasecmp(model
, "eTSEC"))
245 FSL_GIANFAR_DEV_HAS_GIGABIT
|
246 FSL_GIANFAR_DEV_HAS_COALESCE
|
247 FSL_GIANFAR_DEV_HAS_RMON
|
248 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
249 FSL_GIANFAR_DEV_HAS_PADDING
|
250 FSL_GIANFAR_DEV_HAS_CSUM
|
251 FSL_GIANFAR_DEV_HAS_VLAN
|
252 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
253 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
;
255 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
257 /* We only care about rgmii-id. The rest are autodetected */
258 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
259 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
261 priv
->interface
= PHY_INTERFACE_MODE_MII
;
263 if (of_get_property(np
, "fsl,magic-packet", NULL
))
264 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
266 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
268 /* Find the TBI PHY. If it's not there, we don't support SGMII */
269 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
278 /* Ioctl MII Interface */
279 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
281 struct gfar_private
*priv
= netdev_priv(dev
);
283 if (!netif_running(dev
))
289 return phy_mii_ioctl(priv
->phydev
, if_mii(rq
), cmd
);
292 /* Set up the ethernet device structure, private data,
293 * and anything else we need before we start */
294 static int gfar_probe(struct of_device
*ofdev
,
295 const struct of_device_id
*match
)
298 struct net_device
*dev
= NULL
;
299 struct gfar_private
*priv
= NULL
;
300 DECLARE_MAC_BUF(mac
);
304 /* Create an ethernet device instance */
305 dev
= alloc_etherdev(sizeof (*priv
));
310 priv
= netdev_priv(dev
);
313 priv
->node
= ofdev
->node
;
314 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
316 err
= gfar_of_init(dev
);
321 spin_lock_init(&priv
->txlock
);
322 spin_lock_init(&priv
->rxlock
);
323 spin_lock_init(&priv
->bflock
);
324 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
326 dev_set_drvdata(&ofdev
->dev
, priv
);
328 /* Stop the DMA engine now, in case it was running before */
329 /* (The firmware could have used it, and left it running). */
332 /* Reset MAC layer */
333 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
335 /* We need to delay at least 3 TX clocks */
338 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
339 gfar_write(&priv
->regs
->maccfg1
, tempval
);
341 /* Initialize MACCFG2. */
342 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
344 /* Initialize ECNTRL */
345 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
347 /* Set the dev->base_addr to the gfar reg region */
348 dev
->base_addr
= (unsigned long) (priv
->regs
);
350 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
352 /* Fill in the dev structure */
353 dev
->watchdog_timeo
= TX_TIMEOUT
;
354 netif_napi_add(dev
, &priv
->napi
, gfar_poll
, GFAR_DEV_WEIGHT
);
357 dev
->netdev_ops
= &gfar_netdev_ops
;
358 dev
->ethtool_ops
= &gfar_ethtool_ops
;
360 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
361 priv
->rx_csum_enable
= 1;
362 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
364 priv
->rx_csum_enable
= 0;
368 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
)
369 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
371 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
372 priv
->extended_hash
= 1;
373 priv
->hash_width
= 9;
375 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
376 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
377 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
378 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
379 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
380 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
381 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
382 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
383 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
384 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
385 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
386 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
387 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
388 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
389 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
390 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
393 priv
->extended_hash
= 0;
394 priv
->hash_width
= 8;
396 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
397 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
398 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
399 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
400 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
401 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
402 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
403 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
406 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
407 priv
->padding
= DEFAULT_PADDING
;
411 if (dev
->features
& NETIF_F_IP_CSUM
)
412 dev
->hard_header_len
+= GMAC_FCB_LEN
;
414 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
415 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
416 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
417 priv
->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
419 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
420 priv
->txic
= DEFAULT_TXIC
;
421 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
422 priv
->rxic
= DEFAULT_RXIC
;
424 /* Enable most messages by default */
425 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
427 /* Carrier starts down, phylib will bring it up */
428 netif_carrier_off(dev
);
430 err
= register_netdev(dev
);
433 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
438 device_init_wakeup(&dev
->dev
,
439 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
441 /* fill out IRQ number and name fields */
442 len_devname
= strlen(dev
->name
);
443 strncpy(&priv
->int_name_tx
[0], dev
->name
, len_devname
);
444 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
445 strncpy(&priv
->int_name_tx
[len_devname
],
446 "_tx", sizeof("_tx") + 1);
448 strncpy(&priv
->int_name_rx
[0], dev
->name
, len_devname
);
449 strncpy(&priv
->int_name_rx
[len_devname
],
450 "_rx", sizeof("_rx") + 1);
452 strncpy(&priv
->int_name_er
[0], dev
->name
, len_devname
);
453 strncpy(&priv
->int_name_er
[len_devname
],
454 "_er", sizeof("_er") + 1);
456 priv
->int_name_tx
[len_devname
] = '\0';
458 /* Create all the sysfs files */
459 gfar_init_sysfs(dev
);
461 /* Print out the device info */
462 printk(KERN_INFO DEVICE_NAME
"%pM\n", dev
->name
, dev
->dev_addr
);
464 /* Even more device info helps when determining which kernel */
465 /* provided which set of benchmarks. */
466 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
467 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
468 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
476 of_node_put(priv
->phy_node
);
478 of_node_put(priv
->tbi_node
);
483 static int gfar_remove(struct of_device
*ofdev
)
485 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
488 of_node_put(priv
->phy_node
);
490 of_node_put(priv
->tbi_node
);
492 dev_set_drvdata(&ofdev
->dev
, NULL
);
494 unregister_netdev(priv
->ndev
);
496 free_netdev(priv
->ndev
);
502 static int gfar_suspend(struct of_device
*ofdev
, pm_message_t state
)
504 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
505 struct net_device
*dev
= priv
->ndev
;
509 int magic_packet
= priv
->wol_en
&&
510 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
512 netif_device_detach(dev
);
514 if (netif_running(dev
)) {
515 spin_lock_irqsave(&priv
->txlock
, flags
);
516 spin_lock(&priv
->rxlock
);
518 gfar_halt_nodisable(dev
);
520 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
521 tempval
= gfar_read(&priv
->regs
->maccfg1
);
523 tempval
&= ~MACCFG1_TX_EN
;
526 tempval
&= ~MACCFG1_RX_EN
;
528 gfar_write(&priv
->regs
->maccfg1
, tempval
);
530 spin_unlock(&priv
->rxlock
);
531 spin_unlock_irqrestore(&priv
->txlock
, flags
);
533 napi_disable(&priv
->napi
);
536 /* Enable interrupt on Magic Packet */
537 gfar_write(&priv
->regs
->imask
, IMASK_MAG
);
539 /* Enable Magic Packet mode */
540 tempval
= gfar_read(&priv
->regs
->maccfg2
);
541 tempval
|= MACCFG2_MPEN
;
542 gfar_write(&priv
->regs
->maccfg2
, tempval
);
544 phy_stop(priv
->phydev
);
551 static int gfar_resume(struct of_device
*ofdev
)
553 struct gfar_private
*priv
= dev_get_drvdata(&ofdev
->dev
);
554 struct net_device
*dev
= priv
->ndev
;
557 int magic_packet
= priv
->wol_en
&&
558 (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
560 if (!netif_running(dev
)) {
561 netif_device_attach(dev
);
565 if (!magic_packet
&& priv
->phydev
)
566 phy_start(priv
->phydev
);
568 /* Disable Magic Packet mode, in case something
572 spin_lock_irqsave(&priv
->txlock
, flags
);
573 spin_lock(&priv
->rxlock
);
575 tempval
= gfar_read(&priv
->regs
->maccfg2
);
576 tempval
&= ~MACCFG2_MPEN
;
577 gfar_write(&priv
->regs
->maccfg2
, tempval
);
581 spin_unlock(&priv
->rxlock
);
582 spin_unlock_irqrestore(&priv
->txlock
, flags
);
584 netif_device_attach(dev
);
586 napi_enable(&priv
->napi
);
591 #define gfar_suspend NULL
592 #define gfar_resume NULL
595 /* Reads the controller's registers to determine what interface
596 * connects it to the PHY.
598 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
600 struct gfar_private
*priv
= netdev_priv(dev
);
601 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
603 if (ecntrl
& ECNTRL_SGMII_MODE
)
604 return PHY_INTERFACE_MODE_SGMII
;
606 if (ecntrl
& ECNTRL_TBI_MODE
) {
607 if (ecntrl
& ECNTRL_REDUCED_MODE
)
608 return PHY_INTERFACE_MODE_RTBI
;
610 return PHY_INTERFACE_MODE_TBI
;
613 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
614 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
615 return PHY_INTERFACE_MODE_RMII
;
617 phy_interface_t interface
= priv
->interface
;
620 * This isn't autodetected right now, so it must
621 * be set by the device tree or platform code.
623 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
624 return PHY_INTERFACE_MODE_RGMII_ID
;
626 return PHY_INTERFACE_MODE_RGMII
;
630 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
631 return PHY_INTERFACE_MODE_GMII
;
633 return PHY_INTERFACE_MODE_MII
;
637 /* Initializes driver's PHY state, and attaches to the PHY.
638 * Returns 0 on success.
640 static int init_phy(struct net_device
*dev
)
642 struct gfar_private
*priv
= netdev_priv(dev
);
643 uint gigabit_support
=
644 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
645 SUPPORTED_1000baseT_Full
: 0;
646 phy_interface_t interface
;
650 priv
->oldduplex
= -1;
652 interface
= gfar_get_interface(dev
);
654 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
657 priv
->phydev
= of_phy_connect_fixed_link(dev
, &adjust_link
,
660 dev_err(&dev
->dev
, "could not attach to PHY\n");
664 if (interface
== PHY_INTERFACE_MODE_SGMII
)
665 gfar_configure_serdes(dev
);
667 /* Remove any features not supported by the controller */
668 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
669 priv
->phydev
->advertising
= priv
->phydev
->supported
;
675 * Initialize TBI PHY interface for communicating with the
676 * SERDES lynx PHY on the chip. We communicate with this PHY
677 * through the MDIO bus on each controller, treating it as a
678 * "normal" PHY at the address found in the TBIPA register. We assume
679 * that the TBIPA register is valid. Either the MDIO bus code will set
680 * it to a value that doesn't conflict with other PHYs on the bus, or the
681 * value doesn't matter, as there are no other PHYs on the bus.
683 static void gfar_configure_serdes(struct net_device
*dev
)
685 struct gfar_private
*priv
= netdev_priv(dev
);
686 struct phy_device
*tbiphy
;
688 if (!priv
->tbi_node
) {
689 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
690 "device tree specify a tbi-handle\n");
694 tbiphy
= of_phy_find_device(priv
->tbi_node
);
696 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
701 * If the link is already up, we must already be ok, and don't need to
702 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
703 * everything for us? Resetting it takes the link down and requires
704 * several seconds for it to come back.
706 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
709 /* Single clk mode, mii mode off(for serdes communication) */
710 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
712 phy_write(tbiphy
, MII_ADVERTISE
,
713 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
714 ADVERTISE_1000XPSE_ASYM
);
716 phy_write(tbiphy
, MII_BMCR
, BMCR_ANENABLE
|
717 BMCR_ANRESTART
| BMCR_FULLDPLX
| BMCR_SPEED1000
);
720 static void init_registers(struct net_device
*dev
)
722 struct gfar_private
*priv
= netdev_priv(dev
);
725 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
727 /* Initialize IMASK */
728 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
730 /* Init hash registers to zero */
731 gfar_write(&priv
->regs
->igaddr0
, 0);
732 gfar_write(&priv
->regs
->igaddr1
, 0);
733 gfar_write(&priv
->regs
->igaddr2
, 0);
734 gfar_write(&priv
->regs
->igaddr3
, 0);
735 gfar_write(&priv
->regs
->igaddr4
, 0);
736 gfar_write(&priv
->regs
->igaddr5
, 0);
737 gfar_write(&priv
->regs
->igaddr6
, 0);
738 gfar_write(&priv
->regs
->igaddr7
, 0);
740 gfar_write(&priv
->regs
->gaddr0
, 0);
741 gfar_write(&priv
->regs
->gaddr1
, 0);
742 gfar_write(&priv
->regs
->gaddr2
, 0);
743 gfar_write(&priv
->regs
->gaddr3
, 0);
744 gfar_write(&priv
->regs
->gaddr4
, 0);
745 gfar_write(&priv
->regs
->gaddr5
, 0);
746 gfar_write(&priv
->regs
->gaddr6
, 0);
747 gfar_write(&priv
->regs
->gaddr7
, 0);
749 /* Zero out the rmon mib registers if it has them */
750 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
751 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
753 /* Mask off the CAM interrupts */
754 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
755 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
758 /* Initialize the max receive buffer length */
759 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
761 /* Initialize the Minimum Frame Length Register */
762 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
766 /* Halt the receive and transmit queues */
767 static void gfar_halt_nodisable(struct net_device
*dev
)
769 struct gfar_private
*priv
= netdev_priv(dev
);
770 struct gfar __iomem
*regs
= priv
->regs
;
773 /* Mask all interrupts */
774 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
776 /* Clear all interrupts */
777 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
779 /* Stop the DMA, and wait for it to stop */
780 tempval
= gfar_read(&priv
->regs
->dmactrl
);
781 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
782 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
783 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
784 gfar_write(&priv
->regs
->dmactrl
, tempval
);
786 while (!(gfar_read(&priv
->regs
->ievent
) &
787 (IEVENT_GRSC
| IEVENT_GTSC
)))
792 /* Halt the receive and transmit queues */
793 void gfar_halt(struct net_device
*dev
)
795 struct gfar_private
*priv
= netdev_priv(dev
);
796 struct gfar __iomem
*regs
= priv
->regs
;
799 gfar_halt_nodisable(dev
);
801 /* Disable Rx and Tx */
802 tempval
= gfar_read(®s
->maccfg1
);
803 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
804 gfar_write(®s
->maccfg1
, tempval
);
807 void stop_gfar(struct net_device
*dev
)
809 struct gfar_private
*priv
= netdev_priv(dev
);
810 struct gfar __iomem
*regs
= priv
->regs
;
813 phy_stop(priv
->phydev
);
816 spin_lock_irqsave(&priv
->txlock
, flags
);
817 spin_lock(&priv
->rxlock
);
821 spin_unlock(&priv
->rxlock
);
822 spin_unlock_irqrestore(&priv
->txlock
, flags
);
825 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
826 free_irq(priv
->interruptError
, dev
);
827 free_irq(priv
->interruptTransmit
, dev
);
828 free_irq(priv
->interruptReceive
, dev
);
830 free_irq(priv
->interruptTransmit
, dev
);
833 free_skb_resources(priv
);
835 dma_free_coherent(&priv
->ofdev
->dev
,
836 sizeof(struct txbd8
)*priv
->tx_ring_size
837 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
839 gfar_read(®s
->tbase0
));
842 /* If there are any tx skbs or rx skbs still around, free them.
843 * Then free tx_skbuff and rx_skbuff */
844 static void free_skb_resources(struct gfar_private
*priv
)
850 /* Go through all the buffer descriptors and free their data buffers */
851 txbdp
= priv
->tx_bd_base
;
853 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
854 if (!priv
->tx_skbuff
[i
])
857 dma_unmap_single(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
858 txbdp
->length
, DMA_TO_DEVICE
);
860 for (j
= 0; j
< skb_shinfo(priv
->tx_skbuff
[i
])->nr_frags
; j
++) {
862 dma_unmap_page(&priv
->ofdev
->dev
, txbdp
->bufPtr
,
863 txbdp
->length
, DMA_TO_DEVICE
);
866 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
867 priv
->tx_skbuff
[i
] = NULL
;
870 kfree(priv
->tx_skbuff
);
872 rxbdp
= priv
->rx_bd_base
;
874 /* rx_skbuff is not guaranteed to be allocated, so only
875 * free it and its contents if it is allocated */
876 if(priv
->rx_skbuff
!= NULL
) {
877 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
878 if (priv
->rx_skbuff
[i
]) {
879 dma_unmap_single(&priv
->ofdev
->dev
, rxbdp
->bufPtr
,
880 priv
->rx_buffer_size
,
883 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
884 priv
->rx_skbuff
[i
] = NULL
;
893 kfree(priv
->rx_skbuff
);
897 void gfar_start(struct net_device
*dev
)
899 struct gfar_private
*priv
= netdev_priv(dev
);
900 struct gfar __iomem
*regs
= priv
->regs
;
903 /* Enable Rx and Tx in MACCFG1 */
904 tempval
= gfar_read(®s
->maccfg1
);
905 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
906 gfar_write(®s
->maccfg1
, tempval
);
908 /* Initialize DMACTRL to have WWR and WOP */
909 tempval
= gfar_read(&priv
->regs
->dmactrl
);
910 tempval
|= DMACTRL_INIT_SETTINGS
;
911 gfar_write(&priv
->regs
->dmactrl
, tempval
);
913 /* Make sure we aren't stopped */
914 tempval
= gfar_read(&priv
->regs
->dmactrl
);
915 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
916 gfar_write(&priv
->regs
->dmactrl
, tempval
);
918 /* Clear THLT/RHLT, so that the DMA starts polling now */
919 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
920 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
922 /* Unmask the interrupts we look for */
923 gfar_write(®s
->imask
, IMASK_DEFAULT
);
925 dev
->trans_start
= jiffies
;
928 /* Bring the controller up and running */
929 int startup_gfar(struct net_device
*dev
)
936 struct gfar_private
*priv
= netdev_priv(dev
);
937 struct gfar __iomem
*regs
= priv
->regs
;
943 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
945 /* Allocate memory for the buffer descriptors */
946 vaddr
= (unsigned long) dma_alloc_coherent(&priv
->ofdev
->dev
,
947 sizeof (struct txbd8
) * priv
->tx_ring_size
+
948 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
952 if (netif_msg_ifup(priv
))
953 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
958 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
960 /* enet DMA only understands physical addresses */
961 gfar_write(®s
->tbase0
, addr
);
963 /* Start the rx descriptor ring where the tx ring leaves off */
964 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
965 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
966 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
967 gfar_write(®s
->rbase0
, addr
);
969 /* Setup the skbuff rings */
971 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
972 priv
->tx_ring_size
, GFP_KERNEL
);
974 if (NULL
== priv
->tx_skbuff
) {
975 if (netif_msg_ifup(priv
))
976 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
982 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
983 priv
->tx_skbuff
[i
] = NULL
;
986 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
987 priv
->rx_ring_size
, GFP_KERNEL
);
989 if (NULL
== priv
->rx_skbuff
) {
990 if (netif_msg_ifup(priv
))
991 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
997 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
998 priv
->rx_skbuff
[i
] = NULL
;
1000 /* Initialize some variables in our dev structure */
1001 priv
->num_txbdfree
= priv
->tx_ring_size
;
1002 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
1003 priv
->cur_rx
= priv
->rx_bd_base
;
1004 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
1005 priv
->skb_currx
= 0;
1007 /* Initialize Transmit Descriptor Ring */
1008 txbdp
= priv
->tx_bd_base
;
1009 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
1015 /* Set the last descriptor in the ring to indicate wrap */
1017 txbdp
->status
|= TXBD_WRAP
;
1019 rxbdp
= priv
->rx_bd_base
;
1020 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
1021 struct sk_buff
*skb
;
1023 skb
= gfar_new_skb(dev
);
1026 printk(KERN_ERR
"%s: Can't allocate RX buffers\n",
1029 goto err_rxalloc_fail
;
1032 priv
->rx_skbuff
[i
] = skb
;
1034 gfar_new_rxbdp(dev
, rxbdp
, skb
);
1039 /* Set the last descriptor in the ring to wrap */
1041 rxbdp
->status
|= RXBD_WRAP
;
1043 /* If the device has multiple interrupts, register for
1044 * them. Otherwise, only register for the one */
1045 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1046 /* Install our interrupt handlers for Error,
1047 * Transmit, and Receive */
1048 if (request_irq(priv
->interruptError
, gfar_error
,
1049 0, priv
->int_name_er
, dev
) < 0) {
1050 if (netif_msg_intr(priv
))
1051 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1052 dev
->name
, priv
->interruptError
);
1058 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
1059 0, priv
->int_name_tx
, dev
) < 0) {
1060 if (netif_msg_intr(priv
))
1061 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1062 dev
->name
, priv
->interruptTransmit
);
1069 if (request_irq(priv
->interruptReceive
, gfar_receive
,
1070 0, priv
->int_name_rx
, dev
) < 0) {
1071 if (netif_msg_intr(priv
))
1072 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
1073 dev
->name
, priv
->interruptReceive
);
1079 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
1080 0, priv
->int_name_tx
, dev
) < 0) {
1081 if (netif_msg_intr(priv
))
1082 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
1083 dev
->name
, priv
->interruptTransmit
);
1090 phy_start(priv
->phydev
);
1092 /* Configure the coalescing support */
1093 gfar_write(®s
->txic
, 0);
1094 if (priv
->txcoalescing
)
1095 gfar_write(®s
->txic
, priv
->txic
);
1097 gfar_write(®s
->rxic
, 0);
1098 if (priv
->rxcoalescing
)
1099 gfar_write(®s
->rxic
, priv
->rxic
);
1101 if (priv
->rx_csum_enable
)
1102 rctrl
|= RCTRL_CHECKSUMMING
;
1104 if (priv
->extended_hash
) {
1105 rctrl
|= RCTRL_EXTHASH
;
1107 gfar_clear_exact_match(dev
);
1108 rctrl
|= RCTRL_EMEN
;
1111 if (priv
->padding
) {
1112 rctrl
&= ~RCTRL_PAL_MASK
;
1113 rctrl
|= RCTRL_PADDING(priv
->padding
);
1116 /* keep vlan related bits if it's enabled */
1118 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
1119 tctrl
|= TCTRL_VLINS
;
1122 /* Init rctrl based on our settings */
1123 gfar_write(&priv
->regs
->rctrl
, rctrl
);
1125 if (dev
->features
& NETIF_F_IP_CSUM
)
1126 tctrl
|= TCTRL_INIT_CSUM
;
1128 gfar_write(&priv
->regs
->tctrl
, tctrl
);
1130 /* Set the extraction length and index */
1131 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
1132 ATTRELI_EI(priv
->rx_stash_index
);
1134 gfar_write(&priv
->regs
->attreli
, attrs
);
1136 /* Start with defaults, and add stashing or locking
1137 * depending on the approprate variables */
1138 attrs
= ATTR_INIT_SETTINGS
;
1140 if (priv
->bd_stash_en
)
1141 attrs
|= ATTR_BDSTASH
;
1143 if (priv
->rx_stash_size
!= 0)
1144 attrs
|= ATTR_BUFSTASH
;
1146 gfar_write(&priv
->regs
->attr
, attrs
);
1148 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
1149 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
1150 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
1152 /* Start the controller */
1158 free_irq(priv
->interruptTransmit
, dev
);
1160 free_irq(priv
->interruptError
, dev
);
1164 free_skb_resources(priv
);
1166 dma_free_coherent(&priv
->ofdev
->dev
,
1167 sizeof(struct txbd8
)*priv
->tx_ring_size
1168 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
1170 gfar_read(®s
->tbase0
));
1175 /* Called when something needs to use the ethernet device */
1176 /* Returns 0 for success. */
1177 static int gfar_enet_open(struct net_device
*dev
)
1179 struct gfar_private
*priv
= netdev_priv(dev
);
1182 napi_enable(&priv
->napi
);
1184 skb_queue_head_init(&priv
->rx_recycle
);
1186 /* Initialize a bunch of registers */
1187 init_registers(dev
);
1189 gfar_set_mac_address(dev
);
1191 err
= init_phy(dev
);
1194 napi_disable(&priv
->napi
);
1198 err
= startup_gfar(dev
);
1200 napi_disable(&priv
->napi
);
1204 netif_start_queue(dev
);
1206 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
1211 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
1213 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
1215 memset(fcb
, 0, GMAC_FCB_LEN
);
1220 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
1224 /* If we're here, it's a IP packet with a TCP or UDP
1225 * payload. We set it to checksum, using a pseudo-header
1228 flags
= TXFCB_DEFAULT
;
1230 /* Tell the controller what the protocol is */
1231 /* And provide the already calculated phcs */
1232 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1234 fcb
->phcs
= udp_hdr(skb
)->check
;
1236 fcb
->phcs
= tcp_hdr(skb
)->check
;
1238 /* l3os is the distance between the start of the
1239 * frame (skb->data) and the start of the IP hdr.
1240 * l4os is the distance between the start of the
1241 * l3 hdr and the l4 hdr */
1242 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
1243 fcb
->l4os
= skb_network_header_len(skb
);
1248 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
1250 fcb
->flags
|= TXFCB_VLN
;
1251 fcb
->vlctl
= vlan_tx_tag_get(skb
);
1254 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
1255 struct txbd8
*base
, int ring_size
)
1257 struct txbd8
*new_bd
= bdp
+ stride
;
1259 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
1262 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
1265 return skip_txbd(bdp
, 1, base
, ring_size
);
1268 /* This is called by the kernel when a frame is ready for transmission. */
1269 /* It is pointed to by the dev->hard_start_xmit function pointer */
1270 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1272 struct gfar_private
*priv
= netdev_priv(dev
);
1273 struct txfcb
*fcb
= NULL
;
1274 struct txbd8
*txbdp
, *txbdp_start
, *base
;
1278 unsigned long flags
;
1279 unsigned int nr_frags
, length
;
1281 base
= priv
->tx_bd_base
;
1283 /* make space for additional header when fcb is needed */
1284 if (((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1285 (priv
->vlgrp
&& vlan_tx_tag_present(skb
))) &&
1286 (skb_headroom(skb
) < GMAC_FCB_LEN
)) {
1287 struct sk_buff
*skb_new
;
1289 skb_new
= skb_realloc_headroom(skb
, GMAC_FCB_LEN
);
1291 dev
->stats
.tx_errors
++;
1293 return NETDEV_TX_OK
;
1299 /* total number of fragments in the SKB */
1300 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1302 spin_lock_irqsave(&priv
->txlock
, flags
);
1304 /* check if there is space to queue this packet */
1305 if ((nr_frags
+1) > priv
->num_txbdfree
) {
1306 /* no space, stop the queue */
1307 netif_stop_queue(dev
);
1308 dev
->stats
.tx_fifo_errors
++;
1309 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1310 return NETDEV_TX_BUSY
;
1313 /* Update transmit stats */
1314 dev
->stats
.tx_bytes
+= skb
->len
;
1316 txbdp
= txbdp_start
= priv
->cur_tx
;
1318 if (nr_frags
== 0) {
1319 lstatus
= txbdp
->lstatus
| BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1321 /* Place the fragment addresses and lengths into the TxBDs */
1322 for (i
= 0; i
< nr_frags
; i
++) {
1323 /* Point at the next BD, wrapping as needed */
1324 txbdp
= next_txbd(txbdp
, base
, priv
->tx_ring_size
);
1326 length
= skb_shinfo(skb
)->frags
[i
].size
;
1328 lstatus
= txbdp
->lstatus
| length
|
1329 BD_LFLAG(TXBD_READY
);
1331 /* Handle the last BD specially */
1332 if (i
== nr_frags
- 1)
1333 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
1335 bufaddr
= dma_map_page(&priv
->ofdev
->dev
,
1336 skb_shinfo(skb
)->frags
[i
].page
,
1337 skb_shinfo(skb
)->frags
[i
].page_offset
,
1341 /* set the TxBD length and buffer pointer */
1342 txbdp
->bufPtr
= bufaddr
;
1343 txbdp
->lstatus
= lstatus
;
1346 lstatus
= txbdp_start
->lstatus
;
1349 /* Set up checksumming */
1350 if (CHECKSUM_PARTIAL
== skb
->ip_summed
) {
1351 fcb
= gfar_add_fcb(skb
);
1352 lstatus
|= BD_LFLAG(TXBD_TOE
);
1353 gfar_tx_checksum(skb
, fcb
);
1356 if (priv
->vlgrp
&& vlan_tx_tag_present(skb
)) {
1357 if (unlikely(NULL
== fcb
)) {
1358 fcb
= gfar_add_fcb(skb
);
1359 lstatus
|= BD_LFLAG(TXBD_TOE
);
1362 gfar_tx_vlan(skb
, fcb
);
1365 /* setup the TxBD length and buffer pointer for the first BD */
1366 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1367 txbdp_start
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
1368 skb_headlen(skb
), DMA_TO_DEVICE
);
1370 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
1373 * The powerpc-specific eieio() is used, as wmb() has too strong
1374 * semantics (it requires synchronization between cacheable and
1375 * uncacheable mappings, which eieio doesn't provide and which we
1376 * don't need), thus requiring a more expensive sync instruction. At
1377 * some point, the set of architecture-independent barrier functions
1378 * should be expanded to include weaker barriers.
1382 txbdp_start
->lstatus
= lstatus
;
1384 /* Update the current skb pointer to the next entry we will use
1385 * (wrapping if necessary) */
1386 priv
->skb_curtx
= (priv
->skb_curtx
+ 1) &
1387 TX_RING_MOD_MASK(priv
->tx_ring_size
);
1389 priv
->cur_tx
= next_txbd(txbdp
, base
, priv
->tx_ring_size
);
1391 /* reduce TxBD free count */
1392 priv
->num_txbdfree
-= (nr_frags
+ 1);
1394 dev
->trans_start
= jiffies
;
1396 /* If the next BD still needs to be cleaned up, then the bds
1397 are full. We need to tell the kernel to stop sending us stuff. */
1398 if (!priv
->num_txbdfree
) {
1399 netif_stop_queue(dev
);
1401 dev
->stats
.tx_fifo_errors
++;
1404 /* Tell the DMA to go go go */
1405 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1408 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1410 return NETDEV_TX_OK
;
1413 /* Stops the kernel queue, and halts the controller */
1414 static int gfar_close(struct net_device
*dev
)
1416 struct gfar_private
*priv
= netdev_priv(dev
);
1418 napi_disable(&priv
->napi
);
1420 skb_queue_purge(&priv
->rx_recycle
);
1421 cancel_work_sync(&priv
->reset_task
);
1424 /* Disconnect from the PHY */
1425 phy_disconnect(priv
->phydev
);
1426 priv
->phydev
= NULL
;
1428 netif_stop_queue(dev
);
1433 /* Changes the mac address if the controller is not running. */
1434 static int gfar_set_mac_address(struct net_device
*dev
)
1436 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1442 /* Enables and disables VLAN insertion/extraction */
1443 static void gfar_vlan_rx_register(struct net_device
*dev
,
1444 struct vlan_group
*grp
)
1446 struct gfar_private
*priv
= netdev_priv(dev
);
1447 unsigned long flags
;
1450 spin_lock_irqsave(&priv
->rxlock
, flags
);
1455 /* Enable VLAN tag insertion */
1456 tempval
= gfar_read(&priv
->regs
->tctrl
);
1457 tempval
|= TCTRL_VLINS
;
1459 gfar_write(&priv
->regs
->tctrl
, tempval
);
1461 /* Enable VLAN tag extraction */
1462 tempval
= gfar_read(&priv
->regs
->rctrl
);
1463 tempval
|= (RCTRL_VLEX
| RCTRL_PRSDEP_INIT
);
1464 gfar_write(&priv
->regs
->rctrl
, tempval
);
1466 /* Disable VLAN tag insertion */
1467 tempval
= gfar_read(&priv
->regs
->tctrl
);
1468 tempval
&= ~TCTRL_VLINS
;
1469 gfar_write(&priv
->regs
->tctrl
, tempval
);
1471 /* Disable VLAN tag extraction */
1472 tempval
= gfar_read(&priv
->regs
->rctrl
);
1473 tempval
&= ~RCTRL_VLEX
;
1474 /* If parse is no longer required, then disable parser */
1475 if (tempval
& RCTRL_REQ_PARSER
)
1476 tempval
|= RCTRL_PRSDEP_INIT
;
1478 tempval
&= ~RCTRL_PRSDEP_INIT
;
1479 gfar_write(&priv
->regs
->rctrl
, tempval
);
1482 gfar_change_mtu(dev
, dev
->mtu
);
1484 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1487 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1489 int tempsize
, tempval
;
1490 struct gfar_private
*priv
= netdev_priv(dev
);
1491 int oldsize
= priv
->rx_buffer_size
;
1492 int frame_size
= new_mtu
+ ETH_HLEN
;
1495 frame_size
+= VLAN_HLEN
;
1497 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1498 if (netif_msg_drv(priv
))
1499 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1504 if (gfar_uses_fcb(priv
))
1505 frame_size
+= GMAC_FCB_LEN
;
1507 frame_size
+= priv
->padding
;
1510 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1511 INCREMENTAL_BUFFER_SIZE
;
1513 /* Only stop and start the controller if it isn't already
1514 * stopped, and we changed something */
1515 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1518 priv
->rx_buffer_size
= tempsize
;
1522 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1523 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1525 /* If the mtu is larger than the max size for standard
1526 * ethernet frames (ie, a jumbo frame), then set maccfg2
1527 * to allow huge frames, and to check the length */
1528 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1530 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1531 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1533 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1535 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1537 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1543 /* gfar_reset_task gets scheduled when a packet has not been
1544 * transmitted after a set amount of time.
1545 * For now, assume that clearing out all the structures, and
1546 * starting over will fix the problem.
1548 static void gfar_reset_task(struct work_struct
*work
)
1550 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
1552 struct net_device
*dev
= priv
->ndev
;
1554 if (dev
->flags
& IFF_UP
) {
1555 netif_stop_queue(dev
);
1558 netif_start_queue(dev
);
1561 netif_tx_schedule_all(dev
);
1564 static void gfar_timeout(struct net_device
*dev
)
1566 struct gfar_private
*priv
= netdev_priv(dev
);
1568 dev
->stats
.tx_errors
++;
1569 schedule_work(&priv
->reset_task
);
1572 /* Interrupt Handler for Transmit complete */
1573 static int gfar_clean_tx_ring(struct net_device
*dev
)
1575 struct gfar_private
*priv
= netdev_priv(dev
);
1577 struct txbd8
*lbdp
= NULL
;
1578 struct txbd8
*base
= priv
->tx_bd_base
;
1579 struct sk_buff
*skb
;
1581 int tx_ring_size
= priv
->tx_ring_size
;
1587 bdp
= priv
->dirty_tx
;
1588 skb_dirtytx
= priv
->skb_dirtytx
;
1590 while ((skb
= priv
->tx_skbuff
[skb_dirtytx
])) {
1591 frags
= skb_shinfo(skb
)->nr_frags
;
1592 lbdp
= skip_txbd(bdp
, frags
, base
, tx_ring_size
);
1594 lstatus
= lbdp
->lstatus
;
1596 /* Only clean completed frames */
1597 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
1598 (lstatus
& BD_LENGTH_MASK
))
1601 dma_unmap_single(&priv
->ofdev
->dev
,
1606 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
1607 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
1609 for (i
= 0; i
< frags
; i
++) {
1610 dma_unmap_page(&priv
->ofdev
->dev
,
1614 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
1615 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
1619 * If there's room in the queue (limit it to rx_buffer_size)
1620 * we add this skb back into the pool, if it's the right size
1622 if (skb_queue_len(&priv
->rx_recycle
) < priv
->rx_ring_size
&&
1623 skb_recycle_check(skb
, priv
->rx_buffer_size
+
1625 __skb_queue_head(&priv
->rx_recycle
, skb
);
1627 dev_kfree_skb_any(skb
);
1629 priv
->tx_skbuff
[skb_dirtytx
] = NULL
;
1631 skb_dirtytx
= (skb_dirtytx
+ 1) &
1632 TX_RING_MOD_MASK(tx_ring_size
);
1635 priv
->num_txbdfree
+= frags
+ 1;
1638 /* If we freed a buffer, we can restart transmission, if necessary */
1639 if (netif_queue_stopped(dev
) && priv
->num_txbdfree
)
1640 netif_wake_queue(dev
);
1642 /* Update dirty indicators */
1643 priv
->skb_dirtytx
= skb_dirtytx
;
1644 priv
->dirty_tx
= bdp
;
1646 dev
->stats
.tx_packets
+= howmany
;
1651 static void gfar_schedule_cleanup(struct net_device
*dev
)
1653 struct gfar_private
*priv
= netdev_priv(dev
);
1654 unsigned long flags
;
1656 spin_lock_irqsave(&priv
->txlock
, flags
);
1657 spin_lock(&priv
->rxlock
);
1659 if (napi_schedule_prep(&priv
->napi
)) {
1660 gfar_write(&priv
->regs
->imask
, IMASK_RTX_DISABLED
);
1661 __napi_schedule(&priv
->napi
);
1664 * Clear IEVENT, so interrupts aren't called again
1665 * because of the packets that have already arrived.
1667 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1670 spin_unlock(&priv
->rxlock
);
1671 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1674 /* Interrupt Handler for Transmit complete */
1675 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1677 gfar_schedule_cleanup((struct net_device
*)dev_id
);
1681 static void gfar_new_rxbdp(struct net_device
*dev
, struct rxbd8
*bdp
,
1682 struct sk_buff
*skb
)
1684 struct gfar_private
*priv
= netdev_priv(dev
);
1687 bdp
->bufPtr
= dma_map_single(&priv
->ofdev
->dev
, skb
->data
,
1688 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1690 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
1692 if (bdp
== priv
->rx_bd_base
+ priv
->rx_ring_size
- 1)
1693 lstatus
|= BD_LFLAG(RXBD_WRAP
);
1697 bdp
->lstatus
= lstatus
;
1701 struct sk_buff
* gfar_new_skb(struct net_device
*dev
)
1703 unsigned int alignamount
;
1704 struct gfar_private
*priv
= netdev_priv(dev
);
1705 struct sk_buff
*skb
= NULL
;
1707 skb
= __skb_dequeue(&priv
->rx_recycle
);
1709 skb
= netdev_alloc_skb(dev
,
1710 priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1715 alignamount
= RXBUF_ALIGNMENT
-
1716 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1718 /* We need the data buffer to be aligned properly. We will reserve
1719 * as many bytes as needed to align the data properly
1721 skb_reserve(skb
, alignamount
);
1726 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
1728 struct gfar_private
*priv
= netdev_priv(dev
);
1729 struct net_device_stats
*stats
= &dev
->stats
;
1730 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1732 /* If the packet was truncated, none of the other errors
1734 if (status
& RXBD_TRUNCATED
) {
1735 stats
->rx_length_errors
++;
1741 /* Count the errors, if there were any */
1742 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1743 stats
->rx_length_errors
++;
1745 if (status
& RXBD_LARGE
)
1750 if (status
& RXBD_NONOCTET
) {
1751 stats
->rx_frame_errors
++;
1752 estats
->rx_nonoctet
++;
1754 if (status
& RXBD_CRCERR
) {
1755 estats
->rx_crcerr
++;
1756 stats
->rx_crc_errors
++;
1758 if (status
& RXBD_OVERRUN
) {
1759 estats
->rx_overrun
++;
1760 stats
->rx_crc_errors
++;
1764 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1766 gfar_schedule_cleanup((struct net_device
*)dev_id
);
1770 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1772 /* If valid headers were found, and valid sums
1773 * were verified, then we tell the kernel that no
1774 * checksumming is necessary. Otherwise, it is */
1775 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1776 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1778 skb
->ip_summed
= CHECKSUM_NONE
;
1782 /* gfar_process_frame() -- handle one incoming packet if skb
1784 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1787 struct gfar_private
*priv
= netdev_priv(dev
);
1788 struct rxfcb
*fcb
= NULL
;
1792 /* fcb is at the beginning if exists */
1793 fcb
= (struct rxfcb
*)skb
->data
;
1795 /* Remove the FCB from the skb */
1796 /* Remove the padded bytes, if there are any */
1798 skb_pull(skb
, amount_pull
);
1800 if (priv
->rx_csum_enable
)
1801 gfar_rx_checksum(skb
, fcb
);
1803 /* Tell the skb what kind of packet this is */
1804 skb
->protocol
= eth_type_trans(skb
, dev
);
1806 /* Send the packet up the stack */
1807 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1808 ret
= vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
, fcb
->vlctl
);
1810 ret
= netif_receive_skb(skb
);
1812 if (NET_RX_DROP
== ret
)
1813 priv
->extra_stats
.kernel_dropped
++;
1818 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1819 * until the budget/quota has been reached. Returns the number
1822 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1824 struct rxbd8
*bdp
, *base
;
1825 struct sk_buff
*skb
;
1829 struct gfar_private
*priv
= netdev_priv(dev
);
1831 /* Get the first full descriptor */
1833 base
= priv
->rx_bd_base
;
1835 amount_pull
= (gfar_uses_fcb(priv
) ? GMAC_FCB_LEN
: 0) +
1838 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1839 struct sk_buff
*newskb
;
1842 /* Add another skb for the future */
1843 newskb
= gfar_new_skb(dev
);
1845 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1847 dma_unmap_single(&priv
->ofdev
->dev
, bdp
->bufPtr
,
1848 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1850 /* We drop the frame if we failed to allocate a new buffer */
1851 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
1852 bdp
->status
& RXBD_ERR
)) {
1853 count_errors(bdp
->status
, dev
);
1855 if (unlikely(!newskb
))
1859 * We need to reset ->data to what it
1860 * was before gfar_new_skb() re-aligned
1861 * it to an RXBUF_ALIGNMENT boundary
1862 * before we put the skb back on the
1865 skb
->data
= skb
->head
+ NET_SKB_PAD
;
1866 __skb_queue_head(&priv
->rx_recycle
, skb
);
1869 /* Increment the number of packets */
1870 dev
->stats
.rx_packets
++;
1874 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
1875 /* Remove the FCS from the packet length */
1876 skb_put(skb
, pkt_len
);
1877 dev
->stats
.rx_bytes
+= pkt_len
;
1879 if (in_irq() || irqs_disabled())
1880 printk("Interrupt problem!\n");
1881 gfar_process_frame(dev
, skb
, amount_pull
);
1884 if (netif_msg_rx_err(priv
))
1886 "%s: Missing skb!\n", dev
->name
);
1887 dev
->stats
.rx_dropped
++;
1888 priv
->extra_stats
.rx_skbmissing
++;
1893 priv
->rx_skbuff
[priv
->skb_currx
] = newskb
;
1895 /* Setup the new bdp */
1896 gfar_new_rxbdp(dev
, bdp
, newskb
);
1898 /* Update to the next pointer */
1899 bdp
= next_bd(bdp
, base
, priv
->rx_ring_size
);
1901 /* update to point at the next skb */
1903 (priv
->skb_currx
+ 1) &
1904 RX_RING_MOD_MASK(priv
->rx_ring_size
);
1907 /* Update the current rxbd pointer to be the next one */
1913 static int gfar_poll(struct napi_struct
*napi
, int budget
)
1915 struct gfar_private
*priv
= container_of(napi
, struct gfar_private
, napi
);
1916 struct net_device
*dev
= priv
->ndev
;
1919 unsigned long flags
;
1921 /* Clear IEVENT, so interrupts aren't called again
1922 * because of the packets that have already arrived */
1923 gfar_write(&priv
->regs
->ievent
, IEVENT_RTX_MASK
);
1925 /* If we fail to get the lock, don't bother with the TX BDs */
1926 if (spin_trylock_irqsave(&priv
->txlock
, flags
)) {
1927 tx_cleaned
= gfar_clean_tx_ring(dev
);
1928 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1931 rx_cleaned
= gfar_clean_rx_ring(dev
, budget
);
1936 if (rx_cleaned
< budget
) {
1937 napi_complete(napi
);
1939 /* Clear the halt bit in RSTAT */
1940 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1942 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1944 /* If we are coalescing interrupts, update the timer */
1945 /* Otherwise, clear it */
1946 if (likely(priv
->rxcoalescing
)) {
1947 gfar_write(&priv
->regs
->rxic
, 0);
1948 gfar_write(&priv
->regs
->rxic
, priv
->rxic
);
1950 if (likely(priv
->txcoalescing
)) {
1951 gfar_write(&priv
->regs
->txic
, 0);
1952 gfar_write(&priv
->regs
->txic
, priv
->txic
);
1959 #ifdef CONFIG_NET_POLL_CONTROLLER
1961 * Polling 'interrupt' - used by things like netconsole to send skbs
1962 * without having to re-enable interrupts. It's not called while
1963 * the interrupt routine is executing.
1965 static void gfar_netpoll(struct net_device
*dev
)
1967 struct gfar_private
*priv
= netdev_priv(dev
);
1969 /* If the device has multiple interrupts, run tx/rx */
1970 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1971 disable_irq(priv
->interruptTransmit
);
1972 disable_irq(priv
->interruptReceive
);
1973 disable_irq(priv
->interruptError
);
1974 gfar_interrupt(priv
->interruptTransmit
, dev
);
1975 enable_irq(priv
->interruptError
);
1976 enable_irq(priv
->interruptReceive
);
1977 enable_irq(priv
->interruptTransmit
);
1979 disable_irq(priv
->interruptTransmit
);
1980 gfar_interrupt(priv
->interruptTransmit
, dev
);
1981 enable_irq(priv
->interruptTransmit
);
1986 /* The interrupt handler for devices with one interrupt */
1987 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
1989 struct net_device
*dev
= dev_id
;
1990 struct gfar_private
*priv
= netdev_priv(dev
);
1992 /* Save ievent for future reference */
1993 u32 events
= gfar_read(&priv
->regs
->ievent
);
1995 /* Check for reception */
1996 if (events
& IEVENT_RX_MASK
)
1997 gfar_receive(irq
, dev_id
);
1999 /* Check for transmit completion */
2000 if (events
& IEVENT_TX_MASK
)
2001 gfar_transmit(irq
, dev_id
);
2003 /* Check for errors */
2004 if (events
& IEVENT_ERR_MASK
)
2005 gfar_error(irq
, dev_id
);
2010 /* Called every time the controller might need to be made
2011 * aware of new link state. The PHY code conveys this
2012 * information through variables in the phydev structure, and this
2013 * function converts those variables into the appropriate
2014 * register values, and can bring down the device if needed.
2016 static void adjust_link(struct net_device
*dev
)
2018 struct gfar_private
*priv
= netdev_priv(dev
);
2019 struct gfar __iomem
*regs
= priv
->regs
;
2020 unsigned long flags
;
2021 struct phy_device
*phydev
= priv
->phydev
;
2024 spin_lock_irqsave(&priv
->txlock
, flags
);
2026 u32 tempval
= gfar_read(®s
->maccfg2
);
2027 u32 ecntrl
= gfar_read(®s
->ecntrl
);
2029 /* Now we make sure that we can be in full duplex mode.
2030 * If not, we operate in half-duplex mode. */
2031 if (phydev
->duplex
!= priv
->oldduplex
) {
2033 if (!(phydev
->duplex
))
2034 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
2036 tempval
|= MACCFG2_FULL_DUPLEX
;
2038 priv
->oldduplex
= phydev
->duplex
;
2041 if (phydev
->speed
!= priv
->oldspeed
) {
2043 switch (phydev
->speed
) {
2046 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
2048 ecntrl
&= ~(ECNTRL_R100
);
2053 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
2055 /* Reduced mode distinguishes
2056 * between 10 and 100 */
2057 if (phydev
->speed
== SPEED_100
)
2058 ecntrl
|= ECNTRL_R100
;
2060 ecntrl
&= ~(ECNTRL_R100
);
2063 if (netif_msg_link(priv
))
2065 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2066 dev
->name
, phydev
->speed
);
2070 priv
->oldspeed
= phydev
->speed
;
2073 gfar_write(®s
->maccfg2
, tempval
);
2074 gfar_write(®s
->ecntrl
, ecntrl
);
2076 if (!priv
->oldlink
) {
2080 } else if (priv
->oldlink
) {
2084 priv
->oldduplex
= -1;
2087 if (new_state
&& netif_msg_link(priv
))
2088 phy_print_status(phydev
);
2090 spin_unlock_irqrestore(&priv
->txlock
, flags
);
2093 /* Update the hash table based on the current list of multicast
2094 * addresses we subscribe to. Also, change the promiscuity of
2095 * the device based on the flags (this function is called
2096 * whenever dev->flags is changed */
2097 static void gfar_set_multi(struct net_device
*dev
)
2099 struct dev_mc_list
*mc_ptr
;
2100 struct gfar_private
*priv
= netdev_priv(dev
);
2101 struct gfar __iomem
*regs
= priv
->regs
;
2104 if(dev
->flags
& IFF_PROMISC
) {
2105 /* Set RCTRL to PROM */
2106 tempval
= gfar_read(®s
->rctrl
);
2107 tempval
|= RCTRL_PROM
;
2108 gfar_write(®s
->rctrl
, tempval
);
2110 /* Set RCTRL to not PROM */
2111 tempval
= gfar_read(®s
->rctrl
);
2112 tempval
&= ~(RCTRL_PROM
);
2113 gfar_write(®s
->rctrl
, tempval
);
2116 if(dev
->flags
& IFF_ALLMULTI
) {
2117 /* Set the hash to rx all multicast frames */
2118 gfar_write(®s
->igaddr0
, 0xffffffff);
2119 gfar_write(®s
->igaddr1
, 0xffffffff);
2120 gfar_write(®s
->igaddr2
, 0xffffffff);
2121 gfar_write(®s
->igaddr3
, 0xffffffff);
2122 gfar_write(®s
->igaddr4
, 0xffffffff);
2123 gfar_write(®s
->igaddr5
, 0xffffffff);
2124 gfar_write(®s
->igaddr6
, 0xffffffff);
2125 gfar_write(®s
->igaddr7
, 0xffffffff);
2126 gfar_write(®s
->gaddr0
, 0xffffffff);
2127 gfar_write(®s
->gaddr1
, 0xffffffff);
2128 gfar_write(®s
->gaddr2
, 0xffffffff);
2129 gfar_write(®s
->gaddr3
, 0xffffffff);
2130 gfar_write(®s
->gaddr4
, 0xffffffff);
2131 gfar_write(®s
->gaddr5
, 0xffffffff);
2132 gfar_write(®s
->gaddr6
, 0xffffffff);
2133 gfar_write(®s
->gaddr7
, 0xffffffff);
2138 /* zero out the hash */
2139 gfar_write(®s
->igaddr0
, 0x0);
2140 gfar_write(®s
->igaddr1
, 0x0);
2141 gfar_write(®s
->igaddr2
, 0x0);
2142 gfar_write(®s
->igaddr3
, 0x0);
2143 gfar_write(®s
->igaddr4
, 0x0);
2144 gfar_write(®s
->igaddr5
, 0x0);
2145 gfar_write(®s
->igaddr6
, 0x0);
2146 gfar_write(®s
->igaddr7
, 0x0);
2147 gfar_write(®s
->gaddr0
, 0x0);
2148 gfar_write(®s
->gaddr1
, 0x0);
2149 gfar_write(®s
->gaddr2
, 0x0);
2150 gfar_write(®s
->gaddr3
, 0x0);
2151 gfar_write(®s
->gaddr4
, 0x0);
2152 gfar_write(®s
->gaddr5
, 0x0);
2153 gfar_write(®s
->gaddr6
, 0x0);
2154 gfar_write(®s
->gaddr7
, 0x0);
2156 /* If we have extended hash tables, we need to
2157 * clear the exact match registers to prepare for
2159 if (priv
->extended_hash
) {
2160 em_num
= GFAR_EM_NUM
+ 1;
2161 gfar_clear_exact_match(dev
);
2168 if(dev
->mc_count
== 0)
2171 /* Parse the list, and set the appropriate bits */
2172 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2174 gfar_set_mac_for_addr(dev
, idx
,
2178 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
2186 /* Clears each of the exact match registers to zero, so they
2187 * don't interfere with normal reception */
2188 static void gfar_clear_exact_match(struct net_device
*dev
)
2191 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
2193 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
2194 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
2197 /* Set the appropriate hash bit for the given addr */
2198 /* The algorithm works like so:
2199 * 1) Take the Destination Address (ie the multicast address), and
2200 * do a CRC on it (little endian), and reverse the bits of the
2202 * 2) Use the 8 most significant bits as a hash into a 256-entry
2203 * table. The table is controlled through 8 32-bit registers:
2204 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2205 * gaddr7. This means that the 3 most significant bits in the
2206 * hash index which gaddr register to use, and the 5 other bits
2207 * indicate which bit (assuming an IBM numbering scheme, which
2208 * for PowerPC (tm) is usually the case) in the register holds
2210 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
2213 struct gfar_private
*priv
= netdev_priv(dev
);
2214 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
2215 int width
= priv
->hash_width
;
2216 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
2217 u8 whichreg
= result
>> (32 - width
+ 5);
2218 u32 value
= (1 << (31-whichbit
));
2220 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
2222 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
2228 /* There are multiple MAC Address register pairs on some controllers
2229 * This function sets the numth pair to a given address
2231 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
2233 struct gfar_private
*priv
= netdev_priv(dev
);
2235 char tmpbuf
[MAC_ADDR_LEN
];
2237 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
2241 /* Now copy it into the mac registers backwards, cuz */
2242 /* little endian is silly */
2243 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
2244 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
2246 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
2248 tempval
= *((u32
*) (tmpbuf
+ 4));
2250 gfar_write(macptr
+1, tempval
);
2253 /* GFAR error interrupt handler */
2254 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
2256 struct net_device
*dev
= dev_id
;
2257 struct gfar_private
*priv
= netdev_priv(dev
);
2259 /* Save ievent for future reference */
2260 u32 events
= gfar_read(&priv
->regs
->ievent
);
2263 gfar_write(&priv
->regs
->ievent
, events
& IEVENT_ERR_MASK
);
2265 /* Magic Packet is not an error. */
2266 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
2267 (events
& IEVENT_MAG
))
2268 events
&= ~IEVENT_MAG
;
2271 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
2272 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2273 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
2275 /* Update the error counters */
2276 if (events
& IEVENT_TXE
) {
2277 dev
->stats
.tx_errors
++;
2279 if (events
& IEVENT_LC
)
2280 dev
->stats
.tx_window_errors
++;
2281 if (events
& IEVENT_CRL
)
2282 dev
->stats
.tx_aborted_errors
++;
2283 if (events
& IEVENT_XFUN
) {
2284 if (netif_msg_tx_err(priv
))
2285 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
2286 "packet dropped.\n", dev
->name
);
2287 dev
->stats
.tx_dropped
++;
2288 priv
->extra_stats
.tx_underrun
++;
2290 /* Reactivate the Tx Queues */
2291 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
2293 if (netif_msg_tx_err(priv
))
2294 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
2296 if (events
& IEVENT_BSY
) {
2297 dev
->stats
.rx_errors
++;
2298 priv
->extra_stats
.rx_bsy
++;
2300 gfar_receive(irq
, dev_id
);
2302 if (netif_msg_rx_err(priv
))
2303 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
2304 dev
->name
, gfar_read(&priv
->regs
->rstat
));
2306 if (events
& IEVENT_BABR
) {
2307 dev
->stats
.rx_errors
++;
2308 priv
->extra_stats
.rx_babr
++;
2310 if (netif_msg_rx_err(priv
))
2311 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
2313 if (events
& IEVENT_EBERR
) {
2314 priv
->extra_stats
.eberr
++;
2315 if (netif_msg_rx_err(priv
))
2316 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
2318 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
2319 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
2321 if (events
& IEVENT_BABT
) {
2322 priv
->extra_stats
.tx_babt
++;
2323 if (netif_msg_tx_err(priv
))
2324 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
2329 /* work with hotplug and coldplug */
2330 MODULE_ALIAS("platform:fsl-gianfar");
2332 static struct of_device_id gfar_match
[] =
2336 .compatible
= "gianfar",
2341 /* Structure for a device driver */
2342 static struct of_platform_driver gfar_driver
= {
2343 .name
= "fsl-gianfar",
2344 .match_table
= gfar_match
,
2346 .probe
= gfar_probe
,
2347 .remove
= gfar_remove
,
2348 .suspend
= gfar_suspend
,
2349 .resume
= gfar_resume
,
2352 static int __init
gfar_init(void)
2354 return of_register_platform_driver(&gfar_driver
);
2357 static void __exit
gfar_exit(void)
2359 of_unregister_platform_driver(&gfar_driver
);
2362 module_init(gfar_init
);
2363 module_exit(gfar_exit
);