Merge commit 'origin/master' into for-linus/xen/master
[linux-2.6/verdex.git] / mm / shmem.c
blobd94d2e9146bc4dfa5d946449274be75419f0b8da
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
31 #include <linux/ima.h>
33 static struct vfsmount *shm_mnt;
35 #ifdef CONFIG_SHMEM
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
42 #include <linux/xattr.h>
43 #include <linux/exportfs.h>
44 #include <linux/generic_acl.h>
45 #include <linux/mman.h>
46 #include <linux/pagemap.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/vfs.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
68 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
69 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
70 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
73 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
75 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
77 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
78 #define SHMEM_PAGEIN VM_READ
79 #define SHMEM_TRUNCATE VM_WRITE
81 /* Definition to limit shmem_truncate's steps between cond_rescheds */
82 #define LATENCY_LIMIT 64
84 /* Pretend that each entry is of this size in directory's i_size */
85 #define BOGO_DIRENT_SIZE 20
87 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
88 enum sgp_type {
89 SGP_READ, /* don't exceed i_size, don't allocate page */
90 SGP_CACHE, /* don't exceed i_size, may allocate page */
91 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
92 SGP_WRITE, /* may exceed i_size, may allocate page */
95 #ifdef CONFIG_TMPFS
96 static unsigned long shmem_default_max_blocks(void)
98 return totalram_pages / 2;
101 static unsigned long shmem_default_max_inodes(void)
103 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
105 #endif
107 static int shmem_getpage(struct inode *inode, unsigned long idx,
108 struct page **pagep, enum sgp_type sgp, int *type);
110 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
113 * The above definition of ENTRIES_PER_PAGE, and the use of
114 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
115 * might be reconsidered if it ever diverges from PAGE_SIZE.
117 * Mobility flags are masked out as swap vectors cannot move
119 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
120 PAGE_CACHE_SHIFT-PAGE_SHIFT);
123 static inline void shmem_dir_free(struct page *page)
125 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
128 static struct page **shmem_dir_map(struct page *page)
130 return (struct page **)kmap_atomic(page, KM_USER0);
133 static inline void shmem_dir_unmap(struct page **dir)
135 kunmap_atomic(dir, KM_USER0);
138 static swp_entry_t *shmem_swp_map(struct page *page)
140 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
143 static inline void shmem_swp_balance_unmap(void)
146 * When passing a pointer to an i_direct entry, to code which
147 * also handles indirect entries and so will shmem_swp_unmap,
148 * we must arrange for the preempt count to remain in balance.
149 * What kmap_atomic of a lowmem page does depends on config
150 * and architecture, so pretend to kmap_atomic some lowmem page.
152 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
155 static inline void shmem_swp_unmap(swp_entry_t *entry)
157 kunmap_atomic(entry, KM_USER1);
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
162 return sb->s_fs_info;
166 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167 * for shared memory and for shared anonymous (/dev/zero) mappings
168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169 * consistent with the pre-accounting of private mappings ...
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
173 return (flags & VM_NORESERVE) ?
174 0 : security_vm_enough_memory_kern(VM_ACCT(size));
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
179 if (!(flags & VM_NORESERVE))
180 vm_unacct_memory(VM_ACCT(size));
184 * ... whereas tmpfs objects are accounted incrementally as
185 * pages are allocated, in order to allow huge sparse files.
186 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
187 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
189 static inline int shmem_acct_block(unsigned long flags)
191 return (flags & VM_NORESERVE) ?
192 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
197 if (flags & VM_NORESERVE)
198 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
201 static const struct super_operations shmem_ops;
202 static const struct address_space_operations shmem_aops;
203 static const struct file_operations shmem_file_operations;
204 static const struct inode_operations shmem_inode_operations;
205 static const struct inode_operations shmem_dir_inode_operations;
206 static const struct inode_operations shmem_special_inode_operations;
207 static struct vm_operations_struct shmem_vm_ops;
209 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
210 .ra_pages = 0, /* No readahead */
211 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
212 .unplug_io_fn = default_unplug_io_fn,
215 static LIST_HEAD(shmem_swaplist);
216 static DEFINE_MUTEX(shmem_swaplist_mutex);
218 static void shmem_free_blocks(struct inode *inode, long pages)
220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 if (sbinfo->max_blocks) {
222 spin_lock(&sbinfo->stat_lock);
223 sbinfo->free_blocks += pages;
224 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
225 spin_unlock(&sbinfo->stat_lock);
229 static int shmem_reserve_inode(struct super_block *sb)
231 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
232 if (sbinfo->max_inodes) {
233 spin_lock(&sbinfo->stat_lock);
234 if (!sbinfo->free_inodes) {
235 spin_unlock(&sbinfo->stat_lock);
236 return -ENOSPC;
238 sbinfo->free_inodes--;
239 spin_unlock(&sbinfo->stat_lock);
241 return 0;
244 static void shmem_free_inode(struct super_block *sb)
246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247 if (sbinfo->max_inodes) {
248 spin_lock(&sbinfo->stat_lock);
249 sbinfo->free_inodes++;
250 spin_unlock(&sbinfo->stat_lock);
255 * shmem_recalc_inode - recalculate the size of an inode
256 * @inode: inode to recalc
258 * We have to calculate the free blocks since the mm can drop
259 * undirtied hole pages behind our back.
261 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
262 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
264 * It has to be called with the spinlock held.
266 static void shmem_recalc_inode(struct inode *inode)
268 struct shmem_inode_info *info = SHMEM_I(inode);
269 long freed;
271 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
272 if (freed > 0) {
273 info->alloced -= freed;
274 shmem_unacct_blocks(info->flags, freed);
275 shmem_free_blocks(inode, freed);
280 * shmem_swp_entry - find the swap vector position in the info structure
281 * @info: info structure for the inode
282 * @index: index of the page to find
283 * @page: optional page to add to the structure. Has to be preset to
284 * all zeros
286 * If there is no space allocated yet it will return NULL when
287 * page is NULL, else it will use the page for the needed block,
288 * setting it to NULL on return to indicate that it has been used.
290 * The swap vector is organized the following way:
292 * There are SHMEM_NR_DIRECT entries directly stored in the
293 * shmem_inode_info structure. So small files do not need an addional
294 * allocation.
296 * For pages with index > SHMEM_NR_DIRECT there is the pointer
297 * i_indirect which points to a page which holds in the first half
298 * doubly indirect blocks, in the second half triple indirect blocks:
300 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
301 * following layout (for SHMEM_NR_DIRECT == 16):
303 * i_indirect -> dir --> 16-19
304 * | +-> 20-23
306 * +-->dir2 --> 24-27
307 * | +-> 28-31
308 * | +-> 32-35
309 * | +-> 36-39
311 * +-->dir3 --> 40-43
312 * +-> 44-47
313 * +-> 48-51
314 * +-> 52-55
316 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
318 unsigned long offset;
319 struct page **dir;
320 struct page *subdir;
322 if (index < SHMEM_NR_DIRECT) {
323 shmem_swp_balance_unmap();
324 return info->i_direct+index;
326 if (!info->i_indirect) {
327 if (page) {
328 info->i_indirect = *page;
329 *page = NULL;
331 return NULL; /* need another page */
334 index -= SHMEM_NR_DIRECT;
335 offset = index % ENTRIES_PER_PAGE;
336 index /= ENTRIES_PER_PAGE;
337 dir = shmem_dir_map(info->i_indirect);
339 if (index >= ENTRIES_PER_PAGE/2) {
340 index -= ENTRIES_PER_PAGE/2;
341 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
342 index %= ENTRIES_PER_PAGE;
343 subdir = *dir;
344 if (!subdir) {
345 if (page) {
346 *dir = *page;
347 *page = NULL;
349 shmem_dir_unmap(dir);
350 return NULL; /* need another page */
352 shmem_dir_unmap(dir);
353 dir = shmem_dir_map(subdir);
356 dir += index;
357 subdir = *dir;
358 if (!subdir) {
359 if (!page || !(subdir = *page)) {
360 shmem_dir_unmap(dir);
361 return NULL; /* need a page */
363 *dir = subdir;
364 *page = NULL;
366 shmem_dir_unmap(dir);
367 return shmem_swp_map(subdir) + offset;
370 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
372 long incdec = value? 1: -1;
374 entry->val = value;
375 info->swapped += incdec;
376 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
377 struct page *page = kmap_atomic_to_page(entry);
378 set_page_private(page, page_private(page) + incdec);
383 * shmem_swp_alloc - get the position of the swap entry for the page.
384 * @info: info structure for the inode
385 * @index: index of the page to find
386 * @sgp: check and recheck i_size? skip allocation?
388 * If the entry does not exist, allocate it.
390 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
392 struct inode *inode = &info->vfs_inode;
393 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
394 struct page *page = NULL;
395 swp_entry_t *entry;
397 if (sgp != SGP_WRITE &&
398 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
399 return ERR_PTR(-EINVAL);
401 while (!(entry = shmem_swp_entry(info, index, &page))) {
402 if (sgp == SGP_READ)
403 return shmem_swp_map(ZERO_PAGE(0));
405 * Test free_blocks against 1 not 0, since we have 1 data
406 * page (and perhaps indirect index pages) yet to allocate:
407 * a waste to allocate index if we cannot allocate data.
409 if (sbinfo->max_blocks) {
410 spin_lock(&sbinfo->stat_lock);
411 if (sbinfo->free_blocks <= 1) {
412 spin_unlock(&sbinfo->stat_lock);
413 return ERR_PTR(-ENOSPC);
415 sbinfo->free_blocks--;
416 inode->i_blocks += BLOCKS_PER_PAGE;
417 spin_unlock(&sbinfo->stat_lock);
420 spin_unlock(&info->lock);
421 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
422 if (page)
423 set_page_private(page, 0);
424 spin_lock(&info->lock);
426 if (!page) {
427 shmem_free_blocks(inode, 1);
428 return ERR_PTR(-ENOMEM);
430 if (sgp != SGP_WRITE &&
431 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
432 entry = ERR_PTR(-EINVAL);
433 break;
435 if (info->next_index <= index)
436 info->next_index = index + 1;
438 if (page) {
439 /* another task gave its page, or truncated the file */
440 shmem_free_blocks(inode, 1);
441 shmem_dir_free(page);
443 if (info->next_index <= index && !IS_ERR(entry))
444 info->next_index = index + 1;
445 return entry;
449 * shmem_free_swp - free some swap entries in a directory
450 * @dir: pointer to the directory
451 * @edir: pointer after last entry of the directory
452 * @punch_lock: pointer to spinlock when needed for the holepunch case
454 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
455 spinlock_t *punch_lock)
457 spinlock_t *punch_unlock = NULL;
458 swp_entry_t *ptr;
459 int freed = 0;
461 for (ptr = dir; ptr < edir; ptr++) {
462 if (ptr->val) {
463 if (unlikely(punch_lock)) {
464 punch_unlock = punch_lock;
465 punch_lock = NULL;
466 spin_lock(punch_unlock);
467 if (!ptr->val)
468 continue;
470 free_swap_and_cache(*ptr);
471 *ptr = (swp_entry_t){0};
472 freed++;
475 if (punch_unlock)
476 spin_unlock(punch_unlock);
477 return freed;
480 static int shmem_map_and_free_swp(struct page *subdir, int offset,
481 int limit, struct page ***dir, spinlock_t *punch_lock)
483 swp_entry_t *ptr;
484 int freed = 0;
486 ptr = shmem_swp_map(subdir);
487 for (; offset < limit; offset += LATENCY_LIMIT) {
488 int size = limit - offset;
489 if (size > LATENCY_LIMIT)
490 size = LATENCY_LIMIT;
491 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
492 punch_lock);
493 if (need_resched()) {
494 shmem_swp_unmap(ptr);
495 if (*dir) {
496 shmem_dir_unmap(*dir);
497 *dir = NULL;
499 cond_resched();
500 ptr = shmem_swp_map(subdir);
503 shmem_swp_unmap(ptr);
504 return freed;
507 static void shmem_free_pages(struct list_head *next)
509 struct page *page;
510 int freed = 0;
512 do {
513 page = container_of(next, struct page, lru);
514 next = next->next;
515 shmem_dir_free(page);
516 freed++;
517 if (freed >= LATENCY_LIMIT) {
518 cond_resched();
519 freed = 0;
521 } while (next);
524 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
526 struct shmem_inode_info *info = SHMEM_I(inode);
527 unsigned long idx;
528 unsigned long size;
529 unsigned long limit;
530 unsigned long stage;
531 unsigned long diroff;
532 struct page **dir;
533 struct page *topdir;
534 struct page *middir;
535 struct page *subdir;
536 swp_entry_t *ptr;
537 LIST_HEAD(pages_to_free);
538 long nr_pages_to_free = 0;
539 long nr_swaps_freed = 0;
540 int offset;
541 int freed;
542 int punch_hole;
543 spinlock_t *needs_lock;
544 spinlock_t *punch_lock;
545 unsigned long upper_limit;
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
549 if (idx >= info->next_index)
550 return;
552 spin_lock(&info->lock);
553 info->flags |= SHMEM_TRUNCATE;
554 if (likely(end == (loff_t) -1)) {
555 limit = info->next_index;
556 upper_limit = SHMEM_MAX_INDEX;
557 info->next_index = idx;
558 needs_lock = NULL;
559 punch_hole = 0;
560 } else {
561 if (end + 1 >= inode->i_size) { /* we may free a little more */
562 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
563 PAGE_CACHE_SHIFT;
564 upper_limit = SHMEM_MAX_INDEX;
565 } else {
566 limit = (end + 1) >> PAGE_CACHE_SHIFT;
567 upper_limit = limit;
569 needs_lock = &info->lock;
570 punch_hole = 1;
573 topdir = info->i_indirect;
574 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
575 info->i_indirect = NULL;
576 nr_pages_to_free++;
577 list_add(&topdir->lru, &pages_to_free);
579 spin_unlock(&info->lock);
581 if (info->swapped && idx < SHMEM_NR_DIRECT) {
582 ptr = info->i_direct;
583 size = limit;
584 if (size > SHMEM_NR_DIRECT)
585 size = SHMEM_NR_DIRECT;
586 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
590 * If there are no indirect blocks or we are punching a hole
591 * below indirect blocks, nothing to be done.
593 if (!topdir || limit <= SHMEM_NR_DIRECT)
594 goto done2;
597 * The truncation case has already dropped info->lock, and we're safe
598 * because i_size and next_index have already been lowered, preventing
599 * access beyond. But in the punch_hole case, we still need to take
600 * the lock when updating the swap directory, because there might be
601 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
602 * shmem_writepage. However, whenever we find we can remove a whole
603 * directory page (not at the misaligned start or end of the range),
604 * we first NULLify its pointer in the level above, and then have no
605 * need to take the lock when updating its contents: needs_lock and
606 * punch_lock (either pointing to info->lock or NULL) manage this.
609 upper_limit -= SHMEM_NR_DIRECT;
610 limit -= SHMEM_NR_DIRECT;
611 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
612 offset = idx % ENTRIES_PER_PAGE;
613 idx -= offset;
615 dir = shmem_dir_map(topdir);
616 stage = ENTRIES_PER_PAGEPAGE/2;
617 if (idx < ENTRIES_PER_PAGEPAGE/2) {
618 middir = topdir;
619 diroff = idx/ENTRIES_PER_PAGE;
620 } else {
621 dir += ENTRIES_PER_PAGE/2;
622 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
623 while (stage <= idx)
624 stage += ENTRIES_PER_PAGEPAGE;
625 middir = *dir;
626 if (*dir) {
627 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
628 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
629 if (!diroff && !offset && upper_limit >= stage) {
630 if (needs_lock) {
631 spin_lock(needs_lock);
632 *dir = NULL;
633 spin_unlock(needs_lock);
634 needs_lock = NULL;
635 } else
636 *dir = NULL;
637 nr_pages_to_free++;
638 list_add(&middir->lru, &pages_to_free);
640 shmem_dir_unmap(dir);
641 dir = shmem_dir_map(middir);
642 } else {
643 diroff = 0;
644 offset = 0;
645 idx = stage;
649 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
650 if (unlikely(idx == stage)) {
651 shmem_dir_unmap(dir);
652 dir = shmem_dir_map(topdir) +
653 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
654 while (!*dir) {
655 dir++;
656 idx += ENTRIES_PER_PAGEPAGE;
657 if (idx >= limit)
658 goto done1;
660 stage = idx + ENTRIES_PER_PAGEPAGE;
661 middir = *dir;
662 if (punch_hole)
663 needs_lock = &info->lock;
664 if (upper_limit >= stage) {
665 if (needs_lock) {
666 spin_lock(needs_lock);
667 *dir = NULL;
668 spin_unlock(needs_lock);
669 needs_lock = NULL;
670 } else
671 *dir = NULL;
672 nr_pages_to_free++;
673 list_add(&middir->lru, &pages_to_free);
675 shmem_dir_unmap(dir);
676 cond_resched();
677 dir = shmem_dir_map(middir);
678 diroff = 0;
680 punch_lock = needs_lock;
681 subdir = dir[diroff];
682 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
683 if (needs_lock) {
684 spin_lock(needs_lock);
685 dir[diroff] = NULL;
686 spin_unlock(needs_lock);
687 punch_lock = NULL;
688 } else
689 dir[diroff] = NULL;
690 nr_pages_to_free++;
691 list_add(&subdir->lru, &pages_to_free);
693 if (subdir && page_private(subdir) /* has swap entries */) {
694 size = limit - idx;
695 if (size > ENTRIES_PER_PAGE)
696 size = ENTRIES_PER_PAGE;
697 freed = shmem_map_and_free_swp(subdir,
698 offset, size, &dir, punch_lock);
699 if (!dir)
700 dir = shmem_dir_map(middir);
701 nr_swaps_freed += freed;
702 if (offset || punch_lock) {
703 spin_lock(&info->lock);
704 set_page_private(subdir,
705 page_private(subdir) - freed);
706 spin_unlock(&info->lock);
707 } else
708 BUG_ON(page_private(subdir) != freed);
710 offset = 0;
712 done1:
713 shmem_dir_unmap(dir);
714 done2:
715 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
717 * Call truncate_inode_pages again: racing shmem_unuse_inode
718 * may have swizzled a page in from swap since vmtruncate or
719 * generic_delete_inode did it, before we lowered next_index.
720 * Also, though shmem_getpage checks i_size before adding to
721 * cache, no recheck after: so fix the narrow window there too.
723 * Recalling truncate_inode_pages_range and unmap_mapping_range
724 * every time for punch_hole (which never got a chance to clear
725 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
726 * yet hardly ever necessary: try to optimize them out later.
728 truncate_inode_pages_range(inode->i_mapping, start, end);
729 if (punch_hole)
730 unmap_mapping_range(inode->i_mapping, start,
731 end - start, 1);
734 spin_lock(&info->lock);
735 info->flags &= ~SHMEM_TRUNCATE;
736 info->swapped -= nr_swaps_freed;
737 if (nr_pages_to_free)
738 shmem_free_blocks(inode, nr_pages_to_free);
739 shmem_recalc_inode(inode);
740 spin_unlock(&info->lock);
743 * Empty swap vector directory pages to be freed?
745 if (!list_empty(&pages_to_free)) {
746 pages_to_free.prev->next = NULL;
747 shmem_free_pages(pages_to_free.next);
751 static void shmem_truncate(struct inode *inode)
753 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
756 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
758 struct inode *inode = dentry->d_inode;
759 struct page *page = NULL;
760 int error;
762 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
763 if (attr->ia_size < inode->i_size) {
765 * If truncating down to a partial page, then
766 * if that page is already allocated, hold it
767 * in memory until the truncation is over, so
768 * truncate_partial_page cannnot miss it were
769 * it assigned to swap.
771 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
772 (void) shmem_getpage(inode,
773 attr->ia_size>>PAGE_CACHE_SHIFT,
774 &page, SGP_READ, NULL);
775 if (page)
776 unlock_page(page);
779 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
780 * detect if any pages might have been added to cache
781 * after truncate_inode_pages. But we needn't bother
782 * if it's being fully truncated to zero-length: the
783 * nrpages check is efficient enough in that case.
785 if (attr->ia_size) {
786 struct shmem_inode_info *info = SHMEM_I(inode);
787 spin_lock(&info->lock);
788 info->flags &= ~SHMEM_PAGEIN;
789 spin_unlock(&info->lock);
794 error = inode_change_ok(inode, attr);
795 if (!error)
796 error = inode_setattr(inode, attr);
797 #ifdef CONFIG_TMPFS_POSIX_ACL
798 if (!error && (attr->ia_valid & ATTR_MODE))
799 error = generic_acl_chmod(inode, &shmem_acl_ops);
800 #endif
801 if (page)
802 page_cache_release(page);
803 return error;
806 static void shmem_delete_inode(struct inode *inode)
808 struct shmem_inode_info *info = SHMEM_I(inode);
810 if (inode->i_op->truncate == shmem_truncate) {
811 truncate_inode_pages(inode->i_mapping, 0);
812 shmem_unacct_size(info->flags, inode->i_size);
813 inode->i_size = 0;
814 shmem_truncate(inode);
815 if (!list_empty(&info->swaplist)) {
816 mutex_lock(&shmem_swaplist_mutex);
817 list_del_init(&info->swaplist);
818 mutex_unlock(&shmem_swaplist_mutex);
821 BUG_ON(inode->i_blocks);
822 shmem_free_inode(inode->i_sb);
823 clear_inode(inode);
826 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
828 swp_entry_t *ptr;
830 for (ptr = dir; ptr < edir; ptr++) {
831 if (ptr->val == entry.val)
832 return ptr - dir;
834 return -1;
837 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
839 struct inode *inode;
840 unsigned long idx;
841 unsigned long size;
842 unsigned long limit;
843 unsigned long stage;
844 struct page **dir;
845 struct page *subdir;
846 swp_entry_t *ptr;
847 int offset;
848 int error;
850 idx = 0;
851 ptr = info->i_direct;
852 spin_lock(&info->lock);
853 if (!info->swapped) {
854 list_del_init(&info->swaplist);
855 goto lost2;
857 limit = info->next_index;
858 size = limit;
859 if (size > SHMEM_NR_DIRECT)
860 size = SHMEM_NR_DIRECT;
861 offset = shmem_find_swp(entry, ptr, ptr+size);
862 if (offset >= 0)
863 goto found;
864 if (!info->i_indirect)
865 goto lost2;
867 dir = shmem_dir_map(info->i_indirect);
868 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
870 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
871 if (unlikely(idx == stage)) {
872 shmem_dir_unmap(dir-1);
873 if (cond_resched_lock(&info->lock)) {
874 /* check it has not been truncated */
875 if (limit > info->next_index) {
876 limit = info->next_index;
877 if (idx >= limit)
878 goto lost2;
881 dir = shmem_dir_map(info->i_indirect) +
882 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
883 while (!*dir) {
884 dir++;
885 idx += ENTRIES_PER_PAGEPAGE;
886 if (idx >= limit)
887 goto lost1;
889 stage = idx + ENTRIES_PER_PAGEPAGE;
890 subdir = *dir;
891 shmem_dir_unmap(dir);
892 dir = shmem_dir_map(subdir);
894 subdir = *dir;
895 if (subdir && page_private(subdir)) {
896 ptr = shmem_swp_map(subdir);
897 size = limit - idx;
898 if (size > ENTRIES_PER_PAGE)
899 size = ENTRIES_PER_PAGE;
900 offset = shmem_find_swp(entry, ptr, ptr+size);
901 shmem_swp_unmap(ptr);
902 if (offset >= 0) {
903 shmem_dir_unmap(dir);
904 goto found;
908 lost1:
909 shmem_dir_unmap(dir-1);
910 lost2:
911 spin_unlock(&info->lock);
912 return 0;
913 found:
914 idx += offset;
915 inode = igrab(&info->vfs_inode);
916 spin_unlock(&info->lock);
919 * Move _head_ to start search for next from here.
920 * But be careful: shmem_delete_inode checks list_empty without taking
921 * mutex, and there's an instant in list_move_tail when info->swaplist
922 * would appear empty, if it were the only one on shmem_swaplist. We
923 * could avoid doing it if inode NULL; or use this minor optimization.
925 if (shmem_swaplist.next != &info->swaplist)
926 list_move_tail(&shmem_swaplist, &info->swaplist);
927 mutex_unlock(&shmem_swaplist_mutex);
929 error = 1;
930 if (!inode)
931 goto out;
933 * Charge page using GFP_KERNEL while we can wait.
934 * Charged back to the user(not to caller) when swap account is used.
935 * add_to_page_cache() will be called with GFP_NOWAIT.
937 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
938 if (error)
939 goto out;
940 error = radix_tree_preload(GFP_KERNEL);
941 if (error) {
942 mem_cgroup_uncharge_cache_page(page);
943 goto out;
945 error = 1;
947 spin_lock(&info->lock);
948 ptr = shmem_swp_entry(info, idx, NULL);
949 if (ptr && ptr->val == entry.val) {
950 error = add_to_page_cache_locked(page, inode->i_mapping,
951 idx, GFP_NOWAIT);
952 /* does mem_cgroup_uncharge_cache_page on error */
953 } else /* we must compensate for our precharge above */
954 mem_cgroup_uncharge_cache_page(page);
956 if (error == -EEXIST) {
957 struct page *filepage = find_get_page(inode->i_mapping, idx);
958 error = 1;
959 if (filepage) {
961 * There might be a more uptodate page coming down
962 * from a stacked writepage: forget our swappage if so.
964 if (PageUptodate(filepage))
965 error = 0;
966 page_cache_release(filepage);
969 if (!error) {
970 delete_from_swap_cache(page);
971 set_page_dirty(page);
972 info->flags |= SHMEM_PAGEIN;
973 shmem_swp_set(info, ptr, 0);
974 swap_free(entry);
975 error = 1; /* not an error, but entry was found */
977 if (ptr)
978 shmem_swp_unmap(ptr);
979 spin_unlock(&info->lock);
980 radix_tree_preload_end();
981 out:
982 unlock_page(page);
983 page_cache_release(page);
984 iput(inode); /* allows for NULL */
985 return error;
989 * shmem_unuse() search for an eventually swapped out shmem page.
991 int shmem_unuse(swp_entry_t entry, struct page *page)
993 struct list_head *p, *next;
994 struct shmem_inode_info *info;
995 int found = 0;
997 mutex_lock(&shmem_swaplist_mutex);
998 list_for_each_safe(p, next, &shmem_swaplist) {
999 info = list_entry(p, struct shmem_inode_info, swaplist);
1000 found = shmem_unuse_inode(info, entry, page);
1001 cond_resched();
1002 if (found)
1003 goto out;
1005 mutex_unlock(&shmem_swaplist_mutex);
1006 out: return found; /* 0 or 1 or -ENOMEM */
1010 * Move the page from the page cache to the swap cache.
1012 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1014 struct shmem_inode_info *info;
1015 swp_entry_t *entry, swap;
1016 struct address_space *mapping;
1017 unsigned long index;
1018 struct inode *inode;
1020 BUG_ON(!PageLocked(page));
1021 mapping = page->mapping;
1022 index = page->index;
1023 inode = mapping->host;
1024 info = SHMEM_I(inode);
1025 if (info->flags & VM_LOCKED)
1026 goto redirty;
1027 if (!total_swap_pages)
1028 goto redirty;
1031 * shmem_backing_dev_info's capabilities prevent regular writeback or
1032 * sync from ever calling shmem_writepage; but a stacking filesystem
1033 * may use the ->writepage of its underlying filesystem, in which case
1034 * tmpfs should write out to swap only in response to memory pressure,
1035 * and not for pdflush or sync. However, in those cases, we do still
1036 * want to check if there's a redundant swappage to be discarded.
1038 if (wbc->for_reclaim)
1039 swap = get_swap_page();
1040 else
1041 swap.val = 0;
1043 spin_lock(&info->lock);
1044 if (index >= info->next_index) {
1045 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1046 goto unlock;
1048 entry = shmem_swp_entry(info, index, NULL);
1049 if (entry->val) {
1051 * The more uptodate page coming down from a stacked
1052 * writepage should replace our old swappage.
1054 free_swap_and_cache(*entry);
1055 shmem_swp_set(info, entry, 0);
1057 shmem_recalc_inode(inode);
1059 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1060 remove_from_page_cache(page);
1061 shmem_swp_set(info, entry, swap.val);
1062 shmem_swp_unmap(entry);
1063 if (list_empty(&info->swaplist))
1064 inode = igrab(inode);
1065 else
1066 inode = NULL;
1067 spin_unlock(&info->lock);
1068 swap_duplicate(swap);
1069 BUG_ON(page_mapped(page));
1070 page_cache_release(page); /* pagecache ref */
1071 swap_writepage(page, wbc);
1072 if (inode) {
1073 mutex_lock(&shmem_swaplist_mutex);
1074 /* move instead of add in case we're racing */
1075 list_move_tail(&info->swaplist, &shmem_swaplist);
1076 mutex_unlock(&shmem_swaplist_mutex);
1077 iput(inode);
1079 return 0;
1082 shmem_swp_unmap(entry);
1083 unlock:
1084 spin_unlock(&info->lock);
1085 swap_free(swap);
1086 redirty:
1087 set_page_dirty(page);
1088 if (wbc->for_reclaim)
1089 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1090 unlock_page(page);
1091 return 0;
1094 #ifdef CONFIG_NUMA
1095 #ifdef CONFIG_TMPFS
1096 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1098 char buffer[64];
1100 if (!mpol || mpol->mode == MPOL_DEFAULT)
1101 return; /* show nothing */
1103 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1105 seq_printf(seq, ",mpol=%s", buffer);
1108 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1110 struct mempolicy *mpol = NULL;
1111 if (sbinfo->mpol) {
1112 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1113 mpol = sbinfo->mpol;
1114 mpol_get(mpol);
1115 spin_unlock(&sbinfo->stat_lock);
1117 return mpol;
1119 #endif /* CONFIG_TMPFS */
1121 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1122 struct shmem_inode_info *info, unsigned long idx)
1124 struct mempolicy mpol, *spol;
1125 struct vm_area_struct pvma;
1126 struct page *page;
1128 spol = mpol_cond_copy(&mpol,
1129 mpol_shared_policy_lookup(&info->policy, idx));
1131 /* Create a pseudo vma that just contains the policy */
1132 pvma.vm_start = 0;
1133 pvma.vm_pgoff = idx;
1134 pvma.vm_ops = NULL;
1135 pvma.vm_policy = spol;
1136 page = swapin_readahead(entry, gfp, &pvma, 0);
1137 return page;
1140 static struct page *shmem_alloc_page(gfp_t gfp,
1141 struct shmem_inode_info *info, unsigned long idx)
1143 struct vm_area_struct pvma;
1145 /* Create a pseudo vma that just contains the policy */
1146 pvma.vm_start = 0;
1147 pvma.vm_pgoff = idx;
1148 pvma.vm_ops = NULL;
1149 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1152 * alloc_page_vma() will drop the shared policy reference
1154 return alloc_page_vma(gfp, &pvma, 0);
1156 #else /* !CONFIG_NUMA */
1157 #ifdef CONFIG_TMPFS
1158 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1161 #endif /* CONFIG_TMPFS */
1163 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1164 struct shmem_inode_info *info, unsigned long idx)
1166 return swapin_readahead(entry, gfp, NULL, 0);
1169 static inline struct page *shmem_alloc_page(gfp_t gfp,
1170 struct shmem_inode_info *info, unsigned long idx)
1172 return alloc_page(gfp);
1174 #endif /* CONFIG_NUMA */
1176 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1177 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1179 return NULL;
1181 #endif
1184 * shmem_getpage - either get the page from swap or allocate a new one
1186 * If we allocate a new one we do not mark it dirty. That's up to the
1187 * vm. If we swap it in we mark it dirty since we also free the swap
1188 * entry since a page cannot live in both the swap and page cache
1190 static int shmem_getpage(struct inode *inode, unsigned long idx,
1191 struct page **pagep, enum sgp_type sgp, int *type)
1193 struct address_space *mapping = inode->i_mapping;
1194 struct shmem_inode_info *info = SHMEM_I(inode);
1195 struct shmem_sb_info *sbinfo;
1196 struct page *filepage = *pagep;
1197 struct page *swappage;
1198 swp_entry_t *entry;
1199 swp_entry_t swap;
1200 gfp_t gfp;
1201 int error;
1203 if (idx >= SHMEM_MAX_INDEX)
1204 return -EFBIG;
1206 if (type)
1207 *type = 0;
1210 * Normally, filepage is NULL on entry, and either found
1211 * uptodate immediately, or allocated and zeroed, or read
1212 * in under swappage, which is then assigned to filepage.
1213 * But shmem_readpage (required for splice) passes in a locked
1214 * filepage, which may be found not uptodate by other callers
1215 * too, and may need to be copied from the swappage read in.
1217 repeat:
1218 if (!filepage)
1219 filepage = find_lock_page(mapping, idx);
1220 if (filepage && PageUptodate(filepage))
1221 goto done;
1222 error = 0;
1223 gfp = mapping_gfp_mask(mapping);
1224 if (!filepage) {
1226 * Try to preload while we can wait, to not make a habit of
1227 * draining atomic reserves; but don't latch on to this cpu.
1229 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1230 if (error)
1231 goto failed;
1232 radix_tree_preload_end();
1235 spin_lock(&info->lock);
1236 shmem_recalc_inode(inode);
1237 entry = shmem_swp_alloc(info, idx, sgp);
1238 if (IS_ERR(entry)) {
1239 spin_unlock(&info->lock);
1240 error = PTR_ERR(entry);
1241 goto failed;
1243 swap = *entry;
1245 if (swap.val) {
1246 /* Look it up and read it in.. */
1247 swappage = lookup_swap_cache(swap);
1248 if (!swappage) {
1249 shmem_swp_unmap(entry);
1250 /* here we actually do the io */
1251 if (type && !(*type & VM_FAULT_MAJOR)) {
1252 __count_vm_event(PGMAJFAULT);
1253 *type |= VM_FAULT_MAJOR;
1255 spin_unlock(&info->lock);
1256 swappage = shmem_swapin(swap, gfp, info, idx);
1257 if (!swappage) {
1258 spin_lock(&info->lock);
1259 entry = shmem_swp_alloc(info, idx, sgp);
1260 if (IS_ERR(entry))
1261 error = PTR_ERR(entry);
1262 else {
1263 if (entry->val == swap.val)
1264 error = -ENOMEM;
1265 shmem_swp_unmap(entry);
1267 spin_unlock(&info->lock);
1268 if (error)
1269 goto failed;
1270 goto repeat;
1272 wait_on_page_locked(swappage);
1273 page_cache_release(swappage);
1274 goto repeat;
1277 /* We have to do this with page locked to prevent races */
1278 if (!trylock_page(swappage)) {
1279 shmem_swp_unmap(entry);
1280 spin_unlock(&info->lock);
1281 wait_on_page_locked(swappage);
1282 page_cache_release(swappage);
1283 goto repeat;
1285 if (PageWriteback(swappage)) {
1286 shmem_swp_unmap(entry);
1287 spin_unlock(&info->lock);
1288 wait_on_page_writeback(swappage);
1289 unlock_page(swappage);
1290 page_cache_release(swappage);
1291 goto repeat;
1293 if (!PageUptodate(swappage)) {
1294 shmem_swp_unmap(entry);
1295 spin_unlock(&info->lock);
1296 unlock_page(swappage);
1297 page_cache_release(swappage);
1298 error = -EIO;
1299 goto failed;
1302 if (filepage) {
1303 shmem_swp_set(info, entry, 0);
1304 shmem_swp_unmap(entry);
1305 delete_from_swap_cache(swappage);
1306 spin_unlock(&info->lock);
1307 copy_highpage(filepage, swappage);
1308 unlock_page(swappage);
1309 page_cache_release(swappage);
1310 flush_dcache_page(filepage);
1311 SetPageUptodate(filepage);
1312 set_page_dirty(filepage);
1313 swap_free(swap);
1314 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1315 idx, GFP_NOWAIT))) {
1316 info->flags |= SHMEM_PAGEIN;
1317 shmem_swp_set(info, entry, 0);
1318 shmem_swp_unmap(entry);
1319 delete_from_swap_cache(swappage);
1320 spin_unlock(&info->lock);
1321 filepage = swappage;
1322 set_page_dirty(filepage);
1323 swap_free(swap);
1324 } else {
1325 shmem_swp_unmap(entry);
1326 spin_unlock(&info->lock);
1327 if (error == -ENOMEM) {
1328 /* allow reclaim from this memory cgroup */
1329 error = mem_cgroup_shrink_usage(swappage,
1330 current->mm,
1331 gfp);
1332 if (error) {
1333 unlock_page(swappage);
1334 page_cache_release(swappage);
1335 goto failed;
1338 unlock_page(swappage);
1339 page_cache_release(swappage);
1340 goto repeat;
1342 } else if (sgp == SGP_READ && !filepage) {
1343 shmem_swp_unmap(entry);
1344 filepage = find_get_page(mapping, idx);
1345 if (filepage &&
1346 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1347 spin_unlock(&info->lock);
1348 wait_on_page_locked(filepage);
1349 page_cache_release(filepage);
1350 filepage = NULL;
1351 goto repeat;
1353 spin_unlock(&info->lock);
1354 } else {
1355 shmem_swp_unmap(entry);
1356 sbinfo = SHMEM_SB(inode->i_sb);
1357 if (sbinfo->max_blocks) {
1358 spin_lock(&sbinfo->stat_lock);
1359 if (sbinfo->free_blocks == 0 ||
1360 shmem_acct_block(info->flags)) {
1361 spin_unlock(&sbinfo->stat_lock);
1362 spin_unlock(&info->lock);
1363 error = -ENOSPC;
1364 goto failed;
1366 sbinfo->free_blocks--;
1367 inode->i_blocks += BLOCKS_PER_PAGE;
1368 spin_unlock(&sbinfo->stat_lock);
1369 } else if (shmem_acct_block(info->flags)) {
1370 spin_unlock(&info->lock);
1371 error = -ENOSPC;
1372 goto failed;
1375 if (!filepage) {
1376 int ret;
1378 spin_unlock(&info->lock);
1379 filepage = shmem_alloc_page(gfp, info, idx);
1380 if (!filepage) {
1381 shmem_unacct_blocks(info->flags, 1);
1382 shmem_free_blocks(inode, 1);
1383 error = -ENOMEM;
1384 goto failed;
1386 SetPageSwapBacked(filepage);
1388 /* Precharge page while we can wait, compensate after */
1389 error = mem_cgroup_cache_charge(filepage, current->mm,
1390 GFP_KERNEL);
1391 if (error) {
1392 page_cache_release(filepage);
1393 shmem_unacct_blocks(info->flags, 1);
1394 shmem_free_blocks(inode, 1);
1395 filepage = NULL;
1396 goto failed;
1399 spin_lock(&info->lock);
1400 entry = shmem_swp_alloc(info, idx, sgp);
1401 if (IS_ERR(entry))
1402 error = PTR_ERR(entry);
1403 else {
1404 swap = *entry;
1405 shmem_swp_unmap(entry);
1407 ret = error || swap.val;
1408 if (ret)
1409 mem_cgroup_uncharge_cache_page(filepage);
1410 else
1411 ret = add_to_page_cache_lru(filepage, mapping,
1412 idx, GFP_NOWAIT);
1414 * At add_to_page_cache_lru() failure, uncharge will
1415 * be done automatically.
1417 if (ret) {
1418 spin_unlock(&info->lock);
1419 page_cache_release(filepage);
1420 shmem_unacct_blocks(info->flags, 1);
1421 shmem_free_blocks(inode, 1);
1422 filepage = NULL;
1423 if (error)
1424 goto failed;
1425 goto repeat;
1427 info->flags |= SHMEM_PAGEIN;
1430 info->alloced++;
1431 spin_unlock(&info->lock);
1432 clear_highpage(filepage);
1433 flush_dcache_page(filepage);
1434 SetPageUptodate(filepage);
1435 if (sgp == SGP_DIRTY)
1436 set_page_dirty(filepage);
1438 done:
1439 *pagep = filepage;
1440 return 0;
1442 failed:
1443 if (*pagep != filepage) {
1444 unlock_page(filepage);
1445 page_cache_release(filepage);
1447 return error;
1450 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1452 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1453 int error;
1454 int ret;
1456 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1457 return VM_FAULT_SIGBUS;
1459 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1460 if (error)
1461 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1463 return ret | VM_FAULT_LOCKED;
1466 #ifdef CONFIG_NUMA
1467 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1469 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1470 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1473 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1474 unsigned long addr)
1476 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1477 unsigned long idx;
1479 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1480 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1482 #endif
1484 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1486 struct inode *inode = file->f_path.dentry->d_inode;
1487 struct shmem_inode_info *info = SHMEM_I(inode);
1488 int retval = -ENOMEM;
1490 spin_lock(&info->lock);
1491 if (lock && !(info->flags & VM_LOCKED)) {
1492 if (!user_shm_lock(inode->i_size, user))
1493 goto out_nomem;
1494 info->flags |= VM_LOCKED;
1495 mapping_set_unevictable(file->f_mapping);
1497 if (!lock && (info->flags & VM_LOCKED) && user) {
1498 user_shm_unlock(inode->i_size, user);
1499 info->flags &= ~VM_LOCKED;
1500 mapping_clear_unevictable(file->f_mapping);
1501 scan_mapping_unevictable_pages(file->f_mapping);
1503 retval = 0;
1505 out_nomem:
1506 spin_unlock(&info->lock);
1507 return retval;
1510 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1512 file_accessed(file);
1513 vma->vm_ops = &shmem_vm_ops;
1514 vma->vm_flags |= VM_CAN_NONLINEAR;
1515 return 0;
1518 static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1519 dev_t dev, unsigned long flags)
1521 struct inode *inode;
1522 struct shmem_inode_info *info;
1523 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1525 if (shmem_reserve_inode(sb))
1526 return NULL;
1528 inode = new_inode(sb);
1529 if (inode) {
1530 inode->i_mode = mode;
1531 inode->i_uid = current_fsuid();
1532 inode->i_gid = current_fsgid();
1533 inode->i_blocks = 0;
1534 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1535 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1536 inode->i_generation = get_seconds();
1537 info = SHMEM_I(inode);
1538 memset(info, 0, (char *)inode - (char *)info);
1539 spin_lock_init(&info->lock);
1540 info->flags = flags & VM_NORESERVE;
1541 INIT_LIST_HEAD(&info->swaplist);
1543 switch (mode & S_IFMT) {
1544 default:
1545 inode->i_op = &shmem_special_inode_operations;
1546 init_special_inode(inode, mode, dev);
1547 break;
1548 case S_IFREG:
1549 inode->i_mapping->a_ops = &shmem_aops;
1550 inode->i_op = &shmem_inode_operations;
1551 inode->i_fop = &shmem_file_operations;
1552 mpol_shared_policy_init(&info->policy,
1553 shmem_get_sbmpol(sbinfo));
1554 break;
1555 case S_IFDIR:
1556 inc_nlink(inode);
1557 /* Some things misbehave if size == 0 on a directory */
1558 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1559 inode->i_op = &shmem_dir_inode_operations;
1560 inode->i_fop = &simple_dir_operations;
1561 break;
1562 case S_IFLNK:
1564 * Must not load anything in the rbtree,
1565 * mpol_free_shared_policy will not be called.
1567 mpol_shared_policy_init(&info->policy, NULL);
1568 break;
1570 } else
1571 shmem_free_inode(sb);
1572 return inode;
1575 #ifdef CONFIG_TMPFS
1576 static const struct inode_operations shmem_symlink_inode_operations;
1577 static const struct inode_operations shmem_symlink_inline_operations;
1580 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1581 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1582 * below the loop driver, in the generic fashion that many filesystems support.
1584 static int shmem_readpage(struct file *file, struct page *page)
1586 struct inode *inode = page->mapping->host;
1587 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1588 unlock_page(page);
1589 return error;
1592 static int
1593 shmem_write_begin(struct file *file, struct address_space *mapping,
1594 loff_t pos, unsigned len, unsigned flags,
1595 struct page **pagep, void **fsdata)
1597 struct inode *inode = mapping->host;
1598 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1599 *pagep = NULL;
1600 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1603 static int
1604 shmem_write_end(struct file *file, struct address_space *mapping,
1605 loff_t pos, unsigned len, unsigned copied,
1606 struct page *page, void *fsdata)
1608 struct inode *inode = mapping->host;
1610 if (pos + copied > inode->i_size)
1611 i_size_write(inode, pos + copied);
1613 unlock_page(page);
1614 set_page_dirty(page);
1615 page_cache_release(page);
1617 return copied;
1620 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1622 struct inode *inode = filp->f_path.dentry->d_inode;
1623 struct address_space *mapping = inode->i_mapping;
1624 unsigned long index, offset;
1625 enum sgp_type sgp = SGP_READ;
1628 * Might this read be for a stacking filesystem? Then when reading
1629 * holes of a sparse file, we actually need to allocate those pages,
1630 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1632 if (segment_eq(get_fs(), KERNEL_DS))
1633 sgp = SGP_DIRTY;
1635 index = *ppos >> PAGE_CACHE_SHIFT;
1636 offset = *ppos & ~PAGE_CACHE_MASK;
1638 for (;;) {
1639 struct page *page = NULL;
1640 unsigned long end_index, nr, ret;
1641 loff_t i_size = i_size_read(inode);
1643 end_index = i_size >> PAGE_CACHE_SHIFT;
1644 if (index > end_index)
1645 break;
1646 if (index == end_index) {
1647 nr = i_size & ~PAGE_CACHE_MASK;
1648 if (nr <= offset)
1649 break;
1652 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1653 if (desc->error) {
1654 if (desc->error == -EINVAL)
1655 desc->error = 0;
1656 break;
1658 if (page)
1659 unlock_page(page);
1662 * We must evaluate after, since reads (unlike writes)
1663 * are called without i_mutex protection against truncate
1665 nr = PAGE_CACHE_SIZE;
1666 i_size = i_size_read(inode);
1667 end_index = i_size >> PAGE_CACHE_SHIFT;
1668 if (index == end_index) {
1669 nr = i_size & ~PAGE_CACHE_MASK;
1670 if (nr <= offset) {
1671 if (page)
1672 page_cache_release(page);
1673 break;
1676 nr -= offset;
1678 if (page) {
1680 * If users can be writing to this page using arbitrary
1681 * virtual addresses, take care about potential aliasing
1682 * before reading the page on the kernel side.
1684 if (mapping_writably_mapped(mapping))
1685 flush_dcache_page(page);
1687 * Mark the page accessed if we read the beginning.
1689 if (!offset)
1690 mark_page_accessed(page);
1691 } else {
1692 page = ZERO_PAGE(0);
1693 page_cache_get(page);
1697 * Ok, we have the page, and it's up-to-date, so
1698 * now we can copy it to user space...
1700 * The actor routine returns how many bytes were actually used..
1701 * NOTE! This may not be the same as how much of a user buffer
1702 * we filled up (we may be padding etc), so we can only update
1703 * "pos" here (the actor routine has to update the user buffer
1704 * pointers and the remaining count).
1706 ret = actor(desc, page, offset, nr);
1707 offset += ret;
1708 index += offset >> PAGE_CACHE_SHIFT;
1709 offset &= ~PAGE_CACHE_MASK;
1711 page_cache_release(page);
1712 if (ret != nr || !desc->count)
1713 break;
1715 cond_resched();
1718 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1719 file_accessed(filp);
1722 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1723 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1725 struct file *filp = iocb->ki_filp;
1726 ssize_t retval;
1727 unsigned long seg;
1728 size_t count;
1729 loff_t *ppos = &iocb->ki_pos;
1731 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1732 if (retval)
1733 return retval;
1735 for (seg = 0; seg < nr_segs; seg++) {
1736 read_descriptor_t desc;
1738 desc.written = 0;
1739 desc.arg.buf = iov[seg].iov_base;
1740 desc.count = iov[seg].iov_len;
1741 if (desc.count == 0)
1742 continue;
1743 desc.error = 0;
1744 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1745 retval += desc.written;
1746 if (desc.error) {
1747 retval = retval ?: desc.error;
1748 break;
1750 if (desc.count > 0)
1751 break;
1753 return retval;
1756 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1758 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1760 buf->f_type = TMPFS_MAGIC;
1761 buf->f_bsize = PAGE_CACHE_SIZE;
1762 buf->f_namelen = NAME_MAX;
1763 spin_lock(&sbinfo->stat_lock);
1764 if (sbinfo->max_blocks) {
1765 buf->f_blocks = sbinfo->max_blocks;
1766 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1768 if (sbinfo->max_inodes) {
1769 buf->f_files = sbinfo->max_inodes;
1770 buf->f_ffree = sbinfo->free_inodes;
1772 /* else leave those fields 0 like simple_statfs */
1773 spin_unlock(&sbinfo->stat_lock);
1774 return 0;
1778 * File creation. Allocate an inode, and we're done..
1780 static int
1781 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1783 struct inode *inode;
1784 int error = -ENOSPC;
1786 inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1787 if (inode) {
1788 error = security_inode_init_security(inode, dir, NULL, NULL,
1789 NULL);
1790 if (error) {
1791 if (error != -EOPNOTSUPP) {
1792 iput(inode);
1793 return error;
1796 error = shmem_acl_init(inode, dir);
1797 if (error) {
1798 iput(inode);
1799 return error;
1801 if (dir->i_mode & S_ISGID) {
1802 inode->i_gid = dir->i_gid;
1803 if (S_ISDIR(mode))
1804 inode->i_mode |= S_ISGID;
1806 dir->i_size += BOGO_DIRENT_SIZE;
1807 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1808 d_instantiate(dentry, inode);
1809 dget(dentry); /* Extra count - pin the dentry in core */
1811 return error;
1814 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1816 int error;
1818 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1819 return error;
1820 inc_nlink(dir);
1821 return 0;
1824 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1825 struct nameidata *nd)
1827 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1831 * Link a file..
1833 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1835 struct inode *inode = old_dentry->d_inode;
1836 int ret;
1839 * No ordinary (disk based) filesystem counts links as inodes;
1840 * but each new link needs a new dentry, pinning lowmem, and
1841 * tmpfs dentries cannot be pruned until they are unlinked.
1843 ret = shmem_reserve_inode(inode->i_sb);
1844 if (ret)
1845 goto out;
1847 dir->i_size += BOGO_DIRENT_SIZE;
1848 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1849 inc_nlink(inode);
1850 atomic_inc(&inode->i_count); /* New dentry reference */
1851 dget(dentry); /* Extra pinning count for the created dentry */
1852 d_instantiate(dentry, inode);
1853 out:
1854 return ret;
1857 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1859 struct inode *inode = dentry->d_inode;
1861 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1862 shmem_free_inode(inode->i_sb);
1864 dir->i_size -= BOGO_DIRENT_SIZE;
1865 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1866 drop_nlink(inode);
1867 dput(dentry); /* Undo the count from "create" - this does all the work */
1868 return 0;
1871 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1873 if (!simple_empty(dentry))
1874 return -ENOTEMPTY;
1876 drop_nlink(dentry->d_inode);
1877 drop_nlink(dir);
1878 return shmem_unlink(dir, dentry);
1882 * The VFS layer already does all the dentry stuff for rename,
1883 * we just have to decrement the usage count for the target if
1884 * it exists so that the VFS layer correctly free's it when it
1885 * gets overwritten.
1887 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1889 struct inode *inode = old_dentry->d_inode;
1890 int they_are_dirs = S_ISDIR(inode->i_mode);
1892 if (!simple_empty(new_dentry))
1893 return -ENOTEMPTY;
1895 if (new_dentry->d_inode) {
1896 (void) shmem_unlink(new_dir, new_dentry);
1897 if (they_are_dirs)
1898 drop_nlink(old_dir);
1899 } else if (they_are_dirs) {
1900 drop_nlink(old_dir);
1901 inc_nlink(new_dir);
1904 old_dir->i_size -= BOGO_DIRENT_SIZE;
1905 new_dir->i_size += BOGO_DIRENT_SIZE;
1906 old_dir->i_ctime = old_dir->i_mtime =
1907 new_dir->i_ctime = new_dir->i_mtime =
1908 inode->i_ctime = CURRENT_TIME;
1909 return 0;
1912 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1914 int error;
1915 int len;
1916 struct inode *inode;
1917 struct page *page = NULL;
1918 char *kaddr;
1919 struct shmem_inode_info *info;
1921 len = strlen(symname) + 1;
1922 if (len > PAGE_CACHE_SIZE)
1923 return -ENAMETOOLONG;
1925 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1926 if (!inode)
1927 return -ENOSPC;
1929 error = security_inode_init_security(inode, dir, NULL, NULL,
1930 NULL);
1931 if (error) {
1932 if (error != -EOPNOTSUPP) {
1933 iput(inode);
1934 return error;
1936 error = 0;
1939 info = SHMEM_I(inode);
1940 inode->i_size = len-1;
1941 if (len <= (char *)inode - (char *)info) {
1942 /* do it inline */
1943 memcpy(info, symname, len);
1944 inode->i_op = &shmem_symlink_inline_operations;
1945 } else {
1946 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1947 if (error) {
1948 iput(inode);
1949 return error;
1951 unlock_page(page);
1952 inode->i_mapping->a_ops = &shmem_aops;
1953 inode->i_op = &shmem_symlink_inode_operations;
1954 kaddr = kmap_atomic(page, KM_USER0);
1955 memcpy(kaddr, symname, len);
1956 kunmap_atomic(kaddr, KM_USER0);
1957 set_page_dirty(page);
1958 page_cache_release(page);
1960 if (dir->i_mode & S_ISGID)
1961 inode->i_gid = dir->i_gid;
1962 dir->i_size += BOGO_DIRENT_SIZE;
1963 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1964 d_instantiate(dentry, inode);
1965 dget(dentry);
1966 return 0;
1969 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1971 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1972 return NULL;
1975 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1977 struct page *page = NULL;
1978 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1979 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1980 if (page)
1981 unlock_page(page);
1982 return page;
1985 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1987 if (!IS_ERR(nd_get_link(nd))) {
1988 struct page *page = cookie;
1989 kunmap(page);
1990 mark_page_accessed(page);
1991 page_cache_release(page);
1995 static const struct inode_operations shmem_symlink_inline_operations = {
1996 .readlink = generic_readlink,
1997 .follow_link = shmem_follow_link_inline,
2000 static const struct inode_operations shmem_symlink_inode_operations = {
2001 .truncate = shmem_truncate,
2002 .readlink = generic_readlink,
2003 .follow_link = shmem_follow_link,
2004 .put_link = shmem_put_link,
2007 #ifdef CONFIG_TMPFS_POSIX_ACL
2009 * Superblocks without xattr inode operations will get security.* xattr
2010 * support from the VFS "for free". As soon as we have any other xattrs
2011 * like ACLs, we also need to implement the security.* handlers at
2012 * filesystem level, though.
2015 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2016 size_t list_len, const char *name,
2017 size_t name_len)
2019 return security_inode_listsecurity(inode, list, list_len);
2022 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2023 void *buffer, size_t size)
2025 if (strcmp(name, "") == 0)
2026 return -EINVAL;
2027 return xattr_getsecurity(inode, name, buffer, size);
2030 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2031 const void *value, size_t size, int flags)
2033 if (strcmp(name, "") == 0)
2034 return -EINVAL;
2035 return security_inode_setsecurity(inode, name, value, size, flags);
2038 static struct xattr_handler shmem_xattr_security_handler = {
2039 .prefix = XATTR_SECURITY_PREFIX,
2040 .list = shmem_xattr_security_list,
2041 .get = shmem_xattr_security_get,
2042 .set = shmem_xattr_security_set,
2045 static struct xattr_handler *shmem_xattr_handlers[] = {
2046 &shmem_xattr_acl_access_handler,
2047 &shmem_xattr_acl_default_handler,
2048 &shmem_xattr_security_handler,
2049 NULL
2051 #endif
2053 static struct dentry *shmem_get_parent(struct dentry *child)
2055 return ERR_PTR(-ESTALE);
2058 static int shmem_match(struct inode *ino, void *vfh)
2060 __u32 *fh = vfh;
2061 __u64 inum = fh[2];
2062 inum = (inum << 32) | fh[1];
2063 return ino->i_ino == inum && fh[0] == ino->i_generation;
2066 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2067 struct fid *fid, int fh_len, int fh_type)
2069 struct inode *inode;
2070 struct dentry *dentry = NULL;
2071 u64 inum = fid->raw[2];
2072 inum = (inum << 32) | fid->raw[1];
2074 if (fh_len < 3)
2075 return NULL;
2077 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2078 shmem_match, fid->raw);
2079 if (inode) {
2080 dentry = d_find_alias(inode);
2081 iput(inode);
2084 return dentry;
2087 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2088 int connectable)
2090 struct inode *inode = dentry->d_inode;
2092 if (*len < 3)
2093 return 255;
2095 if (hlist_unhashed(&inode->i_hash)) {
2096 /* Unfortunately insert_inode_hash is not idempotent,
2097 * so as we hash inodes here rather than at creation
2098 * time, we need a lock to ensure we only try
2099 * to do it once
2101 static DEFINE_SPINLOCK(lock);
2102 spin_lock(&lock);
2103 if (hlist_unhashed(&inode->i_hash))
2104 __insert_inode_hash(inode,
2105 inode->i_ino + inode->i_generation);
2106 spin_unlock(&lock);
2109 fh[0] = inode->i_generation;
2110 fh[1] = inode->i_ino;
2111 fh[2] = ((__u64)inode->i_ino) >> 32;
2113 *len = 3;
2114 return 1;
2117 static const struct export_operations shmem_export_ops = {
2118 .get_parent = shmem_get_parent,
2119 .encode_fh = shmem_encode_fh,
2120 .fh_to_dentry = shmem_fh_to_dentry,
2123 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2124 bool remount)
2126 char *this_char, *value, *rest;
2128 while (options != NULL) {
2129 this_char = options;
2130 for (;;) {
2132 * NUL-terminate this option: unfortunately,
2133 * mount options form a comma-separated list,
2134 * but mpol's nodelist may also contain commas.
2136 options = strchr(options, ',');
2137 if (options == NULL)
2138 break;
2139 options++;
2140 if (!isdigit(*options)) {
2141 options[-1] = '\0';
2142 break;
2145 if (!*this_char)
2146 continue;
2147 if ((value = strchr(this_char,'=')) != NULL) {
2148 *value++ = 0;
2149 } else {
2150 printk(KERN_ERR
2151 "tmpfs: No value for mount option '%s'\n",
2152 this_char);
2153 return 1;
2156 if (!strcmp(this_char,"size")) {
2157 unsigned long long size;
2158 size = memparse(value,&rest);
2159 if (*rest == '%') {
2160 size <<= PAGE_SHIFT;
2161 size *= totalram_pages;
2162 do_div(size, 100);
2163 rest++;
2165 if (*rest)
2166 goto bad_val;
2167 sbinfo->max_blocks =
2168 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2169 } else if (!strcmp(this_char,"nr_blocks")) {
2170 sbinfo->max_blocks = memparse(value, &rest);
2171 if (*rest)
2172 goto bad_val;
2173 } else if (!strcmp(this_char,"nr_inodes")) {
2174 sbinfo->max_inodes = memparse(value, &rest);
2175 if (*rest)
2176 goto bad_val;
2177 } else if (!strcmp(this_char,"mode")) {
2178 if (remount)
2179 continue;
2180 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2181 if (*rest)
2182 goto bad_val;
2183 } else if (!strcmp(this_char,"uid")) {
2184 if (remount)
2185 continue;
2186 sbinfo->uid = simple_strtoul(value, &rest, 0);
2187 if (*rest)
2188 goto bad_val;
2189 } else if (!strcmp(this_char,"gid")) {
2190 if (remount)
2191 continue;
2192 sbinfo->gid = simple_strtoul(value, &rest, 0);
2193 if (*rest)
2194 goto bad_val;
2195 } else if (!strcmp(this_char,"mpol")) {
2196 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2197 goto bad_val;
2198 } else {
2199 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2200 this_char);
2201 return 1;
2204 return 0;
2206 bad_val:
2207 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2208 value, this_char);
2209 return 1;
2213 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2215 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2216 struct shmem_sb_info config = *sbinfo;
2217 unsigned long blocks;
2218 unsigned long inodes;
2219 int error = -EINVAL;
2221 if (shmem_parse_options(data, &config, true))
2222 return error;
2224 spin_lock(&sbinfo->stat_lock);
2225 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2226 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2227 if (config.max_blocks < blocks)
2228 goto out;
2229 if (config.max_inodes < inodes)
2230 goto out;
2232 * Those tests also disallow limited->unlimited while any are in
2233 * use, so i_blocks will always be zero when max_blocks is zero;
2234 * but we must separately disallow unlimited->limited, because
2235 * in that case we have no record of how much is already in use.
2237 if (config.max_blocks && !sbinfo->max_blocks)
2238 goto out;
2239 if (config.max_inodes && !sbinfo->max_inodes)
2240 goto out;
2242 error = 0;
2243 sbinfo->max_blocks = config.max_blocks;
2244 sbinfo->free_blocks = config.max_blocks - blocks;
2245 sbinfo->max_inodes = config.max_inodes;
2246 sbinfo->free_inodes = config.max_inodes - inodes;
2248 mpol_put(sbinfo->mpol);
2249 sbinfo->mpol = config.mpol; /* transfers initial ref */
2250 out:
2251 spin_unlock(&sbinfo->stat_lock);
2252 return error;
2255 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2257 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2259 if (sbinfo->max_blocks != shmem_default_max_blocks())
2260 seq_printf(seq, ",size=%luk",
2261 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2262 if (sbinfo->max_inodes != shmem_default_max_inodes())
2263 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2264 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2265 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2266 if (sbinfo->uid != 0)
2267 seq_printf(seq, ",uid=%u", sbinfo->uid);
2268 if (sbinfo->gid != 0)
2269 seq_printf(seq, ",gid=%u", sbinfo->gid);
2270 shmem_show_mpol(seq, sbinfo->mpol);
2271 return 0;
2273 #endif /* CONFIG_TMPFS */
2275 static void shmem_put_super(struct super_block *sb)
2277 kfree(sb->s_fs_info);
2278 sb->s_fs_info = NULL;
2281 static int shmem_fill_super(struct super_block *sb,
2282 void *data, int silent)
2284 struct inode *inode;
2285 struct dentry *root;
2286 struct shmem_sb_info *sbinfo;
2287 int err = -ENOMEM;
2289 /* Round up to L1_CACHE_BYTES to resist false sharing */
2290 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2291 L1_CACHE_BYTES), GFP_KERNEL);
2292 if (!sbinfo)
2293 return -ENOMEM;
2295 sbinfo->max_blocks = 0;
2296 sbinfo->max_inodes = 0;
2297 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2298 sbinfo->uid = current_fsuid();
2299 sbinfo->gid = current_fsgid();
2300 sbinfo->mpol = NULL;
2301 sb->s_fs_info = sbinfo;
2303 #ifdef CONFIG_TMPFS
2305 * Per default we only allow half of the physical ram per
2306 * tmpfs instance, limiting inodes to one per page of lowmem;
2307 * but the internal instance is left unlimited.
2309 if (!(sb->s_flags & MS_NOUSER)) {
2310 sbinfo->max_blocks = shmem_default_max_blocks();
2311 sbinfo->max_inodes = shmem_default_max_inodes();
2312 if (shmem_parse_options(data, sbinfo, false)) {
2313 err = -EINVAL;
2314 goto failed;
2317 sb->s_export_op = &shmem_export_ops;
2318 #else
2319 sb->s_flags |= MS_NOUSER;
2320 #endif
2322 spin_lock_init(&sbinfo->stat_lock);
2323 sbinfo->free_blocks = sbinfo->max_blocks;
2324 sbinfo->free_inodes = sbinfo->max_inodes;
2326 sb->s_maxbytes = SHMEM_MAX_BYTES;
2327 sb->s_blocksize = PAGE_CACHE_SIZE;
2328 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2329 sb->s_magic = TMPFS_MAGIC;
2330 sb->s_op = &shmem_ops;
2331 sb->s_time_gran = 1;
2332 #ifdef CONFIG_TMPFS_POSIX_ACL
2333 sb->s_xattr = shmem_xattr_handlers;
2334 sb->s_flags |= MS_POSIXACL;
2335 #endif
2337 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2338 if (!inode)
2339 goto failed;
2340 inode->i_uid = sbinfo->uid;
2341 inode->i_gid = sbinfo->gid;
2342 root = d_alloc_root(inode);
2343 if (!root)
2344 goto failed_iput;
2345 sb->s_root = root;
2346 return 0;
2348 failed_iput:
2349 iput(inode);
2350 failed:
2351 shmem_put_super(sb);
2352 return err;
2355 static struct kmem_cache *shmem_inode_cachep;
2357 static struct inode *shmem_alloc_inode(struct super_block *sb)
2359 struct shmem_inode_info *p;
2360 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2361 if (!p)
2362 return NULL;
2363 return &p->vfs_inode;
2366 static void shmem_destroy_inode(struct inode *inode)
2368 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2369 /* only struct inode is valid if it's an inline symlink */
2370 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2372 shmem_acl_destroy_inode(inode);
2373 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2376 static void init_once(void *foo)
2378 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2380 inode_init_once(&p->vfs_inode);
2381 #ifdef CONFIG_TMPFS_POSIX_ACL
2382 p->i_acl = NULL;
2383 p->i_default_acl = NULL;
2384 #endif
2387 static int init_inodecache(void)
2389 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2390 sizeof(struct shmem_inode_info),
2391 0, SLAB_PANIC, init_once);
2392 return 0;
2395 static void destroy_inodecache(void)
2397 kmem_cache_destroy(shmem_inode_cachep);
2400 static const struct address_space_operations shmem_aops = {
2401 .writepage = shmem_writepage,
2402 .set_page_dirty = __set_page_dirty_no_writeback,
2403 #ifdef CONFIG_TMPFS
2404 .readpage = shmem_readpage,
2405 .write_begin = shmem_write_begin,
2406 .write_end = shmem_write_end,
2407 #endif
2408 .migratepage = migrate_page,
2411 static const struct file_operations shmem_file_operations = {
2412 .mmap = shmem_mmap,
2413 #ifdef CONFIG_TMPFS
2414 .llseek = generic_file_llseek,
2415 .read = do_sync_read,
2416 .write = do_sync_write,
2417 .aio_read = shmem_file_aio_read,
2418 .aio_write = generic_file_aio_write,
2419 .fsync = simple_sync_file,
2420 .splice_read = generic_file_splice_read,
2421 .splice_write = generic_file_splice_write,
2422 #endif
2425 static const struct inode_operations shmem_inode_operations = {
2426 .truncate = shmem_truncate,
2427 .setattr = shmem_notify_change,
2428 .truncate_range = shmem_truncate_range,
2429 #ifdef CONFIG_TMPFS_POSIX_ACL
2430 .setxattr = generic_setxattr,
2431 .getxattr = generic_getxattr,
2432 .listxattr = generic_listxattr,
2433 .removexattr = generic_removexattr,
2434 .permission = shmem_permission,
2435 #endif
2439 static const struct inode_operations shmem_dir_inode_operations = {
2440 #ifdef CONFIG_TMPFS
2441 .create = shmem_create,
2442 .lookup = simple_lookup,
2443 .link = shmem_link,
2444 .unlink = shmem_unlink,
2445 .symlink = shmem_symlink,
2446 .mkdir = shmem_mkdir,
2447 .rmdir = shmem_rmdir,
2448 .mknod = shmem_mknod,
2449 .rename = shmem_rename,
2450 #endif
2451 #ifdef CONFIG_TMPFS_POSIX_ACL
2452 .setattr = shmem_notify_change,
2453 .setxattr = generic_setxattr,
2454 .getxattr = generic_getxattr,
2455 .listxattr = generic_listxattr,
2456 .removexattr = generic_removexattr,
2457 .permission = shmem_permission,
2458 #endif
2461 static const struct inode_operations shmem_special_inode_operations = {
2462 #ifdef CONFIG_TMPFS_POSIX_ACL
2463 .setattr = shmem_notify_change,
2464 .setxattr = generic_setxattr,
2465 .getxattr = generic_getxattr,
2466 .listxattr = generic_listxattr,
2467 .removexattr = generic_removexattr,
2468 .permission = shmem_permission,
2469 #endif
2472 static const struct super_operations shmem_ops = {
2473 .alloc_inode = shmem_alloc_inode,
2474 .destroy_inode = shmem_destroy_inode,
2475 #ifdef CONFIG_TMPFS
2476 .statfs = shmem_statfs,
2477 .remount_fs = shmem_remount_fs,
2478 .show_options = shmem_show_options,
2479 #endif
2480 .delete_inode = shmem_delete_inode,
2481 .drop_inode = generic_delete_inode,
2482 .put_super = shmem_put_super,
2485 static struct vm_operations_struct shmem_vm_ops = {
2486 .fault = shmem_fault,
2487 #ifdef CONFIG_NUMA
2488 .set_policy = shmem_set_policy,
2489 .get_policy = shmem_get_policy,
2490 #endif
2494 static int shmem_get_sb(struct file_system_type *fs_type,
2495 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2497 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2500 static struct file_system_type tmpfs_fs_type = {
2501 .owner = THIS_MODULE,
2502 .name = "tmpfs",
2503 .get_sb = shmem_get_sb,
2504 .kill_sb = kill_litter_super,
2507 static int __init init_tmpfs(void)
2509 int error;
2511 error = bdi_init(&shmem_backing_dev_info);
2512 if (error)
2513 goto out4;
2515 error = init_inodecache();
2516 if (error)
2517 goto out3;
2519 error = register_filesystem(&tmpfs_fs_type);
2520 if (error) {
2521 printk(KERN_ERR "Could not register tmpfs\n");
2522 goto out2;
2525 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2526 tmpfs_fs_type.name, NULL);
2527 if (IS_ERR(shm_mnt)) {
2528 error = PTR_ERR(shm_mnt);
2529 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2530 goto out1;
2532 return 0;
2534 out1:
2535 unregister_filesystem(&tmpfs_fs_type);
2536 out2:
2537 destroy_inodecache();
2538 out3:
2539 bdi_destroy(&shmem_backing_dev_info);
2540 out4:
2541 shm_mnt = ERR_PTR(error);
2542 return error;
2545 #else /* !CONFIG_SHMEM */
2548 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2550 * This is intended for small system where the benefits of the full
2551 * shmem code (swap-backed and resource-limited) are outweighed by
2552 * their complexity. On systems without swap this code should be
2553 * effectively equivalent, but much lighter weight.
2556 #include <linux/ramfs.h>
2558 static struct file_system_type tmpfs_fs_type = {
2559 .name = "tmpfs",
2560 .get_sb = ramfs_get_sb,
2561 .kill_sb = kill_litter_super,
2564 static int __init init_tmpfs(void)
2566 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2568 shm_mnt = kern_mount(&tmpfs_fs_type);
2569 BUG_ON(IS_ERR(shm_mnt));
2571 return 0;
2574 int shmem_unuse(swp_entry_t entry, struct page *page)
2576 return 0;
2579 #define shmem_vm_ops generic_file_vm_ops
2580 #define shmem_file_operations ramfs_file_operations
2581 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev)
2582 #define shmem_acct_size(flags, size) 0
2583 #define shmem_unacct_size(flags, size) do {} while (0)
2584 #define SHMEM_MAX_BYTES LLONG_MAX
2586 #endif /* CONFIG_SHMEM */
2588 /* common code */
2591 * shmem_file_setup - get an unlinked file living in tmpfs
2592 * @name: name for dentry (to be seen in /proc/<pid>/maps
2593 * @size: size to be set for the file
2594 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2596 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2598 int error;
2599 struct file *file;
2600 struct inode *inode;
2601 struct dentry *dentry, *root;
2602 struct qstr this;
2604 if (IS_ERR(shm_mnt))
2605 return (void *)shm_mnt;
2607 if (size < 0 || size > SHMEM_MAX_BYTES)
2608 return ERR_PTR(-EINVAL);
2610 if (shmem_acct_size(flags, size))
2611 return ERR_PTR(-ENOMEM);
2613 error = -ENOMEM;
2614 this.name = name;
2615 this.len = strlen(name);
2616 this.hash = 0; /* will go */
2617 root = shm_mnt->mnt_root;
2618 dentry = d_alloc(root, &this);
2619 if (!dentry)
2620 goto put_memory;
2622 error = -ENFILE;
2623 file = get_empty_filp();
2624 if (!file)
2625 goto put_dentry;
2627 error = -ENOSPC;
2628 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2629 if (!inode)
2630 goto close_file;
2632 d_instantiate(dentry, inode);
2633 inode->i_size = size;
2634 inode->i_nlink = 0; /* It is unlinked */
2635 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2636 &shmem_file_operations);
2638 #ifndef CONFIG_MMU
2639 error = ramfs_nommu_expand_for_mapping(inode, size);
2640 if (error)
2641 goto close_file;
2642 #endif
2643 return file;
2645 close_file:
2646 put_filp(file);
2647 put_dentry:
2648 dput(dentry);
2649 put_memory:
2650 shmem_unacct_size(flags, size);
2651 return ERR_PTR(error);
2653 EXPORT_SYMBOL_GPL(shmem_file_setup);
2656 * shmem_zero_setup - setup a shared anonymous mapping
2657 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2659 int shmem_zero_setup(struct vm_area_struct *vma)
2661 struct file *file;
2662 loff_t size = vma->vm_end - vma->vm_start;
2664 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2665 if (IS_ERR(file))
2666 return PTR_ERR(file);
2668 ima_shm_check(file);
2669 if (vma->vm_file)
2670 fput(vma->vm_file);
2671 vma->vm_file = file;
2672 vma->vm_ops = &shmem_vm_ops;
2673 return 0;
2676 module_init(init_tmpfs)