[SPARC]: sys_newfstatat --> sys_fstatat64
[linux-2.6/verdex.git] / arch / sparc64 / kernel / smp.c
blob1fb6323e65a4ec88ce0df377d7b1b770d1e856ed
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
42 extern void calibrate_delay(void);
44 /* Please don't make this stuff initdata!!! --DaveM */
45 static unsigned char boot_cpu_id;
47 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
48 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
49 static cpumask_t smp_commenced_mask;
50 static cpumask_t cpu_callout_map;
52 void smp_info(struct seq_file *m)
54 int i;
56 seq_printf(m, "State:\n");
57 for (i = 0; i < NR_CPUS; i++) {
58 if (cpu_online(i))
59 seq_printf(m,
60 "CPU%d:\t\tonline\n", i);
64 void smp_bogo(struct seq_file *m)
66 int i;
68 for (i = 0; i < NR_CPUS; i++)
69 if (cpu_online(i))
70 seq_printf(m,
71 "Cpu%dBogo\t: %lu.%02lu\n"
72 "Cpu%dClkTck\t: %016lx\n",
73 i, cpu_data(i).udelay_val / (500000/HZ),
74 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
75 i, cpu_data(i).clock_tick);
78 void __init smp_store_cpu_info(int id)
80 int cpu_node;
82 /* multiplier and counter set by
83 smp_setup_percpu_timer() */
84 cpu_data(id).udelay_val = loops_per_jiffy;
86 cpu_find_by_mid(id, &cpu_node);
87 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
88 "clock-frequency", 0);
90 cpu_data(id).pgcache_size = 0;
91 cpu_data(id).pte_cache[0] = NULL;
92 cpu_data(id).pte_cache[1] = NULL;
93 cpu_data(id).pgd_cache = NULL;
94 cpu_data(id).idle_volume = 1;
96 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
97 16 * 1024);
98 cpu_data(id).dcache_line_size =
99 prom_getintdefault(cpu_node, "dcache-line-size", 32);
100 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
101 16 * 1024);
102 cpu_data(id).icache_line_size =
103 prom_getintdefault(cpu_node, "icache-line-size", 32);
104 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
105 4 * 1024 * 1024);
106 cpu_data(id).ecache_line_size =
107 prom_getintdefault(cpu_node, "ecache-line-size", 64);
108 printk("CPU[%d]: Caches "
109 "D[sz(%d):line_sz(%d)] "
110 "I[sz(%d):line_sz(%d)] "
111 "E[sz(%d):line_sz(%d)]\n",
113 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
114 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
115 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
118 static void smp_setup_percpu_timer(void);
120 static volatile unsigned long callin_flag = 0;
122 extern void inherit_locked_prom_mappings(int save_p);
124 static inline void cpu_setup_percpu_base(unsigned long cpu_id)
126 __asm__ __volatile__("mov %0, %%g5\n\t"
127 "stxa %0, [%1] %2\n\t"
128 "membar #Sync"
129 : /* no outputs */
130 : "r" (__per_cpu_offset(cpu_id)),
131 "r" (TSB_REG), "i" (ASI_IMMU));
134 void __init smp_callin(void)
136 int cpuid = hard_smp_processor_id();
138 inherit_locked_prom_mappings(0);
140 __flush_tlb_all();
142 cpu_setup_percpu_base(cpuid);
144 smp_setup_percpu_timer();
146 if (cheetah_pcache_forced_on)
147 cheetah_enable_pcache();
149 local_irq_enable();
151 calibrate_delay();
152 smp_store_cpu_info(cpuid);
153 callin_flag = 1;
154 __asm__ __volatile__("membar #Sync\n\t"
155 "flush %%g6" : : : "memory");
157 /* Clear this or we will die instantly when we
158 * schedule back to this idler...
160 current_thread_info()->new_child = 0;
162 /* Attach to the address space of init_task. */
163 atomic_inc(&init_mm.mm_count);
164 current->active_mm = &init_mm;
166 while (!cpu_isset(cpuid, smp_commenced_mask))
167 rmb();
169 cpu_set(cpuid, cpu_online_map);
171 /* idle thread is expected to have preempt disabled */
172 preempt_disable();
175 void cpu_panic(void)
177 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
178 panic("SMP bolixed\n");
181 static unsigned long current_tick_offset __read_mostly;
183 /* This tick register synchronization scheme is taken entirely from
184 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
186 * The only change I've made is to rework it so that the master
187 * initiates the synchonization instead of the slave. -DaveM
190 #define MASTER 0
191 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
193 #define NUM_ROUNDS 64 /* magic value */
194 #define NUM_ITERS 5 /* likewise */
196 static DEFINE_SPINLOCK(itc_sync_lock);
197 static unsigned long go[SLAVE + 1];
199 #define DEBUG_TICK_SYNC 0
201 static inline long get_delta (long *rt, long *master)
203 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
204 unsigned long tcenter, t0, t1, tm;
205 unsigned long i;
207 for (i = 0; i < NUM_ITERS; i++) {
208 t0 = tick_ops->get_tick();
209 go[MASTER] = 1;
210 membar_storeload();
211 while (!(tm = go[SLAVE]))
212 rmb();
213 go[SLAVE] = 0;
214 wmb();
215 t1 = tick_ops->get_tick();
217 if (t1 - t0 < best_t1 - best_t0)
218 best_t0 = t0, best_t1 = t1, best_tm = tm;
221 *rt = best_t1 - best_t0;
222 *master = best_tm - best_t0;
224 /* average best_t0 and best_t1 without overflow: */
225 tcenter = (best_t0/2 + best_t1/2);
226 if (best_t0 % 2 + best_t1 % 2 == 2)
227 tcenter++;
228 return tcenter - best_tm;
231 void smp_synchronize_tick_client(void)
233 long i, delta, adj, adjust_latency = 0, done = 0;
234 unsigned long flags, rt, master_time_stamp, bound;
235 #if DEBUG_TICK_SYNC
236 struct {
237 long rt; /* roundtrip time */
238 long master; /* master's timestamp */
239 long diff; /* difference between midpoint and master's timestamp */
240 long lat; /* estimate of itc adjustment latency */
241 } t[NUM_ROUNDS];
242 #endif
244 go[MASTER] = 1;
246 while (go[MASTER])
247 rmb();
249 local_irq_save(flags);
251 for (i = 0; i < NUM_ROUNDS; i++) {
252 delta = get_delta(&rt, &master_time_stamp);
253 if (delta == 0) {
254 done = 1; /* let's lock on to this... */
255 bound = rt;
258 if (!done) {
259 if (i > 0) {
260 adjust_latency += -delta;
261 adj = -delta + adjust_latency/4;
262 } else
263 adj = -delta;
265 tick_ops->add_tick(adj, current_tick_offset);
267 #if DEBUG_TICK_SYNC
268 t[i].rt = rt;
269 t[i].master = master_time_stamp;
270 t[i].diff = delta;
271 t[i].lat = adjust_latency/4;
272 #endif
275 local_irq_restore(flags);
277 #if DEBUG_TICK_SYNC
278 for (i = 0; i < NUM_ROUNDS; i++)
279 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
280 t[i].rt, t[i].master, t[i].diff, t[i].lat);
281 #endif
283 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
284 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
287 static void smp_start_sync_tick_client(int cpu);
289 static void smp_synchronize_one_tick(int cpu)
291 unsigned long flags, i;
293 go[MASTER] = 0;
295 smp_start_sync_tick_client(cpu);
297 /* wait for client to be ready */
298 while (!go[MASTER])
299 rmb();
301 /* now let the client proceed into his loop */
302 go[MASTER] = 0;
303 membar_storeload();
305 spin_lock_irqsave(&itc_sync_lock, flags);
307 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
308 while (!go[MASTER])
309 rmb();
310 go[MASTER] = 0;
311 wmb();
312 go[SLAVE] = tick_ops->get_tick();
313 membar_storeload();
316 spin_unlock_irqrestore(&itc_sync_lock, flags);
319 extern unsigned long sparc64_cpu_startup;
321 /* The OBP cpu startup callback truncates the 3rd arg cookie to
322 * 32-bits (I think) so to be safe we have it read the pointer
323 * contained here so we work on >4GB machines. -DaveM
325 static struct thread_info *cpu_new_thread = NULL;
327 static int __devinit smp_boot_one_cpu(unsigned int cpu)
329 unsigned long entry =
330 (unsigned long)(&sparc64_cpu_startup);
331 unsigned long cookie =
332 (unsigned long)(&cpu_new_thread);
333 struct task_struct *p;
334 int timeout, ret, cpu_node;
336 p = fork_idle(cpu);
337 callin_flag = 0;
338 cpu_new_thread = task_thread_info(p);
339 cpu_set(cpu, cpu_callout_map);
341 cpu_find_by_mid(cpu, &cpu_node);
342 prom_startcpu(cpu_node, entry, cookie);
344 for (timeout = 0; timeout < 5000000; timeout++) {
345 if (callin_flag)
346 break;
347 udelay(100);
349 if (callin_flag) {
350 ret = 0;
351 } else {
352 printk("Processor %d is stuck.\n", cpu);
353 cpu_clear(cpu, cpu_callout_map);
354 ret = -ENODEV;
356 cpu_new_thread = NULL;
358 return ret;
361 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
363 u64 result, target;
364 int stuck, tmp;
366 if (this_is_starfire) {
367 /* map to real upaid */
368 cpu = (((cpu & 0x3c) << 1) |
369 ((cpu & 0x40) >> 4) |
370 (cpu & 0x3));
373 target = (cpu << 14) | 0x70;
374 again:
375 /* Ok, this is the real Spitfire Errata #54.
376 * One must read back from a UDB internal register
377 * after writes to the UDB interrupt dispatch, but
378 * before the membar Sync for that write.
379 * So we use the high UDB control register (ASI 0x7f,
380 * ADDR 0x20) for the dummy read. -DaveM
382 tmp = 0x40;
383 __asm__ __volatile__(
384 "wrpr %1, %2, %%pstate\n\t"
385 "stxa %4, [%0] %3\n\t"
386 "stxa %5, [%0+%8] %3\n\t"
387 "add %0, %8, %0\n\t"
388 "stxa %6, [%0+%8] %3\n\t"
389 "membar #Sync\n\t"
390 "stxa %%g0, [%7] %3\n\t"
391 "membar #Sync\n\t"
392 "mov 0x20, %%g1\n\t"
393 "ldxa [%%g1] 0x7f, %%g0\n\t"
394 "membar #Sync"
395 : "=r" (tmp)
396 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
397 "r" (data0), "r" (data1), "r" (data2), "r" (target),
398 "r" (0x10), "0" (tmp)
399 : "g1");
401 /* NOTE: PSTATE_IE is still clear. */
402 stuck = 100000;
403 do {
404 __asm__ __volatile__("ldxa [%%g0] %1, %0"
405 : "=r" (result)
406 : "i" (ASI_INTR_DISPATCH_STAT));
407 if (result == 0) {
408 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
409 : : "r" (pstate));
410 return;
412 stuck -= 1;
413 if (stuck == 0)
414 break;
415 } while (result & 0x1);
416 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
417 : : "r" (pstate));
418 if (stuck == 0) {
419 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
420 smp_processor_id(), result);
421 } else {
422 udelay(2);
423 goto again;
427 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
429 u64 pstate;
430 int i;
432 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
433 for_each_cpu_mask(i, mask)
434 spitfire_xcall_helper(data0, data1, data2, pstate, i);
437 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
438 * packet, but we have no use for that. However we do take advantage of
439 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
441 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
443 u64 pstate, ver;
444 int nack_busy_id, is_jalapeno;
446 if (cpus_empty(mask))
447 return;
449 /* Unfortunately, someone at Sun had the brilliant idea to make the
450 * busy/nack fields hard-coded by ITID number for this Ultra-III
451 * derivative processor.
453 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
454 is_jalapeno = ((ver >> 32) == 0x003e0016);
456 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
458 retry:
459 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
460 : : "r" (pstate), "i" (PSTATE_IE));
462 /* Setup the dispatch data registers. */
463 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
464 "stxa %1, [%4] %6\n\t"
465 "stxa %2, [%5] %6\n\t"
466 "membar #Sync\n\t"
467 : /* no outputs */
468 : "r" (data0), "r" (data1), "r" (data2),
469 "r" (0x40), "r" (0x50), "r" (0x60),
470 "i" (ASI_INTR_W));
472 nack_busy_id = 0;
474 int i;
476 for_each_cpu_mask(i, mask) {
477 u64 target = (i << 14) | 0x70;
479 if (!is_jalapeno)
480 target |= (nack_busy_id << 24);
481 __asm__ __volatile__(
482 "stxa %%g0, [%0] %1\n\t"
483 "membar #Sync\n\t"
484 : /* no outputs */
485 : "r" (target), "i" (ASI_INTR_W));
486 nack_busy_id++;
490 /* Now, poll for completion. */
492 u64 dispatch_stat;
493 long stuck;
495 stuck = 100000 * nack_busy_id;
496 do {
497 __asm__ __volatile__("ldxa [%%g0] %1, %0"
498 : "=r" (dispatch_stat)
499 : "i" (ASI_INTR_DISPATCH_STAT));
500 if (dispatch_stat == 0UL) {
501 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
502 : : "r" (pstate));
503 return;
505 if (!--stuck)
506 break;
507 } while (dispatch_stat & 0x5555555555555555UL);
509 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
510 : : "r" (pstate));
512 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
513 /* Busy bits will not clear, continue instead
514 * of freezing up on this cpu.
516 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
517 smp_processor_id(), dispatch_stat);
518 } else {
519 int i, this_busy_nack = 0;
521 /* Delay some random time with interrupts enabled
522 * to prevent deadlock.
524 udelay(2 * nack_busy_id);
526 /* Clear out the mask bits for cpus which did not
527 * NACK us.
529 for_each_cpu_mask(i, mask) {
530 u64 check_mask;
532 if (is_jalapeno)
533 check_mask = (0x2UL << (2*i));
534 else
535 check_mask = (0x2UL <<
536 this_busy_nack);
537 if ((dispatch_stat & check_mask) == 0)
538 cpu_clear(i, mask);
539 this_busy_nack += 2;
542 goto retry;
547 /* Send cross call to all processors mentioned in MASK
548 * except self.
550 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
552 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
553 int this_cpu = get_cpu();
555 cpus_and(mask, mask, cpu_online_map);
556 cpu_clear(this_cpu, mask);
558 if (tlb_type == spitfire)
559 spitfire_xcall_deliver(data0, data1, data2, mask);
560 else
561 cheetah_xcall_deliver(data0, data1, data2, mask);
562 /* NOTE: Caller runs local copy on master. */
564 put_cpu();
567 extern unsigned long xcall_sync_tick;
569 static void smp_start_sync_tick_client(int cpu)
571 cpumask_t mask = cpumask_of_cpu(cpu);
573 smp_cross_call_masked(&xcall_sync_tick,
574 0, 0, 0, mask);
577 /* Send cross call to all processors except self. */
578 #define smp_cross_call(func, ctx, data1, data2) \
579 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
581 struct call_data_struct {
582 void (*func) (void *info);
583 void *info;
584 atomic_t finished;
585 int wait;
588 static DEFINE_SPINLOCK(call_lock);
589 static struct call_data_struct *call_data;
591 extern unsigned long xcall_call_function;
594 * You must not call this function with disabled interrupts or from a
595 * hardware interrupt handler or from a bottom half handler.
597 int smp_call_function(void (*func)(void *info), void *info,
598 int nonatomic, int wait)
600 struct call_data_struct data;
601 int cpus = num_online_cpus() - 1;
602 long timeout;
604 if (!cpus)
605 return 0;
607 /* Can deadlock when called with interrupts disabled */
608 WARN_ON(irqs_disabled());
610 data.func = func;
611 data.info = info;
612 atomic_set(&data.finished, 0);
613 data.wait = wait;
615 spin_lock(&call_lock);
617 call_data = &data;
619 smp_cross_call(&xcall_call_function, 0, 0, 0);
622 * Wait for other cpus to complete function or at
623 * least snap the call data.
625 timeout = 1000000;
626 while (atomic_read(&data.finished) != cpus) {
627 if (--timeout <= 0)
628 goto out_timeout;
629 barrier();
630 udelay(1);
633 spin_unlock(&call_lock);
635 return 0;
637 out_timeout:
638 spin_unlock(&call_lock);
639 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
640 (long) num_online_cpus() - 1L,
641 (long) atomic_read(&data.finished));
642 return 0;
645 void smp_call_function_client(int irq, struct pt_regs *regs)
647 void (*func) (void *info) = call_data->func;
648 void *info = call_data->info;
650 clear_softint(1 << irq);
651 if (call_data->wait) {
652 /* let initiator proceed only after completion */
653 func(info);
654 atomic_inc(&call_data->finished);
655 } else {
656 /* let initiator proceed after getting data */
657 atomic_inc(&call_data->finished);
658 func(info);
662 extern unsigned long xcall_flush_tlb_mm;
663 extern unsigned long xcall_flush_tlb_pending;
664 extern unsigned long xcall_flush_tlb_kernel_range;
665 extern unsigned long xcall_flush_tlb_all_spitfire;
666 extern unsigned long xcall_flush_tlb_all_cheetah;
667 extern unsigned long xcall_report_regs;
668 extern unsigned long xcall_receive_signal;
670 #ifdef DCACHE_ALIASING_POSSIBLE
671 extern unsigned long xcall_flush_dcache_page_cheetah;
672 #endif
673 extern unsigned long xcall_flush_dcache_page_spitfire;
675 #ifdef CONFIG_DEBUG_DCFLUSH
676 extern atomic_t dcpage_flushes;
677 extern atomic_t dcpage_flushes_xcall;
678 #endif
680 static __inline__ void __local_flush_dcache_page(struct page *page)
682 #ifdef DCACHE_ALIASING_POSSIBLE
683 __flush_dcache_page(page_address(page),
684 ((tlb_type == spitfire) &&
685 page_mapping(page) != NULL));
686 #else
687 if (page_mapping(page) != NULL &&
688 tlb_type == spitfire)
689 __flush_icache_page(__pa(page_address(page)));
690 #endif
693 void smp_flush_dcache_page_impl(struct page *page, int cpu)
695 cpumask_t mask = cpumask_of_cpu(cpu);
696 int this_cpu = get_cpu();
698 #ifdef CONFIG_DEBUG_DCFLUSH
699 atomic_inc(&dcpage_flushes);
700 #endif
701 if (cpu == this_cpu) {
702 __local_flush_dcache_page(page);
703 } else if (cpu_online(cpu)) {
704 void *pg_addr = page_address(page);
705 u64 data0;
707 if (tlb_type == spitfire) {
708 data0 =
709 ((u64)&xcall_flush_dcache_page_spitfire);
710 if (page_mapping(page) != NULL)
711 data0 |= ((u64)1 << 32);
712 spitfire_xcall_deliver(data0,
713 __pa(pg_addr),
714 (u64) pg_addr,
715 mask);
716 } else {
717 #ifdef DCACHE_ALIASING_POSSIBLE
718 data0 =
719 ((u64)&xcall_flush_dcache_page_cheetah);
720 cheetah_xcall_deliver(data0,
721 __pa(pg_addr),
722 0, mask);
723 #endif
725 #ifdef CONFIG_DEBUG_DCFLUSH
726 atomic_inc(&dcpage_flushes_xcall);
727 #endif
730 put_cpu();
733 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
735 void *pg_addr = page_address(page);
736 cpumask_t mask = cpu_online_map;
737 u64 data0;
738 int this_cpu = get_cpu();
740 cpu_clear(this_cpu, mask);
742 #ifdef CONFIG_DEBUG_DCFLUSH
743 atomic_inc(&dcpage_flushes);
744 #endif
745 if (cpus_empty(mask))
746 goto flush_self;
747 if (tlb_type == spitfire) {
748 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
749 if (page_mapping(page) != NULL)
750 data0 |= ((u64)1 << 32);
751 spitfire_xcall_deliver(data0,
752 __pa(pg_addr),
753 (u64) pg_addr,
754 mask);
755 } else {
756 #ifdef DCACHE_ALIASING_POSSIBLE
757 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
758 cheetah_xcall_deliver(data0,
759 __pa(pg_addr),
760 0, mask);
761 #endif
763 #ifdef CONFIG_DEBUG_DCFLUSH
764 atomic_inc(&dcpage_flushes_xcall);
765 #endif
766 flush_self:
767 __local_flush_dcache_page(page);
769 put_cpu();
772 void smp_receive_signal(int cpu)
774 cpumask_t mask = cpumask_of_cpu(cpu);
776 if (cpu_online(cpu)) {
777 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
779 if (tlb_type == spitfire)
780 spitfire_xcall_deliver(data0, 0, 0, mask);
781 else
782 cheetah_xcall_deliver(data0, 0, 0, mask);
786 void smp_receive_signal_client(int irq, struct pt_regs *regs)
788 /* Just return, rtrap takes care of the rest. */
789 clear_softint(1 << irq);
792 void smp_report_regs(void)
794 smp_cross_call(&xcall_report_regs, 0, 0, 0);
797 void smp_flush_tlb_all(void)
799 if (tlb_type == spitfire)
800 smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0);
801 else
802 smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0);
803 __flush_tlb_all();
806 /* We know that the window frames of the user have been flushed
807 * to the stack before we get here because all callers of us
808 * are flush_tlb_*() routines, and these run after flush_cache_*()
809 * which performs the flushw.
811 * The SMP TLB coherency scheme we use works as follows:
813 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
814 * space has (potentially) executed on, this is the heuristic
815 * we use to avoid doing cross calls.
817 * Also, for flushing from kswapd and also for clones, we
818 * use cpu_vm_mask as the list of cpus to make run the TLB.
820 * 2) TLB context numbers are shared globally across all processors
821 * in the system, this allows us to play several games to avoid
822 * cross calls.
824 * One invariant is that when a cpu switches to a process, and
825 * that processes tsk->active_mm->cpu_vm_mask does not have the
826 * current cpu's bit set, that tlb context is flushed locally.
828 * If the address space is non-shared (ie. mm->count == 1) we avoid
829 * cross calls when we want to flush the currently running process's
830 * tlb state. This is done by clearing all cpu bits except the current
831 * processor's in current->active_mm->cpu_vm_mask and performing the
832 * flush locally only. This will force any subsequent cpus which run
833 * this task to flush the context from the local tlb if the process
834 * migrates to another cpu (again).
836 * 3) For shared address spaces (threads) and swapping we bite the
837 * bullet for most cases and perform the cross call (but only to
838 * the cpus listed in cpu_vm_mask).
840 * The performance gain from "optimizing" away the cross call for threads is
841 * questionable (in theory the big win for threads is the massive sharing of
842 * address space state across processors).
845 /* This currently is only used by the hugetlb arch pre-fault
846 * hook on UltraSPARC-III+ and later when changing the pagesize
847 * bits of the context register for an address space.
849 void smp_flush_tlb_mm(struct mm_struct *mm)
851 u32 ctx = CTX_HWBITS(mm->context);
852 int cpu = get_cpu();
854 if (atomic_read(&mm->mm_users) == 1) {
855 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
856 goto local_flush_and_out;
859 smp_cross_call_masked(&xcall_flush_tlb_mm,
860 ctx, 0, 0,
861 mm->cpu_vm_mask);
863 local_flush_and_out:
864 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
866 put_cpu();
869 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
871 u32 ctx = CTX_HWBITS(mm->context);
872 int cpu = get_cpu();
874 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
875 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
876 else
877 smp_cross_call_masked(&xcall_flush_tlb_pending,
878 ctx, nr, (unsigned long) vaddrs,
879 mm->cpu_vm_mask);
881 __flush_tlb_pending(ctx, nr, vaddrs);
883 put_cpu();
886 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
888 start &= PAGE_MASK;
889 end = PAGE_ALIGN(end);
890 if (start != end) {
891 smp_cross_call(&xcall_flush_tlb_kernel_range,
892 0, start, end);
894 __flush_tlb_kernel_range(start, end);
898 /* CPU capture. */
899 /* #define CAPTURE_DEBUG */
900 extern unsigned long xcall_capture;
902 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
903 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
904 static unsigned long penguins_are_doing_time;
906 void smp_capture(void)
908 int result = atomic_add_ret(1, &smp_capture_depth);
910 if (result == 1) {
911 int ncpus = num_online_cpus();
913 #ifdef CAPTURE_DEBUG
914 printk("CPU[%d]: Sending penguins to jail...",
915 smp_processor_id());
916 #endif
917 penguins_are_doing_time = 1;
918 membar_storestore_loadstore();
919 atomic_inc(&smp_capture_registry);
920 smp_cross_call(&xcall_capture, 0, 0, 0);
921 while (atomic_read(&smp_capture_registry) != ncpus)
922 rmb();
923 #ifdef CAPTURE_DEBUG
924 printk("done\n");
925 #endif
929 void smp_release(void)
931 if (atomic_dec_and_test(&smp_capture_depth)) {
932 #ifdef CAPTURE_DEBUG
933 printk("CPU[%d]: Giving pardon to "
934 "imprisoned penguins\n",
935 smp_processor_id());
936 #endif
937 penguins_are_doing_time = 0;
938 membar_storeload_storestore();
939 atomic_dec(&smp_capture_registry);
943 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
944 * can service tlb flush xcalls...
946 extern void prom_world(int);
947 extern void save_alternate_globals(unsigned long *);
948 extern void restore_alternate_globals(unsigned long *);
949 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
951 unsigned long global_save[24];
953 clear_softint(1 << irq);
955 preempt_disable();
957 __asm__ __volatile__("flushw");
958 save_alternate_globals(global_save);
959 prom_world(1);
960 atomic_inc(&smp_capture_registry);
961 membar_storeload_storestore();
962 while (penguins_are_doing_time)
963 rmb();
964 restore_alternate_globals(global_save);
965 atomic_dec(&smp_capture_registry);
966 prom_world(0);
968 preempt_enable();
971 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
972 #define prof_counter(__cpu) cpu_data(__cpu).counter
974 void smp_percpu_timer_interrupt(struct pt_regs *regs)
976 unsigned long compare, tick, pstate;
977 int cpu = smp_processor_id();
978 int user = user_mode(regs);
981 * Check for level 14 softint.
984 unsigned long tick_mask = tick_ops->softint_mask;
986 if (!(get_softint() & tick_mask)) {
987 extern void handler_irq(int, struct pt_regs *);
989 handler_irq(14, regs);
990 return;
992 clear_softint(tick_mask);
995 do {
996 profile_tick(CPU_PROFILING, regs);
997 if (!--prof_counter(cpu)) {
998 irq_enter();
1000 if (cpu == boot_cpu_id) {
1001 kstat_this_cpu.irqs[0]++;
1002 timer_tick_interrupt(regs);
1005 update_process_times(user);
1007 irq_exit();
1009 prof_counter(cpu) = prof_multiplier(cpu);
1012 /* Guarantee that the following sequences execute
1013 * uninterrupted.
1015 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1016 "wrpr %0, %1, %%pstate"
1017 : "=r" (pstate)
1018 : "i" (PSTATE_IE));
1020 compare = tick_ops->add_compare(current_tick_offset);
1021 tick = tick_ops->get_tick();
1023 /* Restore PSTATE_IE. */
1024 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1025 : /* no outputs */
1026 : "r" (pstate));
1027 } while (time_after_eq(tick, compare));
1030 static void __init smp_setup_percpu_timer(void)
1032 int cpu = smp_processor_id();
1033 unsigned long pstate;
1035 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1037 /* Guarantee that the following sequences execute
1038 * uninterrupted.
1040 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1041 "wrpr %0, %1, %%pstate"
1042 : "=r" (pstate)
1043 : "i" (PSTATE_IE));
1045 tick_ops->init_tick(current_tick_offset);
1047 /* Restore PSTATE_IE. */
1048 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1049 : /* no outputs */
1050 : "r" (pstate));
1053 void __init smp_tick_init(void)
1055 boot_cpu_id = hard_smp_processor_id();
1056 current_tick_offset = timer_tick_offset;
1058 cpu_set(boot_cpu_id, cpu_online_map);
1059 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1062 /* /proc/profile writes can call this, don't __init it please. */
1063 static DEFINE_SPINLOCK(prof_setup_lock);
1065 int setup_profiling_timer(unsigned int multiplier)
1067 unsigned long flags;
1068 int i;
1070 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1071 return -EINVAL;
1073 spin_lock_irqsave(&prof_setup_lock, flags);
1074 for (i = 0; i < NR_CPUS; i++)
1075 prof_multiplier(i) = multiplier;
1076 current_tick_offset = (timer_tick_offset / multiplier);
1077 spin_unlock_irqrestore(&prof_setup_lock, flags);
1079 return 0;
1082 void __init smp_prepare_cpus(unsigned int max_cpus)
1084 int instance, mid;
1086 instance = 0;
1087 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1088 if (mid < max_cpus)
1089 cpu_set(mid, phys_cpu_present_map);
1090 instance++;
1093 if (num_possible_cpus() > max_cpus) {
1094 instance = 0;
1095 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1096 if (mid != boot_cpu_id) {
1097 cpu_clear(mid, phys_cpu_present_map);
1098 if (num_possible_cpus() <= max_cpus)
1099 break;
1101 instance++;
1105 smp_store_cpu_info(boot_cpu_id);
1108 void __devinit smp_prepare_boot_cpu(void)
1110 if (hard_smp_processor_id() >= NR_CPUS) {
1111 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1112 prom_halt();
1115 current_thread_info()->cpu = hard_smp_processor_id();
1117 cpu_set(smp_processor_id(), cpu_online_map);
1118 cpu_set(smp_processor_id(), phys_cpu_present_map);
1121 int __devinit __cpu_up(unsigned int cpu)
1123 int ret = smp_boot_one_cpu(cpu);
1125 if (!ret) {
1126 cpu_set(cpu, smp_commenced_mask);
1127 while (!cpu_isset(cpu, cpu_online_map))
1128 mb();
1129 if (!cpu_isset(cpu, cpu_online_map)) {
1130 ret = -ENODEV;
1131 } else {
1132 smp_synchronize_one_tick(cpu);
1135 return ret;
1138 void __init smp_cpus_done(unsigned int max_cpus)
1140 unsigned long bogosum = 0;
1141 int i;
1143 for (i = 0; i < NR_CPUS; i++) {
1144 if (cpu_online(i))
1145 bogosum += cpu_data(i).udelay_val;
1147 printk("Total of %ld processors activated "
1148 "(%lu.%02lu BogoMIPS).\n",
1149 (long) num_online_cpus(),
1150 bogosum/(500000/HZ),
1151 (bogosum/(5000/HZ))%100);
1154 void smp_send_reschedule(int cpu)
1156 smp_receive_signal(cpu);
1159 /* This is a nop because we capture all other cpus
1160 * anyways when making the PROM active.
1162 void smp_send_stop(void)
1166 unsigned long __per_cpu_base __read_mostly;
1167 unsigned long __per_cpu_shift __read_mostly;
1169 EXPORT_SYMBOL(__per_cpu_base);
1170 EXPORT_SYMBOL(__per_cpu_shift);
1172 void __init setup_per_cpu_areas(void)
1174 unsigned long goal, size, i;
1175 char *ptr;
1176 /* Created by linker magic */
1177 extern char __per_cpu_start[], __per_cpu_end[];
1179 /* Copy section for each CPU (we discard the original) */
1180 goal = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
1182 #ifdef CONFIG_MODULES
1183 if (goal < PERCPU_ENOUGH_ROOM)
1184 goal = PERCPU_ENOUGH_ROOM;
1185 #endif
1186 __per_cpu_shift = 0;
1187 for (size = 1UL; size < goal; size <<= 1UL)
1188 __per_cpu_shift++;
1190 /* Make sure the resulting __per_cpu_base value
1191 * will fit in the 43-bit sign extended IMMU
1192 * TSB register.
1194 ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE,
1195 (unsigned long) __per_cpu_start);
1197 __per_cpu_base = ptr - __per_cpu_start;
1199 if ((__per_cpu_shift < PAGE_SHIFT) ||
1200 (__per_cpu_base & ~PAGE_MASK) ||
1201 (__per_cpu_base != (((long) __per_cpu_base << 20) >> 20))) {
1202 prom_printf("PER_CPU: Invalid layout, "
1203 "ptr[%p] shift[%lx] base[%lx]\n",
1204 ptr, __per_cpu_shift, __per_cpu_base);
1205 prom_halt();
1208 for (i = 0; i < NR_CPUS; i++, ptr += size)
1209 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1211 /* Finally, load in the boot cpu's base value.
1212 * We abuse the IMMU TSB register for trap handler
1213 * entry and exit loading of %g5. That is why it
1214 * has to be page aligned.
1216 cpu_setup_percpu_base(hard_smp_processor_id());