cfq-iosched: change dispatch logic to deal with single requests at the time
[linux-2.6/verdex.git] / block / cfq-iosched.c
bloba0102a507dae4caa41d1c36863af1aa34527dd30
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define ASYNC (0)
60 #define SYNC (1)
62 #define sample_valid(samples) ((samples) > 80)
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
70 struct cfq_rb_root {
71 struct rb_root rb;
72 struct rb_node *left;
74 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
77 * Per block device queue structure
79 struct cfq_data {
80 struct request_queue *queue;
83 * rr list of queues with requests and the count of them
85 struct cfq_rb_root service_tree;
86 unsigned int busy_queues;
88 * Used to track any pending rt requests so we can pre-empt current
89 * non-RT cfqq in service when this value is non-zero.
91 unsigned int busy_rt_queues;
93 int rq_in_driver;
94 int sync_flight;
97 * queue-depth detection
99 int rq_queued;
100 int hw_tag;
101 int hw_tag_samples;
102 int rq_in_driver_peak;
105 * idle window management
107 struct timer_list idle_slice_timer;
108 struct work_struct unplug_work;
110 struct cfq_queue *active_queue;
111 struct cfq_io_context *active_cic;
114 * async queue for each priority case
116 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
117 struct cfq_queue *async_idle_cfqq;
119 sector_t last_position;
120 unsigned long last_end_request;
123 * tunables, see top of file
125 unsigned int cfq_quantum;
126 unsigned int cfq_fifo_expire[2];
127 unsigned int cfq_back_penalty;
128 unsigned int cfq_back_max;
129 unsigned int cfq_slice[2];
130 unsigned int cfq_slice_async_rq;
131 unsigned int cfq_slice_idle;
133 struct list_head cic_list;
137 * Per process-grouping structure
139 struct cfq_queue {
140 /* reference count */
141 atomic_t ref;
142 /* various state flags, see below */
143 unsigned int flags;
144 /* parent cfq_data */
145 struct cfq_data *cfqd;
146 /* service_tree member */
147 struct rb_node rb_node;
148 /* service_tree key */
149 unsigned long rb_key;
150 /* sorted list of pending requests */
151 struct rb_root sort_list;
152 /* if fifo isn't expired, next request to serve */
153 struct request *next_rq;
154 /* requests queued in sort_list */
155 int queued[2];
156 /* currently allocated requests */
157 int allocated[2];
158 /* fifo list of requests in sort_list */
159 struct list_head fifo;
161 unsigned long slice_end;
162 long slice_resid;
163 unsigned int slice_dispatch;
165 /* pending metadata requests */
166 int meta_pending;
167 /* number of requests that are on the dispatch list or inside driver */
168 int dispatched;
170 /* io prio of this group */
171 unsigned short ioprio, org_ioprio;
172 unsigned short ioprio_class, org_ioprio_class;
174 pid_t pid;
177 enum cfqq_state_flags {
178 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
179 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
180 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
181 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
182 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
183 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
184 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
185 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
186 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
187 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
188 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
191 #define CFQ_CFQQ_FNS(name) \
192 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
194 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
196 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
198 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
200 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
202 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
205 CFQ_CFQQ_FNS(on_rr);
206 CFQ_CFQQ_FNS(wait_request);
207 CFQ_CFQQ_FNS(must_alloc);
208 CFQ_CFQQ_FNS(must_alloc_slice);
209 CFQ_CFQQ_FNS(must_dispatch);
210 CFQ_CFQQ_FNS(fifo_expire);
211 CFQ_CFQQ_FNS(idle_window);
212 CFQ_CFQQ_FNS(prio_changed);
213 CFQ_CFQQ_FNS(queue_new);
214 CFQ_CFQQ_FNS(slice_new);
215 CFQ_CFQQ_FNS(sync);
216 #undef CFQ_CFQQ_FNS
218 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
219 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
220 #define cfq_log(cfqd, fmt, args...) \
221 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
223 static void cfq_dispatch_insert(struct request_queue *, struct request *);
224 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
225 struct io_context *, gfp_t);
226 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
227 struct io_context *);
229 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
230 int is_sync)
232 return cic->cfqq[!!is_sync];
235 static inline void cic_set_cfqq(struct cfq_io_context *cic,
236 struct cfq_queue *cfqq, int is_sync)
238 cic->cfqq[!!is_sync] = cfqq;
242 * We regard a request as SYNC, if it's either a read or has the SYNC bit
243 * set (in which case it could also be direct WRITE).
245 static inline int cfq_bio_sync(struct bio *bio)
247 if (bio_data_dir(bio) == READ || bio_sync(bio))
248 return 1;
250 return 0;
254 * scheduler run of queue, if there are requests pending and no one in the
255 * driver that will restart queueing
257 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
259 if (cfqd->busy_queues) {
260 cfq_log(cfqd, "schedule dispatch");
261 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
265 static int cfq_queue_empty(struct request_queue *q)
267 struct cfq_data *cfqd = q->elevator->elevator_data;
269 return !cfqd->busy_queues;
273 * Scale schedule slice based on io priority. Use the sync time slice only
274 * if a queue is marked sync and has sync io queued. A sync queue with async
275 * io only, should not get full sync slice length.
277 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
278 unsigned short prio)
280 const int base_slice = cfqd->cfq_slice[sync];
282 WARN_ON(prio >= IOPRIO_BE_NR);
284 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
287 static inline int
288 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
290 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
293 static inline void
294 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
296 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
297 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
301 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
302 * isn't valid until the first request from the dispatch is activated
303 * and the slice time set.
305 static inline int cfq_slice_used(struct cfq_queue *cfqq)
307 if (cfq_cfqq_slice_new(cfqq))
308 return 0;
309 if (time_before(jiffies, cfqq->slice_end))
310 return 0;
312 return 1;
316 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
317 * We choose the request that is closest to the head right now. Distance
318 * behind the head is penalized and only allowed to a certain extent.
320 static struct request *
321 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
323 sector_t last, s1, s2, d1 = 0, d2 = 0;
324 unsigned long back_max;
325 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
326 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
327 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
329 if (rq1 == NULL || rq1 == rq2)
330 return rq2;
331 if (rq2 == NULL)
332 return rq1;
334 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
335 return rq1;
336 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
337 return rq2;
338 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
339 return rq1;
340 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
341 return rq2;
343 s1 = rq1->sector;
344 s2 = rq2->sector;
346 last = cfqd->last_position;
349 * by definition, 1KiB is 2 sectors
351 back_max = cfqd->cfq_back_max * 2;
354 * Strict one way elevator _except_ in the case where we allow
355 * short backward seeks which are biased as twice the cost of a
356 * similar forward seek.
358 if (s1 >= last)
359 d1 = s1 - last;
360 else if (s1 + back_max >= last)
361 d1 = (last - s1) * cfqd->cfq_back_penalty;
362 else
363 wrap |= CFQ_RQ1_WRAP;
365 if (s2 >= last)
366 d2 = s2 - last;
367 else if (s2 + back_max >= last)
368 d2 = (last - s2) * cfqd->cfq_back_penalty;
369 else
370 wrap |= CFQ_RQ2_WRAP;
372 /* Found required data */
375 * By doing switch() on the bit mask "wrap" we avoid having to
376 * check two variables for all permutations: --> faster!
378 switch (wrap) {
379 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
380 if (d1 < d2)
381 return rq1;
382 else if (d2 < d1)
383 return rq2;
384 else {
385 if (s1 >= s2)
386 return rq1;
387 else
388 return rq2;
391 case CFQ_RQ2_WRAP:
392 return rq1;
393 case CFQ_RQ1_WRAP:
394 return rq2;
395 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
396 default:
398 * Since both rqs are wrapped,
399 * start with the one that's further behind head
400 * (--> only *one* back seek required),
401 * since back seek takes more time than forward.
403 if (s1 <= s2)
404 return rq1;
405 else
406 return rq2;
411 * The below is leftmost cache rbtree addon
413 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
415 if (!root->left)
416 root->left = rb_first(&root->rb);
418 if (root->left)
419 return rb_entry(root->left, struct cfq_queue, rb_node);
421 return NULL;
424 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
426 if (root->left == n)
427 root->left = NULL;
429 rb_erase(n, &root->rb);
430 RB_CLEAR_NODE(n);
434 * would be nice to take fifo expire time into account as well
436 static struct request *
437 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
438 struct request *last)
440 struct rb_node *rbnext = rb_next(&last->rb_node);
441 struct rb_node *rbprev = rb_prev(&last->rb_node);
442 struct request *next = NULL, *prev = NULL;
444 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
446 if (rbprev)
447 prev = rb_entry_rq(rbprev);
449 if (rbnext)
450 next = rb_entry_rq(rbnext);
451 else {
452 rbnext = rb_first(&cfqq->sort_list);
453 if (rbnext && rbnext != &last->rb_node)
454 next = rb_entry_rq(rbnext);
457 return cfq_choose_req(cfqd, next, prev);
460 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
461 struct cfq_queue *cfqq)
464 * just an approximation, should be ok.
466 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
467 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
471 * The cfqd->service_tree holds all pending cfq_queue's that have
472 * requests waiting to be processed. It is sorted in the order that
473 * we will service the queues.
475 static void cfq_service_tree_add(struct cfq_data *cfqd,
476 struct cfq_queue *cfqq, int add_front)
478 struct rb_node **p, *parent;
479 struct cfq_queue *__cfqq;
480 unsigned long rb_key;
481 int left;
483 if (cfq_class_idle(cfqq)) {
484 rb_key = CFQ_IDLE_DELAY;
485 parent = rb_last(&cfqd->service_tree.rb);
486 if (parent && parent != &cfqq->rb_node) {
487 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
488 rb_key += __cfqq->rb_key;
489 } else
490 rb_key += jiffies;
491 } else if (!add_front) {
492 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
493 rb_key += cfqq->slice_resid;
494 cfqq->slice_resid = 0;
495 } else
496 rb_key = 0;
498 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
500 * same position, nothing more to do
502 if (rb_key == cfqq->rb_key)
503 return;
505 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
508 left = 1;
509 parent = NULL;
510 p = &cfqd->service_tree.rb.rb_node;
511 while (*p) {
512 struct rb_node **n;
514 parent = *p;
515 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
518 * sort RT queues first, we always want to give
519 * preference to them. IDLE queues goes to the back.
520 * after that, sort on the next service time.
522 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
523 n = &(*p)->rb_left;
524 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
525 n = &(*p)->rb_right;
526 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
527 n = &(*p)->rb_left;
528 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
529 n = &(*p)->rb_right;
530 else if (rb_key < __cfqq->rb_key)
531 n = &(*p)->rb_left;
532 else
533 n = &(*p)->rb_right;
535 if (n == &(*p)->rb_right)
536 left = 0;
538 p = n;
541 if (left)
542 cfqd->service_tree.left = &cfqq->rb_node;
544 cfqq->rb_key = rb_key;
545 rb_link_node(&cfqq->rb_node, parent, p);
546 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
550 * Update cfqq's position in the service tree.
552 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
555 * Resorting requires the cfqq to be on the RR list already.
557 if (cfq_cfqq_on_rr(cfqq))
558 cfq_service_tree_add(cfqd, cfqq, 0);
562 * add to busy list of queues for service, trying to be fair in ordering
563 * the pending list according to last request service
565 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
567 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
568 BUG_ON(cfq_cfqq_on_rr(cfqq));
569 cfq_mark_cfqq_on_rr(cfqq);
570 cfqd->busy_queues++;
571 if (cfq_class_rt(cfqq))
572 cfqd->busy_rt_queues++;
574 cfq_resort_rr_list(cfqd, cfqq);
578 * Called when the cfqq no longer has requests pending, remove it from
579 * the service tree.
581 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
583 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
584 BUG_ON(!cfq_cfqq_on_rr(cfqq));
585 cfq_clear_cfqq_on_rr(cfqq);
587 if (!RB_EMPTY_NODE(&cfqq->rb_node))
588 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
590 BUG_ON(!cfqd->busy_queues);
591 cfqd->busy_queues--;
592 if (cfq_class_rt(cfqq))
593 cfqd->busy_rt_queues--;
597 * rb tree support functions
599 static void cfq_del_rq_rb(struct request *rq)
601 struct cfq_queue *cfqq = RQ_CFQQ(rq);
602 struct cfq_data *cfqd = cfqq->cfqd;
603 const int sync = rq_is_sync(rq);
605 BUG_ON(!cfqq->queued[sync]);
606 cfqq->queued[sync]--;
608 elv_rb_del(&cfqq->sort_list, rq);
610 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
611 cfq_del_cfqq_rr(cfqd, cfqq);
614 static void cfq_add_rq_rb(struct request *rq)
616 struct cfq_queue *cfqq = RQ_CFQQ(rq);
617 struct cfq_data *cfqd = cfqq->cfqd;
618 struct request *__alias;
620 cfqq->queued[rq_is_sync(rq)]++;
623 * looks a little odd, but the first insert might return an alias.
624 * if that happens, put the alias on the dispatch list
626 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
627 cfq_dispatch_insert(cfqd->queue, __alias);
629 if (!cfq_cfqq_on_rr(cfqq))
630 cfq_add_cfqq_rr(cfqd, cfqq);
633 * check if this request is a better next-serve candidate
635 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
636 BUG_ON(!cfqq->next_rq);
639 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
641 elv_rb_del(&cfqq->sort_list, rq);
642 cfqq->queued[rq_is_sync(rq)]--;
643 cfq_add_rq_rb(rq);
646 static struct request *
647 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
649 struct task_struct *tsk = current;
650 struct cfq_io_context *cic;
651 struct cfq_queue *cfqq;
653 cic = cfq_cic_lookup(cfqd, tsk->io_context);
654 if (!cic)
655 return NULL;
657 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
658 if (cfqq) {
659 sector_t sector = bio->bi_sector + bio_sectors(bio);
661 return elv_rb_find(&cfqq->sort_list, sector);
664 return NULL;
667 static void cfq_activate_request(struct request_queue *q, struct request *rq)
669 struct cfq_data *cfqd = q->elevator->elevator_data;
671 cfqd->rq_in_driver++;
672 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
673 cfqd->rq_in_driver);
675 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
678 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
680 struct cfq_data *cfqd = q->elevator->elevator_data;
682 WARN_ON(!cfqd->rq_in_driver);
683 cfqd->rq_in_driver--;
684 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
685 cfqd->rq_in_driver);
688 static void cfq_remove_request(struct request *rq)
690 struct cfq_queue *cfqq = RQ_CFQQ(rq);
692 if (cfqq->next_rq == rq)
693 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
695 list_del_init(&rq->queuelist);
696 cfq_del_rq_rb(rq);
698 cfqq->cfqd->rq_queued--;
699 if (rq_is_meta(rq)) {
700 WARN_ON(!cfqq->meta_pending);
701 cfqq->meta_pending--;
705 static int cfq_merge(struct request_queue *q, struct request **req,
706 struct bio *bio)
708 struct cfq_data *cfqd = q->elevator->elevator_data;
709 struct request *__rq;
711 __rq = cfq_find_rq_fmerge(cfqd, bio);
712 if (__rq && elv_rq_merge_ok(__rq, bio)) {
713 *req = __rq;
714 return ELEVATOR_FRONT_MERGE;
717 return ELEVATOR_NO_MERGE;
720 static void cfq_merged_request(struct request_queue *q, struct request *req,
721 int type)
723 if (type == ELEVATOR_FRONT_MERGE) {
724 struct cfq_queue *cfqq = RQ_CFQQ(req);
726 cfq_reposition_rq_rb(cfqq, req);
730 static void
731 cfq_merged_requests(struct request_queue *q, struct request *rq,
732 struct request *next)
735 * reposition in fifo if next is older than rq
737 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
738 time_before(next->start_time, rq->start_time))
739 list_move(&rq->queuelist, &next->queuelist);
741 cfq_remove_request(next);
744 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
745 struct bio *bio)
747 struct cfq_data *cfqd = q->elevator->elevator_data;
748 struct cfq_io_context *cic;
749 struct cfq_queue *cfqq;
752 * Disallow merge of a sync bio into an async request.
754 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
755 return 0;
758 * Lookup the cfqq that this bio will be queued with. Allow
759 * merge only if rq is queued there.
761 cic = cfq_cic_lookup(cfqd, current->io_context);
762 if (!cic)
763 return 0;
765 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
766 if (cfqq == RQ_CFQQ(rq))
767 return 1;
769 return 0;
772 static void __cfq_set_active_queue(struct cfq_data *cfqd,
773 struct cfq_queue *cfqq)
775 if (cfqq) {
776 cfq_log_cfqq(cfqd, cfqq, "set_active");
777 cfqq->slice_end = 0;
778 cfqq->slice_dispatch = 0;
780 cfq_clear_cfqq_must_dispatch(cfqq);
781 cfq_clear_cfqq_wait_request(cfqq);
782 cfq_clear_cfqq_must_alloc_slice(cfqq);
783 cfq_clear_cfqq_fifo_expire(cfqq);
784 cfq_mark_cfqq_slice_new(cfqq);
785 cfq_clear_cfqq_queue_new(cfqq);
787 del_timer(&cfqd->idle_slice_timer);
790 cfqd->active_queue = cfqq;
794 * current cfqq expired its slice (or was too idle), select new one
796 static void
797 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
798 int timed_out)
800 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
802 if (cfq_cfqq_wait_request(cfqq))
803 del_timer(&cfqd->idle_slice_timer);
805 cfq_clear_cfqq_must_dispatch(cfqq);
806 cfq_clear_cfqq_wait_request(cfqq);
809 * store what was left of this slice, if the queue idled/timed out
811 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
812 cfqq->slice_resid = cfqq->slice_end - jiffies;
813 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
816 cfq_resort_rr_list(cfqd, cfqq);
818 if (cfqq == cfqd->active_queue)
819 cfqd->active_queue = NULL;
821 if (cfqd->active_cic) {
822 put_io_context(cfqd->active_cic->ioc);
823 cfqd->active_cic = NULL;
827 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
829 struct cfq_queue *cfqq = cfqd->active_queue;
831 if (cfqq)
832 __cfq_slice_expired(cfqd, cfqq, timed_out);
836 * Get next queue for service. Unless we have a queue preemption,
837 * we'll simply select the first cfqq in the service tree.
839 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
841 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
842 return NULL;
844 return cfq_rb_first(&cfqd->service_tree);
848 * Get and set a new active queue for service.
850 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
852 struct cfq_queue *cfqq;
854 cfqq = cfq_get_next_queue(cfqd);
855 __cfq_set_active_queue(cfqd, cfqq);
856 return cfqq;
859 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
860 struct request *rq)
862 if (rq->sector >= cfqd->last_position)
863 return rq->sector - cfqd->last_position;
864 else
865 return cfqd->last_position - rq->sector;
868 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
870 struct cfq_io_context *cic = cfqd->active_cic;
872 if (!sample_valid(cic->seek_samples))
873 return 0;
875 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
878 static int cfq_close_cooperator(struct cfq_data *cfq_data,
879 struct cfq_queue *cfqq)
882 * We should notice if some of the queues are cooperating, eg
883 * working closely on the same area of the disk. In that case,
884 * we can group them together and don't waste time idling.
886 return 0;
889 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
891 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
893 struct cfq_queue *cfqq = cfqd->active_queue;
894 struct cfq_io_context *cic;
895 unsigned long sl;
898 * SSD device without seek penalty, disable idling. But only do so
899 * for devices that support queuing, otherwise we still have a problem
900 * with sync vs async workloads.
902 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
903 return;
905 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
906 WARN_ON(cfq_cfqq_slice_new(cfqq));
909 * idle is disabled, either manually or by past process history
911 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
912 return;
915 * still requests with the driver, don't idle
917 if (cfqd->rq_in_driver)
918 return;
921 * task has exited, don't wait
923 cic = cfqd->active_cic;
924 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
925 return;
928 * See if this prio level has a good candidate
930 if (cfq_close_cooperator(cfqd, cfqq) &&
931 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
932 return;
934 cfq_mark_cfqq_must_dispatch(cfqq);
935 cfq_mark_cfqq_wait_request(cfqq);
938 * we don't want to idle for seeks, but we do want to allow
939 * fair distribution of slice time for a process doing back-to-back
940 * seeks. so allow a little bit of time for him to submit a new rq
942 sl = cfqd->cfq_slice_idle;
943 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
944 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
946 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
947 cfq_log(cfqd, "arm_idle: %lu", sl);
951 * Move request from internal lists to the request queue dispatch list.
953 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
955 struct cfq_data *cfqd = q->elevator->elevator_data;
956 struct cfq_queue *cfqq = RQ_CFQQ(rq);
958 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
960 cfq_remove_request(rq);
961 cfqq->dispatched++;
962 elv_dispatch_sort(q, rq);
964 if (cfq_cfqq_sync(cfqq))
965 cfqd->sync_flight++;
969 * return expired entry, or NULL to just start from scratch in rbtree
971 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
973 struct cfq_data *cfqd = cfqq->cfqd;
974 struct request *rq;
975 int fifo;
977 if (cfq_cfqq_fifo_expire(cfqq))
978 return NULL;
980 cfq_mark_cfqq_fifo_expire(cfqq);
982 if (list_empty(&cfqq->fifo))
983 return NULL;
985 fifo = cfq_cfqq_sync(cfqq);
986 rq = rq_entry_fifo(cfqq->fifo.next);
988 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
989 rq = NULL;
991 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
992 return rq;
995 static inline int
996 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
998 const int base_rq = cfqd->cfq_slice_async_rq;
1000 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1002 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1006 * Select a queue for service. If we have a current active queue,
1007 * check whether to continue servicing it, or retrieve and set a new one.
1009 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1011 struct cfq_queue *cfqq;
1013 cfqq = cfqd->active_queue;
1014 if (!cfqq)
1015 goto new_queue;
1018 * The active queue has run out of time, expire it and select new.
1020 if (cfq_slice_used(cfqq))
1021 goto expire;
1024 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1025 * cfqq.
1027 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1029 * We simulate this as cfqq timed out so that it gets to bank
1030 * the remaining of its time slice.
1032 cfq_log_cfqq(cfqd, cfqq, "preempt");
1033 cfq_slice_expired(cfqd, 1);
1034 goto new_queue;
1038 * The active queue has requests and isn't expired, allow it to
1039 * dispatch.
1041 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1042 goto keep_queue;
1045 * No requests pending. If the active queue still has requests in
1046 * flight or is idling for a new request, allow either of these
1047 * conditions to happen (or time out) before selecting a new queue.
1049 if (timer_pending(&cfqd->idle_slice_timer) ||
1050 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1051 cfqq = NULL;
1052 goto keep_queue;
1055 expire:
1056 cfq_slice_expired(cfqd, 0);
1057 new_queue:
1058 cfqq = cfq_set_active_queue(cfqd);
1059 keep_queue:
1060 return cfqq;
1063 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1065 int dispatched = 0;
1067 while (cfqq->next_rq) {
1068 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1069 dispatched++;
1072 BUG_ON(!list_empty(&cfqq->fifo));
1073 return dispatched;
1077 * Drain our current requests. Used for barriers and when switching
1078 * io schedulers on-the-fly.
1080 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1082 struct cfq_queue *cfqq;
1083 int dispatched = 0;
1085 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1086 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1088 cfq_slice_expired(cfqd, 0);
1090 BUG_ON(cfqd->busy_queues);
1092 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1093 return dispatched;
1097 * Dispatch a request from cfqq, moving them to the request queue
1098 * dispatch list.
1100 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1102 struct request *rq;
1104 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1107 * follow expired path, else get first next available
1109 rq = cfq_check_fifo(cfqq);
1110 if (!rq)
1111 rq = cfqq->next_rq;
1114 * insert request into driver dispatch list
1116 cfq_dispatch_insert(cfqd->queue, rq);
1118 if (!cfqd->active_cic) {
1119 struct cfq_io_context *cic = RQ_CIC(rq);
1121 atomic_inc(&cic->ioc->refcount);
1122 cfqd->active_cic = cic;
1127 * Find the cfqq that we need to service and move a request from that to the
1128 * dispatch list
1130 static int cfq_dispatch_requests(struct request_queue *q, int force)
1132 struct cfq_data *cfqd = q->elevator->elevator_data;
1133 struct cfq_queue *cfqq;
1134 unsigned int max_dispatch;
1136 if (!cfqd->busy_queues)
1137 return 0;
1139 if (unlikely(force))
1140 return cfq_forced_dispatch(cfqd);
1142 cfqq = cfq_select_queue(cfqd);
1143 if (!cfqq)
1144 return 0;
1147 * If this is an async queue and we have sync IO in flight, let it wait
1149 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1150 return 0;
1152 max_dispatch = cfqd->cfq_quantum;
1153 if (cfq_class_idle(cfqq))
1154 max_dispatch = 1;
1157 * Does this cfqq already have too much IO in flight?
1159 if (cfqq->dispatched >= max_dispatch) {
1161 * idle queue must always only have a single IO in flight
1163 if (cfq_class_idle(cfqq))
1164 return 0;
1167 * We have other queues, don't allow more IO from this one
1169 if (cfqd->busy_queues > 1)
1170 return 0;
1173 * we are the only queue, allow up to 4 times of 'quantum'
1175 if (cfqq->dispatched >= 4 * max_dispatch)
1176 return 0;
1180 * Dispatch a request from this cfqq
1182 cfq_dispatch_request(cfqd, cfqq);
1183 cfqq->slice_dispatch++;
1186 * expire an async queue immediately if it has used up its slice. idle
1187 * queue always expire after 1 dispatch round.
1189 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1190 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1191 cfq_class_idle(cfqq))) {
1192 cfqq->slice_end = jiffies + 1;
1193 cfq_slice_expired(cfqd, 0);
1196 cfq_log(cfqd, "dispatched a request");
1197 return 1;
1201 * task holds one reference to the queue, dropped when task exits. each rq
1202 * in-flight on this queue also holds a reference, dropped when rq is freed.
1204 * queue lock must be held here.
1206 static void cfq_put_queue(struct cfq_queue *cfqq)
1208 struct cfq_data *cfqd = cfqq->cfqd;
1210 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1212 if (!atomic_dec_and_test(&cfqq->ref))
1213 return;
1215 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1216 BUG_ON(rb_first(&cfqq->sort_list));
1217 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1218 BUG_ON(cfq_cfqq_on_rr(cfqq));
1220 if (unlikely(cfqd->active_queue == cfqq)) {
1221 __cfq_slice_expired(cfqd, cfqq, 0);
1222 cfq_schedule_dispatch(cfqd);
1225 kmem_cache_free(cfq_pool, cfqq);
1229 * Must always be called with the rcu_read_lock() held
1231 static void
1232 __call_for_each_cic(struct io_context *ioc,
1233 void (*func)(struct io_context *, struct cfq_io_context *))
1235 struct cfq_io_context *cic;
1236 struct hlist_node *n;
1238 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1239 func(ioc, cic);
1243 * Call func for each cic attached to this ioc.
1245 static void
1246 call_for_each_cic(struct io_context *ioc,
1247 void (*func)(struct io_context *, struct cfq_io_context *))
1249 rcu_read_lock();
1250 __call_for_each_cic(ioc, func);
1251 rcu_read_unlock();
1254 static void cfq_cic_free_rcu(struct rcu_head *head)
1256 struct cfq_io_context *cic;
1258 cic = container_of(head, struct cfq_io_context, rcu_head);
1260 kmem_cache_free(cfq_ioc_pool, cic);
1261 elv_ioc_count_dec(ioc_count);
1263 if (ioc_gone) {
1265 * CFQ scheduler is exiting, grab exit lock and check
1266 * the pending io context count. If it hits zero,
1267 * complete ioc_gone and set it back to NULL
1269 spin_lock(&ioc_gone_lock);
1270 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1271 complete(ioc_gone);
1272 ioc_gone = NULL;
1274 spin_unlock(&ioc_gone_lock);
1278 static void cfq_cic_free(struct cfq_io_context *cic)
1280 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1283 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1285 unsigned long flags;
1287 BUG_ON(!cic->dead_key);
1289 spin_lock_irqsave(&ioc->lock, flags);
1290 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1291 hlist_del_rcu(&cic->cic_list);
1292 spin_unlock_irqrestore(&ioc->lock, flags);
1294 cfq_cic_free(cic);
1298 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1299 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1300 * and ->trim() which is called with the task lock held
1302 static void cfq_free_io_context(struct io_context *ioc)
1305 * ioc->refcount is zero here, or we are called from elv_unregister(),
1306 * so no more cic's are allowed to be linked into this ioc. So it
1307 * should be ok to iterate over the known list, we will see all cic's
1308 * since no new ones are added.
1310 __call_for_each_cic(ioc, cic_free_func);
1313 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1315 if (unlikely(cfqq == cfqd->active_queue)) {
1316 __cfq_slice_expired(cfqd, cfqq, 0);
1317 cfq_schedule_dispatch(cfqd);
1320 cfq_put_queue(cfqq);
1323 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1324 struct cfq_io_context *cic)
1326 struct io_context *ioc = cic->ioc;
1328 list_del_init(&cic->queue_list);
1331 * Make sure key == NULL is seen for dead queues
1333 smp_wmb();
1334 cic->dead_key = (unsigned long) cic->key;
1335 cic->key = NULL;
1337 if (ioc->ioc_data == cic)
1338 rcu_assign_pointer(ioc->ioc_data, NULL);
1340 if (cic->cfqq[ASYNC]) {
1341 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1342 cic->cfqq[ASYNC] = NULL;
1345 if (cic->cfqq[SYNC]) {
1346 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1347 cic->cfqq[SYNC] = NULL;
1351 static void cfq_exit_single_io_context(struct io_context *ioc,
1352 struct cfq_io_context *cic)
1354 struct cfq_data *cfqd = cic->key;
1356 if (cfqd) {
1357 struct request_queue *q = cfqd->queue;
1358 unsigned long flags;
1360 spin_lock_irqsave(q->queue_lock, flags);
1363 * Ensure we get a fresh copy of the ->key to prevent
1364 * race between exiting task and queue
1366 smp_read_barrier_depends();
1367 if (cic->key)
1368 __cfq_exit_single_io_context(cfqd, cic);
1370 spin_unlock_irqrestore(q->queue_lock, flags);
1375 * The process that ioc belongs to has exited, we need to clean up
1376 * and put the internal structures we have that belongs to that process.
1378 static void cfq_exit_io_context(struct io_context *ioc)
1380 call_for_each_cic(ioc, cfq_exit_single_io_context);
1383 static struct cfq_io_context *
1384 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1386 struct cfq_io_context *cic;
1388 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1389 cfqd->queue->node);
1390 if (cic) {
1391 cic->last_end_request = jiffies;
1392 INIT_LIST_HEAD(&cic->queue_list);
1393 INIT_HLIST_NODE(&cic->cic_list);
1394 cic->dtor = cfq_free_io_context;
1395 cic->exit = cfq_exit_io_context;
1396 elv_ioc_count_inc(ioc_count);
1399 return cic;
1402 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1404 struct task_struct *tsk = current;
1405 int ioprio_class;
1407 if (!cfq_cfqq_prio_changed(cfqq))
1408 return;
1410 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1411 switch (ioprio_class) {
1412 default:
1413 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1414 case IOPRIO_CLASS_NONE:
1416 * no prio set, inherit CPU scheduling settings
1418 cfqq->ioprio = task_nice_ioprio(tsk);
1419 cfqq->ioprio_class = task_nice_ioclass(tsk);
1420 break;
1421 case IOPRIO_CLASS_RT:
1422 cfqq->ioprio = task_ioprio(ioc);
1423 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1424 break;
1425 case IOPRIO_CLASS_BE:
1426 cfqq->ioprio = task_ioprio(ioc);
1427 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1428 break;
1429 case IOPRIO_CLASS_IDLE:
1430 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1431 cfqq->ioprio = 7;
1432 cfq_clear_cfqq_idle_window(cfqq);
1433 break;
1437 * keep track of original prio settings in case we have to temporarily
1438 * elevate the priority of this queue
1440 cfqq->org_ioprio = cfqq->ioprio;
1441 cfqq->org_ioprio_class = cfqq->ioprio_class;
1442 cfq_clear_cfqq_prio_changed(cfqq);
1445 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1447 struct cfq_data *cfqd = cic->key;
1448 struct cfq_queue *cfqq;
1449 unsigned long flags;
1451 if (unlikely(!cfqd))
1452 return;
1454 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1456 cfqq = cic->cfqq[ASYNC];
1457 if (cfqq) {
1458 struct cfq_queue *new_cfqq;
1459 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1460 if (new_cfqq) {
1461 cic->cfqq[ASYNC] = new_cfqq;
1462 cfq_put_queue(cfqq);
1466 cfqq = cic->cfqq[SYNC];
1467 if (cfqq)
1468 cfq_mark_cfqq_prio_changed(cfqq);
1470 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1473 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1475 call_for_each_cic(ioc, changed_ioprio);
1476 ioc->ioprio_changed = 0;
1479 static struct cfq_queue *
1480 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1481 struct io_context *ioc, gfp_t gfp_mask)
1483 struct cfq_queue *cfqq, *new_cfqq = NULL;
1484 struct cfq_io_context *cic;
1486 retry:
1487 cic = cfq_cic_lookup(cfqd, ioc);
1488 /* cic always exists here */
1489 cfqq = cic_to_cfqq(cic, is_sync);
1491 if (!cfqq) {
1492 if (new_cfqq) {
1493 cfqq = new_cfqq;
1494 new_cfqq = NULL;
1495 } else if (gfp_mask & __GFP_WAIT) {
1497 * Inform the allocator of the fact that we will
1498 * just repeat this allocation if it fails, to allow
1499 * the allocator to do whatever it needs to attempt to
1500 * free memory.
1502 spin_unlock_irq(cfqd->queue->queue_lock);
1503 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1504 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1505 cfqd->queue->node);
1506 spin_lock_irq(cfqd->queue->queue_lock);
1507 goto retry;
1508 } else {
1509 cfqq = kmem_cache_alloc_node(cfq_pool,
1510 gfp_mask | __GFP_ZERO,
1511 cfqd->queue->node);
1512 if (!cfqq)
1513 goto out;
1516 RB_CLEAR_NODE(&cfqq->rb_node);
1517 INIT_LIST_HEAD(&cfqq->fifo);
1519 atomic_set(&cfqq->ref, 0);
1520 cfqq->cfqd = cfqd;
1522 cfq_mark_cfqq_prio_changed(cfqq);
1523 cfq_mark_cfqq_queue_new(cfqq);
1525 cfq_init_prio_data(cfqq, ioc);
1527 if (is_sync) {
1528 if (!cfq_class_idle(cfqq))
1529 cfq_mark_cfqq_idle_window(cfqq);
1530 cfq_mark_cfqq_sync(cfqq);
1532 cfqq->pid = current->pid;
1533 cfq_log_cfqq(cfqd, cfqq, "alloced");
1536 if (new_cfqq)
1537 kmem_cache_free(cfq_pool, new_cfqq);
1539 out:
1540 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1541 return cfqq;
1544 static struct cfq_queue **
1545 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1547 switch (ioprio_class) {
1548 case IOPRIO_CLASS_RT:
1549 return &cfqd->async_cfqq[0][ioprio];
1550 case IOPRIO_CLASS_BE:
1551 return &cfqd->async_cfqq[1][ioprio];
1552 case IOPRIO_CLASS_IDLE:
1553 return &cfqd->async_idle_cfqq;
1554 default:
1555 BUG();
1559 static struct cfq_queue *
1560 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1561 gfp_t gfp_mask)
1563 const int ioprio = task_ioprio(ioc);
1564 const int ioprio_class = task_ioprio_class(ioc);
1565 struct cfq_queue **async_cfqq = NULL;
1566 struct cfq_queue *cfqq = NULL;
1568 if (!is_sync) {
1569 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1570 cfqq = *async_cfqq;
1573 if (!cfqq) {
1574 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1575 if (!cfqq)
1576 return NULL;
1580 * pin the queue now that it's allocated, scheduler exit will prune it
1582 if (!is_sync && !(*async_cfqq)) {
1583 atomic_inc(&cfqq->ref);
1584 *async_cfqq = cfqq;
1587 atomic_inc(&cfqq->ref);
1588 return cfqq;
1592 * We drop cfq io contexts lazily, so we may find a dead one.
1594 static void
1595 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1596 struct cfq_io_context *cic)
1598 unsigned long flags;
1600 WARN_ON(!list_empty(&cic->queue_list));
1602 spin_lock_irqsave(&ioc->lock, flags);
1604 BUG_ON(ioc->ioc_data == cic);
1606 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1607 hlist_del_rcu(&cic->cic_list);
1608 spin_unlock_irqrestore(&ioc->lock, flags);
1610 cfq_cic_free(cic);
1613 static struct cfq_io_context *
1614 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1616 struct cfq_io_context *cic;
1617 unsigned long flags;
1618 void *k;
1620 if (unlikely(!ioc))
1621 return NULL;
1623 rcu_read_lock();
1626 * we maintain a last-hit cache, to avoid browsing over the tree
1628 cic = rcu_dereference(ioc->ioc_data);
1629 if (cic && cic->key == cfqd) {
1630 rcu_read_unlock();
1631 return cic;
1634 do {
1635 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1636 rcu_read_unlock();
1637 if (!cic)
1638 break;
1639 /* ->key must be copied to avoid race with cfq_exit_queue() */
1640 k = cic->key;
1641 if (unlikely(!k)) {
1642 cfq_drop_dead_cic(cfqd, ioc, cic);
1643 rcu_read_lock();
1644 continue;
1647 spin_lock_irqsave(&ioc->lock, flags);
1648 rcu_assign_pointer(ioc->ioc_data, cic);
1649 spin_unlock_irqrestore(&ioc->lock, flags);
1650 break;
1651 } while (1);
1653 return cic;
1657 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1658 * the process specific cfq io context when entered from the block layer.
1659 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1661 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1662 struct cfq_io_context *cic, gfp_t gfp_mask)
1664 unsigned long flags;
1665 int ret;
1667 ret = radix_tree_preload(gfp_mask);
1668 if (!ret) {
1669 cic->ioc = ioc;
1670 cic->key = cfqd;
1672 spin_lock_irqsave(&ioc->lock, flags);
1673 ret = radix_tree_insert(&ioc->radix_root,
1674 (unsigned long) cfqd, cic);
1675 if (!ret)
1676 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1677 spin_unlock_irqrestore(&ioc->lock, flags);
1679 radix_tree_preload_end();
1681 if (!ret) {
1682 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1683 list_add(&cic->queue_list, &cfqd->cic_list);
1684 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1688 if (ret)
1689 printk(KERN_ERR "cfq: cic link failed!\n");
1691 return ret;
1695 * Setup general io context and cfq io context. There can be several cfq
1696 * io contexts per general io context, if this process is doing io to more
1697 * than one device managed by cfq.
1699 static struct cfq_io_context *
1700 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1702 struct io_context *ioc = NULL;
1703 struct cfq_io_context *cic;
1705 might_sleep_if(gfp_mask & __GFP_WAIT);
1707 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1708 if (!ioc)
1709 return NULL;
1711 cic = cfq_cic_lookup(cfqd, ioc);
1712 if (cic)
1713 goto out;
1715 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1716 if (cic == NULL)
1717 goto err;
1719 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1720 goto err_free;
1722 out:
1723 smp_read_barrier_depends();
1724 if (unlikely(ioc->ioprio_changed))
1725 cfq_ioc_set_ioprio(ioc);
1727 return cic;
1728 err_free:
1729 cfq_cic_free(cic);
1730 err:
1731 put_io_context(ioc);
1732 return NULL;
1735 static void
1736 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1738 unsigned long elapsed = jiffies - cic->last_end_request;
1739 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1741 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1742 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1743 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1746 static void
1747 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1748 struct request *rq)
1750 sector_t sdist;
1751 u64 total;
1753 if (cic->last_request_pos < rq->sector)
1754 sdist = rq->sector - cic->last_request_pos;
1755 else
1756 sdist = cic->last_request_pos - rq->sector;
1759 * Don't allow the seek distance to get too large from the
1760 * odd fragment, pagein, etc
1762 if (cic->seek_samples <= 60) /* second&third seek */
1763 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1764 else
1765 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1767 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1768 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1769 total = cic->seek_total + (cic->seek_samples/2);
1770 do_div(total, cic->seek_samples);
1771 cic->seek_mean = (sector_t)total;
1775 * Disable idle window if the process thinks too long or seeks so much that
1776 * it doesn't matter
1778 static void
1779 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1780 struct cfq_io_context *cic)
1782 int old_idle, enable_idle;
1785 * Don't idle for async or idle io prio class
1787 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1788 return;
1790 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1792 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1793 (cfqd->hw_tag && CIC_SEEKY(cic)))
1794 enable_idle = 0;
1795 else if (sample_valid(cic->ttime_samples)) {
1796 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1797 enable_idle = 0;
1798 else
1799 enable_idle = 1;
1802 if (old_idle != enable_idle) {
1803 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1804 if (enable_idle)
1805 cfq_mark_cfqq_idle_window(cfqq);
1806 else
1807 cfq_clear_cfqq_idle_window(cfqq);
1812 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1813 * no or if we aren't sure, a 1 will cause a preempt.
1815 static int
1816 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1817 struct request *rq)
1819 struct cfq_queue *cfqq;
1821 cfqq = cfqd->active_queue;
1822 if (!cfqq)
1823 return 0;
1825 if (cfq_slice_used(cfqq))
1826 return 1;
1828 if (cfq_class_idle(new_cfqq))
1829 return 0;
1831 if (cfq_class_idle(cfqq))
1832 return 1;
1835 * if the new request is sync, but the currently running queue is
1836 * not, let the sync request have priority.
1838 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1839 return 1;
1842 * So both queues are sync. Let the new request get disk time if
1843 * it's a metadata request and the current queue is doing regular IO.
1845 if (rq_is_meta(rq) && !cfqq->meta_pending)
1846 return 1;
1849 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1851 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
1852 return 1;
1854 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1855 return 0;
1858 * if this request is as-good as one we would expect from the
1859 * current cfqq, let it preempt
1861 if (cfq_rq_close(cfqd, rq))
1862 return 1;
1864 return 0;
1868 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1869 * let it have half of its nominal slice.
1871 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1873 cfq_log_cfqq(cfqd, cfqq, "preempt");
1874 cfq_slice_expired(cfqd, 1);
1877 * Put the new queue at the front of the of the current list,
1878 * so we know that it will be selected next.
1880 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1882 cfq_service_tree_add(cfqd, cfqq, 1);
1884 cfqq->slice_end = 0;
1885 cfq_mark_cfqq_slice_new(cfqq);
1889 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1890 * something we should do about it
1892 static void
1893 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1894 struct request *rq)
1896 struct cfq_io_context *cic = RQ_CIC(rq);
1898 cfqd->rq_queued++;
1899 if (rq_is_meta(rq))
1900 cfqq->meta_pending++;
1902 cfq_update_io_thinktime(cfqd, cic);
1903 cfq_update_io_seektime(cfqd, cic, rq);
1904 cfq_update_idle_window(cfqd, cfqq, cic);
1906 cic->last_request_pos = rq->sector + rq->nr_sectors;
1908 if (cfqq == cfqd->active_queue) {
1910 * if we are waiting for a request for this queue, let it rip
1911 * immediately and flag that we must not expire this queue
1912 * just now
1914 if (cfq_cfqq_wait_request(cfqq)) {
1915 cfq_mark_cfqq_must_dispatch(cfqq);
1916 del_timer(&cfqd->idle_slice_timer);
1917 blk_start_queueing(cfqd->queue);
1919 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1921 * not the active queue - expire current slice if it is
1922 * idle and has expired it's mean thinktime or this new queue
1923 * has some old slice time left and is of higher priority or
1924 * this new queue is RT and the current one is BE
1926 cfq_preempt_queue(cfqd, cfqq);
1927 cfq_mark_cfqq_must_dispatch(cfqq);
1928 blk_start_queueing(cfqd->queue);
1932 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1934 struct cfq_data *cfqd = q->elevator->elevator_data;
1935 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1937 cfq_log_cfqq(cfqd, cfqq, "insert_request");
1938 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1940 cfq_add_rq_rb(rq);
1942 list_add_tail(&rq->queuelist, &cfqq->fifo);
1944 cfq_rq_enqueued(cfqd, cfqq, rq);
1948 * Update hw_tag based on peak queue depth over 50 samples under
1949 * sufficient load.
1951 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1953 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1954 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1956 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1957 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1958 return;
1960 if (cfqd->hw_tag_samples++ < 50)
1961 return;
1963 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1964 cfqd->hw_tag = 1;
1965 else
1966 cfqd->hw_tag = 0;
1968 cfqd->hw_tag_samples = 0;
1969 cfqd->rq_in_driver_peak = 0;
1972 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1974 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1975 struct cfq_data *cfqd = cfqq->cfqd;
1976 const int sync = rq_is_sync(rq);
1977 unsigned long now;
1979 now = jiffies;
1980 cfq_log_cfqq(cfqd, cfqq, "complete");
1982 cfq_update_hw_tag(cfqd);
1984 WARN_ON(!cfqd->rq_in_driver);
1985 WARN_ON(!cfqq->dispatched);
1986 cfqd->rq_in_driver--;
1987 cfqq->dispatched--;
1989 if (cfq_cfqq_sync(cfqq))
1990 cfqd->sync_flight--;
1992 if (!cfq_class_idle(cfqq))
1993 cfqd->last_end_request = now;
1995 if (sync)
1996 RQ_CIC(rq)->last_end_request = now;
1999 * If this is the active queue, check if it needs to be expired,
2000 * or if we want to idle in case it has no pending requests.
2002 if (cfqd->active_queue == cfqq) {
2003 if (cfq_cfqq_slice_new(cfqq)) {
2004 cfq_set_prio_slice(cfqd, cfqq);
2005 cfq_clear_cfqq_slice_new(cfqq);
2007 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2008 cfq_slice_expired(cfqd, 1);
2009 else if (sync && !rq_noidle(rq) &&
2010 RB_EMPTY_ROOT(&cfqq->sort_list)) {
2011 cfq_arm_slice_timer(cfqd);
2015 if (!cfqd->rq_in_driver)
2016 cfq_schedule_dispatch(cfqd);
2020 * we temporarily boost lower priority queues if they are holding fs exclusive
2021 * resources. they are boosted to normal prio (CLASS_BE/4)
2023 static void cfq_prio_boost(struct cfq_queue *cfqq)
2025 if (has_fs_excl()) {
2027 * boost idle prio on transactions that would lock out other
2028 * users of the filesystem
2030 if (cfq_class_idle(cfqq))
2031 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2032 if (cfqq->ioprio > IOPRIO_NORM)
2033 cfqq->ioprio = IOPRIO_NORM;
2034 } else {
2036 * check if we need to unboost the queue
2038 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2039 cfqq->ioprio_class = cfqq->org_ioprio_class;
2040 if (cfqq->ioprio != cfqq->org_ioprio)
2041 cfqq->ioprio = cfqq->org_ioprio;
2045 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2047 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2048 !cfq_cfqq_must_alloc_slice(cfqq)) {
2049 cfq_mark_cfqq_must_alloc_slice(cfqq);
2050 return ELV_MQUEUE_MUST;
2053 return ELV_MQUEUE_MAY;
2056 static int cfq_may_queue(struct request_queue *q, int rw)
2058 struct cfq_data *cfqd = q->elevator->elevator_data;
2059 struct task_struct *tsk = current;
2060 struct cfq_io_context *cic;
2061 struct cfq_queue *cfqq;
2064 * don't force setup of a queue from here, as a call to may_queue
2065 * does not necessarily imply that a request actually will be queued.
2066 * so just lookup a possibly existing queue, or return 'may queue'
2067 * if that fails
2069 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2070 if (!cic)
2071 return ELV_MQUEUE_MAY;
2073 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2074 if (cfqq) {
2075 cfq_init_prio_data(cfqq, cic->ioc);
2076 cfq_prio_boost(cfqq);
2078 return __cfq_may_queue(cfqq);
2081 return ELV_MQUEUE_MAY;
2085 * queue lock held here
2087 static void cfq_put_request(struct request *rq)
2089 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2091 if (cfqq) {
2092 const int rw = rq_data_dir(rq);
2094 BUG_ON(!cfqq->allocated[rw]);
2095 cfqq->allocated[rw]--;
2097 put_io_context(RQ_CIC(rq)->ioc);
2099 rq->elevator_private = NULL;
2100 rq->elevator_private2 = NULL;
2102 cfq_put_queue(cfqq);
2107 * Allocate cfq data structures associated with this request.
2109 static int
2110 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2112 struct cfq_data *cfqd = q->elevator->elevator_data;
2113 struct cfq_io_context *cic;
2114 const int rw = rq_data_dir(rq);
2115 const int is_sync = rq_is_sync(rq);
2116 struct cfq_queue *cfqq;
2117 unsigned long flags;
2119 might_sleep_if(gfp_mask & __GFP_WAIT);
2121 cic = cfq_get_io_context(cfqd, gfp_mask);
2123 spin_lock_irqsave(q->queue_lock, flags);
2125 if (!cic)
2126 goto queue_fail;
2128 cfqq = cic_to_cfqq(cic, is_sync);
2129 if (!cfqq) {
2130 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2132 if (!cfqq)
2133 goto queue_fail;
2135 cic_set_cfqq(cic, cfqq, is_sync);
2138 cfqq->allocated[rw]++;
2139 cfq_clear_cfqq_must_alloc(cfqq);
2140 atomic_inc(&cfqq->ref);
2142 spin_unlock_irqrestore(q->queue_lock, flags);
2144 rq->elevator_private = cic;
2145 rq->elevator_private2 = cfqq;
2146 return 0;
2148 queue_fail:
2149 if (cic)
2150 put_io_context(cic->ioc);
2152 cfq_schedule_dispatch(cfqd);
2153 spin_unlock_irqrestore(q->queue_lock, flags);
2154 cfq_log(cfqd, "set_request fail");
2155 return 1;
2158 static void cfq_kick_queue(struct work_struct *work)
2160 struct cfq_data *cfqd =
2161 container_of(work, struct cfq_data, unplug_work);
2162 struct request_queue *q = cfqd->queue;
2163 unsigned long flags;
2165 spin_lock_irqsave(q->queue_lock, flags);
2166 blk_start_queueing(q);
2167 spin_unlock_irqrestore(q->queue_lock, flags);
2171 * Timer running if the active_queue is currently idling inside its time slice
2173 static void cfq_idle_slice_timer(unsigned long data)
2175 struct cfq_data *cfqd = (struct cfq_data *) data;
2176 struct cfq_queue *cfqq;
2177 unsigned long flags;
2178 int timed_out = 1;
2180 cfq_log(cfqd, "idle timer fired");
2182 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2184 cfqq = cfqd->active_queue;
2185 if (cfqq) {
2186 timed_out = 0;
2189 * expired
2191 if (cfq_slice_used(cfqq))
2192 goto expire;
2195 * only expire and reinvoke request handler, if there are
2196 * other queues with pending requests
2198 if (!cfqd->busy_queues)
2199 goto out_cont;
2202 * not expired and it has a request pending, let it dispatch
2204 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2205 cfq_mark_cfqq_must_dispatch(cfqq);
2206 goto out_kick;
2209 expire:
2210 cfq_slice_expired(cfqd, timed_out);
2211 out_kick:
2212 cfq_schedule_dispatch(cfqd);
2213 out_cont:
2214 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2217 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2219 del_timer_sync(&cfqd->idle_slice_timer);
2220 cancel_work_sync(&cfqd->unplug_work);
2223 static void cfq_put_async_queues(struct cfq_data *cfqd)
2225 int i;
2227 for (i = 0; i < IOPRIO_BE_NR; i++) {
2228 if (cfqd->async_cfqq[0][i])
2229 cfq_put_queue(cfqd->async_cfqq[0][i]);
2230 if (cfqd->async_cfqq[1][i])
2231 cfq_put_queue(cfqd->async_cfqq[1][i]);
2234 if (cfqd->async_idle_cfqq)
2235 cfq_put_queue(cfqd->async_idle_cfqq);
2238 static void cfq_exit_queue(struct elevator_queue *e)
2240 struct cfq_data *cfqd = e->elevator_data;
2241 struct request_queue *q = cfqd->queue;
2243 cfq_shutdown_timer_wq(cfqd);
2245 spin_lock_irq(q->queue_lock);
2247 if (cfqd->active_queue)
2248 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2250 while (!list_empty(&cfqd->cic_list)) {
2251 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2252 struct cfq_io_context,
2253 queue_list);
2255 __cfq_exit_single_io_context(cfqd, cic);
2258 cfq_put_async_queues(cfqd);
2260 spin_unlock_irq(q->queue_lock);
2262 cfq_shutdown_timer_wq(cfqd);
2264 kfree(cfqd);
2267 static void *cfq_init_queue(struct request_queue *q)
2269 struct cfq_data *cfqd;
2271 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2272 if (!cfqd)
2273 return NULL;
2275 cfqd->service_tree = CFQ_RB_ROOT;
2276 INIT_LIST_HEAD(&cfqd->cic_list);
2278 cfqd->queue = q;
2280 init_timer(&cfqd->idle_slice_timer);
2281 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2282 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2284 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2286 cfqd->last_end_request = jiffies;
2287 cfqd->cfq_quantum = cfq_quantum;
2288 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2289 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2290 cfqd->cfq_back_max = cfq_back_max;
2291 cfqd->cfq_back_penalty = cfq_back_penalty;
2292 cfqd->cfq_slice[0] = cfq_slice_async;
2293 cfqd->cfq_slice[1] = cfq_slice_sync;
2294 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2295 cfqd->cfq_slice_idle = cfq_slice_idle;
2296 cfqd->hw_tag = 1;
2298 return cfqd;
2301 static void cfq_slab_kill(void)
2304 * Caller already ensured that pending RCU callbacks are completed,
2305 * so we should have no busy allocations at this point.
2307 if (cfq_pool)
2308 kmem_cache_destroy(cfq_pool);
2309 if (cfq_ioc_pool)
2310 kmem_cache_destroy(cfq_ioc_pool);
2313 static int __init cfq_slab_setup(void)
2315 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2316 if (!cfq_pool)
2317 goto fail;
2319 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2320 if (!cfq_ioc_pool)
2321 goto fail;
2323 return 0;
2324 fail:
2325 cfq_slab_kill();
2326 return -ENOMEM;
2330 * sysfs parts below -->
2332 static ssize_t
2333 cfq_var_show(unsigned int var, char *page)
2335 return sprintf(page, "%d\n", var);
2338 static ssize_t
2339 cfq_var_store(unsigned int *var, const char *page, size_t count)
2341 char *p = (char *) page;
2343 *var = simple_strtoul(p, &p, 10);
2344 return count;
2347 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2348 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2350 struct cfq_data *cfqd = e->elevator_data; \
2351 unsigned int __data = __VAR; \
2352 if (__CONV) \
2353 __data = jiffies_to_msecs(__data); \
2354 return cfq_var_show(__data, (page)); \
2356 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2357 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2358 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2359 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2360 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2361 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2362 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2363 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2364 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2365 #undef SHOW_FUNCTION
2367 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2368 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2370 struct cfq_data *cfqd = e->elevator_data; \
2371 unsigned int __data; \
2372 int ret = cfq_var_store(&__data, (page), count); \
2373 if (__data < (MIN)) \
2374 __data = (MIN); \
2375 else if (__data > (MAX)) \
2376 __data = (MAX); \
2377 if (__CONV) \
2378 *(__PTR) = msecs_to_jiffies(__data); \
2379 else \
2380 *(__PTR) = __data; \
2381 return ret; \
2383 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2384 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2385 UINT_MAX, 1);
2386 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2387 UINT_MAX, 1);
2388 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2389 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2390 UINT_MAX, 0);
2391 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2392 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2393 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2394 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2395 UINT_MAX, 0);
2396 #undef STORE_FUNCTION
2398 #define CFQ_ATTR(name) \
2399 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2401 static struct elv_fs_entry cfq_attrs[] = {
2402 CFQ_ATTR(quantum),
2403 CFQ_ATTR(fifo_expire_sync),
2404 CFQ_ATTR(fifo_expire_async),
2405 CFQ_ATTR(back_seek_max),
2406 CFQ_ATTR(back_seek_penalty),
2407 CFQ_ATTR(slice_sync),
2408 CFQ_ATTR(slice_async),
2409 CFQ_ATTR(slice_async_rq),
2410 CFQ_ATTR(slice_idle),
2411 __ATTR_NULL
2414 static struct elevator_type iosched_cfq = {
2415 .ops = {
2416 .elevator_merge_fn = cfq_merge,
2417 .elevator_merged_fn = cfq_merged_request,
2418 .elevator_merge_req_fn = cfq_merged_requests,
2419 .elevator_allow_merge_fn = cfq_allow_merge,
2420 .elevator_dispatch_fn = cfq_dispatch_requests,
2421 .elevator_add_req_fn = cfq_insert_request,
2422 .elevator_activate_req_fn = cfq_activate_request,
2423 .elevator_deactivate_req_fn = cfq_deactivate_request,
2424 .elevator_queue_empty_fn = cfq_queue_empty,
2425 .elevator_completed_req_fn = cfq_completed_request,
2426 .elevator_former_req_fn = elv_rb_former_request,
2427 .elevator_latter_req_fn = elv_rb_latter_request,
2428 .elevator_set_req_fn = cfq_set_request,
2429 .elevator_put_req_fn = cfq_put_request,
2430 .elevator_may_queue_fn = cfq_may_queue,
2431 .elevator_init_fn = cfq_init_queue,
2432 .elevator_exit_fn = cfq_exit_queue,
2433 .trim = cfq_free_io_context,
2435 .elevator_attrs = cfq_attrs,
2436 .elevator_name = "cfq",
2437 .elevator_owner = THIS_MODULE,
2440 static int __init cfq_init(void)
2443 * could be 0 on HZ < 1000 setups
2445 if (!cfq_slice_async)
2446 cfq_slice_async = 1;
2447 if (!cfq_slice_idle)
2448 cfq_slice_idle = 1;
2450 if (cfq_slab_setup())
2451 return -ENOMEM;
2453 elv_register(&iosched_cfq);
2455 return 0;
2458 static void __exit cfq_exit(void)
2460 DECLARE_COMPLETION_ONSTACK(all_gone);
2461 elv_unregister(&iosched_cfq);
2462 ioc_gone = &all_gone;
2463 /* ioc_gone's update must be visible before reading ioc_count */
2464 smp_wmb();
2467 * this also protects us from entering cfq_slab_kill() with
2468 * pending RCU callbacks
2470 if (elv_ioc_count_read(ioc_count))
2471 wait_for_completion(&all_gone);
2472 cfq_slab_kill();
2475 module_init(cfq_init);
2476 module_exit(cfq_exit);
2478 MODULE_AUTHOR("Jens Axboe");
2479 MODULE_LICENSE("GPL");
2480 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");