via-rhine: delete non NAPI code from the driver.
[linux-2.6/verdex.git] / net / ipv4 / arp.c
blob29df75a6bcc7a371bdf967e0057059bdc5c27d4b
1 /* linux/net/ipv4/arp.c
3 * Copyright (C) 1994 by Florian La Roche
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
75 #include <linux/module.h>
76 #include <linux/types.h>
77 #include <linux/string.h>
78 #include <linux/kernel.h>
79 #include <linux/capability.h>
80 #include <linux/socket.h>
81 #include <linux/sockios.h>
82 #include <linux/errno.h>
83 #include <linux/in.h>
84 #include <linux/mm.h>
85 #include <linux/inet.h>
86 #include <linux/inetdevice.h>
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/fddidevice.h>
90 #include <linux/if_arp.h>
91 #include <linux/trdevice.h>
92 #include <linux/skbuff.h>
93 #include <linux/proc_fs.h>
94 #include <linux/seq_file.h>
95 #include <linux/stat.h>
96 #include <linux/init.h>
97 #include <linux/net.h>
98 #include <linux/rcupdate.h>
99 #include <linux/jhash.h>
100 #ifdef CONFIG_SYSCTL
101 #include <linux/sysctl.h>
102 #endif
104 #include <net/net_namespace.h>
105 #include <net/ip.h>
106 #include <net/icmp.h>
107 #include <net/route.h>
108 #include <net/protocol.h>
109 #include <net/tcp.h>
110 #include <net/sock.h>
111 #include <net/arp.h>
112 #include <net/ax25.h>
113 #include <net/netrom.h>
114 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
115 #include <net/atmclip.h>
116 struct neigh_table *clip_tbl_hook;
117 #endif
119 #include <asm/system.h>
120 #include <asm/uaccess.h>
122 #include <linux/netfilter_arp.h>
125 * Interface to generic neighbour cache.
127 static u32 arp_hash(const void *pkey, const struct net_device *dev);
128 static int arp_constructor(struct neighbour *neigh);
129 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
130 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
131 static void parp_redo(struct sk_buff *skb);
133 static struct neigh_ops arp_generic_ops = {
134 .family = AF_INET,
135 .solicit = arp_solicit,
136 .error_report = arp_error_report,
137 .output = neigh_resolve_output,
138 .connected_output = neigh_connected_output,
139 .hh_output = dev_queue_xmit,
140 .queue_xmit = dev_queue_xmit,
143 static struct neigh_ops arp_hh_ops = {
144 .family = AF_INET,
145 .solicit = arp_solicit,
146 .error_report = arp_error_report,
147 .output = neigh_resolve_output,
148 .connected_output = neigh_resolve_output,
149 .hh_output = dev_queue_xmit,
150 .queue_xmit = dev_queue_xmit,
153 static struct neigh_ops arp_direct_ops = {
154 .family = AF_INET,
155 .output = dev_queue_xmit,
156 .connected_output = dev_queue_xmit,
157 .hh_output = dev_queue_xmit,
158 .queue_xmit = dev_queue_xmit,
161 struct neigh_ops arp_broken_ops = {
162 .family = AF_INET,
163 .solicit = arp_solicit,
164 .error_report = arp_error_report,
165 .output = neigh_compat_output,
166 .connected_output = neigh_compat_output,
167 .hh_output = dev_queue_xmit,
168 .queue_xmit = dev_queue_xmit,
171 struct neigh_table arp_tbl = {
172 .family = AF_INET,
173 .entry_size = sizeof(struct neighbour) + 4,
174 .key_len = 4,
175 .hash = arp_hash,
176 .constructor = arp_constructor,
177 .proxy_redo = parp_redo,
178 .id = "arp_cache",
179 .parms = {
180 .tbl = &arp_tbl,
181 .base_reachable_time = 30 * HZ,
182 .retrans_time = 1 * HZ,
183 .gc_staletime = 60 * HZ,
184 .reachable_time = 30 * HZ,
185 .delay_probe_time = 5 * HZ,
186 .queue_len = 3,
187 .ucast_probes = 3,
188 .mcast_probes = 3,
189 .anycast_delay = 1 * HZ,
190 .proxy_delay = (8 * HZ) / 10,
191 .proxy_qlen = 64,
192 .locktime = 1 * HZ,
194 .gc_interval = 30 * HZ,
195 .gc_thresh1 = 128,
196 .gc_thresh2 = 512,
197 .gc_thresh3 = 1024,
200 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
202 switch (dev->type) {
203 case ARPHRD_ETHER:
204 case ARPHRD_FDDI:
205 case ARPHRD_IEEE802:
206 ip_eth_mc_map(addr, haddr);
207 return 0;
208 case ARPHRD_IEEE802_TR:
209 ip_tr_mc_map(addr, haddr);
210 return 0;
211 case ARPHRD_INFINIBAND:
212 ip_ib_mc_map(addr, dev->broadcast, haddr);
213 return 0;
214 default:
215 if (dir) {
216 memcpy(haddr, dev->broadcast, dev->addr_len);
217 return 0;
220 return -EINVAL;
224 static u32 arp_hash(const void *pkey, const struct net_device *dev)
226 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229 static int arp_constructor(struct neighbour *neigh)
231 __be32 addr = *(__be32*)neigh->primary_key;
232 struct net_device *dev = neigh->dev;
233 struct in_device *in_dev;
234 struct neigh_parms *parms;
236 rcu_read_lock();
237 in_dev = __in_dev_get_rcu(dev);
238 if (in_dev == NULL) {
239 rcu_read_unlock();
240 return -EINVAL;
243 neigh->type = inet_addr_type(dev_net(dev), addr);
245 parms = in_dev->arp_parms;
246 __neigh_parms_put(neigh->parms);
247 neigh->parms = neigh_parms_clone(parms);
248 rcu_read_unlock();
250 if (!dev->header_ops) {
251 neigh->nud_state = NUD_NOARP;
252 neigh->ops = &arp_direct_ops;
253 neigh->output = neigh->ops->queue_xmit;
254 } else {
255 /* Good devices (checked by reading texts, but only Ethernet is
256 tested)
258 ARPHRD_ETHER: (ethernet, apfddi)
259 ARPHRD_FDDI: (fddi)
260 ARPHRD_IEEE802: (tr)
261 ARPHRD_METRICOM: (strip)
262 ARPHRD_ARCNET:
263 etc. etc. etc.
265 ARPHRD_IPDDP will also work, if author repairs it.
266 I did not it, because this driver does not work even
267 in old paradigm.
270 #if 1
271 /* So... these "amateur" devices are hopeless.
272 The only thing, that I can say now:
273 It is very sad that we need to keep ugly obsolete
274 code to make them happy.
276 They should be moved to more reasonable state, now
277 they use rebuild_header INSTEAD OF hard_start_xmit!!!
278 Besides that, they are sort of out of date
279 (a lot of redundant clones/copies, useless in 2.1),
280 I wonder why people believe that they work.
282 switch (dev->type) {
283 default:
284 break;
285 case ARPHRD_ROSE:
286 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
287 case ARPHRD_AX25:
288 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
289 case ARPHRD_NETROM:
290 #endif
291 neigh->ops = &arp_broken_ops;
292 neigh->output = neigh->ops->output;
293 return 0;
294 #endif
296 #endif
297 if (neigh->type == RTN_MULTICAST) {
298 neigh->nud_state = NUD_NOARP;
299 arp_mc_map(addr, neigh->ha, dev, 1);
300 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
301 neigh->nud_state = NUD_NOARP;
302 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
303 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
304 neigh->nud_state = NUD_NOARP;
305 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 if (dev->header_ops->cache)
309 neigh->ops = &arp_hh_ops;
310 else
311 neigh->ops = &arp_generic_ops;
313 if (neigh->nud_state&NUD_VALID)
314 neigh->output = neigh->ops->connected_output;
315 else
316 neigh->output = neigh->ops->output;
318 return 0;
321 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
323 dst_link_failure(skb);
324 kfree_skb(skb);
327 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
329 __be32 saddr = 0;
330 u8 *dst_ha = NULL;
331 struct net_device *dev = neigh->dev;
332 __be32 target = *(__be32*)neigh->primary_key;
333 int probes = atomic_read(&neigh->probes);
334 struct in_device *in_dev = in_dev_get(dev);
336 if (!in_dev)
337 return;
339 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
340 default:
341 case 0: /* By default announce any local IP */
342 if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
343 saddr = ip_hdr(skb)->saddr;
344 break;
345 case 1: /* Restrict announcements of saddr in same subnet */
346 if (!skb)
347 break;
348 saddr = ip_hdr(skb)->saddr;
349 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
350 /* saddr should be known to target */
351 if (inet_addr_onlink(in_dev, target, saddr))
352 break;
354 saddr = 0;
355 break;
356 case 2: /* Avoid secondary IPs, get a primary/preferred one */
357 break;
360 if (in_dev)
361 in_dev_put(in_dev);
362 if (!saddr)
363 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
365 if ((probes -= neigh->parms->ucast_probes) < 0) {
366 if (!(neigh->nud_state&NUD_VALID))
367 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
368 dst_ha = neigh->ha;
369 read_lock_bh(&neigh->lock);
370 } else if ((probes -= neigh->parms->app_probes) < 0) {
371 #ifdef CONFIG_ARPD
372 neigh_app_ns(neigh);
373 #endif
374 return;
377 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
378 dst_ha, dev->dev_addr, NULL);
379 if (dst_ha)
380 read_unlock_bh(&neigh->lock);
383 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
385 int scope;
387 switch (IN_DEV_ARP_IGNORE(in_dev)) {
388 case 0: /* Reply, the tip is already validated */
389 return 0;
390 case 1: /* Reply only if tip is configured on the incoming interface */
391 sip = 0;
392 scope = RT_SCOPE_HOST;
393 break;
394 case 2: /*
395 * Reply only if tip is configured on the incoming interface
396 * and is in same subnet as sip
398 scope = RT_SCOPE_HOST;
399 break;
400 case 3: /* Do not reply for scope host addresses */
401 sip = 0;
402 scope = RT_SCOPE_LINK;
403 break;
404 case 4: /* Reserved */
405 case 5:
406 case 6:
407 case 7:
408 return 0;
409 case 8: /* Do not reply */
410 return 1;
411 default:
412 return 0;
414 return !inet_confirm_addr(in_dev, sip, tip, scope);
417 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
419 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
420 .saddr = tip } } };
421 struct rtable *rt;
422 int flag = 0;
423 /*unsigned long now; */
425 if (ip_route_output_key(dev_net(dev), &rt, &fl) < 0)
426 return 1;
427 if (rt->u.dst.dev != dev) {
428 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
429 flag = 1;
431 ip_rt_put(rt);
432 return flag;
435 /* OBSOLETE FUNCTIONS */
438 * Find an arp mapping in the cache. If not found, post a request.
440 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
441 * even if it exists. It is supposed that skb->dev was mangled
442 * by a virtual device (eql, shaper). Nobody but broken devices
443 * is allowed to use this function, it is scheduled to be removed. --ANK
446 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
448 switch (addr_hint) {
449 case RTN_LOCAL:
450 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
451 memcpy(haddr, dev->dev_addr, dev->addr_len);
452 return 1;
453 case RTN_MULTICAST:
454 arp_mc_map(paddr, haddr, dev, 1);
455 return 1;
456 case RTN_BROADCAST:
457 memcpy(haddr, dev->broadcast, dev->addr_len);
458 return 1;
460 return 0;
464 int arp_find(unsigned char *haddr, struct sk_buff *skb)
466 struct net_device *dev = skb->dev;
467 __be32 paddr;
468 struct neighbour *n;
470 if (!skb->dst) {
471 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
472 kfree_skb(skb);
473 return 1;
476 paddr = skb->rtable->rt_gateway;
478 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
479 return 0;
481 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
483 if (n) {
484 n->used = jiffies;
485 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
486 read_lock_bh(&n->lock);
487 memcpy(haddr, n->ha, dev->addr_len);
488 read_unlock_bh(&n->lock);
489 neigh_release(n);
490 return 0;
492 neigh_release(n);
493 } else
494 kfree_skb(skb);
495 return 1;
498 /* END OF OBSOLETE FUNCTIONS */
500 int arp_bind_neighbour(struct dst_entry *dst)
502 struct net_device *dev = dst->dev;
503 struct neighbour *n = dst->neighbour;
505 if (dev == NULL)
506 return -EINVAL;
507 if (n == NULL) {
508 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
509 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
510 nexthop = 0;
511 n = __neigh_lookup_errno(
512 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
513 dev->type == ARPHRD_ATM ? clip_tbl_hook :
514 #endif
515 &arp_tbl, &nexthop, dev);
516 if (IS_ERR(n))
517 return PTR_ERR(n);
518 dst->neighbour = n;
520 return 0;
524 * Check if we can use proxy ARP for this path
527 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
529 struct in_device *out_dev;
530 int imi, omi = -1;
532 if (!IN_DEV_PROXY_ARP(in_dev))
533 return 0;
535 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
536 return 1;
537 if (imi == -1)
538 return 0;
540 /* place to check for proxy_arp for routes */
542 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
543 omi = IN_DEV_MEDIUM_ID(out_dev);
544 in_dev_put(out_dev);
546 return (omi != imi && omi != -1);
550 * Interface to link layer: send routine and receive handler.
554 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
555 * message.
557 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
558 struct net_device *dev, __be32 src_ip,
559 const unsigned char *dest_hw,
560 const unsigned char *src_hw,
561 const unsigned char *target_hw)
563 struct sk_buff *skb;
564 struct arphdr *arp;
565 unsigned char *arp_ptr;
568 * Allocate a buffer
571 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
572 if (skb == NULL)
573 return NULL;
575 skb_reserve(skb, LL_RESERVED_SPACE(dev));
576 skb_reset_network_header(skb);
577 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
578 skb->dev = dev;
579 skb->protocol = htons(ETH_P_ARP);
580 if (src_hw == NULL)
581 src_hw = dev->dev_addr;
582 if (dest_hw == NULL)
583 dest_hw = dev->broadcast;
586 * Fill the device header for the ARP frame
588 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
589 goto out;
592 * Fill out the arp protocol part.
594 * The arp hardware type should match the device type, except for FDDI,
595 * which (according to RFC 1390) should always equal 1 (Ethernet).
598 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
599 * DIX code for the protocol. Make these device structure fields.
601 switch (dev->type) {
602 default:
603 arp->ar_hrd = htons(dev->type);
604 arp->ar_pro = htons(ETH_P_IP);
605 break;
607 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
608 case ARPHRD_AX25:
609 arp->ar_hrd = htons(ARPHRD_AX25);
610 arp->ar_pro = htons(AX25_P_IP);
611 break;
613 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
614 case ARPHRD_NETROM:
615 arp->ar_hrd = htons(ARPHRD_NETROM);
616 arp->ar_pro = htons(AX25_P_IP);
617 break;
618 #endif
619 #endif
621 #ifdef CONFIG_FDDI
622 case ARPHRD_FDDI:
623 arp->ar_hrd = htons(ARPHRD_ETHER);
624 arp->ar_pro = htons(ETH_P_IP);
625 break;
626 #endif
627 #ifdef CONFIG_TR
628 case ARPHRD_IEEE802_TR:
629 arp->ar_hrd = htons(ARPHRD_IEEE802);
630 arp->ar_pro = htons(ETH_P_IP);
631 break;
632 #endif
635 arp->ar_hln = dev->addr_len;
636 arp->ar_pln = 4;
637 arp->ar_op = htons(type);
639 arp_ptr=(unsigned char *)(arp+1);
641 memcpy(arp_ptr, src_hw, dev->addr_len);
642 arp_ptr+=dev->addr_len;
643 memcpy(arp_ptr, &src_ip,4);
644 arp_ptr+=4;
645 if (target_hw != NULL)
646 memcpy(arp_ptr, target_hw, dev->addr_len);
647 else
648 memset(arp_ptr, 0, dev->addr_len);
649 arp_ptr+=dev->addr_len;
650 memcpy(arp_ptr, &dest_ip, 4);
652 return skb;
654 out:
655 kfree_skb(skb);
656 return NULL;
660 * Send an arp packet.
662 void arp_xmit(struct sk_buff *skb)
664 /* Send it off, maybe filter it using firewalling first. */
665 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
669 * Create and send an arp packet.
671 void arp_send(int type, int ptype, __be32 dest_ip,
672 struct net_device *dev, __be32 src_ip,
673 const unsigned char *dest_hw, const unsigned char *src_hw,
674 const unsigned char *target_hw)
676 struct sk_buff *skb;
679 * No arp on this interface.
682 if (dev->flags&IFF_NOARP)
683 return;
685 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
686 dest_hw, src_hw, target_hw);
687 if (skb == NULL) {
688 return;
691 arp_xmit(skb);
695 * Process an arp request.
698 static int arp_process(struct sk_buff *skb)
700 struct net_device *dev = skb->dev;
701 struct in_device *in_dev = in_dev_get(dev);
702 struct arphdr *arp;
703 unsigned char *arp_ptr;
704 struct rtable *rt;
705 unsigned char *sha;
706 __be32 sip, tip;
707 u16 dev_type = dev->type;
708 int addr_type;
709 struct neighbour *n;
710 struct net *net = dev_net(dev);
712 /* arp_rcv below verifies the ARP header and verifies the device
713 * is ARP'able.
716 if (in_dev == NULL)
717 goto out;
719 arp = arp_hdr(skb);
721 switch (dev_type) {
722 default:
723 if (arp->ar_pro != htons(ETH_P_IP) ||
724 htons(dev_type) != arp->ar_hrd)
725 goto out;
726 break;
727 case ARPHRD_ETHER:
728 case ARPHRD_IEEE802_TR:
729 case ARPHRD_FDDI:
730 case ARPHRD_IEEE802:
732 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
733 * devices, according to RFC 2625) devices will accept ARP
734 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
735 * This is the case also of FDDI, where the RFC 1390 says that
736 * FDDI devices should accept ARP hardware of (1) Ethernet,
737 * however, to be more robust, we'll accept both 1 (Ethernet)
738 * or 6 (IEEE 802.2)
740 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
741 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
742 arp->ar_pro != htons(ETH_P_IP))
743 goto out;
744 break;
745 case ARPHRD_AX25:
746 if (arp->ar_pro != htons(AX25_P_IP) ||
747 arp->ar_hrd != htons(ARPHRD_AX25))
748 goto out;
749 break;
750 case ARPHRD_NETROM:
751 if (arp->ar_pro != htons(AX25_P_IP) ||
752 arp->ar_hrd != htons(ARPHRD_NETROM))
753 goto out;
754 break;
757 /* Understand only these message types */
759 if (arp->ar_op != htons(ARPOP_REPLY) &&
760 arp->ar_op != htons(ARPOP_REQUEST))
761 goto out;
764 * Extract fields
766 arp_ptr= (unsigned char *)(arp+1);
767 sha = arp_ptr;
768 arp_ptr += dev->addr_len;
769 memcpy(&sip, arp_ptr, 4);
770 arp_ptr += 4;
771 arp_ptr += dev->addr_len;
772 memcpy(&tip, arp_ptr, 4);
774 * Check for bad requests for 127.x.x.x and requests for multicast
775 * addresses. If this is one such, delete it.
777 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
778 goto out;
781 * Special case: We must set Frame Relay source Q.922 address
783 if (dev_type == ARPHRD_DLCI)
784 sha = dev->broadcast;
787 * Process entry. The idea here is we want to send a reply if it is a
788 * request for us or if it is a request for someone else that we hold
789 * a proxy for. We want to add an entry to our cache if it is a reply
790 * to us or if it is a request for our address.
791 * (The assumption for this last is that if someone is requesting our
792 * address, they are probably intending to talk to us, so it saves time
793 * if we cache their address. Their address is also probably not in
794 * our cache, since ours is not in their cache.)
796 * Putting this another way, we only care about replies if they are to
797 * us, in which case we add them to the cache. For requests, we care
798 * about those for us and those for our proxies. We reply to both,
799 * and in the case of requests for us we add the requester to the arp
800 * cache.
803 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
804 if (sip == 0) {
805 if (arp->ar_op == htons(ARPOP_REQUEST) &&
806 inet_addr_type(net, tip) == RTN_LOCAL &&
807 !arp_ignore(in_dev, sip, tip))
808 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
809 dev->dev_addr, sha);
810 goto out;
813 if (arp->ar_op == htons(ARPOP_REQUEST) &&
814 ip_route_input(skb, tip, sip, 0, dev) == 0) {
816 rt = skb->rtable;
817 addr_type = rt->rt_type;
819 if (addr_type == RTN_LOCAL) {
820 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
821 if (n) {
822 int dont_send = 0;
824 if (!dont_send)
825 dont_send |= arp_ignore(in_dev,sip,tip);
826 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
827 dont_send |= arp_filter(sip,tip,dev);
828 if (!dont_send)
829 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
831 neigh_release(n);
833 goto out;
834 } else if (IN_DEV_FORWARD(in_dev)) {
835 if (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
836 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
837 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
838 if (n)
839 neigh_release(n);
841 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
842 skb->pkt_type == PACKET_HOST ||
843 in_dev->arp_parms->proxy_delay == 0) {
844 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
845 } else {
846 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
847 in_dev_put(in_dev);
848 return 0;
850 goto out;
855 /* Update our ARP tables */
857 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
859 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
860 /* Unsolicited ARP is not accepted by default.
861 It is possible, that this option should be enabled for some
862 devices (strip is candidate)
864 if (n == NULL &&
865 arp->ar_op == htons(ARPOP_REPLY) &&
866 inet_addr_type(net, sip) == RTN_UNICAST)
867 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
870 if (n) {
871 int state = NUD_REACHABLE;
872 int override;
874 /* If several different ARP replies follows back-to-back,
875 use the FIRST one. It is possible, if several proxy
876 agents are active. Taking the first reply prevents
877 arp trashing and chooses the fastest router.
879 override = time_after(jiffies, n->updated + n->parms->locktime);
881 /* Broadcast replies and request packets
882 do not assert neighbour reachability.
884 if (arp->ar_op != htons(ARPOP_REPLY) ||
885 skb->pkt_type != PACKET_HOST)
886 state = NUD_STALE;
887 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
888 neigh_release(n);
891 out:
892 if (in_dev)
893 in_dev_put(in_dev);
894 kfree_skb(skb);
895 return 0;
898 static void parp_redo(struct sk_buff *skb)
900 arp_process(skb);
905 * Receive an arp request from the device layer.
908 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
909 struct packet_type *pt, struct net_device *orig_dev)
911 struct arphdr *arp;
913 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
914 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
915 goto freeskb;
917 arp = arp_hdr(skb);
918 if (arp->ar_hln != dev->addr_len ||
919 dev->flags & IFF_NOARP ||
920 skb->pkt_type == PACKET_OTHERHOST ||
921 skb->pkt_type == PACKET_LOOPBACK ||
922 arp->ar_pln != 4)
923 goto freeskb;
925 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
926 goto out_of_mem;
928 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
930 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
932 freeskb:
933 kfree_skb(skb);
934 out_of_mem:
935 return 0;
939 * User level interface (ioctl)
943 * Set (create) an ARP cache entry.
946 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
948 if (dev == NULL) {
949 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
950 return 0;
952 if (__in_dev_get_rtnl(dev)) {
953 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
954 return 0;
956 return -ENXIO;
959 static int arp_req_set_public(struct net *net, struct arpreq *r,
960 struct net_device *dev)
962 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
963 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
965 if (mask && mask != htonl(0xFFFFFFFF))
966 return -EINVAL;
967 if (!dev && (r->arp_flags & ATF_COM)) {
968 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
969 r->arp_ha.sa_data);
970 if (!dev)
971 return -ENODEV;
973 if (mask) {
974 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
975 return -ENOBUFS;
976 return 0;
979 return arp_req_set_proxy(net, dev, 1);
982 static int arp_req_set(struct net *net, struct arpreq *r,
983 struct net_device * dev)
985 __be32 ip;
986 struct neighbour *neigh;
987 int err;
989 if (r->arp_flags & ATF_PUBL)
990 return arp_req_set_public(net, r, dev);
992 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
993 if (r->arp_flags & ATF_PERM)
994 r->arp_flags |= ATF_COM;
995 if (dev == NULL) {
996 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
997 .tos = RTO_ONLINK } } };
998 struct rtable * rt;
999 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1000 return err;
1001 dev = rt->u.dst.dev;
1002 ip_rt_put(rt);
1003 if (!dev)
1004 return -EINVAL;
1006 switch (dev->type) {
1007 #ifdef CONFIG_FDDI
1008 case ARPHRD_FDDI:
1010 * According to RFC 1390, FDDI devices should accept ARP
1011 * hardware types of 1 (Ethernet). However, to be more
1012 * robust, we'll accept hardware types of either 1 (Ethernet)
1013 * or 6 (IEEE 802.2).
1015 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1016 r->arp_ha.sa_family != ARPHRD_ETHER &&
1017 r->arp_ha.sa_family != ARPHRD_IEEE802)
1018 return -EINVAL;
1019 break;
1020 #endif
1021 default:
1022 if (r->arp_ha.sa_family != dev->type)
1023 return -EINVAL;
1024 break;
1027 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1028 err = PTR_ERR(neigh);
1029 if (!IS_ERR(neigh)) {
1030 unsigned state = NUD_STALE;
1031 if (r->arp_flags & ATF_PERM)
1032 state = NUD_PERMANENT;
1033 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1034 r->arp_ha.sa_data : NULL, state,
1035 NEIGH_UPDATE_F_OVERRIDE|
1036 NEIGH_UPDATE_F_ADMIN);
1037 neigh_release(neigh);
1039 return err;
1042 static unsigned arp_state_to_flags(struct neighbour *neigh)
1044 unsigned flags = 0;
1045 if (neigh->nud_state&NUD_PERMANENT)
1046 flags = ATF_PERM|ATF_COM;
1047 else if (neigh->nud_state&NUD_VALID)
1048 flags = ATF_COM;
1049 return flags;
1053 * Get an ARP cache entry.
1056 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1058 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1059 struct neighbour *neigh;
1060 int err = -ENXIO;
1062 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1063 if (neigh) {
1064 read_lock_bh(&neigh->lock);
1065 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1066 r->arp_flags = arp_state_to_flags(neigh);
1067 read_unlock_bh(&neigh->lock);
1068 r->arp_ha.sa_family = dev->type;
1069 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1070 neigh_release(neigh);
1071 err = 0;
1073 return err;
1076 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1077 struct net_device *dev)
1079 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1080 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1082 if (mask == htonl(0xFFFFFFFF))
1083 return pneigh_delete(&arp_tbl, net, &ip, dev);
1085 if (mask)
1086 return -EINVAL;
1088 return arp_req_set_proxy(net, dev, 0);
1091 static int arp_req_delete(struct net *net, struct arpreq *r,
1092 struct net_device * dev)
1094 int err;
1095 __be32 ip;
1096 struct neighbour *neigh;
1098 if (r->arp_flags & ATF_PUBL)
1099 return arp_req_delete_public(net, r, dev);
1101 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1102 if (dev == NULL) {
1103 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1104 .tos = RTO_ONLINK } } };
1105 struct rtable * rt;
1106 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1107 return err;
1108 dev = rt->u.dst.dev;
1109 ip_rt_put(rt);
1110 if (!dev)
1111 return -EINVAL;
1113 err = -ENXIO;
1114 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115 if (neigh) {
1116 if (neigh->nud_state&~NUD_NOARP)
1117 err = neigh_update(neigh, NULL, NUD_FAILED,
1118 NEIGH_UPDATE_F_OVERRIDE|
1119 NEIGH_UPDATE_F_ADMIN);
1120 neigh_release(neigh);
1122 return err;
1126 * Handle an ARP layer I/O control request.
1129 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1131 int err;
1132 struct arpreq r;
1133 struct net_device *dev = NULL;
1135 switch (cmd) {
1136 case SIOCDARP:
1137 case SIOCSARP:
1138 if (!capable(CAP_NET_ADMIN))
1139 return -EPERM;
1140 case SIOCGARP:
1141 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1142 if (err)
1143 return -EFAULT;
1144 break;
1145 default:
1146 return -EINVAL;
1149 if (r.arp_pa.sa_family != AF_INET)
1150 return -EPFNOSUPPORT;
1152 if (!(r.arp_flags & ATF_PUBL) &&
1153 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1154 return -EINVAL;
1155 if (!(r.arp_flags & ATF_NETMASK))
1156 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1157 htonl(0xFFFFFFFFUL);
1158 rtnl_lock();
1159 if (r.arp_dev[0]) {
1160 err = -ENODEV;
1161 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1162 goto out;
1164 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1165 if (!r.arp_ha.sa_family)
1166 r.arp_ha.sa_family = dev->type;
1167 err = -EINVAL;
1168 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1169 goto out;
1170 } else if (cmd == SIOCGARP) {
1171 err = -ENODEV;
1172 goto out;
1175 switch (cmd) {
1176 case SIOCDARP:
1177 err = arp_req_delete(net, &r, dev);
1178 break;
1179 case SIOCSARP:
1180 err = arp_req_set(net, &r, dev);
1181 break;
1182 case SIOCGARP:
1183 err = arp_req_get(&r, dev);
1184 if (!err && copy_to_user(arg, &r, sizeof(r)))
1185 err = -EFAULT;
1186 break;
1188 out:
1189 rtnl_unlock();
1190 return err;
1193 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1195 struct net_device *dev = ptr;
1197 switch (event) {
1198 case NETDEV_CHANGEADDR:
1199 neigh_changeaddr(&arp_tbl, dev);
1200 rt_cache_flush(dev_net(dev), 0);
1201 break;
1202 default:
1203 break;
1206 return NOTIFY_DONE;
1209 static struct notifier_block arp_netdev_notifier = {
1210 .notifier_call = arp_netdev_event,
1213 /* Note, that it is not on notifier chain.
1214 It is necessary, that this routine was called after route cache will be
1215 flushed.
1217 void arp_ifdown(struct net_device *dev)
1219 neigh_ifdown(&arp_tbl, dev);
1224 * Called once on startup.
1227 static struct packet_type arp_packet_type = {
1228 .type = __constant_htons(ETH_P_ARP),
1229 .func = arp_rcv,
1232 static int arp_proc_init(void);
1234 void __init arp_init(void)
1236 neigh_table_init(&arp_tbl);
1238 dev_add_pack(&arp_packet_type);
1239 arp_proc_init();
1240 #ifdef CONFIG_SYSCTL
1241 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1242 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1243 #endif
1244 register_netdevice_notifier(&arp_netdev_notifier);
1247 #ifdef CONFIG_PROC_FS
1248 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1250 /* ------------------------------------------------------------------------ */
1252 * ax25 -> ASCII conversion
1254 static char *ax2asc2(ax25_address *a, char *buf)
1256 char c, *s;
1257 int n;
1259 for (n = 0, s = buf; n < 6; n++) {
1260 c = (a->ax25_call[n] >> 1) & 0x7F;
1262 if (c != ' ') *s++ = c;
1265 *s++ = '-';
1267 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1268 *s++ = '1';
1269 n -= 10;
1272 *s++ = n + '0';
1273 *s++ = '\0';
1275 if (*buf == '\0' || *buf == '-')
1276 return "*";
1278 return buf;
1281 #endif /* CONFIG_AX25 */
1283 #define HBUFFERLEN 30
1285 static void arp_format_neigh_entry(struct seq_file *seq,
1286 struct neighbour *n)
1288 char hbuffer[HBUFFERLEN];
1289 int k, j;
1290 char tbuf[16];
1291 struct net_device *dev = n->dev;
1292 int hatype = dev->type;
1294 read_lock(&n->lock);
1295 /* Convert hardware address to XX:XX:XX:XX ... form. */
1296 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1297 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1298 ax2asc2((ax25_address *)n->ha, hbuffer);
1299 else {
1300 #endif
1301 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1302 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1303 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1304 hbuffer[k++] = ':';
1306 hbuffer[--k] = 0;
1307 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1309 #endif
1310 sprintf(tbuf, NIPQUAD_FMT, NIPQUAD(*(u32*)n->primary_key));
1311 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1312 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1313 read_unlock(&n->lock);
1316 static void arp_format_pneigh_entry(struct seq_file *seq,
1317 struct pneigh_entry *n)
1319 struct net_device *dev = n->dev;
1320 int hatype = dev ? dev->type : 0;
1321 char tbuf[16];
1323 sprintf(tbuf, NIPQUAD_FMT, NIPQUAD(*(u32*)n->key));
1324 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1325 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1326 dev ? dev->name : "*");
1329 static int arp_seq_show(struct seq_file *seq, void *v)
1331 if (v == SEQ_START_TOKEN) {
1332 seq_puts(seq, "IP address HW type Flags "
1333 "HW address Mask Device\n");
1334 } else {
1335 struct neigh_seq_state *state = seq->private;
1337 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1338 arp_format_pneigh_entry(seq, v);
1339 else
1340 arp_format_neigh_entry(seq, v);
1343 return 0;
1346 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1348 /* Don't want to confuse "arp -a" w/ magic entries,
1349 * so we tell the generic iterator to skip NUD_NOARP.
1351 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1354 /* ------------------------------------------------------------------------ */
1356 static const struct seq_operations arp_seq_ops = {
1357 .start = arp_seq_start,
1358 .next = neigh_seq_next,
1359 .stop = neigh_seq_stop,
1360 .show = arp_seq_show,
1363 static int arp_seq_open(struct inode *inode, struct file *file)
1365 return seq_open_net(inode, file, &arp_seq_ops,
1366 sizeof(struct neigh_seq_state));
1369 static const struct file_operations arp_seq_fops = {
1370 .owner = THIS_MODULE,
1371 .open = arp_seq_open,
1372 .read = seq_read,
1373 .llseek = seq_lseek,
1374 .release = seq_release_net,
1378 static int __net_init arp_net_init(struct net *net)
1380 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1381 return -ENOMEM;
1382 return 0;
1385 static void __net_exit arp_net_exit(struct net *net)
1387 proc_net_remove(net, "arp");
1390 static struct pernet_operations arp_net_ops = {
1391 .init = arp_net_init,
1392 .exit = arp_net_exit,
1395 static int __init arp_proc_init(void)
1397 return register_pernet_subsys(&arp_net_ops);
1400 #else /* CONFIG_PROC_FS */
1402 static int __init arp_proc_init(void)
1404 return 0;
1407 #endif /* CONFIG_PROC_FS */
1409 EXPORT_SYMBOL(arp_broken_ops);
1410 EXPORT_SYMBOL(arp_find);
1411 EXPORT_SYMBOL(arp_create);
1412 EXPORT_SYMBOL(arp_xmit);
1413 EXPORT_SYMBOL(arp_send);
1414 EXPORT_SYMBOL(arp_tbl);
1416 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1417 EXPORT_SYMBOL(clip_tbl_hook);
1418 #endif