inflate: refactor inflate malloc code
[linux-2.6/verdex.git] / drivers / net / e1000e / 82571.c
blob462351ca2c81ac991a088b971a0bc46b1f51c5a7
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82571EB Dual Port Gigabit Mezzanine Adapter
33 * 82571EB Quad Port Gigabit Mezzanine Adapter
34 * 82571PT Gigabit PT Quad Port Server ExpressModule
35 * 82572EI Gigabit Ethernet Controller (Copper)
36 * 82572EI Gigabit Ethernet Controller (Fiber)
37 * 82572EI Gigabit Ethernet Controller
38 * 82573V Gigabit Ethernet Controller (Copper)
39 * 82573E Gigabit Ethernet Controller (Copper)
40 * 82573L Gigabit Ethernet Controller
43 #include <linux/netdevice.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
47 #include "e1000.h"
49 #define ID_LED_RESERVED_F746 0xF746
50 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
51 (ID_LED_OFF1_ON2 << 8) | \
52 (ID_LED_DEF1_DEF2 << 4) | \
53 (ID_LED_DEF1_DEF2))
55 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
57 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
58 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
60 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
61 u16 words, u16 *data);
62 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
63 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
65 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
67 /**
68 * e1000_init_phy_params_82571 - Init PHY func ptrs.
69 * @hw: pointer to the HW structure
71 * This is a function pointer entry point called by the api module.
72 **/
73 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
75 struct e1000_phy_info *phy = &hw->phy;
76 s32 ret_val;
78 if (hw->phy.media_type != e1000_media_type_copper) {
79 phy->type = e1000_phy_none;
80 return 0;
83 phy->addr = 1;
84 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
85 phy->reset_delay_us = 100;
87 switch (hw->mac.type) {
88 case e1000_82571:
89 case e1000_82572:
90 phy->type = e1000_phy_igp_2;
91 break;
92 case e1000_82573:
93 phy->type = e1000_phy_m88;
94 break;
95 default:
96 return -E1000_ERR_PHY;
97 break;
100 /* This can only be done after all function pointers are setup. */
101 ret_val = e1000_get_phy_id_82571(hw);
103 /* Verify phy id */
104 switch (hw->mac.type) {
105 case e1000_82571:
106 case e1000_82572:
107 if (phy->id != IGP01E1000_I_PHY_ID)
108 return -E1000_ERR_PHY;
109 break;
110 case e1000_82573:
111 if (phy->id != M88E1111_I_PHY_ID)
112 return -E1000_ERR_PHY;
113 break;
114 default:
115 return -E1000_ERR_PHY;
116 break;
119 return 0;
123 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
124 * @hw: pointer to the HW structure
126 * This is a function pointer entry point called by the api module.
128 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
130 struct e1000_nvm_info *nvm = &hw->nvm;
131 u32 eecd = er32(EECD);
132 u16 size;
134 nvm->opcode_bits = 8;
135 nvm->delay_usec = 1;
136 switch (nvm->override) {
137 case e1000_nvm_override_spi_large:
138 nvm->page_size = 32;
139 nvm->address_bits = 16;
140 break;
141 case e1000_nvm_override_spi_small:
142 nvm->page_size = 8;
143 nvm->address_bits = 8;
144 break;
145 default:
146 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
147 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
148 break;
151 switch (hw->mac.type) {
152 case e1000_82573:
153 if (((eecd >> 15) & 0x3) == 0x3) {
154 nvm->type = e1000_nvm_flash_hw;
155 nvm->word_size = 2048;
157 * Autonomous Flash update bit must be cleared due
158 * to Flash update issue.
160 eecd &= ~E1000_EECD_AUPDEN;
161 ew32(EECD, eecd);
162 break;
164 /* Fall Through */
165 default:
166 nvm->type = e1000_nvm_eeprom_spi;
167 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
168 E1000_EECD_SIZE_EX_SHIFT);
170 * Added to a constant, "size" becomes the left-shift value
171 * for setting word_size.
173 size += NVM_WORD_SIZE_BASE_SHIFT;
175 /* EEPROM access above 16k is unsupported */
176 if (size > 14)
177 size = 14;
178 nvm->word_size = 1 << size;
179 break;
182 return 0;
186 * e1000_init_mac_params_82571 - Init MAC func ptrs.
187 * @hw: pointer to the HW structure
189 * This is a function pointer entry point called by the api module.
191 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
193 struct e1000_hw *hw = &adapter->hw;
194 struct e1000_mac_info *mac = &hw->mac;
195 struct e1000_mac_operations *func = &mac->ops;
197 /* Set media type */
198 switch (adapter->pdev->device) {
199 case E1000_DEV_ID_82571EB_FIBER:
200 case E1000_DEV_ID_82572EI_FIBER:
201 case E1000_DEV_ID_82571EB_QUAD_FIBER:
202 hw->phy.media_type = e1000_media_type_fiber;
203 break;
204 case E1000_DEV_ID_82571EB_SERDES:
205 case E1000_DEV_ID_82572EI_SERDES:
206 case E1000_DEV_ID_82571EB_SERDES_DUAL:
207 case E1000_DEV_ID_82571EB_SERDES_QUAD:
208 hw->phy.media_type = e1000_media_type_internal_serdes;
209 break;
210 default:
211 hw->phy.media_type = e1000_media_type_copper;
212 break;
215 /* Set mta register count */
216 mac->mta_reg_count = 128;
217 /* Set rar entry count */
218 mac->rar_entry_count = E1000_RAR_ENTRIES;
219 /* Set if manageability features are enabled. */
220 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
222 /* check for link */
223 switch (hw->phy.media_type) {
224 case e1000_media_type_copper:
225 func->setup_physical_interface = e1000_setup_copper_link_82571;
226 func->check_for_link = e1000e_check_for_copper_link;
227 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
228 break;
229 case e1000_media_type_fiber:
230 func->setup_physical_interface =
231 e1000_setup_fiber_serdes_link_82571;
232 func->check_for_link = e1000e_check_for_fiber_link;
233 func->get_link_up_info =
234 e1000e_get_speed_and_duplex_fiber_serdes;
235 break;
236 case e1000_media_type_internal_serdes:
237 func->setup_physical_interface =
238 e1000_setup_fiber_serdes_link_82571;
239 func->check_for_link = e1000e_check_for_serdes_link;
240 func->get_link_up_info =
241 e1000e_get_speed_and_duplex_fiber_serdes;
242 break;
243 default:
244 return -E1000_ERR_CONFIG;
245 break;
248 return 0;
251 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
253 struct e1000_hw *hw = &adapter->hw;
254 static int global_quad_port_a; /* global port a indication */
255 struct pci_dev *pdev = adapter->pdev;
256 u16 eeprom_data = 0;
257 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
258 s32 rc;
260 rc = e1000_init_mac_params_82571(adapter);
261 if (rc)
262 return rc;
264 rc = e1000_init_nvm_params_82571(hw);
265 if (rc)
266 return rc;
268 rc = e1000_init_phy_params_82571(hw);
269 if (rc)
270 return rc;
272 /* tag quad port adapters first, it's used below */
273 switch (pdev->device) {
274 case E1000_DEV_ID_82571EB_QUAD_COPPER:
275 case E1000_DEV_ID_82571EB_QUAD_FIBER:
276 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
277 case E1000_DEV_ID_82571PT_QUAD_COPPER:
278 adapter->flags |= FLAG_IS_QUAD_PORT;
279 /* mark the first port */
280 if (global_quad_port_a == 0)
281 adapter->flags |= FLAG_IS_QUAD_PORT_A;
282 /* Reset for multiple quad port adapters */
283 global_quad_port_a++;
284 if (global_quad_port_a == 4)
285 global_quad_port_a = 0;
286 break;
287 default:
288 break;
291 switch (adapter->hw.mac.type) {
292 case e1000_82571:
293 /* these dual ports don't have WoL on port B at all */
294 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
295 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
296 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
297 (is_port_b))
298 adapter->flags &= ~FLAG_HAS_WOL;
299 /* quad ports only support WoL on port A */
300 if (adapter->flags & FLAG_IS_QUAD_PORT &&
301 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
302 adapter->flags &= ~FLAG_HAS_WOL;
303 /* Does not support WoL on any port */
304 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
305 adapter->flags &= ~FLAG_HAS_WOL;
306 break;
308 case e1000_82573:
309 if (pdev->device == E1000_DEV_ID_82573L) {
310 e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
311 &eeprom_data);
312 if (eeprom_data & NVM_WORD1A_ASPM_MASK)
313 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
315 break;
316 default:
317 break;
320 return 0;
324 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
325 * @hw: pointer to the HW structure
327 * Reads the PHY registers and stores the PHY ID and possibly the PHY
328 * revision in the hardware structure.
330 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
332 struct e1000_phy_info *phy = &hw->phy;
334 switch (hw->mac.type) {
335 case e1000_82571:
336 case e1000_82572:
338 * The 82571 firmware may still be configuring the PHY.
339 * In this case, we cannot access the PHY until the
340 * configuration is done. So we explicitly set the
341 * PHY ID.
343 phy->id = IGP01E1000_I_PHY_ID;
344 break;
345 case e1000_82573:
346 return e1000e_get_phy_id(hw);
347 break;
348 default:
349 return -E1000_ERR_PHY;
350 break;
353 return 0;
357 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
358 * @hw: pointer to the HW structure
360 * Acquire the HW semaphore to access the PHY or NVM
362 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
364 u32 swsm;
365 s32 timeout = hw->nvm.word_size + 1;
366 s32 i = 0;
368 /* Get the FW semaphore. */
369 for (i = 0; i < timeout; i++) {
370 swsm = er32(SWSM);
371 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
373 /* Semaphore acquired if bit latched */
374 if (er32(SWSM) & E1000_SWSM_SWESMBI)
375 break;
377 udelay(50);
380 if (i == timeout) {
381 /* Release semaphores */
382 e1000e_put_hw_semaphore(hw);
383 hw_dbg(hw, "Driver can't access the NVM\n");
384 return -E1000_ERR_NVM;
387 return 0;
391 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
392 * @hw: pointer to the HW structure
394 * Release hardware semaphore used to access the PHY or NVM
396 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
398 u32 swsm;
400 swsm = er32(SWSM);
402 swsm &= ~E1000_SWSM_SWESMBI;
404 ew32(SWSM, swsm);
408 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
409 * @hw: pointer to the HW structure
411 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
412 * Then for non-82573 hardware, set the EEPROM access request bit and wait
413 * for EEPROM access grant bit. If the access grant bit is not set, release
414 * hardware semaphore.
416 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
418 s32 ret_val;
420 ret_val = e1000_get_hw_semaphore_82571(hw);
421 if (ret_val)
422 return ret_val;
424 if (hw->mac.type != e1000_82573)
425 ret_val = e1000e_acquire_nvm(hw);
427 if (ret_val)
428 e1000_put_hw_semaphore_82571(hw);
430 return ret_val;
434 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
435 * @hw: pointer to the HW structure
437 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
439 static void e1000_release_nvm_82571(struct e1000_hw *hw)
441 e1000e_release_nvm(hw);
442 e1000_put_hw_semaphore_82571(hw);
446 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
447 * @hw: pointer to the HW structure
448 * @offset: offset within the EEPROM to be written to
449 * @words: number of words to write
450 * @data: 16 bit word(s) to be written to the EEPROM
452 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
454 * If e1000e_update_nvm_checksum is not called after this function, the
455 * EEPROM will most likely contain an invalid checksum.
457 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
458 u16 *data)
460 s32 ret_val;
462 switch (hw->mac.type) {
463 case e1000_82573:
464 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
465 break;
466 case e1000_82571:
467 case e1000_82572:
468 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
469 break;
470 default:
471 ret_val = -E1000_ERR_NVM;
472 break;
475 return ret_val;
479 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
480 * @hw: pointer to the HW structure
482 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
483 * up to the checksum. Then calculates the EEPROM checksum and writes the
484 * value to the EEPROM.
486 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
488 u32 eecd;
489 s32 ret_val;
490 u16 i;
492 ret_val = e1000e_update_nvm_checksum_generic(hw);
493 if (ret_val)
494 return ret_val;
497 * If our nvm is an EEPROM, then we're done
498 * otherwise, commit the checksum to the flash NVM.
500 if (hw->nvm.type != e1000_nvm_flash_hw)
501 return ret_val;
503 /* Check for pending operations. */
504 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
505 msleep(1);
506 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
507 break;
510 if (i == E1000_FLASH_UPDATES)
511 return -E1000_ERR_NVM;
513 /* Reset the firmware if using STM opcode. */
514 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
516 * The enabling of and the actual reset must be done
517 * in two write cycles.
519 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
520 e1e_flush();
521 ew32(HICR, E1000_HICR_FW_RESET);
524 /* Commit the write to flash */
525 eecd = er32(EECD) | E1000_EECD_FLUPD;
526 ew32(EECD, eecd);
528 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
529 msleep(1);
530 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
531 break;
534 if (i == E1000_FLASH_UPDATES)
535 return -E1000_ERR_NVM;
537 return 0;
541 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
542 * @hw: pointer to the HW structure
544 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
545 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
547 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
549 if (hw->nvm.type == e1000_nvm_flash_hw)
550 e1000_fix_nvm_checksum_82571(hw);
552 return e1000e_validate_nvm_checksum_generic(hw);
556 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
557 * @hw: pointer to the HW structure
558 * @offset: offset within the EEPROM to be written to
559 * @words: number of words to write
560 * @data: 16 bit word(s) to be written to the EEPROM
562 * After checking for invalid values, poll the EEPROM to ensure the previous
563 * command has completed before trying to write the next word. After write
564 * poll for completion.
566 * If e1000e_update_nvm_checksum is not called after this function, the
567 * EEPROM will most likely contain an invalid checksum.
569 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
570 u16 words, u16 *data)
572 struct e1000_nvm_info *nvm = &hw->nvm;
573 u32 i;
574 u32 eewr = 0;
575 s32 ret_val = 0;
578 * A check for invalid values: offset too large, too many words,
579 * and not enough words.
581 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
582 (words == 0)) {
583 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
584 return -E1000_ERR_NVM;
587 for (i = 0; i < words; i++) {
588 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
589 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
590 E1000_NVM_RW_REG_START;
592 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
593 if (ret_val)
594 break;
596 ew32(EEWR, eewr);
598 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
599 if (ret_val)
600 break;
603 return ret_val;
607 * e1000_get_cfg_done_82571 - Poll for configuration done
608 * @hw: pointer to the HW structure
610 * Reads the management control register for the config done bit to be set.
612 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
614 s32 timeout = PHY_CFG_TIMEOUT;
616 while (timeout) {
617 if (er32(EEMNGCTL) &
618 E1000_NVM_CFG_DONE_PORT_0)
619 break;
620 msleep(1);
621 timeout--;
623 if (!timeout) {
624 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
625 return -E1000_ERR_RESET;
628 return 0;
632 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
633 * @hw: pointer to the HW structure
634 * @active: TRUE to enable LPLU, FALSE to disable
636 * Sets the LPLU D0 state according to the active flag. When activating LPLU
637 * this function also disables smart speed and vice versa. LPLU will not be
638 * activated unless the device autonegotiation advertisement meets standards
639 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
640 * pointer entry point only called by PHY setup routines.
642 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
644 struct e1000_phy_info *phy = &hw->phy;
645 s32 ret_val;
646 u16 data;
648 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
649 if (ret_val)
650 return ret_val;
652 if (active) {
653 data |= IGP02E1000_PM_D0_LPLU;
654 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
655 if (ret_val)
656 return ret_val;
658 /* When LPLU is enabled, we should disable SmartSpeed */
659 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
660 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
661 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
662 if (ret_val)
663 return ret_val;
664 } else {
665 data &= ~IGP02E1000_PM_D0_LPLU;
666 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
668 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
669 * during Dx states where the power conservation is most
670 * important. During driver activity we should enable
671 * SmartSpeed, so performance is maintained.
673 if (phy->smart_speed == e1000_smart_speed_on) {
674 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
675 &data);
676 if (ret_val)
677 return ret_val;
679 data |= IGP01E1000_PSCFR_SMART_SPEED;
680 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
681 data);
682 if (ret_val)
683 return ret_val;
684 } else if (phy->smart_speed == e1000_smart_speed_off) {
685 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
686 &data);
687 if (ret_val)
688 return ret_val;
690 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
691 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
692 data);
693 if (ret_val)
694 return ret_val;
698 return 0;
702 * e1000_reset_hw_82571 - Reset hardware
703 * @hw: pointer to the HW structure
705 * This resets the hardware into a known state. This is a
706 * function pointer entry point called by the api module.
708 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
710 u32 ctrl;
711 u32 extcnf_ctrl;
712 u32 ctrl_ext;
713 u32 icr;
714 s32 ret_val;
715 u16 i = 0;
718 * Prevent the PCI-E bus from sticking if there is no TLP connection
719 * on the last TLP read/write transaction when MAC is reset.
721 ret_val = e1000e_disable_pcie_master(hw);
722 if (ret_val)
723 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
725 hw_dbg(hw, "Masking off all interrupts\n");
726 ew32(IMC, 0xffffffff);
728 ew32(RCTL, 0);
729 ew32(TCTL, E1000_TCTL_PSP);
730 e1e_flush();
732 msleep(10);
735 * Must acquire the MDIO ownership before MAC reset.
736 * Ownership defaults to firmware after a reset.
738 if (hw->mac.type == e1000_82573) {
739 extcnf_ctrl = er32(EXTCNF_CTRL);
740 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
742 do {
743 ew32(EXTCNF_CTRL, extcnf_ctrl);
744 extcnf_ctrl = er32(EXTCNF_CTRL);
746 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
747 break;
749 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
751 msleep(2);
752 i++;
753 } while (i < MDIO_OWNERSHIP_TIMEOUT);
756 ctrl = er32(CTRL);
758 hw_dbg(hw, "Issuing a global reset to MAC\n");
759 ew32(CTRL, ctrl | E1000_CTRL_RST);
761 if (hw->nvm.type == e1000_nvm_flash_hw) {
762 udelay(10);
763 ctrl_ext = er32(CTRL_EXT);
764 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
765 ew32(CTRL_EXT, ctrl_ext);
766 e1e_flush();
769 ret_val = e1000e_get_auto_rd_done(hw);
770 if (ret_val)
771 /* We don't want to continue accessing MAC registers. */
772 return ret_val;
775 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
776 * Need to wait for Phy configuration completion before accessing
777 * NVM and Phy.
779 if (hw->mac.type == e1000_82573)
780 msleep(25);
782 /* Clear any pending interrupt events. */
783 ew32(IMC, 0xffffffff);
784 icr = er32(ICR);
786 if (hw->mac.type == e1000_82571 &&
787 hw->dev_spec.e82571.alt_mac_addr_is_present)
788 e1000e_set_laa_state_82571(hw, true);
790 return 0;
794 * e1000_init_hw_82571 - Initialize hardware
795 * @hw: pointer to the HW structure
797 * This inits the hardware readying it for operation.
799 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
801 struct e1000_mac_info *mac = &hw->mac;
802 u32 reg_data;
803 s32 ret_val;
804 u16 i;
805 u16 rar_count = mac->rar_entry_count;
807 e1000_initialize_hw_bits_82571(hw);
809 /* Initialize identification LED */
810 ret_val = e1000e_id_led_init(hw);
811 if (ret_val) {
812 hw_dbg(hw, "Error initializing identification LED\n");
813 return ret_val;
816 /* Disabling VLAN filtering */
817 hw_dbg(hw, "Initializing the IEEE VLAN\n");
818 e1000e_clear_vfta(hw);
820 /* Setup the receive address. */
822 * If, however, a locally administered address was assigned to the
823 * 82571, we must reserve a RAR for it to work around an issue where
824 * resetting one port will reload the MAC on the other port.
826 if (e1000e_get_laa_state_82571(hw))
827 rar_count--;
828 e1000e_init_rx_addrs(hw, rar_count);
830 /* Zero out the Multicast HASH table */
831 hw_dbg(hw, "Zeroing the MTA\n");
832 for (i = 0; i < mac->mta_reg_count; i++)
833 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
835 /* Setup link and flow control */
836 ret_val = e1000_setup_link_82571(hw);
838 /* Set the transmit descriptor write-back policy */
839 reg_data = er32(TXDCTL(0));
840 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
841 E1000_TXDCTL_FULL_TX_DESC_WB |
842 E1000_TXDCTL_COUNT_DESC;
843 ew32(TXDCTL(0), reg_data);
845 /* ...for both queues. */
846 if (mac->type != e1000_82573) {
847 reg_data = er32(TXDCTL(1));
848 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
849 E1000_TXDCTL_FULL_TX_DESC_WB |
850 E1000_TXDCTL_COUNT_DESC;
851 ew32(TXDCTL(1), reg_data);
852 } else {
853 e1000e_enable_tx_pkt_filtering(hw);
854 reg_data = er32(GCR);
855 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
856 ew32(GCR, reg_data);
860 * Clear all of the statistics registers (clear on read). It is
861 * important that we do this after we have tried to establish link
862 * because the symbol error count will increment wildly if there
863 * is no link.
865 e1000_clear_hw_cntrs_82571(hw);
867 return ret_val;
871 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
872 * @hw: pointer to the HW structure
874 * Initializes required hardware-dependent bits needed for normal operation.
876 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
878 u32 reg;
880 /* Transmit Descriptor Control 0 */
881 reg = er32(TXDCTL(0));
882 reg |= (1 << 22);
883 ew32(TXDCTL(0), reg);
885 /* Transmit Descriptor Control 1 */
886 reg = er32(TXDCTL(1));
887 reg |= (1 << 22);
888 ew32(TXDCTL(1), reg);
890 /* Transmit Arbitration Control 0 */
891 reg = er32(TARC(0));
892 reg &= ~(0xF << 27); /* 30:27 */
893 switch (hw->mac.type) {
894 case e1000_82571:
895 case e1000_82572:
896 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
897 break;
898 default:
899 break;
901 ew32(TARC(0), reg);
903 /* Transmit Arbitration Control 1 */
904 reg = er32(TARC(1));
905 switch (hw->mac.type) {
906 case e1000_82571:
907 case e1000_82572:
908 reg &= ~((1 << 29) | (1 << 30));
909 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
910 if (er32(TCTL) & E1000_TCTL_MULR)
911 reg &= ~(1 << 28);
912 else
913 reg |= (1 << 28);
914 ew32(TARC(1), reg);
915 break;
916 default:
917 break;
920 /* Device Control */
921 if (hw->mac.type == e1000_82573) {
922 reg = er32(CTRL);
923 reg &= ~(1 << 29);
924 ew32(CTRL, reg);
927 /* Extended Device Control */
928 if (hw->mac.type == e1000_82573) {
929 reg = er32(CTRL_EXT);
930 reg &= ~(1 << 23);
931 reg |= (1 << 22);
932 ew32(CTRL_EXT, reg);
937 * e1000e_clear_vfta - Clear VLAN filter table
938 * @hw: pointer to the HW structure
940 * Clears the register array which contains the VLAN filter table by
941 * setting all the values to 0.
943 void e1000e_clear_vfta(struct e1000_hw *hw)
945 u32 offset;
946 u32 vfta_value = 0;
947 u32 vfta_offset = 0;
948 u32 vfta_bit_in_reg = 0;
950 if (hw->mac.type == e1000_82573) {
951 if (hw->mng_cookie.vlan_id != 0) {
953 * The VFTA is a 4096b bit-field, each identifying
954 * a single VLAN ID. The following operations
955 * determine which 32b entry (i.e. offset) into the
956 * array we want to set the VLAN ID (i.e. bit) of
957 * the manageability unit.
959 vfta_offset = (hw->mng_cookie.vlan_id >>
960 E1000_VFTA_ENTRY_SHIFT) &
961 E1000_VFTA_ENTRY_MASK;
962 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
963 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
966 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
968 * If the offset we want to clear is the same offset of the
969 * manageability VLAN ID, then clear all bits except that of
970 * the manageability unit.
972 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
973 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
974 e1e_flush();
979 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
980 * @hw: pointer to the HW structure
981 * @mc_addr_list: array of multicast addresses to program
982 * @mc_addr_count: number of multicast addresses to program
983 * @rar_used_count: the first RAR register free to program
984 * @rar_count: total number of supported Receive Address Registers
986 * Updates the Receive Address Registers and Multicast Table Array.
987 * The caller must have a packed mc_addr_list of multicast addresses.
988 * The parameter rar_count will usually be hw->mac.rar_entry_count
989 * unless there are workarounds that change this.
991 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
992 u8 *mc_addr_list,
993 u32 mc_addr_count,
994 u32 rar_used_count,
995 u32 rar_count)
997 if (e1000e_get_laa_state_82571(hw))
998 rar_count--;
1000 e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1001 rar_used_count, rar_count);
1005 * e1000_setup_link_82571 - Setup flow control and link settings
1006 * @hw: pointer to the HW structure
1008 * Determines which flow control settings to use, then configures flow
1009 * control. Calls the appropriate media-specific link configuration
1010 * function. Assuming the adapter has a valid link partner, a valid link
1011 * should be established. Assumes the hardware has previously been reset
1012 * and the transmitter and receiver are not enabled.
1014 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1017 * 82573 does not have a word in the NVM to determine
1018 * the default flow control setting, so we explicitly
1019 * set it to full.
1021 if (hw->mac.type == e1000_82573)
1022 hw->fc.type = e1000_fc_full;
1024 return e1000e_setup_link(hw);
1028 * e1000_setup_copper_link_82571 - Configure copper link settings
1029 * @hw: pointer to the HW structure
1031 * Configures the link for auto-neg or forced speed and duplex. Then we check
1032 * for link, once link is established calls to configure collision distance
1033 * and flow control are called.
1035 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1037 u32 ctrl;
1038 u32 led_ctrl;
1039 s32 ret_val;
1041 ctrl = er32(CTRL);
1042 ctrl |= E1000_CTRL_SLU;
1043 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1044 ew32(CTRL, ctrl);
1046 switch (hw->phy.type) {
1047 case e1000_phy_m88:
1048 ret_val = e1000e_copper_link_setup_m88(hw);
1049 break;
1050 case e1000_phy_igp_2:
1051 ret_val = e1000e_copper_link_setup_igp(hw);
1052 /* Setup activity LED */
1053 led_ctrl = er32(LEDCTL);
1054 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1055 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1056 ew32(LEDCTL, led_ctrl);
1057 break;
1058 default:
1059 return -E1000_ERR_PHY;
1060 break;
1063 if (ret_val)
1064 return ret_val;
1066 ret_val = e1000e_setup_copper_link(hw);
1068 return ret_val;
1072 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1073 * @hw: pointer to the HW structure
1075 * Configures collision distance and flow control for fiber and serdes links.
1076 * Upon successful setup, poll for link.
1078 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1080 switch (hw->mac.type) {
1081 case e1000_82571:
1082 case e1000_82572:
1084 * If SerDes loopback mode is entered, there is no form
1085 * of reset to take the adapter out of that mode. So we
1086 * have to explicitly take the adapter out of loopback
1087 * mode. This prevents drivers from twiddling their thumbs
1088 * if another tool failed to take it out of loopback mode.
1090 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1091 break;
1092 default:
1093 break;
1096 return e1000e_setup_fiber_serdes_link(hw);
1100 * e1000_valid_led_default_82571 - Verify a valid default LED config
1101 * @hw: pointer to the HW structure
1102 * @data: pointer to the NVM (EEPROM)
1104 * Read the EEPROM for the current default LED configuration. If the
1105 * LED configuration is not valid, set to a valid LED configuration.
1107 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1109 s32 ret_val;
1111 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1112 if (ret_val) {
1113 hw_dbg(hw, "NVM Read Error\n");
1114 return ret_val;
1117 if (hw->mac.type == e1000_82573 &&
1118 *data == ID_LED_RESERVED_F746)
1119 *data = ID_LED_DEFAULT_82573;
1120 else if (*data == ID_LED_RESERVED_0000 ||
1121 *data == ID_LED_RESERVED_FFFF)
1122 *data = ID_LED_DEFAULT;
1124 return 0;
1128 * e1000e_get_laa_state_82571 - Get locally administered address state
1129 * @hw: pointer to the HW structure
1131 * Retrieve and return the current locally administered address state.
1133 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1135 if (hw->mac.type != e1000_82571)
1136 return 0;
1138 return hw->dev_spec.e82571.laa_is_present;
1142 * e1000e_set_laa_state_82571 - Set locally administered address state
1143 * @hw: pointer to the HW structure
1144 * @state: enable/disable locally administered address
1146 * Enable/Disable the current locally administers address state.
1148 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1150 if (hw->mac.type != e1000_82571)
1151 return;
1153 hw->dev_spec.e82571.laa_is_present = state;
1155 /* If workaround is activated... */
1156 if (state)
1158 * Hold a copy of the LAA in RAR[14] This is done so that
1159 * between the time RAR[0] gets clobbered and the time it
1160 * gets fixed, the actual LAA is in one of the RARs and no
1161 * incoming packets directed to this port are dropped.
1162 * Eventually the LAA will be in RAR[0] and RAR[14].
1164 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1168 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1169 * @hw: pointer to the HW structure
1171 * Verifies that the EEPROM has completed the update. After updating the
1172 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1173 * the checksum fix is not implemented, we need to set the bit and update
1174 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1175 * we need to return bad checksum.
1177 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1179 struct e1000_nvm_info *nvm = &hw->nvm;
1180 s32 ret_val;
1181 u16 data;
1183 if (nvm->type != e1000_nvm_flash_hw)
1184 return 0;
1187 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1188 * 10h-12h. Checksum may need to be fixed.
1190 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1191 if (ret_val)
1192 return ret_val;
1194 if (!(data & 0x10)) {
1196 * Read 0x23 and check bit 15. This bit is a 1
1197 * when the checksum has already been fixed. If
1198 * the checksum is still wrong and this bit is a
1199 * 1, we need to return bad checksum. Otherwise,
1200 * we need to set this bit to a 1 and update the
1201 * checksum.
1203 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1204 if (ret_val)
1205 return ret_val;
1207 if (!(data & 0x8000)) {
1208 data |= 0x8000;
1209 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1210 if (ret_val)
1211 return ret_val;
1212 ret_val = e1000e_update_nvm_checksum(hw);
1216 return 0;
1220 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1221 * @hw: pointer to the HW structure
1223 * Clears the hardware counters by reading the counter registers.
1225 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1227 u32 temp;
1229 e1000e_clear_hw_cntrs_base(hw);
1231 temp = er32(PRC64);
1232 temp = er32(PRC127);
1233 temp = er32(PRC255);
1234 temp = er32(PRC511);
1235 temp = er32(PRC1023);
1236 temp = er32(PRC1522);
1237 temp = er32(PTC64);
1238 temp = er32(PTC127);
1239 temp = er32(PTC255);
1240 temp = er32(PTC511);
1241 temp = er32(PTC1023);
1242 temp = er32(PTC1522);
1244 temp = er32(ALGNERRC);
1245 temp = er32(RXERRC);
1246 temp = er32(TNCRS);
1247 temp = er32(CEXTERR);
1248 temp = er32(TSCTC);
1249 temp = er32(TSCTFC);
1251 temp = er32(MGTPRC);
1252 temp = er32(MGTPDC);
1253 temp = er32(MGTPTC);
1255 temp = er32(IAC);
1256 temp = er32(ICRXOC);
1258 temp = er32(ICRXPTC);
1259 temp = er32(ICRXATC);
1260 temp = er32(ICTXPTC);
1261 temp = er32(ICTXATC);
1262 temp = er32(ICTXQEC);
1263 temp = er32(ICTXQMTC);
1264 temp = er32(ICRXDMTC);
1267 static struct e1000_mac_operations e82571_mac_ops = {
1268 .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1269 /* .check_for_link: media type dependent */
1270 .cleanup_led = e1000e_cleanup_led_generic,
1271 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1272 .get_bus_info = e1000e_get_bus_info_pcie,
1273 /* .get_link_up_info: media type dependent */
1274 .led_on = e1000e_led_on_generic,
1275 .led_off = e1000e_led_off_generic,
1276 .update_mc_addr_list = e1000_update_mc_addr_list_82571,
1277 .reset_hw = e1000_reset_hw_82571,
1278 .init_hw = e1000_init_hw_82571,
1279 .setup_link = e1000_setup_link_82571,
1280 /* .setup_physical_interface: media type dependent */
1283 static struct e1000_phy_operations e82_phy_ops_igp = {
1284 .acquire_phy = e1000_get_hw_semaphore_82571,
1285 .check_reset_block = e1000e_check_reset_block_generic,
1286 .commit_phy = NULL,
1287 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1288 .get_cfg_done = e1000_get_cfg_done_82571,
1289 .get_cable_length = e1000e_get_cable_length_igp_2,
1290 .get_phy_info = e1000e_get_phy_info_igp,
1291 .read_phy_reg = e1000e_read_phy_reg_igp,
1292 .release_phy = e1000_put_hw_semaphore_82571,
1293 .reset_phy = e1000e_phy_hw_reset_generic,
1294 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1295 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1296 .write_phy_reg = e1000e_write_phy_reg_igp,
1299 static struct e1000_phy_operations e82_phy_ops_m88 = {
1300 .acquire_phy = e1000_get_hw_semaphore_82571,
1301 .check_reset_block = e1000e_check_reset_block_generic,
1302 .commit_phy = e1000e_phy_sw_reset,
1303 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1304 .get_cfg_done = e1000e_get_cfg_done,
1305 .get_cable_length = e1000e_get_cable_length_m88,
1306 .get_phy_info = e1000e_get_phy_info_m88,
1307 .read_phy_reg = e1000e_read_phy_reg_m88,
1308 .release_phy = e1000_put_hw_semaphore_82571,
1309 .reset_phy = e1000e_phy_hw_reset_generic,
1310 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1311 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1312 .write_phy_reg = e1000e_write_phy_reg_m88,
1315 static struct e1000_nvm_operations e82571_nvm_ops = {
1316 .acquire_nvm = e1000_acquire_nvm_82571,
1317 .read_nvm = e1000e_read_nvm_eerd,
1318 .release_nvm = e1000_release_nvm_82571,
1319 .update_nvm = e1000_update_nvm_checksum_82571,
1320 .valid_led_default = e1000_valid_led_default_82571,
1321 .validate_nvm = e1000_validate_nvm_checksum_82571,
1322 .write_nvm = e1000_write_nvm_82571,
1325 struct e1000_info e1000_82571_info = {
1326 .mac = e1000_82571,
1327 .flags = FLAG_HAS_HW_VLAN_FILTER
1328 | FLAG_HAS_JUMBO_FRAMES
1329 | FLAG_HAS_WOL
1330 | FLAG_APME_IN_CTRL3
1331 | FLAG_RX_CSUM_ENABLED
1332 | FLAG_HAS_CTRLEXT_ON_LOAD
1333 | FLAG_HAS_SMART_POWER_DOWN
1334 | FLAG_RESET_OVERWRITES_LAA /* errata */
1335 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1336 | FLAG_APME_CHECK_PORT_B,
1337 .pba = 38,
1338 .get_variants = e1000_get_variants_82571,
1339 .mac_ops = &e82571_mac_ops,
1340 .phy_ops = &e82_phy_ops_igp,
1341 .nvm_ops = &e82571_nvm_ops,
1344 struct e1000_info e1000_82572_info = {
1345 .mac = e1000_82572,
1346 .flags = FLAG_HAS_HW_VLAN_FILTER
1347 | FLAG_HAS_JUMBO_FRAMES
1348 | FLAG_HAS_WOL
1349 | FLAG_APME_IN_CTRL3
1350 | FLAG_RX_CSUM_ENABLED
1351 | FLAG_HAS_CTRLEXT_ON_LOAD
1352 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1353 .pba = 38,
1354 .get_variants = e1000_get_variants_82571,
1355 .mac_ops = &e82571_mac_ops,
1356 .phy_ops = &e82_phy_ops_igp,
1357 .nvm_ops = &e82571_nvm_ops,
1360 struct e1000_info e1000_82573_info = {
1361 .mac = e1000_82573,
1362 .flags = FLAG_HAS_HW_VLAN_FILTER
1363 | FLAG_HAS_JUMBO_FRAMES
1364 | FLAG_HAS_WOL
1365 | FLAG_APME_IN_CTRL3
1366 | FLAG_RX_CSUM_ENABLED
1367 | FLAG_HAS_SMART_POWER_DOWN
1368 | FLAG_HAS_AMT
1369 | FLAG_HAS_ERT
1370 | FLAG_HAS_SWSM_ON_LOAD,
1371 .pba = 20,
1372 .get_variants = e1000_get_variants_82571,
1373 .mac_ops = &e82571_mac_ops,
1374 .phy_ops = &e82_phy_ops_m88,
1375 .nvm_ops = &e82571_nvm_ops,