[PATCH] net/sunrpc/svcsock.c: fix a check
[linux-2.6/verdex.git] / net / sunrpc / svcsock.c
blob593f62ff8521e1f502f7af6ea68cccd39a7b68fa
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
50 /* SMP locking strategy:
52 * svc_pool->sp_lock protects most of the fields of that pool.
53 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54 * when both need to be taken (rare), svc_serv->sv_lock is first.
55 * BKL protects svc_serv->sv_nrthread.
56 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * SK_CONN, SK_DATA, can be set or cleared at any time.
63 * after a set, svc_sock_enqueue must be called.
64 * after a clear, the socket must be read/accepted
65 * if this succeeds, it must be set again.
66 * SK_CLOSE can set at any time. It is never cleared.
67 * sk_inuse contains a bias of '1' until SK_DEAD is set.
68 * so when sk_inuse hits zero, we know the socket is dead
69 * and no-one is using it.
70 * SK_DEAD can only be set while SK_BUSY is held which ensures
71 * no other thread will be using the socket or will try to
72 * set SK_DEAD.
76 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
79 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
80 int *errp, int flags);
81 static void svc_delete_socket(struct svc_sock *svsk);
82 static void svc_udp_data_ready(struct sock *, int);
83 static int svc_udp_recvfrom(struct svc_rqst *);
84 static int svc_udp_sendto(struct svc_rqst *);
85 static void svc_close_socket(struct svc_sock *svsk);
87 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
88 static int svc_deferred_recv(struct svc_rqst *rqstp);
89 static struct cache_deferred_req *svc_defer(struct cache_req *req);
91 /* apparently the "standard" is that clients close
92 * idle connections after 5 minutes, servers after
93 * 6 minutes
94 * http://www.connectathon.org/talks96/nfstcp.pdf
96 static int svc_conn_age_period = 6*60;
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 static struct lock_class_key svc_key[2];
100 static struct lock_class_key svc_slock_key[2];
102 static inline void svc_reclassify_socket(struct socket *sock)
104 struct sock *sk = sock->sk;
105 BUG_ON(sk->sk_lock.owner != NULL);
106 switch (sk->sk_family) {
107 case AF_INET:
108 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
109 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
110 break;
112 case AF_INET6:
113 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
114 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
115 break;
117 default:
118 BUG();
121 #else
122 static inline void svc_reclassify_socket(struct socket *sock)
125 #endif
127 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
129 switch (addr->sa_family) {
130 case AF_INET:
131 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
132 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
133 htons(((struct sockaddr_in *) addr)->sin_port));
134 break;
136 case AF_INET6:
137 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
138 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
139 htons(((struct sockaddr_in6 *) addr)->sin6_port));
140 break;
142 default:
143 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
144 break;
146 return buf;
150 * svc_print_addr - Format rq_addr field for printing
151 * @rqstp: svc_rqst struct containing address to print
152 * @buf: target buffer for formatted address
153 * @len: length of target buffer
156 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
158 return __svc_print_addr(svc_addr(rqstp), buf, len);
160 EXPORT_SYMBOL_GPL(svc_print_addr);
163 * Queue up an idle server thread. Must have pool->sp_lock held.
164 * Note: this is really a stack rather than a queue, so that we only
165 * use as many different threads as we need, and the rest don't pollute
166 * the cache.
168 static inline void
169 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
171 list_add(&rqstp->rq_list, &pool->sp_threads);
175 * Dequeue an nfsd thread. Must have pool->sp_lock held.
177 static inline void
178 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
180 list_del(&rqstp->rq_list);
184 * Release an skbuff after use
186 static inline void
187 svc_release_skb(struct svc_rqst *rqstp)
189 struct sk_buff *skb = rqstp->rq_skbuff;
190 struct svc_deferred_req *dr = rqstp->rq_deferred;
192 if (skb) {
193 rqstp->rq_skbuff = NULL;
195 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
196 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
198 if (dr) {
199 rqstp->rq_deferred = NULL;
200 kfree(dr);
205 * Any space to write?
207 static inline unsigned long
208 svc_sock_wspace(struct svc_sock *svsk)
210 int wspace;
212 if (svsk->sk_sock->type == SOCK_STREAM)
213 wspace = sk_stream_wspace(svsk->sk_sk);
214 else
215 wspace = sock_wspace(svsk->sk_sk);
217 return wspace;
221 * Queue up a socket with data pending. If there are idle nfsd
222 * processes, wake 'em up.
225 static void
226 svc_sock_enqueue(struct svc_sock *svsk)
228 struct svc_serv *serv = svsk->sk_server;
229 struct svc_pool *pool;
230 struct svc_rqst *rqstp;
231 int cpu;
233 if (!(svsk->sk_flags &
234 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
235 return;
236 if (test_bit(SK_DEAD, &svsk->sk_flags))
237 return;
239 cpu = get_cpu();
240 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
241 put_cpu();
243 spin_lock_bh(&pool->sp_lock);
245 if (!list_empty(&pool->sp_threads) &&
246 !list_empty(&pool->sp_sockets))
247 printk(KERN_ERR
248 "svc_sock_enqueue: threads and sockets both waiting??\n");
250 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
251 /* Don't enqueue dead sockets */
252 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
253 goto out_unlock;
256 /* Mark socket as busy. It will remain in this state until the
257 * server has processed all pending data and put the socket back
258 * on the idle list. We update SK_BUSY atomically because
259 * it also guards against trying to enqueue the svc_sock twice.
261 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
262 /* Don't enqueue socket while already enqueued */
263 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
264 goto out_unlock;
266 BUG_ON(svsk->sk_pool != NULL);
267 svsk->sk_pool = pool;
269 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
270 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
271 > svc_sock_wspace(svsk))
272 && !test_bit(SK_CLOSE, &svsk->sk_flags)
273 && !test_bit(SK_CONN, &svsk->sk_flags)) {
274 /* Don't enqueue while not enough space for reply */
275 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
276 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
277 svc_sock_wspace(svsk));
278 svsk->sk_pool = NULL;
279 clear_bit(SK_BUSY, &svsk->sk_flags);
280 goto out_unlock;
282 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
285 if (!list_empty(&pool->sp_threads)) {
286 rqstp = list_entry(pool->sp_threads.next,
287 struct svc_rqst,
288 rq_list);
289 dprintk("svc: socket %p served by daemon %p\n",
290 svsk->sk_sk, rqstp);
291 svc_thread_dequeue(pool, rqstp);
292 if (rqstp->rq_sock)
293 printk(KERN_ERR
294 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
295 rqstp, rqstp->rq_sock);
296 rqstp->rq_sock = svsk;
297 atomic_inc(&svsk->sk_inuse);
298 rqstp->rq_reserved = serv->sv_max_mesg;
299 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
300 BUG_ON(svsk->sk_pool != pool);
301 wake_up(&rqstp->rq_wait);
302 } else {
303 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
304 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
305 BUG_ON(svsk->sk_pool != pool);
308 out_unlock:
309 spin_unlock_bh(&pool->sp_lock);
313 * Dequeue the first socket. Must be called with the pool->sp_lock held.
315 static inline struct svc_sock *
316 svc_sock_dequeue(struct svc_pool *pool)
318 struct svc_sock *svsk;
320 if (list_empty(&pool->sp_sockets))
321 return NULL;
323 svsk = list_entry(pool->sp_sockets.next,
324 struct svc_sock, sk_ready);
325 list_del_init(&svsk->sk_ready);
327 dprintk("svc: socket %p dequeued, inuse=%d\n",
328 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
330 return svsk;
334 * Having read something from a socket, check whether it
335 * needs to be re-enqueued.
336 * Note: SK_DATA only gets cleared when a read-attempt finds
337 * no (or insufficient) data.
339 static inline void
340 svc_sock_received(struct svc_sock *svsk)
342 svsk->sk_pool = NULL;
343 clear_bit(SK_BUSY, &svsk->sk_flags);
344 svc_sock_enqueue(svsk);
349 * svc_reserve - change the space reserved for the reply to a request.
350 * @rqstp: The request in question
351 * @space: new max space to reserve
353 * Each request reserves some space on the output queue of the socket
354 * to make sure the reply fits. This function reduces that reserved
355 * space to be the amount of space used already, plus @space.
358 void svc_reserve(struct svc_rqst *rqstp, int space)
360 space += rqstp->rq_res.head[0].iov_len;
362 if (space < rqstp->rq_reserved) {
363 struct svc_sock *svsk = rqstp->rq_sock;
364 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
365 rqstp->rq_reserved = space;
367 svc_sock_enqueue(svsk);
372 * Release a socket after use.
374 static inline void
375 svc_sock_put(struct svc_sock *svsk)
377 if (atomic_dec_and_test(&svsk->sk_inuse)) {
378 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
380 dprintk("svc: releasing dead socket\n");
381 if (svsk->sk_sock->file)
382 sockfd_put(svsk->sk_sock);
383 else
384 sock_release(svsk->sk_sock);
385 if (svsk->sk_info_authunix != NULL)
386 svcauth_unix_info_release(svsk->sk_info_authunix);
387 kfree(svsk);
391 static void
392 svc_sock_release(struct svc_rqst *rqstp)
394 struct svc_sock *svsk = rqstp->rq_sock;
396 svc_release_skb(rqstp);
398 svc_free_res_pages(rqstp);
399 rqstp->rq_res.page_len = 0;
400 rqstp->rq_res.page_base = 0;
403 /* Reset response buffer and release
404 * the reservation.
405 * But first, check that enough space was reserved
406 * for the reply, otherwise we have a bug!
408 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
409 printk(KERN_ERR "RPC request reserved %d but used %d\n",
410 rqstp->rq_reserved,
411 rqstp->rq_res.len);
413 rqstp->rq_res.head[0].iov_len = 0;
414 svc_reserve(rqstp, 0);
415 rqstp->rq_sock = NULL;
417 svc_sock_put(svsk);
421 * External function to wake up a server waiting for data
422 * This really only makes sense for services like lockd
423 * which have exactly one thread anyway.
425 void
426 svc_wake_up(struct svc_serv *serv)
428 struct svc_rqst *rqstp;
429 unsigned int i;
430 struct svc_pool *pool;
432 for (i = 0; i < serv->sv_nrpools; i++) {
433 pool = &serv->sv_pools[i];
435 spin_lock_bh(&pool->sp_lock);
436 if (!list_empty(&pool->sp_threads)) {
437 rqstp = list_entry(pool->sp_threads.next,
438 struct svc_rqst,
439 rq_list);
440 dprintk("svc: daemon %p woken up.\n", rqstp);
442 svc_thread_dequeue(pool, rqstp);
443 rqstp->rq_sock = NULL;
445 wake_up(&rqstp->rq_wait);
447 spin_unlock_bh(&pool->sp_lock);
451 union svc_pktinfo_u {
452 struct in_pktinfo pkti;
453 struct in6_pktinfo pkti6;
456 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
458 switch (rqstp->rq_sock->sk_sk->sk_family) {
459 case AF_INET: {
460 struct in_pktinfo *pki = CMSG_DATA(cmh);
462 cmh->cmsg_level = SOL_IP;
463 cmh->cmsg_type = IP_PKTINFO;
464 pki->ipi_ifindex = 0;
465 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
466 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
468 break;
470 case AF_INET6: {
471 struct in6_pktinfo *pki = CMSG_DATA(cmh);
473 cmh->cmsg_level = SOL_IPV6;
474 cmh->cmsg_type = IPV6_PKTINFO;
475 pki->ipi6_ifindex = 0;
476 ipv6_addr_copy(&pki->ipi6_addr,
477 &rqstp->rq_daddr.addr6);
478 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
480 break;
482 return;
486 * Generic sendto routine
488 static int
489 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
491 struct svc_sock *svsk = rqstp->rq_sock;
492 struct socket *sock = svsk->sk_sock;
493 int slen;
494 char buffer[CMSG_SPACE(sizeof(union svc_pktinfo_u))];
495 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
496 int len = 0;
497 int result;
498 int size;
499 struct page **ppage = xdr->pages;
500 size_t base = xdr->page_base;
501 unsigned int pglen = xdr->page_len;
502 unsigned int flags = MSG_MORE;
503 char buf[RPC_MAX_ADDRBUFLEN];
505 slen = xdr->len;
507 if (rqstp->rq_prot == IPPROTO_UDP) {
508 struct msghdr msg = {
509 .msg_name = &rqstp->rq_addr,
510 .msg_namelen = rqstp->rq_addrlen,
511 .msg_control = cmh,
512 .msg_controllen = sizeof(buffer),
513 .msg_flags = MSG_MORE,
516 svc_set_cmsg_data(rqstp, cmh);
518 if (sock_sendmsg(sock, &msg, 0) < 0)
519 goto out;
522 /* send head */
523 if (slen == xdr->head[0].iov_len)
524 flags = 0;
525 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
526 xdr->head[0].iov_len, flags);
527 if (len != xdr->head[0].iov_len)
528 goto out;
529 slen -= xdr->head[0].iov_len;
530 if (slen == 0)
531 goto out;
533 /* send page data */
534 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
535 while (pglen > 0) {
536 if (slen == size)
537 flags = 0;
538 result = kernel_sendpage(sock, *ppage, base, size, flags);
539 if (result > 0)
540 len += result;
541 if (result != size)
542 goto out;
543 slen -= size;
544 pglen -= size;
545 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
546 base = 0;
547 ppage++;
549 /* send tail */
550 if (xdr->tail[0].iov_len) {
551 result = kernel_sendpage(sock, rqstp->rq_respages[0],
552 ((unsigned long)xdr->tail[0].iov_base)
553 & (PAGE_SIZE-1),
554 xdr->tail[0].iov_len, 0);
556 if (result > 0)
557 len += result;
559 out:
560 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
561 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
562 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
564 return len;
568 * Report socket names for nfsdfs
570 static int one_sock_name(char *buf, struct svc_sock *svsk)
572 int len;
574 switch(svsk->sk_sk->sk_family) {
575 case AF_INET:
576 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
577 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
578 "udp" : "tcp",
579 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
580 inet_sk(svsk->sk_sk)->num);
581 break;
582 default:
583 len = sprintf(buf, "*unknown-%d*\n",
584 svsk->sk_sk->sk_family);
586 return len;
590 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
592 struct svc_sock *svsk, *closesk = NULL;
593 int len = 0;
595 if (!serv)
596 return 0;
597 spin_lock_bh(&serv->sv_lock);
598 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
599 int onelen = one_sock_name(buf+len, svsk);
600 if (toclose && strcmp(toclose, buf+len) == 0)
601 closesk = svsk;
602 else
603 len += onelen;
605 spin_unlock_bh(&serv->sv_lock);
606 if (closesk)
607 /* Should unregister with portmap, but you cannot
608 * unregister just one protocol...
610 svc_close_socket(closesk);
611 else if (toclose)
612 return -ENOENT;
613 return len;
615 EXPORT_SYMBOL(svc_sock_names);
618 * Check input queue length
620 static int
621 svc_recv_available(struct svc_sock *svsk)
623 struct socket *sock = svsk->sk_sock;
624 int avail, err;
626 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
628 return (err >= 0)? avail : err;
632 * Generic recvfrom routine.
634 static int
635 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
637 struct svc_sock *svsk = rqstp->rq_sock;
638 struct msghdr msg = {
639 .msg_flags = MSG_DONTWAIT,
641 int len;
643 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
644 msg.msg_flags);
646 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
648 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
649 rqstp->rq_addrlen = svsk->sk_remotelen;
651 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
652 svsk, iov[0].iov_base, iov[0].iov_len, len);
654 return len;
658 * Set socket snd and rcv buffer lengths
660 static inline void
661 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
663 #if 0
664 mm_segment_t oldfs;
665 oldfs = get_fs(); set_fs(KERNEL_DS);
666 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
667 (char*)&snd, sizeof(snd));
668 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
669 (char*)&rcv, sizeof(rcv));
670 #else
671 /* sock_setsockopt limits use to sysctl_?mem_max,
672 * which isn't acceptable. Until that is made conditional
673 * on not having CAP_SYS_RESOURCE or similar, we go direct...
674 * DaveM said I could!
676 lock_sock(sock->sk);
677 sock->sk->sk_sndbuf = snd * 2;
678 sock->sk->sk_rcvbuf = rcv * 2;
679 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
680 release_sock(sock->sk);
681 #endif
684 * INET callback when data has been received on the socket.
686 static void
687 svc_udp_data_ready(struct sock *sk, int count)
689 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
691 if (svsk) {
692 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
693 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
694 set_bit(SK_DATA, &svsk->sk_flags);
695 svc_sock_enqueue(svsk);
697 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
698 wake_up_interruptible(sk->sk_sleep);
702 * INET callback when space is newly available on the socket.
704 static void
705 svc_write_space(struct sock *sk)
707 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
709 if (svsk) {
710 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
711 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
712 svc_sock_enqueue(svsk);
715 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
716 dprintk("RPC svc_write_space: someone sleeping on %p\n",
717 svsk);
718 wake_up_interruptible(sk->sk_sleep);
722 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
723 struct cmsghdr *cmh)
725 switch (rqstp->rq_sock->sk_sk->sk_family) {
726 case AF_INET: {
727 struct in_pktinfo *pki = CMSG_DATA(cmh);
728 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
729 break;
731 case AF_INET6: {
732 struct in6_pktinfo *pki = CMSG_DATA(cmh);
733 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
734 break;
740 * Receive a datagram from a UDP socket.
742 static int
743 svc_udp_recvfrom(struct svc_rqst *rqstp)
745 struct svc_sock *svsk = rqstp->rq_sock;
746 struct svc_serv *serv = svsk->sk_server;
747 struct sk_buff *skb;
748 char buffer[CMSG_SPACE(sizeof(union svc_pktinfo_u))];
749 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
750 int err, len;
751 struct msghdr msg = {
752 .msg_name = svc_addr(rqstp),
753 .msg_control = cmh,
754 .msg_controllen = sizeof(buffer),
755 .msg_flags = MSG_DONTWAIT,
758 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
759 /* udp sockets need large rcvbuf as all pending
760 * requests are still in that buffer. sndbuf must
761 * also be large enough that there is enough space
762 * for one reply per thread. We count all threads
763 * rather than threads in a particular pool, which
764 * provides an upper bound on the number of threads
765 * which will access the socket.
767 svc_sock_setbufsize(svsk->sk_sock,
768 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
769 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
771 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
772 svc_sock_received(svsk);
773 return svc_deferred_recv(rqstp);
776 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
777 svc_delete_socket(svsk);
778 return 0;
781 clear_bit(SK_DATA, &svsk->sk_flags);
782 while ((err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
783 0, 0, MSG_PEEK | MSG_DONTWAIT)) < 0 ||
784 (skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
785 if (err == -EAGAIN) {
786 svc_sock_received(svsk);
787 return err;
789 /* possibly an icmp error */
790 dprintk("svc: recvfrom returned error %d\n", -err);
792 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
793 if (skb->tstamp.off_sec == 0) {
794 struct timeval tv;
796 tv.tv_sec = xtime.tv_sec;
797 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
798 skb_set_timestamp(skb, &tv);
799 /* Don't enable netstamp, sunrpc doesn't
800 need that much accuracy */
802 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
803 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
806 * Maybe more packets - kick another thread ASAP.
808 svc_sock_received(svsk);
810 len = skb->len - sizeof(struct udphdr);
811 rqstp->rq_arg.len = len;
813 rqstp->rq_prot = IPPROTO_UDP;
815 if (cmh->cmsg_level != IPPROTO_IP ||
816 cmh->cmsg_type != IP_PKTINFO) {
817 if (net_ratelimit())
818 printk("rpcsvc: received unknown control message:"
819 "%d/%d\n",
820 cmh->cmsg_level, cmh->cmsg_type);
821 skb_free_datagram(svsk->sk_sk, skb);
822 return 0;
824 svc_udp_get_dest_address(rqstp, cmh);
826 if (skb_is_nonlinear(skb)) {
827 /* we have to copy */
828 local_bh_disable();
829 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
830 local_bh_enable();
831 /* checksum error */
832 skb_free_datagram(svsk->sk_sk, skb);
833 return 0;
835 local_bh_enable();
836 skb_free_datagram(svsk->sk_sk, skb);
837 } else {
838 /* we can use it in-place */
839 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
840 rqstp->rq_arg.head[0].iov_len = len;
841 if (skb_checksum_complete(skb)) {
842 skb_free_datagram(svsk->sk_sk, skb);
843 return 0;
845 rqstp->rq_skbuff = skb;
848 rqstp->rq_arg.page_base = 0;
849 if (len <= rqstp->rq_arg.head[0].iov_len) {
850 rqstp->rq_arg.head[0].iov_len = len;
851 rqstp->rq_arg.page_len = 0;
852 rqstp->rq_respages = rqstp->rq_pages+1;
853 } else {
854 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
855 rqstp->rq_respages = rqstp->rq_pages + 1 +
856 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
859 if (serv->sv_stats)
860 serv->sv_stats->netudpcnt++;
862 return len;
865 static int
866 svc_udp_sendto(struct svc_rqst *rqstp)
868 int error;
870 error = svc_sendto(rqstp, &rqstp->rq_res);
871 if (error == -ECONNREFUSED)
872 /* ICMP error on earlier request. */
873 error = svc_sendto(rqstp, &rqstp->rq_res);
875 return error;
878 static void
879 svc_udp_init(struct svc_sock *svsk)
881 int one = 1;
882 mm_segment_t oldfs;
884 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
885 svsk->sk_sk->sk_write_space = svc_write_space;
886 svsk->sk_recvfrom = svc_udp_recvfrom;
887 svsk->sk_sendto = svc_udp_sendto;
889 /* initialise setting must have enough space to
890 * receive and respond to one request.
891 * svc_udp_recvfrom will re-adjust if necessary
893 svc_sock_setbufsize(svsk->sk_sock,
894 3 * svsk->sk_server->sv_max_mesg,
895 3 * svsk->sk_server->sv_max_mesg);
897 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
898 set_bit(SK_CHNGBUF, &svsk->sk_flags);
900 oldfs = get_fs();
901 set_fs(KERNEL_DS);
902 /* make sure we get destination address info */
903 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
904 (char __user *)&one, sizeof(one));
905 set_fs(oldfs);
909 * A data_ready event on a listening socket means there's a connection
910 * pending. Do not use state_change as a substitute for it.
912 static void
913 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
915 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
917 dprintk("svc: socket %p TCP (listen) state change %d\n",
918 sk, sk->sk_state);
921 * This callback may called twice when a new connection
922 * is established as a child socket inherits everything
923 * from a parent LISTEN socket.
924 * 1) data_ready method of the parent socket will be called
925 * when one of child sockets become ESTABLISHED.
926 * 2) data_ready method of the child socket may be called
927 * when it receives data before the socket is accepted.
928 * In case of 2, we should ignore it silently.
930 if (sk->sk_state == TCP_LISTEN) {
931 if (svsk) {
932 set_bit(SK_CONN, &svsk->sk_flags);
933 svc_sock_enqueue(svsk);
934 } else
935 printk("svc: socket %p: no user data\n", sk);
938 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
939 wake_up_interruptible_all(sk->sk_sleep);
943 * A state change on a connected socket means it's dying or dead.
945 static void
946 svc_tcp_state_change(struct sock *sk)
948 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
950 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
951 sk, sk->sk_state, sk->sk_user_data);
953 if (!svsk)
954 printk("svc: socket %p: no user data\n", sk);
955 else {
956 set_bit(SK_CLOSE, &svsk->sk_flags);
957 svc_sock_enqueue(svsk);
959 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
960 wake_up_interruptible_all(sk->sk_sleep);
963 static void
964 svc_tcp_data_ready(struct sock *sk, int count)
966 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
968 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
969 sk, sk->sk_user_data);
970 if (svsk) {
971 set_bit(SK_DATA, &svsk->sk_flags);
972 svc_sock_enqueue(svsk);
974 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
975 wake_up_interruptible(sk->sk_sleep);
978 static inline int svc_port_is_privileged(struct sockaddr *sin)
980 switch (sin->sa_family) {
981 case AF_INET:
982 return ntohs(((struct sockaddr_in *)sin)->sin_port)
983 < PROT_SOCK;
984 case AF_INET6:
985 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
986 < PROT_SOCK;
987 default:
988 return 0;
993 * Accept a TCP connection
995 static void
996 svc_tcp_accept(struct svc_sock *svsk)
998 struct sockaddr_storage addr;
999 struct sockaddr *sin = (struct sockaddr *) &addr;
1000 struct svc_serv *serv = svsk->sk_server;
1001 struct socket *sock = svsk->sk_sock;
1002 struct socket *newsock;
1003 struct svc_sock *newsvsk;
1004 int err, slen;
1005 char buf[RPC_MAX_ADDRBUFLEN];
1007 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1008 if (!sock)
1009 return;
1011 clear_bit(SK_CONN, &svsk->sk_flags);
1012 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1013 if (err < 0) {
1014 if (err == -ENOMEM)
1015 printk(KERN_WARNING "%s: no more sockets!\n",
1016 serv->sv_name);
1017 else if (err != -EAGAIN && net_ratelimit())
1018 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1019 serv->sv_name, -err);
1020 return;
1023 set_bit(SK_CONN, &svsk->sk_flags);
1024 svc_sock_enqueue(svsk);
1026 err = kernel_getpeername(newsock, sin, &slen);
1027 if (err < 0) {
1028 if (net_ratelimit())
1029 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1030 serv->sv_name, -err);
1031 goto failed; /* aborted connection or whatever */
1034 /* Ideally, we would want to reject connections from unauthorized
1035 * hosts here, but when we get encryption, the IP of the host won't
1036 * tell us anything. For now just warn about unpriv connections.
1038 if (!svc_port_is_privileged(sin)) {
1039 dprintk(KERN_WARNING
1040 "%s: connect from unprivileged port: %s\n",
1041 serv->sv_name,
1042 __svc_print_addr(sin, buf, sizeof(buf)));
1044 dprintk("%s: connect from %s\n", serv->sv_name,
1045 __svc_print_addr(sin, buf, sizeof(buf)));
1047 /* make sure that a write doesn't block forever when
1048 * low on memory
1050 newsock->sk->sk_sndtimeo = HZ*30;
1052 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1053 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1054 goto failed;
1055 memcpy(&newsvsk->sk_remote, sin, slen);
1056 newsvsk->sk_remotelen = slen;
1058 svc_sock_received(newsvsk);
1060 /* make sure that we don't have too many active connections.
1061 * If we have, something must be dropped.
1063 * There's no point in trying to do random drop here for
1064 * DoS prevention. The NFS clients does 1 reconnect in 15
1065 * seconds. An attacker can easily beat that.
1067 * The only somewhat efficient mechanism would be if drop
1068 * old connections from the same IP first. But right now
1069 * we don't even record the client IP in svc_sock.
1071 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1072 struct svc_sock *svsk = NULL;
1073 spin_lock_bh(&serv->sv_lock);
1074 if (!list_empty(&serv->sv_tempsocks)) {
1075 if (net_ratelimit()) {
1076 /* Try to help the admin */
1077 printk(KERN_NOTICE "%s: too many open TCP "
1078 "sockets, consider increasing the "
1079 "number of nfsd threads\n",
1080 serv->sv_name);
1081 printk(KERN_NOTICE
1082 "%s: last TCP connect from %s\n",
1083 serv->sv_name, buf);
1086 * Always select the oldest socket. It's not fair,
1087 * but so is life
1089 svsk = list_entry(serv->sv_tempsocks.prev,
1090 struct svc_sock,
1091 sk_list);
1092 set_bit(SK_CLOSE, &svsk->sk_flags);
1093 atomic_inc(&svsk->sk_inuse);
1095 spin_unlock_bh(&serv->sv_lock);
1097 if (svsk) {
1098 svc_sock_enqueue(svsk);
1099 svc_sock_put(svsk);
1104 if (serv->sv_stats)
1105 serv->sv_stats->nettcpconn++;
1107 return;
1109 failed:
1110 sock_release(newsock);
1111 return;
1115 * Receive data from a TCP socket.
1117 static int
1118 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1120 struct svc_sock *svsk = rqstp->rq_sock;
1121 struct svc_serv *serv = svsk->sk_server;
1122 int len;
1123 struct kvec *vec;
1124 int pnum, vlen;
1126 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1127 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1128 test_bit(SK_CONN, &svsk->sk_flags),
1129 test_bit(SK_CLOSE, &svsk->sk_flags));
1131 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1132 svc_sock_received(svsk);
1133 return svc_deferred_recv(rqstp);
1136 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1137 svc_delete_socket(svsk);
1138 return 0;
1141 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1142 svc_tcp_accept(svsk);
1143 svc_sock_received(svsk);
1144 return 0;
1147 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1148 /* sndbuf needs to have room for one request
1149 * per thread, otherwise we can stall even when the
1150 * network isn't a bottleneck.
1152 * We count all threads rather than threads in a
1153 * particular pool, which provides an upper bound
1154 * on the number of threads which will access the socket.
1156 * rcvbuf just needs to be able to hold a few requests.
1157 * Normally they will be removed from the queue
1158 * as soon a a complete request arrives.
1160 svc_sock_setbufsize(svsk->sk_sock,
1161 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1162 3 * serv->sv_max_mesg);
1164 clear_bit(SK_DATA, &svsk->sk_flags);
1166 /* Receive data. If we haven't got the record length yet, get
1167 * the next four bytes. Otherwise try to gobble up as much as
1168 * possible up to the complete record length.
1170 if (svsk->sk_tcplen < 4) {
1171 unsigned long want = 4 - svsk->sk_tcplen;
1172 struct kvec iov;
1174 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1175 iov.iov_len = want;
1176 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1177 goto error;
1178 svsk->sk_tcplen += len;
1180 if (len < want) {
1181 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1182 len, want);
1183 svc_sock_received(svsk);
1184 return -EAGAIN; /* record header not complete */
1187 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1188 if (!(svsk->sk_reclen & 0x80000000)) {
1189 /* FIXME: technically, a record can be fragmented,
1190 * and non-terminal fragments will not have the top
1191 * bit set in the fragment length header.
1192 * But apparently no known nfs clients send fragmented
1193 * records. */
1194 if (net_ratelimit())
1195 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1196 " (non-terminal)\n",
1197 (unsigned long) svsk->sk_reclen);
1198 goto err_delete;
1200 svsk->sk_reclen &= 0x7fffffff;
1201 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1202 if (svsk->sk_reclen > serv->sv_max_mesg) {
1203 if (net_ratelimit())
1204 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1205 " (large)\n",
1206 (unsigned long) svsk->sk_reclen);
1207 goto err_delete;
1211 /* Check whether enough data is available */
1212 len = svc_recv_available(svsk);
1213 if (len < 0)
1214 goto error;
1216 if (len < svsk->sk_reclen) {
1217 dprintk("svc: incomplete TCP record (%d of %d)\n",
1218 len, svsk->sk_reclen);
1219 svc_sock_received(svsk);
1220 return -EAGAIN; /* record not complete */
1222 len = svsk->sk_reclen;
1223 set_bit(SK_DATA, &svsk->sk_flags);
1225 vec = rqstp->rq_vec;
1226 vec[0] = rqstp->rq_arg.head[0];
1227 vlen = PAGE_SIZE;
1228 pnum = 1;
1229 while (vlen < len) {
1230 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1231 vec[pnum].iov_len = PAGE_SIZE;
1232 pnum++;
1233 vlen += PAGE_SIZE;
1235 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1237 /* Now receive data */
1238 len = svc_recvfrom(rqstp, vec, pnum, len);
1239 if (len < 0)
1240 goto error;
1242 dprintk("svc: TCP complete record (%d bytes)\n", len);
1243 rqstp->rq_arg.len = len;
1244 rqstp->rq_arg.page_base = 0;
1245 if (len <= rqstp->rq_arg.head[0].iov_len) {
1246 rqstp->rq_arg.head[0].iov_len = len;
1247 rqstp->rq_arg.page_len = 0;
1248 } else {
1249 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1252 rqstp->rq_skbuff = NULL;
1253 rqstp->rq_prot = IPPROTO_TCP;
1255 /* Reset TCP read info */
1256 svsk->sk_reclen = 0;
1257 svsk->sk_tcplen = 0;
1259 svc_sock_received(svsk);
1260 if (serv->sv_stats)
1261 serv->sv_stats->nettcpcnt++;
1263 return len;
1265 err_delete:
1266 svc_delete_socket(svsk);
1267 return -EAGAIN;
1269 error:
1270 if (len == -EAGAIN) {
1271 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1272 svc_sock_received(svsk);
1273 } else {
1274 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1275 svsk->sk_server->sv_name, -len);
1276 goto err_delete;
1279 return len;
1283 * Send out data on TCP socket.
1285 static int
1286 svc_tcp_sendto(struct svc_rqst *rqstp)
1288 struct xdr_buf *xbufp = &rqstp->rq_res;
1289 int sent;
1290 __be32 reclen;
1292 /* Set up the first element of the reply kvec.
1293 * Any other kvecs that may be in use have been taken
1294 * care of by the server implementation itself.
1296 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1297 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1299 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1300 return -ENOTCONN;
1302 sent = svc_sendto(rqstp, &rqstp->rq_res);
1303 if (sent != xbufp->len) {
1304 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1305 rqstp->rq_sock->sk_server->sv_name,
1306 (sent<0)?"got error":"sent only",
1307 sent, xbufp->len);
1308 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1309 svc_sock_enqueue(rqstp->rq_sock);
1310 sent = -EAGAIN;
1312 return sent;
1315 static void
1316 svc_tcp_init(struct svc_sock *svsk)
1318 struct sock *sk = svsk->sk_sk;
1319 struct tcp_sock *tp = tcp_sk(sk);
1321 svsk->sk_recvfrom = svc_tcp_recvfrom;
1322 svsk->sk_sendto = svc_tcp_sendto;
1324 if (sk->sk_state == TCP_LISTEN) {
1325 dprintk("setting up TCP socket for listening\n");
1326 sk->sk_data_ready = svc_tcp_listen_data_ready;
1327 set_bit(SK_CONN, &svsk->sk_flags);
1328 } else {
1329 dprintk("setting up TCP socket for reading\n");
1330 sk->sk_state_change = svc_tcp_state_change;
1331 sk->sk_data_ready = svc_tcp_data_ready;
1332 sk->sk_write_space = svc_write_space;
1334 svsk->sk_reclen = 0;
1335 svsk->sk_tcplen = 0;
1337 tp->nonagle = 1; /* disable Nagle's algorithm */
1339 /* initialise setting must have enough space to
1340 * receive and respond to one request.
1341 * svc_tcp_recvfrom will re-adjust if necessary
1343 svc_sock_setbufsize(svsk->sk_sock,
1344 3 * svsk->sk_server->sv_max_mesg,
1345 3 * svsk->sk_server->sv_max_mesg);
1347 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1348 set_bit(SK_DATA, &svsk->sk_flags);
1349 if (sk->sk_state != TCP_ESTABLISHED)
1350 set_bit(SK_CLOSE, &svsk->sk_flags);
1354 void
1355 svc_sock_update_bufs(struct svc_serv *serv)
1358 * The number of server threads has changed. Update
1359 * rcvbuf and sndbuf accordingly on all sockets
1361 struct list_head *le;
1363 spin_lock_bh(&serv->sv_lock);
1364 list_for_each(le, &serv->sv_permsocks) {
1365 struct svc_sock *svsk =
1366 list_entry(le, struct svc_sock, sk_list);
1367 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1369 list_for_each(le, &serv->sv_tempsocks) {
1370 struct svc_sock *svsk =
1371 list_entry(le, struct svc_sock, sk_list);
1372 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1374 spin_unlock_bh(&serv->sv_lock);
1378 * Receive the next request on any socket. This code is carefully
1379 * organised not to touch any cachelines in the shared svc_serv
1380 * structure, only cachelines in the local svc_pool.
1383 svc_recv(struct svc_rqst *rqstp, long timeout)
1385 struct svc_sock *svsk = NULL;
1386 struct svc_serv *serv = rqstp->rq_server;
1387 struct svc_pool *pool = rqstp->rq_pool;
1388 int len, i;
1389 int pages;
1390 struct xdr_buf *arg;
1391 DECLARE_WAITQUEUE(wait, current);
1393 dprintk("svc: server %p waiting for data (to = %ld)\n",
1394 rqstp, timeout);
1396 if (rqstp->rq_sock)
1397 printk(KERN_ERR
1398 "svc_recv: service %p, socket not NULL!\n",
1399 rqstp);
1400 if (waitqueue_active(&rqstp->rq_wait))
1401 printk(KERN_ERR
1402 "svc_recv: service %p, wait queue active!\n",
1403 rqstp);
1406 /* now allocate needed pages. If we get a failure, sleep briefly */
1407 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1408 for (i=0; i < pages ; i++)
1409 while (rqstp->rq_pages[i] == NULL) {
1410 struct page *p = alloc_page(GFP_KERNEL);
1411 if (!p)
1412 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1413 rqstp->rq_pages[i] = p;
1415 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1416 BUG_ON(pages >= RPCSVC_MAXPAGES);
1418 /* Make arg->head point to first page and arg->pages point to rest */
1419 arg = &rqstp->rq_arg;
1420 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1421 arg->head[0].iov_len = PAGE_SIZE;
1422 arg->pages = rqstp->rq_pages + 1;
1423 arg->page_base = 0;
1424 /* save at least one page for response */
1425 arg->page_len = (pages-2)*PAGE_SIZE;
1426 arg->len = (pages-1)*PAGE_SIZE;
1427 arg->tail[0].iov_len = 0;
1429 try_to_freeze();
1430 cond_resched();
1431 if (signalled())
1432 return -EINTR;
1434 spin_lock_bh(&pool->sp_lock);
1435 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1436 rqstp->rq_sock = svsk;
1437 atomic_inc(&svsk->sk_inuse);
1438 rqstp->rq_reserved = serv->sv_max_mesg;
1439 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1440 } else {
1441 /* No data pending. Go to sleep */
1442 svc_thread_enqueue(pool, rqstp);
1445 * We have to be able to interrupt this wait
1446 * to bring down the daemons ...
1448 set_current_state(TASK_INTERRUPTIBLE);
1449 add_wait_queue(&rqstp->rq_wait, &wait);
1450 spin_unlock_bh(&pool->sp_lock);
1452 schedule_timeout(timeout);
1454 try_to_freeze();
1456 spin_lock_bh(&pool->sp_lock);
1457 remove_wait_queue(&rqstp->rq_wait, &wait);
1459 if (!(svsk = rqstp->rq_sock)) {
1460 svc_thread_dequeue(pool, rqstp);
1461 spin_unlock_bh(&pool->sp_lock);
1462 dprintk("svc: server %p, no data yet\n", rqstp);
1463 return signalled()? -EINTR : -EAGAIN;
1466 spin_unlock_bh(&pool->sp_lock);
1468 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1469 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1470 len = svsk->sk_recvfrom(rqstp);
1471 dprintk("svc: got len=%d\n", len);
1473 /* No data, incomplete (TCP) read, or accept() */
1474 if (len == 0 || len == -EAGAIN) {
1475 rqstp->rq_res.len = 0;
1476 svc_sock_release(rqstp);
1477 return -EAGAIN;
1479 svsk->sk_lastrecv = get_seconds();
1480 clear_bit(SK_OLD, &svsk->sk_flags);
1482 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1483 rqstp->rq_chandle.defer = svc_defer;
1485 if (serv->sv_stats)
1486 serv->sv_stats->netcnt++;
1487 return len;
1491 * Drop request
1493 void
1494 svc_drop(struct svc_rqst *rqstp)
1496 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1497 svc_sock_release(rqstp);
1501 * Return reply to client.
1504 svc_send(struct svc_rqst *rqstp)
1506 struct svc_sock *svsk;
1507 int len;
1508 struct xdr_buf *xb;
1510 if ((svsk = rqstp->rq_sock) == NULL) {
1511 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1512 __FILE__, __LINE__);
1513 return -EFAULT;
1516 /* release the receive skb before sending the reply */
1517 svc_release_skb(rqstp);
1519 /* calculate over-all length */
1520 xb = & rqstp->rq_res;
1521 xb->len = xb->head[0].iov_len +
1522 xb->page_len +
1523 xb->tail[0].iov_len;
1525 /* Grab svsk->sk_mutex to serialize outgoing data. */
1526 mutex_lock(&svsk->sk_mutex);
1527 if (test_bit(SK_DEAD, &svsk->sk_flags))
1528 len = -ENOTCONN;
1529 else
1530 len = svsk->sk_sendto(rqstp);
1531 mutex_unlock(&svsk->sk_mutex);
1532 svc_sock_release(rqstp);
1534 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1535 return 0;
1536 return len;
1540 * Timer function to close old temporary sockets, using
1541 * a mark-and-sweep algorithm.
1543 static void
1544 svc_age_temp_sockets(unsigned long closure)
1546 struct svc_serv *serv = (struct svc_serv *)closure;
1547 struct svc_sock *svsk;
1548 struct list_head *le, *next;
1549 LIST_HEAD(to_be_aged);
1551 dprintk("svc_age_temp_sockets\n");
1553 if (!spin_trylock_bh(&serv->sv_lock)) {
1554 /* busy, try again 1 sec later */
1555 dprintk("svc_age_temp_sockets: busy\n");
1556 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1557 return;
1560 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1561 svsk = list_entry(le, struct svc_sock, sk_list);
1563 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1564 continue;
1565 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1566 continue;
1567 atomic_inc(&svsk->sk_inuse);
1568 list_move(le, &to_be_aged);
1569 set_bit(SK_CLOSE, &svsk->sk_flags);
1570 set_bit(SK_DETACHED, &svsk->sk_flags);
1572 spin_unlock_bh(&serv->sv_lock);
1574 while (!list_empty(&to_be_aged)) {
1575 le = to_be_aged.next;
1576 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1577 list_del_init(le);
1578 svsk = list_entry(le, struct svc_sock, sk_list);
1580 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1581 svsk, get_seconds() - svsk->sk_lastrecv);
1583 /* a thread will dequeue and close it soon */
1584 svc_sock_enqueue(svsk);
1585 svc_sock_put(svsk);
1588 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1592 * Initialize socket for RPC use and create svc_sock struct
1593 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1595 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1596 struct socket *sock,
1597 int *errp, int flags)
1599 struct svc_sock *svsk;
1600 struct sock *inet;
1601 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1602 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1604 dprintk("svc: svc_setup_socket %p\n", sock);
1605 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1606 *errp = -ENOMEM;
1607 return NULL;
1610 inet = sock->sk;
1612 /* Register socket with portmapper */
1613 if (*errp >= 0 && pmap_register)
1614 *errp = svc_register(serv, inet->sk_protocol,
1615 ntohs(inet_sk(inet)->sport));
1617 if (*errp < 0) {
1618 kfree(svsk);
1619 return NULL;
1622 set_bit(SK_BUSY, &svsk->sk_flags);
1623 inet->sk_user_data = svsk;
1624 svsk->sk_sock = sock;
1625 svsk->sk_sk = inet;
1626 svsk->sk_ostate = inet->sk_state_change;
1627 svsk->sk_odata = inet->sk_data_ready;
1628 svsk->sk_owspace = inet->sk_write_space;
1629 svsk->sk_server = serv;
1630 atomic_set(&svsk->sk_inuse, 1);
1631 svsk->sk_lastrecv = get_seconds();
1632 spin_lock_init(&svsk->sk_defer_lock);
1633 INIT_LIST_HEAD(&svsk->sk_deferred);
1634 INIT_LIST_HEAD(&svsk->sk_ready);
1635 mutex_init(&svsk->sk_mutex);
1637 /* Initialize the socket */
1638 if (sock->type == SOCK_DGRAM)
1639 svc_udp_init(svsk);
1640 else
1641 svc_tcp_init(svsk);
1643 spin_lock_bh(&serv->sv_lock);
1644 if (is_temporary) {
1645 set_bit(SK_TEMP, &svsk->sk_flags);
1646 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1647 serv->sv_tmpcnt++;
1648 if (serv->sv_temptimer.function == NULL) {
1649 /* setup timer to age temp sockets */
1650 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1651 (unsigned long)serv);
1652 mod_timer(&serv->sv_temptimer,
1653 jiffies + svc_conn_age_period * HZ);
1655 } else {
1656 clear_bit(SK_TEMP, &svsk->sk_flags);
1657 list_add(&svsk->sk_list, &serv->sv_permsocks);
1659 spin_unlock_bh(&serv->sv_lock);
1661 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1662 svsk, svsk->sk_sk);
1664 return svsk;
1667 int svc_addsock(struct svc_serv *serv,
1668 int fd,
1669 char *name_return,
1670 int *proto)
1672 int err = 0;
1673 struct socket *so = sockfd_lookup(fd, &err);
1674 struct svc_sock *svsk = NULL;
1676 if (!so)
1677 return err;
1678 if (so->sk->sk_family != AF_INET)
1679 err = -EAFNOSUPPORT;
1680 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1681 so->sk->sk_protocol != IPPROTO_UDP)
1682 err = -EPROTONOSUPPORT;
1683 else if (so->state > SS_UNCONNECTED)
1684 err = -EISCONN;
1685 else {
1686 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1687 if (svsk) {
1688 svc_sock_received(svsk);
1689 err = 0;
1692 if (err) {
1693 sockfd_put(so);
1694 return err;
1696 if (proto) *proto = so->sk->sk_protocol;
1697 return one_sock_name(name_return, svsk);
1699 EXPORT_SYMBOL_GPL(svc_addsock);
1702 * Create socket for RPC service.
1704 static int svc_create_socket(struct svc_serv *serv, int protocol,
1705 struct sockaddr *sin, int len, int flags)
1707 struct svc_sock *svsk;
1708 struct socket *sock;
1709 int error;
1710 int type;
1711 char buf[RPC_MAX_ADDRBUFLEN];
1713 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1714 serv->sv_program->pg_name, protocol,
1715 __svc_print_addr(sin, buf, sizeof(buf)));
1717 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1718 printk(KERN_WARNING "svc: only UDP and TCP "
1719 "sockets supported\n");
1720 return -EINVAL;
1722 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1724 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1725 if (error < 0)
1726 return error;
1728 svc_reclassify_socket(sock);
1730 if (type == SOCK_STREAM)
1731 sock->sk->sk_reuse = 1; /* allow address reuse */
1732 error = kernel_bind(sock, sin, len);
1733 if (error < 0)
1734 goto bummer;
1736 if (protocol == IPPROTO_TCP) {
1737 if ((error = kernel_listen(sock, 64)) < 0)
1738 goto bummer;
1741 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1742 svc_sock_received(svsk);
1743 return ntohs(inet_sk(svsk->sk_sk)->sport);
1746 bummer:
1747 dprintk("svc: svc_create_socket error = %d\n", -error);
1748 sock_release(sock);
1749 return error;
1753 * Remove a dead socket
1755 static void
1756 svc_delete_socket(struct svc_sock *svsk)
1758 struct svc_serv *serv;
1759 struct sock *sk;
1761 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1763 serv = svsk->sk_server;
1764 sk = svsk->sk_sk;
1766 sk->sk_state_change = svsk->sk_ostate;
1767 sk->sk_data_ready = svsk->sk_odata;
1768 sk->sk_write_space = svsk->sk_owspace;
1770 spin_lock_bh(&serv->sv_lock);
1772 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1773 list_del_init(&svsk->sk_list);
1775 * We used to delete the svc_sock from whichever list
1776 * it's sk_ready node was on, but we don't actually
1777 * need to. This is because the only time we're called
1778 * while still attached to a queue, the queue itself
1779 * is about to be destroyed (in svc_destroy).
1781 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1782 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1783 atomic_dec(&svsk->sk_inuse);
1784 if (test_bit(SK_TEMP, &svsk->sk_flags))
1785 serv->sv_tmpcnt--;
1788 spin_unlock_bh(&serv->sv_lock);
1791 static void svc_close_socket(struct svc_sock *svsk)
1793 set_bit(SK_CLOSE, &svsk->sk_flags);
1794 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1795 /* someone else will have to effect the close */
1796 return;
1798 atomic_inc(&svsk->sk_inuse);
1799 svc_delete_socket(svsk);
1800 clear_bit(SK_BUSY, &svsk->sk_flags);
1801 svc_sock_put(svsk);
1804 void svc_force_close_socket(struct svc_sock *svsk)
1806 set_bit(SK_CLOSE, &svsk->sk_flags);
1807 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1808 /* Waiting to be processed, but no threads left,
1809 * So just remove it from the waiting list
1811 list_del_init(&svsk->sk_ready);
1812 clear_bit(SK_BUSY, &svsk->sk_flags);
1814 svc_close_socket(svsk);
1818 * svc_makesock - Make a socket for nfsd and lockd
1819 * @serv: RPC server structure
1820 * @protocol: transport protocol to use
1821 * @port: port to use
1822 * @flags: requested socket characteristics
1825 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1826 int flags)
1828 struct sockaddr_in sin = {
1829 .sin_family = AF_INET,
1830 .sin_addr.s_addr = INADDR_ANY,
1831 .sin_port = htons(port),
1834 dprintk("svc: creating socket proto = %d\n", protocol);
1835 return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1836 sizeof(sin), flags);
1840 * Handle defer and revisit of requests
1843 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1845 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1846 struct svc_sock *svsk;
1848 if (too_many) {
1849 svc_sock_put(dr->svsk);
1850 kfree(dr);
1851 return;
1853 dprintk("revisit queued\n");
1854 svsk = dr->svsk;
1855 dr->svsk = NULL;
1856 spin_lock_bh(&svsk->sk_defer_lock);
1857 list_add(&dr->handle.recent, &svsk->sk_deferred);
1858 spin_unlock_bh(&svsk->sk_defer_lock);
1859 set_bit(SK_DEFERRED, &svsk->sk_flags);
1860 svc_sock_enqueue(svsk);
1861 svc_sock_put(svsk);
1864 static struct cache_deferred_req *
1865 svc_defer(struct cache_req *req)
1867 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1868 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1869 struct svc_deferred_req *dr;
1871 if (rqstp->rq_arg.page_len)
1872 return NULL; /* if more than a page, give up FIXME */
1873 if (rqstp->rq_deferred) {
1874 dr = rqstp->rq_deferred;
1875 rqstp->rq_deferred = NULL;
1876 } else {
1877 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1878 /* FIXME maybe discard if size too large */
1879 dr = kmalloc(size, GFP_KERNEL);
1880 if (dr == NULL)
1881 return NULL;
1883 dr->handle.owner = rqstp->rq_server;
1884 dr->prot = rqstp->rq_prot;
1885 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1886 dr->addrlen = rqstp->rq_addrlen;
1887 dr->daddr = rqstp->rq_daddr;
1888 dr->argslen = rqstp->rq_arg.len >> 2;
1889 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1891 atomic_inc(&rqstp->rq_sock->sk_inuse);
1892 dr->svsk = rqstp->rq_sock;
1894 dr->handle.revisit = svc_revisit;
1895 return &dr->handle;
1899 * recv data from a deferred request into an active one
1901 static int svc_deferred_recv(struct svc_rqst *rqstp)
1903 struct svc_deferred_req *dr = rqstp->rq_deferred;
1905 rqstp->rq_arg.head[0].iov_base = dr->args;
1906 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1907 rqstp->rq_arg.page_len = 0;
1908 rqstp->rq_arg.len = dr->argslen<<2;
1909 rqstp->rq_prot = dr->prot;
1910 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1911 rqstp->rq_addrlen = dr->addrlen;
1912 rqstp->rq_daddr = dr->daddr;
1913 rqstp->rq_respages = rqstp->rq_pages;
1914 return dr->argslen<<2;
1918 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1920 struct svc_deferred_req *dr = NULL;
1922 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1923 return NULL;
1924 spin_lock_bh(&svsk->sk_defer_lock);
1925 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1926 if (!list_empty(&svsk->sk_deferred)) {
1927 dr = list_entry(svsk->sk_deferred.next,
1928 struct svc_deferred_req,
1929 handle.recent);
1930 list_del_init(&dr->handle.recent);
1931 set_bit(SK_DEFERRED, &svsk->sk_flags);
1933 spin_unlock_bh(&svsk->sk_defer_lock);
1934 return dr;