i386/x8664: cleanup the shared hpet code
[linux-2.6/verdex.git] / arch / x86 / kernel / hpet.c
blob078dbc6d80ec6644aab7c296324a2ffc5a1c4ef3
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9 #include <linux/delay.h>
11 #include <asm/fixmap.h>
12 #include <asm/hpet.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
16 #define HPET_MASK CLOCKSOURCE_MASK(32)
17 #define HPET_SHIFT 22
19 /* FSEC = 10^-15 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
28 unsigned long hpet_readl(unsigned long a)
30 return readl(hpet_virt_address + a);
33 static inline void hpet_writel(unsigned long d, unsigned long a)
35 writel(d, hpet_virt_address + a);
38 #ifdef CONFIG_X86_64
40 #include <asm/pgtable.h>
42 static inline void hpet_set_mapping(void)
44 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46 hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
49 static inline void hpet_clear_mapping(void)
51 hpet_virt_address = NULL;
54 #else
56 static inline void hpet_set_mapping(void)
58 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
61 static inline void hpet_clear_mapping(void)
63 iounmap(hpet_virt_address);
64 hpet_virt_address = NULL;
66 #endif
69 * HPET command line enable / disable
71 static int boot_hpet_disable;
73 static int __init hpet_setup(char* str)
75 if (str) {
76 if (!strncmp("disable", str, 7))
77 boot_hpet_disable = 1;
79 return 1;
81 __setup("hpet=", hpet_setup);
83 static int __init disable_hpet(char *str)
85 boot_hpet_disable = 1;
86 return 1;
88 __setup("nohpet", disable_hpet);
90 static inline int is_hpet_capable(void)
92 return (!boot_hpet_disable && hpet_address);
96 * HPET timer interrupt enable / disable
98 static int hpet_legacy_int_enabled;
101 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
103 int is_hpet_enabled(void)
105 return is_hpet_capable() && hpet_legacy_int_enabled;
109 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
110 * timer 0 and timer 1 in case of RTC emulation.
112 #ifdef CONFIG_HPET
113 static void hpet_reserve_platform_timers(unsigned long id)
115 struct hpet __iomem *hpet = hpet_virt_address;
116 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
117 unsigned int nrtimers, i;
118 struct hpet_data hd;
120 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
122 memset(&hd, 0, sizeof (hd));
123 hd.hd_phys_address = hpet_address;
124 hd.hd_address = hpet;
125 hd.hd_nirqs = nrtimers;
126 hd.hd_flags = HPET_DATA_PLATFORM;
127 hpet_reserve_timer(&hd, 0);
129 #ifdef CONFIG_HPET_EMULATE_RTC
130 hpet_reserve_timer(&hd, 1);
131 #endif
133 hd.hd_irq[0] = HPET_LEGACY_8254;
134 hd.hd_irq[1] = HPET_LEGACY_RTC;
136 for (i = 2; i < nrtimers; timer++, i++)
137 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
138 Tn_INT_ROUTE_CNF_SHIFT;
140 hpet_alloc(&hd);
143 #else
144 static void hpet_reserve_platform_timers(unsigned long id) { }
145 #endif
148 * Common hpet info
150 static unsigned long hpet_period;
152 static void hpet_set_mode(enum clock_event_mode mode,
153 struct clock_event_device *evt);
154 static int hpet_next_event(unsigned long delta,
155 struct clock_event_device *evt);
158 * The hpet clock event device
160 static struct clock_event_device hpet_clockevent = {
161 .name = "hpet",
162 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
163 .set_mode = hpet_set_mode,
164 .set_next_event = hpet_next_event,
165 .shift = 32,
166 .irq = 0,
169 static void hpet_start_counter(void)
171 unsigned long cfg = hpet_readl(HPET_CFG);
173 cfg &= ~HPET_CFG_ENABLE;
174 hpet_writel(cfg, HPET_CFG);
175 hpet_writel(0, HPET_COUNTER);
176 hpet_writel(0, HPET_COUNTER + 4);
177 cfg |= HPET_CFG_ENABLE;
178 hpet_writel(cfg, HPET_CFG);
181 static void hpet_enable_int(void)
183 unsigned long cfg = hpet_readl(HPET_CFG);
185 cfg |= HPET_CFG_LEGACY;
186 hpet_writel(cfg, HPET_CFG);
187 hpet_legacy_int_enabled = 1;
190 static void hpet_set_mode(enum clock_event_mode mode,
191 struct clock_event_device *evt)
193 unsigned long cfg, cmp, now;
194 uint64_t delta;
196 switch(mode) {
197 case CLOCK_EVT_MODE_PERIODIC:
198 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
199 delta >>= hpet_clockevent.shift;
200 now = hpet_readl(HPET_COUNTER);
201 cmp = now + (unsigned long) delta;
202 cfg = hpet_readl(HPET_T0_CFG);
203 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
204 HPET_TN_SETVAL | HPET_TN_32BIT;
205 hpet_writel(cfg, HPET_T0_CFG);
207 * The first write after writing TN_SETVAL to the
208 * config register sets the counter value, the second
209 * write sets the period.
211 hpet_writel(cmp, HPET_T0_CMP);
212 udelay(1);
213 hpet_writel((unsigned long) delta, HPET_T0_CMP);
214 break;
216 case CLOCK_EVT_MODE_ONESHOT:
217 cfg = hpet_readl(HPET_T0_CFG);
218 cfg &= ~HPET_TN_PERIODIC;
219 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
220 hpet_writel(cfg, HPET_T0_CFG);
221 break;
223 case CLOCK_EVT_MODE_UNUSED:
224 case CLOCK_EVT_MODE_SHUTDOWN:
225 cfg = hpet_readl(HPET_T0_CFG);
226 cfg &= ~HPET_TN_ENABLE;
227 hpet_writel(cfg, HPET_T0_CFG);
228 break;
230 case CLOCK_EVT_MODE_RESUME:
231 hpet_enable_int();
232 break;
236 static int hpet_next_event(unsigned long delta,
237 struct clock_event_device *evt)
239 unsigned long cnt;
241 cnt = hpet_readl(HPET_COUNTER);
242 cnt += delta;
243 hpet_writel(cnt, HPET_T0_CMP);
245 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
249 * Clock source related code
251 static cycle_t read_hpet(void)
253 return (cycle_t)hpet_readl(HPET_COUNTER);
256 #ifdef CONFIG_X86_64
257 static cycle_t __vsyscall_fn vread_hpet(void)
259 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
261 #endif
263 static struct clocksource clocksource_hpet = {
264 .name = "hpet",
265 .rating = 250,
266 .read = read_hpet,
267 .mask = HPET_MASK,
268 .shift = HPET_SHIFT,
269 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
270 .resume = hpet_start_counter,
271 #ifdef CONFIG_X86_64
272 .vread = vread_hpet,
273 #endif
277 * Try to setup the HPET timer
279 int __init hpet_enable(void)
281 unsigned long id;
282 uint64_t hpet_freq;
283 u64 tmp, start, now;
284 cycle_t t1;
286 if (!is_hpet_capable())
287 return 0;
289 hpet_set_mapping();
292 * Read the period and check for a sane value:
294 hpet_period = hpet_readl(HPET_PERIOD);
295 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
296 goto out_nohpet;
299 * The period is a femto seconds value. We need to calculate the
300 * scaled math multiplication factor for nanosecond to hpet tick
301 * conversion.
303 hpet_freq = 1000000000000000ULL;
304 do_div(hpet_freq, hpet_period);
305 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
306 NSEC_PER_SEC, 32);
307 /* Calculate the min / max delta */
308 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
309 &hpet_clockevent);
310 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
311 &hpet_clockevent);
314 * Read the HPET ID register to retrieve the IRQ routing
315 * information and the number of channels
317 id = hpet_readl(HPET_ID);
319 #ifdef CONFIG_HPET_EMULATE_RTC
321 * The legacy routing mode needs at least two channels, tick timer
322 * and the rtc emulation channel.
324 if (!(id & HPET_ID_NUMBER))
325 goto out_nohpet;
326 #endif
328 /* Start the counter */
329 hpet_start_counter();
331 /* Verify whether hpet counter works */
332 t1 = read_hpet();
333 rdtscll(start);
336 * We don't know the TSC frequency yet, but waiting for
337 * 200000 TSC cycles is safe:
338 * 4 GHz == 50us
339 * 1 GHz == 200us
341 do {
342 rep_nop();
343 rdtscll(now);
344 } while ((now - start) < 200000UL);
346 if (t1 == read_hpet()) {
347 printk(KERN_WARNING
348 "HPET counter not counting. HPET disabled\n");
349 goto out_nohpet;
352 /* Initialize and register HPET clocksource
354 * hpet period is in femto seconds per cycle
355 * so we need to convert this to ns/cyc units
356 * aproximated by mult/2^shift
358 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
359 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
360 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
361 * (fsec/cyc << shift)/1000000 = mult
362 * (hpet_period << shift)/FSEC_PER_NSEC = mult
364 tmp = (u64)hpet_period << HPET_SHIFT;
365 do_div(tmp, FSEC_PER_NSEC);
366 clocksource_hpet.mult = (u32)tmp;
368 clocksource_register(&clocksource_hpet);
370 if (id & HPET_ID_LEGSUP) {
371 hpet_enable_int();
373 * Start hpet with the boot cpu mask and make it
374 * global after the IO_APIC has been initialized.
376 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
377 clockevents_register_device(&hpet_clockevent);
378 global_clock_event = &hpet_clockevent;
379 return 1;
381 return 0;
383 out_nohpet:
384 hpet_clear_mapping();
385 boot_hpet_disable = 1;
386 return 0;
390 * Needs to be late, as the reserve_timer code calls kalloc !
392 * Not a problem on i386 as hpet_enable is called from late_time_init,
393 * but on x86_64 it is necessary !
395 static __init int hpet_late_init(void)
397 if (!is_hpet_capable())
398 return -ENODEV;
400 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
401 return 0;
403 fs_initcall(hpet_late_init);
405 #ifdef CONFIG_HPET_EMULATE_RTC
407 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
408 * is enabled, we support RTC interrupt functionality in software.
409 * RTC has 3 kinds of interrupts:
410 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
411 * is updated
412 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
413 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
414 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
415 * (1) and (2) above are implemented using polling at a frequency of
416 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
417 * overhead. (DEFAULT_RTC_INT_FREQ)
418 * For (3), we use interrupts at 64Hz or user specified periodic
419 * frequency, whichever is higher.
421 #include <linux/mc146818rtc.h>
422 #include <linux/rtc.h>
424 #define DEFAULT_RTC_INT_FREQ 64
425 #define DEFAULT_RTC_SHIFT 6
426 #define RTC_NUM_INTS 1
428 static unsigned long hpet_rtc_flags;
429 static unsigned long hpet_prev_update_sec;
430 static struct rtc_time hpet_alarm_time;
431 static unsigned long hpet_pie_count;
432 static unsigned long hpet_t1_cmp;
433 static unsigned long hpet_default_delta;
434 static unsigned long hpet_pie_delta;
435 static unsigned long hpet_pie_limit;
438 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
439 * is not supported by all HPET implementations for timer 1.
441 * hpet_rtc_timer_init() is called when the rtc is initialized.
443 int hpet_rtc_timer_init(void)
445 unsigned long cfg, cnt, delta, flags;
447 if (!is_hpet_enabled())
448 return 0;
450 if (!hpet_default_delta) {
451 uint64_t clc;
453 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
454 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
455 hpet_default_delta = (unsigned long) clc;
458 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
459 delta = hpet_default_delta;
460 else
461 delta = hpet_pie_delta;
463 local_irq_save(flags);
465 cnt = delta + hpet_readl(HPET_COUNTER);
466 hpet_writel(cnt, HPET_T1_CMP);
467 hpet_t1_cmp = cnt;
469 cfg = hpet_readl(HPET_T1_CFG);
470 cfg &= ~HPET_TN_PERIODIC;
471 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
472 hpet_writel(cfg, HPET_T1_CFG);
474 local_irq_restore(flags);
476 return 1;
480 * The functions below are called from rtc driver.
481 * Return 0 if HPET is not being used.
482 * Otherwise do the necessary changes and return 1.
484 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
486 if (!is_hpet_enabled())
487 return 0;
489 hpet_rtc_flags &= ~bit_mask;
490 return 1;
493 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
495 unsigned long oldbits = hpet_rtc_flags;
497 if (!is_hpet_enabled())
498 return 0;
500 hpet_rtc_flags |= bit_mask;
502 if (!oldbits)
503 hpet_rtc_timer_init();
505 return 1;
508 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
509 unsigned char sec)
511 if (!is_hpet_enabled())
512 return 0;
514 hpet_alarm_time.tm_hour = hrs;
515 hpet_alarm_time.tm_min = min;
516 hpet_alarm_time.tm_sec = sec;
518 return 1;
521 int hpet_set_periodic_freq(unsigned long freq)
523 uint64_t clc;
525 if (!is_hpet_enabled())
526 return 0;
528 if (freq <= DEFAULT_RTC_INT_FREQ)
529 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
530 else {
531 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
532 do_div(clc, freq);
533 clc >>= hpet_clockevent.shift;
534 hpet_pie_delta = (unsigned long) clc;
536 return 1;
539 int hpet_rtc_dropped_irq(void)
541 return is_hpet_enabled();
544 static void hpet_rtc_timer_reinit(void)
546 unsigned long cfg, delta;
547 int lost_ints = -1;
549 if (unlikely(!hpet_rtc_flags)) {
550 cfg = hpet_readl(HPET_T1_CFG);
551 cfg &= ~HPET_TN_ENABLE;
552 hpet_writel(cfg, HPET_T1_CFG);
553 return;
556 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
557 delta = hpet_default_delta;
558 else
559 delta = hpet_pie_delta;
562 * Increment the comparator value until we are ahead of the
563 * current count.
565 do {
566 hpet_t1_cmp += delta;
567 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
568 lost_ints++;
569 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
571 if (lost_ints) {
572 if (hpet_rtc_flags & RTC_PIE)
573 hpet_pie_count += lost_ints;
574 if (printk_ratelimit())
575 printk(KERN_WARNING "rtc: lost %d interrupts\n",
576 lost_ints);
580 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
582 struct rtc_time curr_time;
583 unsigned long rtc_int_flag = 0;
585 hpet_rtc_timer_reinit();
587 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
588 rtc_get_rtc_time(&curr_time);
590 if (hpet_rtc_flags & RTC_UIE &&
591 curr_time.tm_sec != hpet_prev_update_sec) {
592 rtc_int_flag = RTC_UF;
593 hpet_prev_update_sec = curr_time.tm_sec;
596 if (hpet_rtc_flags & RTC_PIE &&
597 ++hpet_pie_count >= hpet_pie_limit) {
598 rtc_int_flag |= RTC_PF;
599 hpet_pie_count = 0;
602 if (hpet_rtc_flags & RTC_PIE &&
603 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
604 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
605 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
606 rtc_int_flag |= RTC_AF;
608 if (rtc_int_flag) {
609 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
610 rtc_interrupt(rtc_int_flag, dev_id);
612 return IRQ_HANDLED;
614 #endif