Fix highmem PPC build failure
[linux-2.6/verdex.git] / include / linux / slub_def.h
blobe37b6aa8a9fba3272deeb5cd4fc3f139bbb50579
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
14 enum stat_item {
15 ALLOC_FASTPATH, /* Allocation from cpu slab */
16 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
17 FREE_FASTPATH, /* Free to cpu slub */
18 FREE_SLOWPATH, /* Freeing not to cpu slab */
19 FREE_FROZEN, /* Freeing to frozen slab */
20 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
21 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
22 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
23 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
24 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
25 FREE_SLAB, /* Slab freed to the page allocator */
26 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
27 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
28 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
29 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
30 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
31 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
32 ORDER_FALLBACK, /* Number of times fallback was necessary */
33 NR_SLUB_STAT_ITEMS };
35 struct kmem_cache_cpu {
36 void **freelist; /* Pointer to first free per cpu object */
37 struct page *page; /* The slab from which we are allocating */
38 int node; /* The node of the page (or -1 for debug) */
39 unsigned int offset; /* Freepointer offset (in word units) */
40 unsigned int objsize; /* Size of an object (from kmem_cache) */
41 #ifdef CONFIG_SLUB_STATS
42 unsigned stat[NR_SLUB_STAT_ITEMS];
43 #endif
46 struct kmem_cache_node {
47 spinlock_t list_lock; /* Protect partial list and nr_partial */
48 unsigned long nr_partial;
49 struct list_head partial;
50 #ifdef CONFIG_SLUB_DEBUG
51 atomic_long_t nr_slabs;
52 atomic_long_t total_objects;
53 struct list_head full;
54 #endif
58 * Word size structure that can be atomically updated or read and that
59 * contains both the order and the number of objects that a slab of the
60 * given order would contain.
62 struct kmem_cache_order_objects {
63 unsigned long x;
67 * Slab cache management.
69 struct kmem_cache {
70 /* Used for retriving partial slabs etc */
71 unsigned long flags;
72 int size; /* The size of an object including meta data */
73 int objsize; /* The size of an object without meta data */
74 int offset; /* Free pointer offset. */
75 struct kmem_cache_order_objects oo;
78 * Avoid an extra cache line for UP, SMP and for the node local to
79 * struct kmem_cache.
81 struct kmem_cache_node local_node;
83 /* Allocation and freeing of slabs */
84 struct kmem_cache_order_objects max;
85 struct kmem_cache_order_objects min;
86 gfp_t allocflags; /* gfp flags to use on each alloc */
87 int refcount; /* Refcount for slab cache destroy */
88 void (*ctor)(void *);
89 int inuse; /* Offset to metadata */
90 int align; /* Alignment */
91 unsigned long min_partial;
92 const char *name; /* Name (only for display!) */
93 struct list_head list; /* List of slab caches */
94 #ifdef CONFIG_SLUB_DEBUG
95 struct kobject kobj; /* For sysfs */
96 #endif
98 #ifdef CONFIG_NUMA
100 * Defragmentation by allocating from a remote node.
102 int remote_node_defrag_ratio;
103 struct kmem_cache_node *node[MAX_NUMNODES];
104 #endif
105 #ifdef CONFIG_SMP
106 struct kmem_cache_cpu *cpu_slab[NR_CPUS];
107 #else
108 struct kmem_cache_cpu cpu_slab;
109 #endif
113 * Kmalloc subsystem.
115 #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
116 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
117 #else
118 #define KMALLOC_MIN_SIZE 8
119 #endif
121 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
124 * Maximum kmalloc object size handled by SLUB. Larger object allocations
125 * are passed through to the page allocator. The page allocator "fastpath"
126 * is relatively slow so we need this value sufficiently high so that
127 * performance critical objects are allocated through the SLUB fastpath.
129 * This should be dropped to PAGE_SIZE / 2 once the page allocator
130 * "fastpath" becomes competitive with the slab allocator fastpaths.
132 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
134 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
137 * We keep the general caches in an array of slab caches that are used for
138 * 2^x bytes of allocations.
140 extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
143 * Sorry that the following has to be that ugly but some versions of GCC
144 * have trouble with constant propagation and loops.
146 static __always_inline int kmalloc_index(size_t size)
148 if (!size)
149 return 0;
151 if (size <= KMALLOC_MIN_SIZE)
152 return KMALLOC_SHIFT_LOW;
154 #if KMALLOC_MIN_SIZE <= 64
155 if (size > 64 && size <= 96)
156 return 1;
157 if (size > 128 && size <= 192)
158 return 2;
159 #endif
160 if (size <= 8) return 3;
161 if (size <= 16) return 4;
162 if (size <= 32) return 5;
163 if (size <= 64) return 6;
164 if (size <= 128) return 7;
165 if (size <= 256) return 8;
166 if (size <= 512) return 9;
167 if (size <= 1024) return 10;
168 if (size <= 2 * 1024) return 11;
169 if (size <= 4 * 1024) return 12;
171 * The following is only needed to support architectures with a larger page
172 * size than 4k.
174 if (size <= 8 * 1024) return 13;
175 if (size <= 16 * 1024) return 14;
176 if (size <= 32 * 1024) return 15;
177 if (size <= 64 * 1024) return 16;
178 if (size <= 128 * 1024) return 17;
179 if (size <= 256 * 1024) return 18;
180 if (size <= 512 * 1024) return 19;
181 if (size <= 1024 * 1024) return 20;
182 if (size <= 2 * 1024 * 1024) return 21;
183 return -1;
186 * What we really wanted to do and cannot do because of compiler issues is:
187 * int i;
188 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
189 * if (size <= (1 << i))
190 * return i;
195 * Find the slab cache for a given combination of allocation flags and size.
197 * This ought to end up with a global pointer to the right cache
198 * in kmalloc_caches.
200 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
202 int index = kmalloc_index(size);
204 if (index == 0)
205 return NULL;
207 return &kmalloc_caches[index];
210 #ifdef CONFIG_ZONE_DMA
211 #define SLUB_DMA __GFP_DMA
212 #else
213 /* Disable DMA functionality */
214 #define SLUB_DMA (__force gfp_t)0
215 #endif
217 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
218 void *__kmalloc(size_t size, gfp_t flags);
220 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
222 return (void *)__get_free_pages(flags | __GFP_COMP, get_order(size));
225 static __always_inline void *kmalloc(size_t size, gfp_t flags)
227 if (__builtin_constant_p(size)) {
228 if (size > SLUB_MAX_SIZE)
229 return kmalloc_large(size, flags);
231 if (!(flags & SLUB_DMA)) {
232 struct kmem_cache *s = kmalloc_slab(size);
234 if (!s)
235 return ZERO_SIZE_PTR;
237 return kmem_cache_alloc(s, flags);
240 return __kmalloc(size, flags);
243 #ifdef CONFIG_NUMA
244 void *__kmalloc_node(size_t size, gfp_t flags, int node);
245 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
247 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
249 if (__builtin_constant_p(size) &&
250 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
251 struct kmem_cache *s = kmalloc_slab(size);
253 if (!s)
254 return ZERO_SIZE_PTR;
256 return kmem_cache_alloc_node(s, flags, node);
258 return __kmalloc_node(size, flags, node);
260 #endif
262 #endif /* _LINUX_SLUB_DEF_H */