2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
62 #define sample_valid(samples) ((samples) > 80)
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
77 * Per block device queue structure
80 struct request_queue
*queue
;
83 * rr list of queues with requests and the count of them
85 struct cfq_rb_root service_tree
;
86 unsigned int busy_queues
;
88 * Used to track any pending rt requests so we can pre-empt current
89 * non-RT cfqq in service when this value is non-zero.
91 unsigned int busy_rt_queues
;
97 * queue-depth detection
102 int rq_in_driver_peak
;
105 * idle window management
107 struct timer_list idle_slice_timer
;
108 struct work_struct unplug_work
;
110 struct cfq_queue
*active_queue
;
111 struct cfq_io_context
*active_cic
;
114 * async queue for each priority case
116 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
117 struct cfq_queue
*async_idle_cfqq
;
119 sector_t last_position
;
120 unsigned long last_end_request
;
123 * tunables, see top of file
125 unsigned int cfq_quantum
;
126 unsigned int cfq_fifo_expire
[2];
127 unsigned int cfq_back_penalty
;
128 unsigned int cfq_back_max
;
129 unsigned int cfq_slice
[2];
130 unsigned int cfq_slice_async_rq
;
131 unsigned int cfq_slice_idle
;
133 struct list_head cic_list
;
137 * Per process-grouping structure
140 /* reference count */
142 /* various state flags, see below */
144 /* parent cfq_data */
145 struct cfq_data
*cfqd
;
146 /* service_tree member */
147 struct rb_node rb_node
;
148 /* service_tree key */
149 unsigned long rb_key
;
150 /* sorted list of pending requests */
151 struct rb_root sort_list
;
152 /* if fifo isn't expired, next request to serve */
153 struct request
*next_rq
;
154 /* requests queued in sort_list */
156 /* currently allocated requests */
158 /* fifo list of requests in sort_list */
159 struct list_head fifo
;
161 unsigned long slice_end
;
163 unsigned int slice_dispatch
;
165 /* pending metadata requests */
167 /* number of requests that are on the dispatch list or inside driver */
170 /* io prio of this group */
171 unsigned short ioprio
, org_ioprio
;
172 unsigned short ioprio_class
, org_ioprio_class
;
177 enum cfqq_state_flags
{
178 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
179 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
180 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
181 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
182 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
183 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
184 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
185 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
186 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
187 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
188 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
191 #define CFQ_CFQQ_FNS(name) \
192 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
194 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
196 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
198 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
200 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
202 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
206 CFQ_CFQQ_FNS(wait_request
);
207 CFQ_CFQQ_FNS(must_alloc
);
208 CFQ_CFQQ_FNS(must_alloc_slice
);
209 CFQ_CFQQ_FNS(must_dispatch
);
210 CFQ_CFQQ_FNS(fifo_expire
);
211 CFQ_CFQQ_FNS(idle_window
);
212 CFQ_CFQQ_FNS(prio_changed
);
213 CFQ_CFQQ_FNS(queue_new
);
214 CFQ_CFQQ_FNS(slice_new
);
218 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
219 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
220 #define cfq_log(cfqd, fmt, args...) \
221 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
223 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
224 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
225 struct io_context
*, gfp_t
);
226 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
227 struct io_context
*);
229 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
232 return cic
->cfqq
[!!is_sync
];
235 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
236 struct cfq_queue
*cfqq
, int is_sync
)
238 cic
->cfqq
[!!is_sync
] = cfqq
;
242 * We regard a request as SYNC, if it's either a read or has the SYNC bit
243 * set (in which case it could also be direct WRITE).
245 static inline int cfq_bio_sync(struct bio
*bio
)
247 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
254 * scheduler run of queue, if there are requests pending and no one in the
255 * driver that will restart queueing
257 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
259 if (cfqd
->busy_queues
) {
260 cfq_log(cfqd
, "schedule dispatch");
261 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
265 static int cfq_queue_empty(struct request_queue
*q
)
267 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
269 return !cfqd
->busy_queues
;
273 * Scale schedule slice based on io priority. Use the sync time slice only
274 * if a queue is marked sync and has sync io queued. A sync queue with async
275 * io only, should not get full sync slice length.
277 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
280 const int base_slice
= cfqd
->cfq_slice
[sync
];
282 WARN_ON(prio
>= IOPRIO_BE_NR
);
284 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
288 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
290 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
294 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
296 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
297 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
301 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
302 * isn't valid until the first request from the dispatch is activated
303 * and the slice time set.
305 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
307 if (cfq_cfqq_slice_new(cfqq
))
309 if (time_before(jiffies
, cfqq
->slice_end
))
316 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
317 * We choose the request that is closest to the head right now. Distance
318 * behind the head is penalized and only allowed to a certain extent.
320 static struct request
*
321 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
323 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
324 unsigned long back_max
;
325 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
326 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
327 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
329 if (rq1
== NULL
|| rq1
== rq2
)
334 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
336 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
338 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
340 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
346 last
= cfqd
->last_position
;
349 * by definition, 1KiB is 2 sectors
351 back_max
= cfqd
->cfq_back_max
* 2;
354 * Strict one way elevator _except_ in the case where we allow
355 * short backward seeks which are biased as twice the cost of a
356 * similar forward seek.
360 else if (s1
+ back_max
>= last
)
361 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
363 wrap
|= CFQ_RQ1_WRAP
;
367 else if (s2
+ back_max
>= last
)
368 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
370 wrap
|= CFQ_RQ2_WRAP
;
372 /* Found required data */
375 * By doing switch() on the bit mask "wrap" we avoid having to
376 * check two variables for all permutations: --> faster!
379 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
395 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
398 * Since both rqs are wrapped,
399 * start with the one that's further behind head
400 * (--> only *one* back seek required),
401 * since back seek takes more time than forward.
411 * The below is leftmost cache rbtree addon
413 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
416 root
->left
= rb_first(&root
->rb
);
419 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
424 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
429 rb_erase(n
, &root
->rb
);
434 * would be nice to take fifo expire time into account as well
436 static struct request
*
437 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
438 struct request
*last
)
440 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
441 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
442 struct request
*next
= NULL
, *prev
= NULL
;
444 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
447 prev
= rb_entry_rq(rbprev
);
450 next
= rb_entry_rq(rbnext
);
452 rbnext
= rb_first(&cfqq
->sort_list
);
453 if (rbnext
&& rbnext
!= &last
->rb_node
)
454 next
= rb_entry_rq(rbnext
);
457 return cfq_choose_req(cfqd
, next
, prev
);
460 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
461 struct cfq_queue
*cfqq
)
464 * just an approximation, should be ok.
466 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
467 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
471 * The cfqd->service_tree holds all pending cfq_queue's that have
472 * requests waiting to be processed. It is sorted in the order that
473 * we will service the queues.
475 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
476 struct cfq_queue
*cfqq
, int add_front
)
478 struct rb_node
**p
, *parent
;
479 struct cfq_queue
*__cfqq
;
480 unsigned long rb_key
;
483 if (cfq_class_idle(cfqq
)) {
484 rb_key
= CFQ_IDLE_DELAY
;
485 parent
= rb_last(&cfqd
->service_tree
.rb
);
486 if (parent
&& parent
!= &cfqq
->rb_node
) {
487 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
488 rb_key
+= __cfqq
->rb_key
;
491 } else if (!add_front
) {
492 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
493 rb_key
+= cfqq
->slice_resid
;
494 cfqq
->slice_resid
= 0;
498 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
500 * same position, nothing more to do
502 if (rb_key
== cfqq
->rb_key
)
505 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
510 p
= &cfqd
->service_tree
.rb
.rb_node
;
515 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
518 * sort RT queues first, we always want to give
519 * preference to them. IDLE queues goes to the back.
520 * after that, sort on the next service time.
522 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
524 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
526 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
528 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
530 else if (rb_key
< __cfqq
->rb_key
)
535 if (n
== &(*p
)->rb_right
)
542 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
544 cfqq
->rb_key
= rb_key
;
545 rb_link_node(&cfqq
->rb_node
, parent
, p
);
546 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
550 * Update cfqq's position in the service tree.
552 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
555 * Resorting requires the cfqq to be on the RR list already.
557 if (cfq_cfqq_on_rr(cfqq
))
558 cfq_service_tree_add(cfqd
, cfqq
, 0);
562 * add to busy list of queues for service, trying to be fair in ordering
563 * the pending list according to last request service
565 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
567 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
568 BUG_ON(cfq_cfqq_on_rr(cfqq
));
569 cfq_mark_cfqq_on_rr(cfqq
);
571 if (cfq_class_rt(cfqq
))
572 cfqd
->busy_rt_queues
++;
574 cfq_resort_rr_list(cfqd
, cfqq
);
578 * Called when the cfqq no longer has requests pending, remove it from
581 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
583 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
584 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
585 cfq_clear_cfqq_on_rr(cfqq
);
587 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
588 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
590 BUG_ON(!cfqd
->busy_queues
);
592 if (cfq_class_rt(cfqq
))
593 cfqd
->busy_rt_queues
--;
597 * rb tree support functions
599 static void cfq_del_rq_rb(struct request
*rq
)
601 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
602 struct cfq_data
*cfqd
= cfqq
->cfqd
;
603 const int sync
= rq_is_sync(rq
);
605 BUG_ON(!cfqq
->queued
[sync
]);
606 cfqq
->queued
[sync
]--;
608 elv_rb_del(&cfqq
->sort_list
, rq
);
610 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
611 cfq_del_cfqq_rr(cfqd
, cfqq
);
614 static void cfq_add_rq_rb(struct request
*rq
)
616 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
617 struct cfq_data
*cfqd
= cfqq
->cfqd
;
618 struct request
*__alias
;
620 cfqq
->queued
[rq_is_sync(rq
)]++;
623 * looks a little odd, but the first insert might return an alias.
624 * if that happens, put the alias on the dispatch list
626 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
627 cfq_dispatch_insert(cfqd
->queue
, __alias
);
629 if (!cfq_cfqq_on_rr(cfqq
))
630 cfq_add_cfqq_rr(cfqd
, cfqq
);
633 * check if this request is a better next-serve candidate
635 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
636 BUG_ON(!cfqq
->next_rq
);
639 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
641 elv_rb_del(&cfqq
->sort_list
, rq
);
642 cfqq
->queued
[rq_is_sync(rq
)]--;
646 static struct request
*
647 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
649 struct task_struct
*tsk
= current
;
650 struct cfq_io_context
*cic
;
651 struct cfq_queue
*cfqq
;
653 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
657 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
659 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
661 return elv_rb_find(&cfqq
->sort_list
, sector
);
667 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
669 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
671 cfqd
->rq_in_driver
++;
672 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
675 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
678 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
680 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
682 WARN_ON(!cfqd
->rq_in_driver
);
683 cfqd
->rq_in_driver
--;
684 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
688 static void cfq_remove_request(struct request
*rq
)
690 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
692 if (cfqq
->next_rq
== rq
)
693 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
695 list_del_init(&rq
->queuelist
);
698 cfqq
->cfqd
->rq_queued
--;
699 if (rq_is_meta(rq
)) {
700 WARN_ON(!cfqq
->meta_pending
);
701 cfqq
->meta_pending
--;
705 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
708 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
709 struct request
*__rq
;
711 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
712 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
714 return ELEVATOR_FRONT_MERGE
;
717 return ELEVATOR_NO_MERGE
;
720 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
723 if (type
== ELEVATOR_FRONT_MERGE
) {
724 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
726 cfq_reposition_rq_rb(cfqq
, req
);
731 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
732 struct request
*next
)
735 * reposition in fifo if next is older than rq
737 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
738 time_before(next
->start_time
, rq
->start_time
))
739 list_move(&rq
->queuelist
, &next
->queuelist
);
741 cfq_remove_request(next
);
744 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
747 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
748 struct cfq_io_context
*cic
;
749 struct cfq_queue
*cfqq
;
752 * Disallow merge of a sync bio into an async request.
754 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
758 * Lookup the cfqq that this bio will be queued with. Allow
759 * merge only if rq is queued there.
761 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
765 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
766 if (cfqq
== RQ_CFQQ(rq
))
772 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
773 struct cfq_queue
*cfqq
)
776 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
778 cfqq
->slice_dispatch
= 0;
780 cfq_clear_cfqq_must_dispatch(cfqq
);
781 cfq_clear_cfqq_wait_request(cfqq
);
782 cfq_clear_cfqq_must_alloc_slice(cfqq
);
783 cfq_clear_cfqq_fifo_expire(cfqq
);
784 cfq_mark_cfqq_slice_new(cfqq
);
785 cfq_clear_cfqq_queue_new(cfqq
);
787 del_timer(&cfqd
->idle_slice_timer
);
790 cfqd
->active_queue
= cfqq
;
794 * current cfqq expired its slice (or was too idle), select new one
797 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
800 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
802 if (cfq_cfqq_wait_request(cfqq
))
803 del_timer(&cfqd
->idle_slice_timer
);
805 cfq_clear_cfqq_must_dispatch(cfqq
);
806 cfq_clear_cfqq_wait_request(cfqq
);
809 * store what was left of this slice, if the queue idled/timed out
811 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
812 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
813 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
816 cfq_resort_rr_list(cfqd
, cfqq
);
818 if (cfqq
== cfqd
->active_queue
)
819 cfqd
->active_queue
= NULL
;
821 if (cfqd
->active_cic
) {
822 put_io_context(cfqd
->active_cic
->ioc
);
823 cfqd
->active_cic
= NULL
;
827 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
829 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
832 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
836 * Get next queue for service. Unless we have a queue preemption,
837 * we'll simply select the first cfqq in the service tree.
839 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
841 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
844 return cfq_rb_first(&cfqd
->service_tree
);
848 * Get and set a new active queue for service.
850 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
852 struct cfq_queue
*cfqq
;
854 cfqq
= cfq_get_next_queue(cfqd
);
855 __cfq_set_active_queue(cfqd
, cfqq
);
859 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
862 if (rq
->sector
>= cfqd
->last_position
)
863 return rq
->sector
- cfqd
->last_position
;
865 return cfqd
->last_position
- rq
->sector
;
868 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
870 struct cfq_io_context
*cic
= cfqd
->active_cic
;
872 if (!sample_valid(cic
->seek_samples
))
875 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
878 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
879 struct cfq_queue
*cfqq
)
882 * We should notice if some of the queues are cooperating, eg
883 * working closely on the same area of the disk. In that case,
884 * we can group them together and don't waste time idling.
889 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
891 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
893 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
894 struct cfq_io_context
*cic
;
898 * SSD device without seek penalty, disable idling. But only do so
899 * for devices that support queuing, otherwise we still have a problem
900 * with sync vs async workloads.
902 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
905 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
906 WARN_ON(cfq_cfqq_slice_new(cfqq
));
909 * idle is disabled, either manually or by past process history
911 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
915 * still requests with the driver, don't idle
917 if (cfqd
->rq_in_driver
)
921 * task has exited, don't wait
923 cic
= cfqd
->active_cic
;
924 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
928 * See if this prio level has a good candidate
930 if (cfq_close_cooperator(cfqd
, cfqq
) &&
931 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
934 cfq_mark_cfqq_must_dispatch(cfqq
);
935 cfq_mark_cfqq_wait_request(cfqq
);
938 * we don't want to idle for seeks, but we do want to allow
939 * fair distribution of slice time for a process doing back-to-back
940 * seeks. so allow a little bit of time for him to submit a new rq
942 sl
= cfqd
->cfq_slice_idle
;
943 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
944 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
946 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
947 cfq_log(cfqd
, "arm_idle: %lu", sl
);
951 * Move request from internal lists to the request queue dispatch list.
953 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
955 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
956 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
958 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
960 cfq_remove_request(rq
);
962 elv_dispatch_sort(q
, rq
);
964 if (cfq_cfqq_sync(cfqq
))
969 * return expired entry, or NULL to just start from scratch in rbtree
971 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
973 struct cfq_data
*cfqd
= cfqq
->cfqd
;
977 if (cfq_cfqq_fifo_expire(cfqq
))
980 cfq_mark_cfqq_fifo_expire(cfqq
);
982 if (list_empty(&cfqq
->fifo
))
985 fifo
= cfq_cfqq_sync(cfqq
);
986 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
988 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
991 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
996 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
998 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1000 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1002 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1006 * Select a queue for service. If we have a current active queue,
1007 * check whether to continue servicing it, or retrieve and set a new one.
1009 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1011 struct cfq_queue
*cfqq
;
1013 cfqq
= cfqd
->active_queue
;
1018 * The active queue has run out of time, expire it and select new.
1020 if (cfq_slice_used(cfqq
))
1024 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1027 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
) {
1029 * We simulate this as cfqq timed out so that it gets to bank
1030 * the remaining of its time slice.
1032 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1033 cfq_slice_expired(cfqd
, 1);
1038 * The active queue has requests and isn't expired, allow it to
1041 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1045 * No requests pending. If the active queue still has requests in
1046 * flight or is idling for a new request, allow either of these
1047 * conditions to happen (or time out) before selecting a new queue.
1049 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1050 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1056 cfq_slice_expired(cfqd
, 0);
1058 cfqq
= cfq_set_active_queue(cfqd
);
1063 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1067 while (cfqq
->next_rq
) {
1068 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1072 BUG_ON(!list_empty(&cfqq
->fifo
));
1077 * Drain our current requests. Used for barriers and when switching
1078 * io schedulers on-the-fly.
1080 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1082 struct cfq_queue
*cfqq
;
1085 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1086 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1088 cfq_slice_expired(cfqd
, 0);
1090 BUG_ON(cfqd
->busy_queues
);
1092 cfq_log(cfqd
, "forced_dispatch=%d\n", dispatched
);
1097 * Dispatch a request from cfqq, moving them to the request queue
1100 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1104 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1107 * follow expired path, else get first next available
1109 rq
= cfq_check_fifo(cfqq
);
1114 * insert request into driver dispatch list
1116 cfq_dispatch_insert(cfqd
->queue
, rq
);
1118 if (!cfqd
->active_cic
) {
1119 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1121 atomic_inc(&cic
->ioc
->refcount
);
1122 cfqd
->active_cic
= cic
;
1127 * Find the cfqq that we need to service and move a request from that to the
1130 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1132 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1133 struct cfq_queue
*cfqq
;
1134 unsigned int max_dispatch
;
1136 if (!cfqd
->busy_queues
)
1139 if (unlikely(force
))
1140 return cfq_forced_dispatch(cfqd
);
1142 cfqq
= cfq_select_queue(cfqd
);
1147 * If this is an async queue and we have sync IO in flight, let it wait
1149 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1152 max_dispatch
= cfqd
->cfq_quantum
;
1153 if (cfq_class_idle(cfqq
))
1157 * Does this cfqq already have too much IO in flight?
1159 if (cfqq
->dispatched
>= max_dispatch
) {
1161 * idle queue must always only have a single IO in flight
1163 if (cfq_class_idle(cfqq
))
1167 * We have other queues, don't allow more IO from this one
1169 if (cfqd
->busy_queues
> 1)
1173 * we are the only queue, allow up to 4 times of 'quantum'
1175 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1180 * Dispatch a request from this cfqq
1182 cfq_dispatch_request(cfqd
, cfqq
);
1183 cfqq
->slice_dispatch
++;
1186 * expire an async queue immediately if it has used up its slice. idle
1187 * queue always expire after 1 dispatch round.
1189 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1190 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1191 cfq_class_idle(cfqq
))) {
1192 cfqq
->slice_end
= jiffies
+ 1;
1193 cfq_slice_expired(cfqd
, 0);
1196 cfq_log(cfqd
, "dispatched a request");
1201 * task holds one reference to the queue, dropped when task exits. each rq
1202 * in-flight on this queue also holds a reference, dropped when rq is freed.
1204 * queue lock must be held here.
1206 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1208 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1210 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1212 if (!atomic_dec_and_test(&cfqq
->ref
))
1215 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1216 BUG_ON(rb_first(&cfqq
->sort_list
));
1217 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1218 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1220 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1221 __cfq_slice_expired(cfqd
, cfqq
, 0);
1222 cfq_schedule_dispatch(cfqd
);
1225 kmem_cache_free(cfq_pool
, cfqq
);
1229 * Must always be called with the rcu_read_lock() held
1232 __call_for_each_cic(struct io_context
*ioc
,
1233 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1235 struct cfq_io_context
*cic
;
1236 struct hlist_node
*n
;
1238 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1243 * Call func for each cic attached to this ioc.
1246 call_for_each_cic(struct io_context
*ioc
,
1247 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1250 __call_for_each_cic(ioc
, func
);
1254 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1256 struct cfq_io_context
*cic
;
1258 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1260 kmem_cache_free(cfq_ioc_pool
, cic
);
1261 elv_ioc_count_dec(ioc_count
);
1265 * CFQ scheduler is exiting, grab exit lock and check
1266 * the pending io context count. If it hits zero,
1267 * complete ioc_gone and set it back to NULL
1269 spin_lock(&ioc_gone_lock
);
1270 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1274 spin_unlock(&ioc_gone_lock
);
1278 static void cfq_cic_free(struct cfq_io_context
*cic
)
1280 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1283 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1285 unsigned long flags
;
1287 BUG_ON(!cic
->dead_key
);
1289 spin_lock_irqsave(&ioc
->lock
, flags
);
1290 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1291 hlist_del_rcu(&cic
->cic_list
);
1292 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1298 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1299 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1300 * and ->trim() which is called with the task lock held
1302 static void cfq_free_io_context(struct io_context
*ioc
)
1305 * ioc->refcount is zero here, or we are called from elv_unregister(),
1306 * so no more cic's are allowed to be linked into this ioc. So it
1307 * should be ok to iterate over the known list, we will see all cic's
1308 * since no new ones are added.
1310 __call_for_each_cic(ioc
, cic_free_func
);
1313 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1315 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1316 __cfq_slice_expired(cfqd
, cfqq
, 0);
1317 cfq_schedule_dispatch(cfqd
);
1320 cfq_put_queue(cfqq
);
1323 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1324 struct cfq_io_context
*cic
)
1326 struct io_context
*ioc
= cic
->ioc
;
1328 list_del_init(&cic
->queue_list
);
1331 * Make sure key == NULL is seen for dead queues
1334 cic
->dead_key
= (unsigned long) cic
->key
;
1337 if (ioc
->ioc_data
== cic
)
1338 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1340 if (cic
->cfqq
[ASYNC
]) {
1341 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1342 cic
->cfqq
[ASYNC
] = NULL
;
1345 if (cic
->cfqq
[SYNC
]) {
1346 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1347 cic
->cfqq
[SYNC
] = NULL
;
1351 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1352 struct cfq_io_context
*cic
)
1354 struct cfq_data
*cfqd
= cic
->key
;
1357 struct request_queue
*q
= cfqd
->queue
;
1358 unsigned long flags
;
1360 spin_lock_irqsave(q
->queue_lock
, flags
);
1363 * Ensure we get a fresh copy of the ->key to prevent
1364 * race between exiting task and queue
1366 smp_read_barrier_depends();
1368 __cfq_exit_single_io_context(cfqd
, cic
);
1370 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1375 * The process that ioc belongs to has exited, we need to clean up
1376 * and put the internal structures we have that belongs to that process.
1378 static void cfq_exit_io_context(struct io_context
*ioc
)
1380 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1383 static struct cfq_io_context
*
1384 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1386 struct cfq_io_context
*cic
;
1388 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1391 cic
->last_end_request
= jiffies
;
1392 INIT_LIST_HEAD(&cic
->queue_list
);
1393 INIT_HLIST_NODE(&cic
->cic_list
);
1394 cic
->dtor
= cfq_free_io_context
;
1395 cic
->exit
= cfq_exit_io_context
;
1396 elv_ioc_count_inc(ioc_count
);
1402 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1404 struct task_struct
*tsk
= current
;
1407 if (!cfq_cfqq_prio_changed(cfqq
))
1410 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1411 switch (ioprio_class
) {
1413 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1414 case IOPRIO_CLASS_NONE
:
1416 * no prio set, inherit CPU scheduling settings
1418 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1419 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1421 case IOPRIO_CLASS_RT
:
1422 cfqq
->ioprio
= task_ioprio(ioc
);
1423 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1425 case IOPRIO_CLASS_BE
:
1426 cfqq
->ioprio
= task_ioprio(ioc
);
1427 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1429 case IOPRIO_CLASS_IDLE
:
1430 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1432 cfq_clear_cfqq_idle_window(cfqq
);
1437 * keep track of original prio settings in case we have to temporarily
1438 * elevate the priority of this queue
1440 cfqq
->org_ioprio
= cfqq
->ioprio
;
1441 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1442 cfq_clear_cfqq_prio_changed(cfqq
);
1445 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1447 struct cfq_data
*cfqd
= cic
->key
;
1448 struct cfq_queue
*cfqq
;
1449 unsigned long flags
;
1451 if (unlikely(!cfqd
))
1454 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1456 cfqq
= cic
->cfqq
[ASYNC
];
1458 struct cfq_queue
*new_cfqq
;
1459 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
, GFP_ATOMIC
);
1461 cic
->cfqq
[ASYNC
] = new_cfqq
;
1462 cfq_put_queue(cfqq
);
1466 cfqq
= cic
->cfqq
[SYNC
];
1468 cfq_mark_cfqq_prio_changed(cfqq
);
1470 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1473 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1475 call_for_each_cic(ioc
, changed_ioprio
);
1476 ioc
->ioprio_changed
= 0;
1479 static struct cfq_queue
*
1480 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1481 struct io_context
*ioc
, gfp_t gfp_mask
)
1483 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1484 struct cfq_io_context
*cic
;
1487 cic
= cfq_cic_lookup(cfqd
, ioc
);
1488 /* cic always exists here */
1489 cfqq
= cic_to_cfqq(cic
, is_sync
);
1495 } else if (gfp_mask
& __GFP_WAIT
) {
1497 * Inform the allocator of the fact that we will
1498 * just repeat this allocation if it fails, to allow
1499 * the allocator to do whatever it needs to attempt to
1502 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1503 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1504 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1506 spin_lock_irq(cfqd
->queue
->queue_lock
);
1509 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1510 gfp_mask
| __GFP_ZERO
,
1516 RB_CLEAR_NODE(&cfqq
->rb_node
);
1517 INIT_LIST_HEAD(&cfqq
->fifo
);
1519 atomic_set(&cfqq
->ref
, 0);
1522 cfq_mark_cfqq_prio_changed(cfqq
);
1523 cfq_mark_cfqq_queue_new(cfqq
);
1525 cfq_init_prio_data(cfqq
, ioc
);
1528 if (!cfq_class_idle(cfqq
))
1529 cfq_mark_cfqq_idle_window(cfqq
);
1530 cfq_mark_cfqq_sync(cfqq
);
1532 cfqq
->pid
= current
->pid
;
1533 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1537 kmem_cache_free(cfq_pool
, new_cfqq
);
1540 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1544 static struct cfq_queue
**
1545 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1547 switch (ioprio_class
) {
1548 case IOPRIO_CLASS_RT
:
1549 return &cfqd
->async_cfqq
[0][ioprio
];
1550 case IOPRIO_CLASS_BE
:
1551 return &cfqd
->async_cfqq
[1][ioprio
];
1552 case IOPRIO_CLASS_IDLE
:
1553 return &cfqd
->async_idle_cfqq
;
1559 static struct cfq_queue
*
1560 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1563 const int ioprio
= task_ioprio(ioc
);
1564 const int ioprio_class
= task_ioprio_class(ioc
);
1565 struct cfq_queue
**async_cfqq
= NULL
;
1566 struct cfq_queue
*cfqq
= NULL
;
1569 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1574 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1580 * pin the queue now that it's allocated, scheduler exit will prune it
1582 if (!is_sync
&& !(*async_cfqq
)) {
1583 atomic_inc(&cfqq
->ref
);
1587 atomic_inc(&cfqq
->ref
);
1592 * We drop cfq io contexts lazily, so we may find a dead one.
1595 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1596 struct cfq_io_context
*cic
)
1598 unsigned long flags
;
1600 WARN_ON(!list_empty(&cic
->queue_list
));
1602 spin_lock_irqsave(&ioc
->lock
, flags
);
1604 BUG_ON(ioc
->ioc_data
== cic
);
1606 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1607 hlist_del_rcu(&cic
->cic_list
);
1608 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1613 static struct cfq_io_context
*
1614 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1616 struct cfq_io_context
*cic
;
1617 unsigned long flags
;
1626 * we maintain a last-hit cache, to avoid browsing over the tree
1628 cic
= rcu_dereference(ioc
->ioc_data
);
1629 if (cic
&& cic
->key
== cfqd
) {
1635 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1639 /* ->key must be copied to avoid race with cfq_exit_queue() */
1642 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1647 spin_lock_irqsave(&ioc
->lock
, flags
);
1648 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1649 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1657 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1658 * the process specific cfq io context when entered from the block layer.
1659 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1661 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1662 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1664 unsigned long flags
;
1667 ret
= radix_tree_preload(gfp_mask
);
1672 spin_lock_irqsave(&ioc
->lock
, flags
);
1673 ret
= radix_tree_insert(&ioc
->radix_root
,
1674 (unsigned long) cfqd
, cic
);
1676 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1677 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1679 radix_tree_preload_end();
1682 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1683 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1684 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1689 printk(KERN_ERR
"cfq: cic link failed!\n");
1695 * Setup general io context and cfq io context. There can be several cfq
1696 * io contexts per general io context, if this process is doing io to more
1697 * than one device managed by cfq.
1699 static struct cfq_io_context
*
1700 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1702 struct io_context
*ioc
= NULL
;
1703 struct cfq_io_context
*cic
;
1705 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1707 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1711 cic
= cfq_cic_lookup(cfqd
, ioc
);
1715 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1719 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1723 smp_read_barrier_depends();
1724 if (unlikely(ioc
->ioprio_changed
))
1725 cfq_ioc_set_ioprio(ioc
);
1731 put_io_context(ioc
);
1736 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1738 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1739 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1741 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1742 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1743 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1747 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1753 if (cic
->last_request_pos
< rq
->sector
)
1754 sdist
= rq
->sector
- cic
->last_request_pos
;
1756 sdist
= cic
->last_request_pos
- rq
->sector
;
1759 * Don't allow the seek distance to get too large from the
1760 * odd fragment, pagein, etc
1762 if (cic
->seek_samples
<= 60) /* second&third seek */
1763 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1765 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1767 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1768 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1769 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1770 do_div(total
, cic
->seek_samples
);
1771 cic
->seek_mean
= (sector_t
)total
;
1775 * Disable idle window if the process thinks too long or seeks so much that
1779 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1780 struct cfq_io_context
*cic
)
1782 int old_idle
, enable_idle
;
1785 * Don't idle for async or idle io prio class
1787 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1790 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1792 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1793 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1795 else if (sample_valid(cic
->ttime_samples
)) {
1796 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1802 if (old_idle
!= enable_idle
) {
1803 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1805 cfq_mark_cfqq_idle_window(cfqq
);
1807 cfq_clear_cfqq_idle_window(cfqq
);
1812 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1813 * no or if we aren't sure, a 1 will cause a preempt.
1816 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1819 struct cfq_queue
*cfqq
;
1821 cfqq
= cfqd
->active_queue
;
1825 if (cfq_slice_used(cfqq
))
1828 if (cfq_class_idle(new_cfqq
))
1831 if (cfq_class_idle(cfqq
))
1835 * if the new request is sync, but the currently running queue is
1836 * not, let the sync request have priority.
1838 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1842 * So both queues are sync. Let the new request get disk time if
1843 * it's a metadata request and the current queue is doing regular IO.
1845 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1849 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1851 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
1854 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1858 * if this request is as-good as one we would expect from the
1859 * current cfqq, let it preempt
1861 if (cfq_rq_close(cfqd
, rq
))
1868 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1869 * let it have half of its nominal slice.
1871 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1873 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1874 cfq_slice_expired(cfqd
, 1);
1877 * Put the new queue at the front of the of the current list,
1878 * so we know that it will be selected next.
1880 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1882 cfq_service_tree_add(cfqd
, cfqq
, 1);
1884 cfqq
->slice_end
= 0;
1885 cfq_mark_cfqq_slice_new(cfqq
);
1889 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1890 * something we should do about it
1893 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1896 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1900 cfqq
->meta_pending
++;
1902 cfq_update_io_thinktime(cfqd
, cic
);
1903 cfq_update_io_seektime(cfqd
, cic
, rq
);
1904 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1906 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1908 if (cfqq
== cfqd
->active_queue
) {
1910 * if we are waiting for a request for this queue, let it rip
1911 * immediately and flag that we must not expire this queue
1914 if (cfq_cfqq_wait_request(cfqq
)) {
1915 cfq_mark_cfqq_must_dispatch(cfqq
);
1916 del_timer(&cfqd
->idle_slice_timer
);
1917 blk_start_queueing(cfqd
->queue
);
1919 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1921 * not the active queue - expire current slice if it is
1922 * idle and has expired it's mean thinktime or this new queue
1923 * has some old slice time left and is of higher priority or
1924 * this new queue is RT and the current one is BE
1926 cfq_preempt_queue(cfqd
, cfqq
);
1927 cfq_mark_cfqq_must_dispatch(cfqq
);
1928 blk_start_queueing(cfqd
->queue
);
1932 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
1934 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1935 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1937 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
1938 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
1942 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1944 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1948 * Update hw_tag based on peak queue depth over 50 samples under
1951 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
1953 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
1954 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
1956 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
1957 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
1960 if (cfqd
->hw_tag_samples
++ < 50)
1963 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
1968 cfqd
->hw_tag_samples
= 0;
1969 cfqd
->rq_in_driver_peak
= 0;
1972 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
1974 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1975 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1976 const int sync
= rq_is_sync(rq
);
1980 cfq_log_cfqq(cfqd
, cfqq
, "complete");
1982 cfq_update_hw_tag(cfqd
);
1984 WARN_ON(!cfqd
->rq_in_driver
);
1985 WARN_ON(!cfqq
->dispatched
);
1986 cfqd
->rq_in_driver
--;
1989 if (cfq_cfqq_sync(cfqq
))
1990 cfqd
->sync_flight
--;
1992 if (!cfq_class_idle(cfqq
))
1993 cfqd
->last_end_request
= now
;
1996 RQ_CIC(rq
)->last_end_request
= now
;
1999 * If this is the active queue, check if it needs to be expired,
2000 * or if we want to idle in case it has no pending requests.
2002 if (cfqd
->active_queue
== cfqq
) {
2003 if (cfq_cfqq_slice_new(cfqq
)) {
2004 cfq_set_prio_slice(cfqd
, cfqq
);
2005 cfq_clear_cfqq_slice_new(cfqq
);
2007 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2008 cfq_slice_expired(cfqd
, 1);
2009 else if (sync
&& !rq_noidle(rq
) &&
2010 RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2011 cfq_arm_slice_timer(cfqd
);
2015 if (!cfqd
->rq_in_driver
)
2016 cfq_schedule_dispatch(cfqd
);
2020 * we temporarily boost lower priority queues if they are holding fs exclusive
2021 * resources. they are boosted to normal prio (CLASS_BE/4)
2023 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2025 if (has_fs_excl()) {
2027 * boost idle prio on transactions that would lock out other
2028 * users of the filesystem
2030 if (cfq_class_idle(cfqq
))
2031 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2032 if (cfqq
->ioprio
> IOPRIO_NORM
)
2033 cfqq
->ioprio
= IOPRIO_NORM
;
2036 * check if we need to unboost the queue
2038 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2039 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2040 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2041 cfqq
->ioprio
= cfqq
->org_ioprio
;
2045 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2047 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
2048 !cfq_cfqq_must_alloc_slice(cfqq
)) {
2049 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2050 return ELV_MQUEUE_MUST
;
2053 return ELV_MQUEUE_MAY
;
2056 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2058 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2059 struct task_struct
*tsk
= current
;
2060 struct cfq_io_context
*cic
;
2061 struct cfq_queue
*cfqq
;
2064 * don't force setup of a queue from here, as a call to may_queue
2065 * does not necessarily imply that a request actually will be queued.
2066 * so just lookup a possibly existing queue, or return 'may queue'
2069 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2071 return ELV_MQUEUE_MAY
;
2073 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
2075 cfq_init_prio_data(cfqq
, cic
->ioc
);
2076 cfq_prio_boost(cfqq
);
2078 return __cfq_may_queue(cfqq
);
2081 return ELV_MQUEUE_MAY
;
2085 * queue lock held here
2087 static void cfq_put_request(struct request
*rq
)
2089 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2092 const int rw
= rq_data_dir(rq
);
2094 BUG_ON(!cfqq
->allocated
[rw
]);
2095 cfqq
->allocated
[rw
]--;
2097 put_io_context(RQ_CIC(rq
)->ioc
);
2099 rq
->elevator_private
= NULL
;
2100 rq
->elevator_private2
= NULL
;
2102 cfq_put_queue(cfqq
);
2107 * Allocate cfq data structures associated with this request.
2110 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2112 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2113 struct cfq_io_context
*cic
;
2114 const int rw
= rq_data_dir(rq
);
2115 const int is_sync
= rq_is_sync(rq
);
2116 struct cfq_queue
*cfqq
;
2117 unsigned long flags
;
2119 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2121 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2123 spin_lock_irqsave(q
->queue_lock
, flags
);
2128 cfqq
= cic_to_cfqq(cic
, is_sync
);
2130 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2135 cic_set_cfqq(cic
, cfqq
, is_sync
);
2138 cfqq
->allocated
[rw
]++;
2139 cfq_clear_cfqq_must_alloc(cfqq
);
2140 atomic_inc(&cfqq
->ref
);
2142 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2144 rq
->elevator_private
= cic
;
2145 rq
->elevator_private2
= cfqq
;
2150 put_io_context(cic
->ioc
);
2152 cfq_schedule_dispatch(cfqd
);
2153 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2154 cfq_log(cfqd
, "set_request fail");
2158 static void cfq_kick_queue(struct work_struct
*work
)
2160 struct cfq_data
*cfqd
=
2161 container_of(work
, struct cfq_data
, unplug_work
);
2162 struct request_queue
*q
= cfqd
->queue
;
2163 unsigned long flags
;
2165 spin_lock_irqsave(q
->queue_lock
, flags
);
2166 blk_start_queueing(q
);
2167 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2171 * Timer running if the active_queue is currently idling inside its time slice
2173 static void cfq_idle_slice_timer(unsigned long data
)
2175 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2176 struct cfq_queue
*cfqq
;
2177 unsigned long flags
;
2180 cfq_log(cfqd
, "idle timer fired");
2182 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2184 cfqq
= cfqd
->active_queue
;
2191 if (cfq_slice_used(cfqq
))
2195 * only expire and reinvoke request handler, if there are
2196 * other queues with pending requests
2198 if (!cfqd
->busy_queues
)
2202 * not expired and it has a request pending, let it dispatch
2204 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2205 cfq_mark_cfqq_must_dispatch(cfqq
);
2210 cfq_slice_expired(cfqd
, timed_out
);
2212 cfq_schedule_dispatch(cfqd
);
2214 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2217 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2219 del_timer_sync(&cfqd
->idle_slice_timer
);
2220 cancel_work_sync(&cfqd
->unplug_work
);
2223 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2227 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2228 if (cfqd
->async_cfqq
[0][i
])
2229 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2230 if (cfqd
->async_cfqq
[1][i
])
2231 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2234 if (cfqd
->async_idle_cfqq
)
2235 cfq_put_queue(cfqd
->async_idle_cfqq
);
2238 static void cfq_exit_queue(struct elevator_queue
*e
)
2240 struct cfq_data
*cfqd
= e
->elevator_data
;
2241 struct request_queue
*q
= cfqd
->queue
;
2243 cfq_shutdown_timer_wq(cfqd
);
2245 spin_lock_irq(q
->queue_lock
);
2247 if (cfqd
->active_queue
)
2248 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2250 while (!list_empty(&cfqd
->cic_list
)) {
2251 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2252 struct cfq_io_context
,
2255 __cfq_exit_single_io_context(cfqd
, cic
);
2258 cfq_put_async_queues(cfqd
);
2260 spin_unlock_irq(q
->queue_lock
);
2262 cfq_shutdown_timer_wq(cfqd
);
2267 static void *cfq_init_queue(struct request_queue
*q
)
2269 struct cfq_data
*cfqd
;
2271 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2275 cfqd
->service_tree
= CFQ_RB_ROOT
;
2276 INIT_LIST_HEAD(&cfqd
->cic_list
);
2280 init_timer(&cfqd
->idle_slice_timer
);
2281 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2282 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2284 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2286 cfqd
->last_end_request
= jiffies
;
2287 cfqd
->cfq_quantum
= cfq_quantum
;
2288 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2289 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2290 cfqd
->cfq_back_max
= cfq_back_max
;
2291 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2292 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2293 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2294 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2295 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2301 static void cfq_slab_kill(void)
2304 * Caller already ensured that pending RCU callbacks are completed,
2305 * so we should have no busy allocations at this point.
2308 kmem_cache_destroy(cfq_pool
);
2310 kmem_cache_destroy(cfq_ioc_pool
);
2313 static int __init
cfq_slab_setup(void)
2315 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2319 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2330 * sysfs parts below -->
2333 cfq_var_show(unsigned int var
, char *page
)
2335 return sprintf(page
, "%d\n", var
);
2339 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2341 char *p
= (char *) page
;
2343 *var
= simple_strtoul(p
, &p
, 10);
2347 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2348 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2350 struct cfq_data *cfqd = e->elevator_data; \
2351 unsigned int __data = __VAR; \
2353 __data = jiffies_to_msecs(__data); \
2354 return cfq_var_show(__data, (page)); \
2356 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2357 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2358 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2359 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2360 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2361 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2362 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2363 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2364 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2365 #undef SHOW_FUNCTION
2367 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2368 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2370 struct cfq_data *cfqd = e->elevator_data; \
2371 unsigned int __data; \
2372 int ret = cfq_var_store(&__data, (page), count); \
2373 if (__data < (MIN)) \
2375 else if (__data > (MAX)) \
2378 *(__PTR) = msecs_to_jiffies(__data); \
2380 *(__PTR) = __data; \
2383 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2384 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2386 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2388 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2389 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2391 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2392 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2393 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2394 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2396 #undef STORE_FUNCTION
2398 #define CFQ_ATTR(name) \
2399 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2401 static struct elv_fs_entry cfq_attrs
[] = {
2403 CFQ_ATTR(fifo_expire_sync
),
2404 CFQ_ATTR(fifo_expire_async
),
2405 CFQ_ATTR(back_seek_max
),
2406 CFQ_ATTR(back_seek_penalty
),
2407 CFQ_ATTR(slice_sync
),
2408 CFQ_ATTR(slice_async
),
2409 CFQ_ATTR(slice_async_rq
),
2410 CFQ_ATTR(slice_idle
),
2414 static struct elevator_type iosched_cfq
= {
2416 .elevator_merge_fn
= cfq_merge
,
2417 .elevator_merged_fn
= cfq_merged_request
,
2418 .elevator_merge_req_fn
= cfq_merged_requests
,
2419 .elevator_allow_merge_fn
= cfq_allow_merge
,
2420 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2421 .elevator_add_req_fn
= cfq_insert_request
,
2422 .elevator_activate_req_fn
= cfq_activate_request
,
2423 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2424 .elevator_queue_empty_fn
= cfq_queue_empty
,
2425 .elevator_completed_req_fn
= cfq_completed_request
,
2426 .elevator_former_req_fn
= elv_rb_former_request
,
2427 .elevator_latter_req_fn
= elv_rb_latter_request
,
2428 .elevator_set_req_fn
= cfq_set_request
,
2429 .elevator_put_req_fn
= cfq_put_request
,
2430 .elevator_may_queue_fn
= cfq_may_queue
,
2431 .elevator_init_fn
= cfq_init_queue
,
2432 .elevator_exit_fn
= cfq_exit_queue
,
2433 .trim
= cfq_free_io_context
,
2435 .elevator_attrs
= cfq_attrs
,
2436 .elevator_name
= "cfq",
2437 .elevator_owner
= THIS_MODULE
,
2440 static int __init
cfq_init(void)
2443 * could be 0 on HZ < 1000 setups
2445 if (!cfq_slice_async
)
2446 cfq_slice_async
= 1;
2447 if (!cfq_slice_idle
)
2450 if (cfq_slab_setup())
2453 elv_register(&iosched_cfq
);
2458 static void __exit
cfq_exit(void)
2460 DECLARE_COMPLETION_ONSTACK(all_gone
);
2461 elv_unregister(&iosched_cfq
);
2462 ioc_gone
= &all_gone
;
2463 /* ioc_gone's update must be visible before reading ioc_count */
2467 * this also protects us from entering cfq_slab_kill() with
2468 * pending RCU callbacks
2470 if (elv_ioc_count_read(ioc_count
))
2471 wait_for_completion(&all_gone
);
2475 module_init(cfq_init
);
2476 module_exit(cfq_exit
);
2478 MODULE_AUTHOR("Jens Axboe");
2479 MODULE_LICENSE("GPL");
2480 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");