1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
47 #include <linux/dca.h>
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name
[] = "igb";
53 char igb_driver_version
[] = DRV_VERSION
;
54 static const char igb_driver_string
[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright
[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info
*igb_info_tbl
[] = {
59 [board_82575
] = &e1000_82575_info
,
62 static struct pci_device_id igb_pci_tbl
[] = {
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
67 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
68 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
69 /* required last entry */
73 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
75 void igb_reset(struct igb_adapter
*);
76 static int igb_setup_all_tx_resources(struct igb_adapter
*);
77 static int igb_setup_all_rx_resources(struct igb_adapter
*);
78 static void igb_free_all_tx_resources(struct igb_adapter
*);
79 static void igb_free_all_rx_resources(struct igb_adapter
*);
80 void igb_update_stats(struct igb_adapter
*);
81 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
82 static void __devexit
igb_remove(struct pci_dev
*pdev
);
83 static int igb_sw_init(struct igb_adapter
*);
84 static int igb_open(struct net_device
*);
85 static int igb_close(struct net_device
*);
86 static void igb_configure_tx(struct igb_adapter
*);
87 static void igb_configure_rx(struct igb_adapter
*);
88 static void igb_setup_rctl(struct igb_adapter
*);
89 static void igb_clean_all_tx_rings(struct igb_adapter
*);
90 static void igb_clean_all_rx_rings(struct igb_adapter
*);
91 static void igb_clean_tx_ring(struct igb_ring
*);
92 static void igb_clean_rx_ring(struct igb_ring
*);
93 static void igb_set_multi(struct net_device
*);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct
*);
97 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
99 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
100 static struct net_device_stats
*igb_get_stats(struct net_device
*);
101 static int igb_change_mtu(struct net_device
*, int);
102 static int igb_set_mac(struct net_device
*, void *);
103 static irqreturn_t
igb_intr(int irq
, void *);
104 static irqreturn_t
igb_intr_msi(int irq
, void *);
105 static irqreturn_t
igb_msix_other(int irq
, void *);
106 static irqreturn_t
igb_msix_rx(int irq
, void *);
107 static irqreturn_t
igb_msix_tx(int irq
, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring
*);
111 static void igb_update_tx_dca(struct igb_ring
*);
112 static void igb_setup_dca(struct igb_adapter
*);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring
*);
115 static int igb_poll(struct napi_struct
*, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring
*, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring
*, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **, void **, u64
*, void *);
121 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
122 static void igb_tx_timeout(struct net_device
*);
123 static void igb_reset_task(struct work_struct
*);
124 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
125 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
126 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
127 static void igb_restore_vlan(struct igb_adapter
*);
129 static int igb_suspend(struct pci_dev
*, pm_message_t
);
131 static int igb_resume(struct pci_dev
*);
133 static void igb_shutdown(struct pci_dev
*);
134 #ifdef CONFIG_IGB_DCA
135 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
136 static struct notifier_block dca_notifier
= {
137 .notifier_call
= igb_notify_dca
,
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device
*);
148 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
149 pci_channel_state_t
);
150 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
151 static void igb_io_resume(struct pci_dev
*);
153 static struct pci_error_handlers igb_err_handler
= {
154 .error_detected
= igb_io_error_detected
,
155 .slot_reset
= igb_io_slot_reset
,
156 .resume
= igb_io_resume
,
160 static struct pci_driver igb_driver
= {
161 .name
= igb_driver_name
,
162 .id_table
= igb_pci_tbl
,
164 .remove
= __devexit_p(igb_remove
),
166 /* Power Managment Hooks */
167 .suspend
= igb_suspend
,
168 .resume
= igb_resume
,
170 .shutdown
= igb_shutdown
,
171 .err_handler
= &igb_err_handler
174 static int global_quad_port_a
; /* global quad port a indication */
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION
);
183 * igb_get_hw_dev_name - return device name string
184 * used by hardware layer to print debugging information
186 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
188 struct igb_adapter
*adapter
= hw
->back
;
189 return adapter
->netdev
->name
;
194 * igb_init_module - Driver Registration Routine
196 * igb_init_module is the first routine called when the driver is
197 * loaded. All it does is register with the PCI subsystem.
199 static int __init
igb_init_module(void)
202 printk(KERN_INFO
"%s - version %s\n",
203 igb_driver_string
, igb_driver_version
);
205 printk(KERN_INFO
"%s\n", igb_copyright
);
207 global_quad_port_a
= 0;
209 ret
= pci_register_driver(&igb_driver
);
210 #ifdef CONFIG_IGB_DCA
211 dca_register_notify(&dca_notifier
);
216 module_init(igb_init_module
);
219 * igb_exit_module - Driver Exit Cleanup Routine
221 * igb_exit_module is called just before the driver is removed
224 static void __exit
igb_exit_module(void)
226 #ifdef CONFIG_IGB_DCA
227 dca_unregister_notify(&dca_notifier
);
229 pci_unregister_driver(&igb_driver
);
232 module_exit(igb_exit_module
);
234 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
236 * igb_cache_ring_register - Descriptor ring to register mapping
237 * @adapter: board private structure to initialize
239 * Once we know the feature-set enabled for the device, we'll cache
240 * the register offset the descriptor ring is assigned to.
242 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
246 switch (adapter
->hw
.mac
.type
) {
248 /* The queues are allocated for virtualization such that VF 0
249 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
250 * In order to avoid collision we start at the first free queue
251 * and continue consuming queues in the same sequence
253 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
254 adapter
->rx_ring
[i
].reg_idx
= Q_IDX_82576(i
);
255 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
256 adapter
->tx_ring
[i
].reg_idx
= Q_IDX_82576(i
);
260 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
261 adapter
->rx_ring
[i
].reg_idx
= i
;
262 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
263 adapter
->tx_ring
[i
].reg_idx
= i
;
269 * igb_alloc_queues - Allocate memory for all rings
270 * @adapter: board private structure to initialize
272 * We allocate one ring per queue at run-time since we don't know the
273 * number of queues at compile-time.
275 static int igb_alloc_queues(struct igb_adapter
*adapter
)
279 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
280 sizeof(struct igb_ring
), GFP_KERNEL
);
281 if (!adapter
->tx_ring
)
284 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
285 sizeof(struct igb_ring
), GFP_KERNEL
);
286 if (!adapter
->rx_ring
) {
287 kfree(adapter
->tx_ring
);
291 adapter
->rx_ring
->buddy
= adapter
->tx_ring
;
293 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
294 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
295 ring
->count
= adapter
->tx_ring_count
;
296 ring
->adapter
= adapter
;
297 ring
->queue_index
= i
;
299 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
300 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
301 ring
->count
= adapter
->rx_ring_count
;
302 ring
->adapter
= adapter
;
303 ring
->queue_index
= i
;
304 ring
->itr_register
= E1000_ITR
;
306 /* set a default napi handler for each rx_ring */
307 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_poll
, 64);
310 igb_cache_ring_register(adapter
);
314 static void igb_free_queues(struct igb_adapter
*adapter
)
318 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
319 netif_napi_del(&adapter
->rx_ring
[i
].napi
);
321 kfree(adapter
->tx_ring
);
322 kfree(adapter
->rx_ring
);
325 #define IGB_N0_QUEUE -1
326 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
327 int tx_queue
, int msix_vector
)
330 struct e1000_hw
*hw
= &adapter
->hw
;
333 switch (hw
->mac
.type
) {
335 /* The 82575 assigns vectors using a bitmask, which matches the
336 bitmask for the EICR/EIMS/EIMC registers. To assign one
337 or more queues to a vector, we write the appropriate bits
338 into the MSIXBM register for that vector. */
339 if (rx_queue
> IGB_N0_QUEUE
) {
340 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
341 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
343 if (tx_queue
> IGB_N0_QUEUE
) {
344 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
345 adapter
->tx_ring
[tx_queue
].eims_value
=
346 E1000_EICR_TX_QUEUE0
<< tx_queue
;
348 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
351 /* 82576 uses a table-based method for assigning vectors.
352 Each queue has a single entry in the table to which we write
353 a vector number along with a "valid" bit. Sadly, the layout
354 of the table is somewhat counterintuitive. */
355 if (rx_queue
> IGB_N0_QUEUE
) {
356 index
= (rx_queue
>> 1);
357 ivar
= array_rd32(E1000_IVAR0
, index
);
358 if (rx_queue
& 0x1) {
359 /* vector goes into third byte of register */
360 ivar
= ivar
& 0xFF00FFFF;
361 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
363 /* vector goes into low byte of register */
364 ivar
= ivar
& 0xFFFFFF00;
365 ivar
|= msix_vector
| E1000_IVAR_VALID
;
367 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
368 array_wr32(E1000_IVAR0
, index
, ivar
);
370 if (tx_queue
> IGB_N0_QUEUE
) {
371 index
= (tx_queue
>> 1);
372 ivar
= array_rd32(E1000_IVAR0
, index
);
373 if (tx_queue
& 0x1) {
374 /* vector goes into high byte of register */
375 ivar
= ivar
& 0x00FFFFFF;
376 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
378 /* vector goes into second byte of register */
379 ivar
= ivar
& 0xFFFF00FF;
380 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
382 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
383 array_wr32(E1000_IVAR0
, index
, ivar
);
393 * igb_configure_msix - Configure MSI-X hardware
395 * igb_configure_msix sets up the hardware to properly
396 * generate MSI-X interrupts.
398 static void igb_configure_msix(struct igb_adapter
*adapter
)
402 struct e1000_hw
*hw
= &adapter
->hw
;
404 adapter
->eims_enable_mask
= 0;
405 if (hw
->mac
.type
== e1000_82576
)
406 /* Turn on MSI-X capability first, or our settings
407 * won't stick. And it will take days to debug. */
408 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
409 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
412 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
413 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
414 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
415 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
416 if (tx_ring
->itr_val
)
417 writel(tx_ring
->itr_val
,
418 hw
->hw_addr
+ tx_ring
->itr_register
);
420 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
423 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
424 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
425 rx_ring
->buddy
= NULL
;
426 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
427 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
428 if (rx_ring
->itr_val
)
429 writel(rx_ring
->itr_val
,
430 hw
->hw_addr
+ rx_ring
->itr_register
);
432 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
436 /* set vector for other causes, i.e. link changes */
437 switch (hw
->mac
.type
) {
439 array_wr32(E1000_MSIXBM(0), vector
++,
442 tmp
= rd32(E1000_CTRL_EXT
);
443 /* enable MSI-X PBA support*/
444 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
446 /* Auto-Mask interrupts upon ICR read. */
447 tmp
|= E1000_CTRL_EXT_EIAME
;
448 tmp
|= E1000_CTRL_EXT_IRCA
;
450 wr32(E1000_CTRL_EXT
, tmp
);
451 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
452 adapter
->eims_other
= E1000_EIMS_OTHER
;
457 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
458 wr32(E1000_IVAR_MISC
, tmp
);
460 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
461 adapter
->eims_other
= 1 << (vector
- 1);
464 /* do nothing, since nothing else supports MSI-X */
466 } /* switch (hw->mac.type) */
471 * igb_request_msix - Initialize MSI-X interrupts
473 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
476 static int igb_request_msix(struct igb_adapter
*adapter
)
478 struct net_device
*netdev
= adapter
->netdev
;
479 int i
, err
= 0, vector
= 0;
483 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
484 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
485 sprintf(ring
->name
, "%s-tx-%d", netdev
->name
, i
);
486 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
487 &igb_msix_tx
, 0, ring
->name
,
488 &(adapter
->tx_ring
[i
]));
491 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
492 ring
->itr_val
= 976; /* ~4000 ints/sec */
495 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
496 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
497 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
498 sprintf(ring
->name
, "%s-rx-%d", netdev
->name
, i
);
500 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
501 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
502 &igb_msix_rx
, 0, ring
->name
,
503 &(adapter
->rx_ring
[i
]));
506 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
507 ring
->itr_val
= adapter
->itr
;
508 /* overwrite the poll routine for MSIX, we've already done
510 ring
->napi
.poll
= &igb_clean_rx_ring_msix
;
514 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
515 &igb_msix_other
, 0, netdev
->name
, netdev
);
519 igb_configure_msix(adapter
);
525 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
527 if (adapter
->msix_entries
) {
528 pci_disable_msix(adapter
->pdev
);
529 kfree(adapter
->msix_entries
);
530 adapter
->msix_entries
= NULL
;
531 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
532 pci_disable_msi(adapter
->pdev
);
538 * igb_set_interrupt_capability - set MSI or MSI-X if supported
540 * Attempt to configure interrupts using the best available
541 * capabilities of the hardware and kernel.
543 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
548 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
549 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
551 if (!adapter
->msix_entries
)
554 for (i
= 0; i
< numvecs
; i
++)
555 adapter
->msix_entries
[i
].entry
= i
;
557 err
= pci_enable_msix(adapter
->pdev
,
558 adapter
->msix_entries
,
563 igb_reset_interrupt_capability(adapter
);
565 /* If we can't do MSI-X, try MSI */
567 adapter
->num_rx_queues
= 1;
568 adapter
->num_tx_queues
= 1;
569 if (!pci_enable_msi(adapter
->pdev
))
570 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
572 /* Notify the stack of the (possibly) reduced Tx Queue count. */
573 adapter
->netdev
->real_num_tx_queues
= adapter
->num_tx_queues
;
578 * igb_request_irq - initialize interrupts
580 * Attempts to configure interrupts using the best available
581 * capabilities of the hardware and kernel.
583 static int igb_request_irq(struct igb_adapter
*adapter
)
585 struct net_device
*netdev
= adapter
->netdev
;
586 struct e1000_hw
*hw
= &adapter
->hw
;
589 if (adapter
->msix_entries
) {
590 err
= igb_request_msix(adapter
);
593 /* fall back to MSI */
594 igb_reset_interrupt_capability(adapter
);
595 if (!pci_enable_msi(adapter
->pdev
))
596 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
597 igb_free_all_tx_resources(adapter
);
598 igb_free_all_rx_resources(adapter
);
599 adapter
->num_rx_queues
= 1;
600 igb_alloc_queues(adapter
);
602 switch (hw
->mac
.type
) {
604 wr32(E1000_MSIXBM(0),
605 (E1000_EICR_RX_QUEUE0
| E1000_EIMS_OTHER
));
608 wr32(E1000_IVAR0
, E1000_IVAR_VALID
);
615 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
616 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
617 netdev
->name
, netdev
);
620 /* fall back to legacy interrupts */
621 igb_reset_interrupt_capability(adapter
);
622 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
625 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
626 netdev
->name
, netdev
);
629 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
636 static void igb_free_irq(struct igb_adapter
*adapter
)
638 struct net_device
*netdev
= adapter
->netdev
;
640 if (adapter
->msix_entries
) {
643 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
644 free_irq(adapter
->msix_entries
[vector
++].vector
,
645 &(adapter
->tx_ring
[i
]));
646 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
647 free_irq(adapter
->msix_entries
[vector
++].vector
,
648 &(adapter
->rx_ring
[i
]));
650 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
654 free_irq(adapter
->pdev
->irq
, netdev
);
658 * igb_irq_disable - Mask off interrupt generation on the NIC
659 * @adapter: board private structure
661 static void igb_irq_disable(struct igb_adapter
*adapter
)
663 struct e1000_hw
*hw
= &adapter
->hw
;
665 if (adapter
->msix_entries
) {
667 wr32(E1000_EIMC
, ~0);
674 synchronize_irq(adapter
->pdev
->irq
);
678 * igb_irq_enable - Enable default interrupt generation settings
679 * @adapter: board private structure
681 static void igb_irq_enable(struct igb_adapter
*adapter
)
683 struct e1000_hw
*hw
= &adapter
->hw
;
685 if (adapter
->msix_entries
) {
686 wr32(E1000_EIAC
, adapter
->eims_enable_mask
);
687 wr32(E1000_EIAM
, adapter
->eims_enable_mask
);
688 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
689 wr32(E1000_IMS
, E1000_IMS_LSC
);
691 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
692 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
696 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
698 struct net_device
*netdev
= adapter
->netdev
;
699 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
700 u16 old_vid
= adapter
->mng_vlan_id
;
701 if (adapter
->vlgrp
) {
702 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
703 if (adapter
->hw
.mng_cookie
.status
&
704 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
705 igb_vlan_rx_add_vid(netdev
, vid
);
706 adapter
->mng_vlan_id
= vid
;
708 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
710 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
712 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
713 igb_vlan_rx_kill_vid(netdev
, old_vid
);
715 adapter
->mng_vlan_id
= vid
;
720 * igb_release_hw_control - release control of the h/w to f/w
721 * @adapter: address of board private structure
723 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
724 * For ASF and Pass Through versions of f/w this means that the
725 * driver is no longer loaded.
728 static void igb_release_hw_control(struct igb_adapter
*adapter
)
730 struct e1000_hw
*hw
= &adapter
->hw
;
733 /* Let firmware take over control of h/w */
734 ctrl_ext
= rd32(E1000_CTRL_EXT
);
736 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
741 * igb_get_hw_control - get control of the h/w from f/w
742 * @adapter: address of board private structure
744 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
745 * For ASF and Pass Through versions of f/w this means that
746 * the driver is loaded.
749 static void igb_get_hw_control(struct igb_adapter
*adapter
)
751 struct e1000_hw
*hw
= &adapter
->hw
;
754 /* Let firmware know the driver has taken over */
755 ctrl_ext
= rd32(E1000_CTRL_EXT
);
757 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
761 * igb_configure - configure the hardware for RX and TX
762 * @adapter: private board structure
764 static void igb_configure(struct igb_adapter
*adapter
)
766 struct net_device
*netdev
= adapter
->netdev
;
769 igb_get_hw_control(adapter
);
770 igb_set_multi(netdev
);
772 igb_restore_vlan(adapter
);
774 igb_configure_tx(adapter
);
775 igb_setup_rctl(adapter
);
776 igb_configure_rx(adapter
);
778 igb_rx_fifo_flush_82575(&adapter
->hw
);
780 /* call IGB_DESC_UNUSED which always leaves
781 * at least 1 descriptor unused to make sure
782 * next_to_use != next_to_clean */
783 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
784 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
785 igb_alloc_rx_buffers_adv(ring
, IGB_DESC_UNUSED(ring
));
789 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
794 * igb_up - Open the interface and prepare it to handle traffic
795 * @adapter: board private structure
798 int igb_up(struct igb_adapter
*adapter
)
800 struct e1000_hw
*hw
= &adapter
->hw
;
803 /* hardware has been reset, we need to reload some things */
804 igb_configure(adapter
);
806 clear_bit(__IGB_DOWN
, &adapter
->state
);
808 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
809 napi_enable(&adapter
->rx_ring
[i
].napi
);
810 if (adapter
->msix_entries
)
811 igb_configure_msix(adapter
);
813 /* Clear any pending interrupts. */
815 igb_irq_enable(adapter
);
817 /* Fire a link change interrupt to start the watchdog. */
818 wr32(E1000_ICS
, E1000_ICS_LSC
);
822 void igb_down(struct igb_adapter
*adapter
)
824 struct e1000_hw
*hw
= &adapter
->hw
;
825 struct net_device
*netdev
= adapter
->netdev
;
829 /* signal that we're down so the interrupt handler does not
830 * reschedule our watchdog timer */
831 set_bit(__IGB_DOWN
, &adapter
->state
);
833 /* disable receives in the hardware */
834 rctl
= rd32(E1000_RCTL
);
835 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
836 /* flush and sleep below */
838 netif_tx_stop_all_queues(netdev
);
840 /* disable transmits in the hardware */
841 tctl
= rd32(E1000_TCTL
);
842 tctl
&= ~E1000_TCTL_EN
;
843 wr32(E1000_TCTL
, tctl
);
844 /* flush both disables and wait for them to finish */
848 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
849 napi_disable(&adapter
->rx_ring
[i
].napi
);
851 igb_irq_disable(adapter
);
853 del_timer_sync(&adapter
->watchdog_timer
);
854 del_timer_sync(&adapter
->phy_info_timer
);
856 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
857 netif_carrier_off(netdev
);
858 adapter
->link_speed
= 0;
859 adapter
->link_duplex
= 0;
861 if (!pci_channel_offline(adapter
->pdev
))
863 igb_clean_all_tx_rings(adapter
);
864 igb_clean_all_rx_rings(adapter
);
867 void igb_reinit_locked(struct igb_adapter
*adapter
)
869 WARN_ON(in_interrupt());
870 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
874 clear_bit(__IGB_RESETTING
, &adapter
->state
);
877 void igb_reset(struct igb_adapter
*adapter
)
879 struct e1000_hw
*hw
= &adapter
->hw
;
880 struct e1000_mac_info
*mac
= &hw
->mac
;
881 struct e1000_fc_info
*fc
= &hw
->fc
;
882 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
885 /* Repartition Pba for greater than 9k mtu
886 * To take effect CTRL.RST is required.
888 if (mac
->type
!= e1000_82576
) {
895 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
896 (mac
->type
< e1000_82576
)) {
897 /* adjust PBA for jumbo frames */
898 wr32(E1000_PBA
, pba
);
900 /* To maintain wire speed transmits, the Tx FIFO should be
901 * large enough to accommodate two full transmit packets,
902 * rounded up to the next 1KB and expressed in KB. Likewise,
903 * the Rx FIFO should be large enough to accommodate at least
904 * one full receive packet and is similarly rounded up and
905 * expressed in KB. */
906 pba
= rd32(E1000_PBA
);
907 /* upper 16 bits has Tx packet buffer allocation size in KB */
908 tx_space
= pba
>> 16;
909 /* lower 16 bits has Rx packet buffer allocation size in KB */
911 /* the tx fifo also stores 16 bytes of information about the tx
912 * but don't include ethernet FCS because hardware appends it */
913 min_tx_space
= (adapter
->max_frame_size
+
914 sizeof(struct e1000_tx_desc
) -
916 min_tx_space
= ALIGN(min_tx_space
, 1024);
918 /* software strips receive CRC, so leave room for it */
919 min_rx_space
= adapter
->max_frame_size
;
920 min_rx_space
= ALIGN(min_rx_space
, 1024);
923 /* If current Tx allocation is less than the min Tx FIFO size,
924 * and the min Tx FIFO size is less than the current Rx FIFO
925 * allocation, take space away from current Rx allocation */
926 if (tx_space
< min_tx_space
&&
927 ((min_tx_space
- tx_space
) < pba
)) {
928 pba
= pba
- (min_tx_space
- tx_space
);
930 /* if short on rx space, rx wins and must trump tx
932 if (pba
< min_rx_space
)
935 wr32(E1000_PBA
, pba
);
938 /* flow control settings */
939 /* The high water mark must be low enough to fit one full frame
940 * (or the size used for early receive) above it in the Rx FIFO.
941 * Set it to the lower of:
942 * - 90% of the Rx FIFO size, or
943 * - the full Rx FIFO size minus one full frame */
944 hwm
= min(((pba
<< 10) * 9 / 10),
945 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
947 if (mac
->type
< e1000_82576
) {
948 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
949 fc
->low_water
= fc
->high_water
- 8;
951 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
952 fc
->low_water
= fc
->high_water
- 16;
954 fc
->pause_time
= 0xFFFF;
956 fc
->type
= fc
->original_type
;
958 /* Allow time for pending master requests to run */
959 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
962 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
963 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
965 igb_update_mng_vlan(adapter
);
967 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
968 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
970 igb_reset_adaptive(&adapter
->hw
);
971 igb_get_phy_info(&adapter
->hw
);
975 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
976 * @pdev: PCI device information struct
978 * Returns true if an adapter needs ioport resources
980 static int igb_is_need_ioport(struct pci_dev
*pdev
)
982 switch (pdev
->device
) {
983 /* Currently there are no adapters that need ioport resources */
989 static const struct net_device_ops igb_netdev_ops
= {
990 .ndo_open
= igb_open
,
991 .ndo_stop
= igb_close
,
992 .ndo_start_xmit
= igb_xmit_frame_adv
,
993 .ndo_get_stats
= igb_get_stats
,
994 .ndo_set_multicast_list
= igb_set_multi
,
995 .ndo_set_mac_address
= igb_set_mac
,
996 .ndo_change_mtu
= igb_change_mtu
,
997 .ndo_do_ioctl
= igb_ioctl
,
998 .ndo_tx_timeout
= igb_tx_timeout
,
999 .ndo_validate_addr
= eth_validate_addr
,
1000 .ndo_vlan_rx_register
= igb_vlan_rx_register
,
1001 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
1002 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
1003 #ifdef CONFIG_NET_POLL_CONTROLLER
1004 .ndo_poll_controller
= igb_netpoll
,
1009 * igb_probe - Device Initialization Routine
1010 * @pdev: PCI device information struct
1011 * @ent: entry in igb_pci_tbl
1013 * Returns 0 on success, negative on failure
1015 * igb_probe initializes an adapter identified by a pci_dev structure.
1016 * The OS initialization, configuring of the adapter private structure,
1017 * and a hardware reset occur.
1019 static int __devinit
igb_probe(struct pci_dev
*pdev
,
1020 const struct pci_device_id
*ent
)
1022 struct net_device
*netdev
;
1023 struct igb_adapter
*adapter
;
1024 struct e1000_hw
*hw
;
1025 struct pci_dev
*us_dev
;
1026 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
1027 unsigned long mmio_start
, mmio_len
;
1028 int i
, err
, pci_using_dac
, pos
;
1029 u16 eeprom_data
= 0, state
= 0;
1030 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
1032 int bars
, need_ioport
;
1034 /* do not allocate ioport bars when not needed */
1035 need_ioport
= igb_is_need_ioport(pdev
);
1037 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1038 err
= pci_enable_device(pdev
);
1040 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1041 err
= pci_enable_device_mem(pdev
);
1047 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
1049 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
1053 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
1055 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
1057 dev_err(&pdev
->dev
, "No usable DMA "
1058 "configuration, aborting\n");
1064 /* 82575 requires that the pci-e link partner disable the L0s state */
1065 switch (pdev
->device
) {
1066 case E1000_DEV_ID_82575EB_COPPER
:
1067 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1068 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1069 us_dev
= pdev
->bus
->self
;
1070 pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
1072 pci_read_config_word(us_dev
, pos
+ PCI_EXP_LNKCTL
,
1074 state
&= ~PCIE_LINK_STATE_L0S
;
1075 pci_write_config_word(us_dev
, pos
+ PCI_EXP_LNKCTL
,
1077 dev_info(&pdev
->dev
,
1078 "Disabling ASPM L0s upstream switch port %s\n",
1085 err
= pci_request_selected_regions(pdev
, bars
, igb_driver_name
);
1089 err
= pci_enable_pcie_error_reporting(pdev
);
1091 dev_err(&pdev
->dev
, "pci_enable_pcie_error_reporting failed "
1093 /* non-fatal, continue */
1096 pci_set_master(pdev
);
1097 pci_save_state(pdev
);
1100 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
), IGB_MAX_TX_QUEUES
);
1102 goto err_alloc_etherdev
;
1104 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1106 pci_set_drvdata(pdev
, netdev
);
1107 adapter
= netdev_priv(netdev
);
1108 adapter
->netdev
= netdev
;
1109 adapter
->pdev
= pdev
;
1112 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1113 adapter
->bars
= bars
;
1114 adapter
->need_ioport
= need_ioport
;
1116 mmio_start
= pci_resource_start(pdev
, 0);
1117 mmio_len
= pci_resource_len(pdev
, 0);
1120 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
1121 if (!adapter
->hw
.hw_addr
)
1124 netdev
->netdev_ops
= &igb_netdev_ops
;
1125 igb_set_ethtool_ops(netdev
);
1126 netdev
->watchdog_timeo
= 5 * HZ
;
1128 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1130 netdev
->mem_start
= mmio_start
;
1131 netdev
->mem_end
= mmio_start
+ mmio_len
;
1133 /* PCI config space info */
1134 hw
->vendor_id
= pdev
->vendor
;
1135 hw
->device_id
= pdev
->device
;
1136 hw
->revision_id
= pdev
->revision
;
1137 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1138 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1140 /* setup the private structure */
1142 /* Copy the default MAC, PHY and NVM function pointers */
1143 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1144 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1145 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1146 /* Initialize skew-specific constants */
1147 err
= ei
->get_invariants(hw
);
1151 err
= igb_sw_init(adapter
);
1155 igb_get_bus_info_pcie(hw
);
1158 switch (hw
->mac
.type
) {
1161 adapter
->flags
|= IGB_FLAG_HAS_DCA
;
1162 adapter
->flags
|= IGB_FLAG_NEED_CTX_IDX
;
1168 hw
->phy
.autoneg_wait_to_complete
= false;
1169 hw
->mac
.adaptive_ifs
= true;
1171 /* Copper options */
1172 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1173 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1174 hw
->phy
.disable_polarity_correction
= false;
1175 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1178 if (igb_check_reset_block(hw
))
1179 dev_info(&pdev
->dev
,
1180 "PHY reset is blocked due to SOL/IDER session.\n");
1182 netdev
->features
= NETIF_F_SG
|
1184 NETIF_F_HW_VLAN_TX
|
1185 NETIF_F_HW_VLAN_RX
|
1186 NETIF_F_HW_VLAN_FILTER
;
1188 netdev
->features
|= NETIF_F_TSO
;
1189 netdev
->features
|= NETIF_F_TSO6
;
1191 #ifdef CONFIG_IGB_LRO
1192 netdev
->features
|= NETIF_F_LRO
;
1195 netdev
->vlan_features
|= NETIF_F_TSO
;
1196 netdev
->vlan_features
|= NETIF_F_TSO6
;
1197 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1198 netdev
->vlan_features
|= NETIF_F_SG
;
1201 netdev
->features
|= NETIF_F_HIGHDMA
;
1203 netdev
->features
|= NETIF_F_LLTX
;
1204 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1206 /* before reading the NVM, reset the controller to put the device in a
1207 * known good starting state */
1208 hw
->mac
.ops
.reset_hw(hw
);
1210 /* make sure the NVM is good */
1211 if (igb_validate_nvm_checksum(hw
) < 0) {
1212 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1217 /* copy the MAC address out of the NVM */
1218 if (hw
->mac
.ops
.read_mac_addr(hw
))
1219 dev_err(&pdev
->dev
, "NVM Read Error\n");
1221 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1222 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1224 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1225 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1230 init_timer(&adapter
->watchdog_timer
);
1231 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1232 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1234 init_timer(&adapter
->phy_info_timer
);
1235 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1236 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1238 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1239 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1241 /* Initialize link & ring properties that are user-changeable */
1242 adapter
->tx_ring
->count
= 256;
1243 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1244 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1245 adapter
->rx_ring
->count
= 256;
1246 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1247 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1249 adapter
->fc_autoneg
= true;
1250 hw
->mac
.autoneg
= true;
1251 hw
->phy
.autoneg_advertised
= 0x2f;
1253 hw
->fc
.original_type
= e1000_fc_default
;
1254 hw
->fc
.type
= e1000_fc_default
;
1256 adapter
->itr_setting
= 3;
1257 adapter
->itr
= IGB_START_ITR
;
1259 igb_validate_mdi_setting(hw
);
1261 adapter
->rx_csum
= 1;
1263 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1264 * enable the ACPI Magic Packet filter
1267 if (hw
->bus
.func
== 0 ||
1268 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1269 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1272 if (eeprom_data
& eeprom_apme_mask
)
1273 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1275 /* now that we have the eeprom settings, apply the special cases where
1276 * the eeprom may be wrong or the board simply won't support wake on
1277 * lan on a particular port */
1278 switch (pdev
->device
) {
1279 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1280 adapter
->eeprom_wol
= 0;
1282 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1283 case E1000_DEV_ID_82576_FIBER
:
1284 case E1000_DEV_ID_82576_SERDES
:
1285 /* Wake events only supported on port A for dual fiber
1286 * regardless of eeprom setting */
1287 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1288 adapter
->eeprom_wol
= 0;
1292 /* initialize the wol settings based on the eeprom settings */
1293 adapter
->wol
= adapter
->eeprom_wol
;
1294 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1296 /* reset the hardware with the new settings */
1299 /* let the f/w know that the h/w is now under the control of the
1301 igb_get_hw_control(adapter
);
1303 /* tell the stack to leave us alone until igb_open() is called */
1304 netif_carrier_off(netdev
);
1305 netif_tx_stop_all_queues(netdev
);
1307 strcpy(netdev
->name
, "eth%d");
1308 err
= register_netdev(netdev
);
1312 #ifdef CONFIG_IGB_DCA
1313 if ((adapter
->flags
& IGB_FLAG_HAS_DCA
) &&
1314 (dca_add_requester(&pdev
->dev
) == 0)) {
1315 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
1316 dev_info(&pdev
->dev
, "DCA enabled\n");
1317 /* Always use CB2 mode, difference is masked
1318 * in the CB driver. */
1319 wr32(E1000_DCA_CTRL
, 2);
1320 igb_setup_dca(adapter
);
1324 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1325 /* print bus type/speed/width info */
1326 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
1328 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1329 ? "2.5Gb/s" : "unknown"),
1330 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1331 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1332 ? "Width x1" : "unknown"),
1335 igb_read_part_num(hw
, &part_num
);
1336 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1337 (part_num
>> 8), (part_num
& 0xff));
1339 dev_info(&pdev
->dev
,
1340 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1341 adapter
->msix_entries
? "MSI-X" :
1342 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
1343 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1348 igb_release_hw_control(adapter
);
1350 if (!igb_check_reset_block(hw
))
1353 if (hw
->flash_address
)
1354 iounmap(hw
->flash_address
);
1356 igb_remove_device(hw
);
1357 igb_free_queues(adapter
);
1360 iounmap(hw
->hw_addr
);
1362 free_netdev(netdev
);
1364 pci_release_selected_regions(pdev
, bars
);
1367 pci_disable_device(pdev
);
1372 * igb_remove - Device Removal Routine
1373 * @pdev: PCI device information struct
1375 * igb_remove is called by the PCI subsystem to alert the driver
1376 * that it should release a PCI device. The could be caused by a
1377 * Hot-Plug event, or because the driver is going to be removed from
1380 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1382 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1383 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1384 #ifdef CONFIG_IGB_DCA
1385 struct e1000_hw
*hw
= &adapter
->hw
;
1389 /* flush_scheduled work may reschedule our watchdog task, so
1390 * explicitly disable watchdog tasks from being rescheduled */
1391 set_bit(__IGB_DOWN
, &adapter
->state
);
1392 del_timer_sync(&adapter
->watchdog_timer
);
1393 del_timer_sync(&adapter
->phy_info_timer
);
1395 flush_scheduled_work();
1397 #ifdef CONFIG_IGB_DCA
1398 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
1399 dev_info(&pdev
->dev
, "DCA disabled\n");
1400 dca_remove_requester(&pdev
->dev
);
1401 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
1402 wr32(E1000_DCA_CTRL
, 1);
1406 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1407 * would have already happened in close and is redundant. */
1408 igb_release_hw_control(adapter
);
1410 unregister_netdev(netdev
);
1412 if (!igb_check_reset_block(&adapter
->hw
))
1413 igb_reset_phy(&adapter
->hw
);
1415 igb_remove_device(&adapter
->hw
);
1416 igb_reset_interrupt_capability(adapter
);
1418 igb_free_queues(adapter
);
1420 iounmap(adapter
->hw
.hw_addr
);
1421 if (adapter
->hw
.flash_address
)
1422 iounmap(adapter
->hw
.flash_address
);
1423 pci_release_selected_regions(pdev
, adapter
->bars
);
1425 free_netdev(netdev
);
1427 err
= pci_disable_pcie_error_reporting(pdev
);
1430 "pci_disable_pcie_error_reporting failed 0x%x\n", err
);
1432 pci_disable_device(pdev
);
1436 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1437 * @adapter: board private structure to initialize
1439 * igb_sw_init initializes the Adapter private data structure.
1440 * Fields are initialized based on PCI device information and
1441 * OS network device settings (MTU size).
1443 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1445 struct e1000_hw
*hw
= &adapter
->hw
;
1446 struct net_device
*netdev
= adapter
->netdev
;
1447 struct pci_dev
*pdev
= adapter
->pdev
;
1449 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1451 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
1452 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
1453 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1454 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1455 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1456 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1458 /* Number of supported queues. */
1459 /* Having more queues than CPUs doesn't make sense. */
1460 adapter
->num_rx_queues
= min_t(u32
, IGB_MAX_RX_QUEUES
, num_online_cpus());
1461 adapter
->num_tx_queues
= min_t(u32
, IGB_MAX_TX_QUEUES
, num_online_cpus());
1463 /* This call may decrease the number of queues depending on
1464 * interrupt mode. */
1465 igb_set_interrupt_capability(adapter
);
1467 if (igb_alloc_queues(adapter
)) {
1468 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1472 /* Explicitly disable IRQ since the NIC can be in any state. */
1473 igb_irq_disable(adapter
);
1475 set_bit(__IGB_DOWN
, &adapter
->state
);
1480 * igb_open - Called when a network interface is made active
1481 * @netdev: network interface device structure
1483 * Returns 0 on success, negative value on failure
1485 * The open entry point is called when a network interface is made
1486 * active by the system (IFF_UP). At this point all resources needed
1487 * for transmit and receive operations are allocated, the interrupt
1488 * handler is registered with the OS, the watchdog timer is started,
1489 * and the stack is notified that the interface is ready.
1491 static int igb_open(struct net_device
*netdev
)
1493 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1494 struct e1000_hw
*hw
= &adapter
->hw
;
1498 /* disallow open during test */
1499 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1502 /* allocate transmit descriptors */
1503 err
= igb_setup_all_tx_resources(adapter
);
1507 /* allocate receive descriptors */
1508 err
= igb_setup_all_rx_resources(adapter
);
1512 /* e1000_power_up_phy(adapter); */
1514 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1515 if ((adapter
->hw
.mng_cookie
.status
&
1516 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1517 igb_update_mng_vlan(adapter
);
1519 /* before we allocate an interrupt, we must be ready to handle it.
1520 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1521 * as soon as we call pci_request_irq, so we have to setup our
1522 * clean_rx handler before we do so. */
1523 igb_configure(adapter
);
1525 err
= igb_request_irq(adapter
);
1529 /* From here on the code is the same as igb_up() */
1530 clear_bit(__IGB_DOWN
, &adapter
->state
);
1532 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1533 napi_enable(&adapter
->rx_ring
[i
].napi
);
1535 /* Clear any pending interrupts. */
1538 igb_irq_enable(adapter
);
1540 netif_tx_start_all_queues(netdev
);
1542 /* Fire a link status change interrupt to start the watchdog. */
1543 wr32(E1000_ICS
, E1000_ICS_LSC
);
1548 igb_release_hw_control(adapter
);
1549 /* e1000_power_down_phy(adapter); */
1550 igb_free_all_rx_resources(adapter
);
1552 igb_free_all_tx_resources(adapter
);
1560 * igb_close - Disables a network interface
1561 * @netdev: network interface device structure
1563 * Returns 0, this is not allowed to fail
1565 * The close entry point is called when an interface is de-activated
1566 * by the OS. The hardware is still under the driver's control, but
1567 * needs to be disabled. A global MAC reset is issued to stop the
1568 * hardware, and all transmit and receive resources are freed.
1570 static int igb_close(struct net_device
*netdev
)
1572 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1574 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1577 igb_free_irq(adapter
);
1579 igb_free_all_tx_resources(adapter
);
1580 igb_free_all_rx_resources(adapter
);
1582 /* kill manageability vlan ID if supported, but not if a vlan with
1583 * the same ID is registered on the host OS (let 8021q kill it) */
1584 if ((adapter
->hw
.mng_cookie
.status
&
1585 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1587 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1588 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1594 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1595 * @adapter: board private structure
1596 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1598 * Return 0 on success, negative on failure
1601 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1602 struct igb_ring
*tx_ring
)
1604 struct pci_dev
*pdev
= adapter
->pdev
;
1607 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1608 tx_ring
->buffer_info
= vmalloc(size
);
1609 if (!tx_ring
->buffer_info
)
1611 memset(tx_ring
->buffer_info
, 0, size
);
1613 /* round up to nearest 4K */
1614 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1615 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1617 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1623 tx_ring
->adapter
= adapter
;
1624 tx_ring
->next_to_use
= 0;
1625 tx_ring
->next_to_clean
= 0;
1629 vfree(tx_ring
->buffer_info
);
1630 dev_err(&adapter
->pdev
->dev
,
1631 "Unable to allocate memory for the transmit descriptor ring\n");
1636 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1637 * (Descriptors) for all queues
1638 * @adapter: board private structure
1640 * Return 0 on success, negative on failure
1642 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1647 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1648 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1650 dev_err(&adapter
->pdev
->dev
,
1651 "Allocation for Tx Queue %u failed\n", i
);
1652 for (i
--; i
>= 0; i
--)
1653 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1658 for (i
= 0; i
< IGB_MAX_TX_QUEUES
; i
++) {
1659 r_idx
= i
% adapter
->num_tx_queues
;
1660 adapter
->multi_tx_table
[i
] = &adapter
->tx_ring
[r_idx
];
1666 * igb_configure_tx - Configure transmit Unit after Reset
1667 * @adapter: board private structure
1669 * Configure the Tx unit of the MAC after a reset.
1671 static void igb_configure_tx(struct igb_adapter
*adapter
)
1674 struct e1000_hw
*hw
= &adapter
->hw
;
1679 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1680 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1682 wr32(E1000_TDLEN(j
),
1683 ring
->count
* sizeof(struct e1000_tx_desc
));
1685 wr32(E1000_TDBAL(j
),
1686 tdba
& 0x00000000ffffffffULL
);
1687 wr32(E1000_TDBAH(j
), tdba
>> 32);
1689 ring
->head
= E1000_TDH(j
);
1690 ring
->tail
= E1000_TDT(j
);
1691 writel(0, hw
->hw_addr
+ ring
->tail
);
1692 writel(0, hw
->hw_addr
+ ring
->head
);
1693 txdctl
= rd32(E1000_TXDCTL(j
));
1694 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1695 wr32(E1000_TXDCTL(j
), txdctl
);
1697 /* Turn off Relaxed Ordering on head write-backs. The
1698 * writebacks MUST be delivered in order or it will
1699 * completely screw up our bookeeping.
1701 txctrl
= rd32(E1000_DCA_TXCTRL(j
));
1702 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1703 wr32(E1000_DCA_TXCTRL(j
), txctrl
);
1708 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1710 /* Program the Transmit Control Register */
1712 tctl
= rd32(E1000_TCTL
);
1713 tctl
&= ~E1000_TCTL_CT
;
1714 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1715 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1717 igb_config_collision_dist(hw
);
1719 /* Setup Transmit Descriptor Settings for eop descriptor */
1720 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1722 /* Enable transmits */
1723 tctl
|= E1000_TCTL_EN
;
1725 wr32(E1000_TCTL
, tctl
);
1729 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1730 * @adapter: board private structure
1731 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1733 * Returns 0 on success, negative on failure
1736 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1737 struct igb_ring
*rx_ring
)
1739 struct pci_dev
*pdev
= adapter
->pdev
;
1742 #ifdef CONFIG_IGB_LRO
1743 size
= sizeof(struct net_lro_desc
) * MAX_LRO_DESCRIPTORS
;
1744 rx_ring
->lro_mgr
.lro_arr
= vmalloc(size
);
1745 if (!rx_ring
->lro_mgr
.lro_arr
)
1747 memset(rx_ring
->lro_mgr
.lro_arr
, 0, size
);
1750 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1751 rx_ring
->buffer_info
= vmalloc(size
);
1752 if (!rx_ring
->buffer_info
)
1754 memset(rx_ring
->buffer_info
, 0, size
);
1756 desc_len
= sizeof(union e1000_adv_rx_desc
);
1758 /* Round up to nearest 4K */
1759 rx_ring
->size
= rx_ring
->count
* desc_len
;
1760 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1762 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1768 rx_ring
->next_to_clean
= 0;
1769 rx_ring
->next_to_use
= 0;
1771 rx_ring
->adapter
= adapter
;
1776 #ifdef CONFIG_IGB_LRO
1777 vfree(rx_ring
->lro_mgr
.lro_arr
);
1778 rx_ring
->lro_mgr
.lro_arr
= NULL
;
1780 vfree(rx_ring
->buffer_info
);
1781 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1782 "the receive descriptor ring\n");
1787 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1788 * (Descriptors) for all queues
1789 * @adapter: board private structure
1791 * Return 0 on success, negative on failure
1793 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1797 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1798 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1800 dev_err(&adapter
->pdev
->dev
,
1801 "Allocation for Rx Queue %u failed\n", i
);
1802 for (i
--; i
>= 0; i
--)
1803 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
1812 * igb_setup_rctl - configure the receive control registers
1813 * @adapter: Board private structure
1815 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1817 struct e1000_hw
*hw
= &adapter
->hw
;
1822 rctl
= rd32(E1000_RCTL
);
1824 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1825 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1827 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
1828 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1831 * enable stripping of CRC. It's unlikely this will break BMC
1832 * redirection as it did with e1000. Newer features require
1833 * that the HW strips the CRC.
1835 rctl
|= E1000_RCTL_SECRC
;
1838 * disable store bad packets, long packet enable, and clear size bits.
1840 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_LPE
| E1000_RCTL_SZ_256
);
1842 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
1843 rctl
|= E1000_RCTL_LPE
;
1845 /* Setup buffer sizes */
1846 switch (adapter
->rx_buffer_len
) {
1847 case IGB_RXBUFFER_256
:
1848 rctl
|= E1000_RCTL_SZ_256
;
1850 case IGB_RXBUFFER_512
:
1851 rctl
|= E1000_RCTL_SZ_512
;
1854 srrctl
= ALIGN(adapter
->rx_buffer_len
, 1024)
1855 >> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1859 /* 82575 and greater support packet-split where the protocol
1860 * header is placed in skb->data and the packet data is
1861 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1862 * In the case of a non-split, skb->data is linearly filled,
1863 * followed by the page buffers. Therefore, skb->data is
1864 * sized to hold the largest protocol header.
1866 /* allocations using alloc_page take too long for regular MTU
1867 * so only enable packet split for jumbo frames */
1868 if (rctl
& E1000_RCTL_LPE
) {
1869 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1870 srrctl
|= adapter
->rx_ps_hdr_size
<<
1871 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1872 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1874 adapter
->rx_ps_hdr_size
= 0;
1875 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1878 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1879 j
= adapter
->rx_ring
[i
].reg_idx
;
1880 wr32(E1000_SRRCTL(j
), srrctl
);
1883 wr32(E1000_RCTL
, rctl
);
1887 * igb_configure_rx - Configure receive Unit after Reset
1888 * @adapter: board private structure
1890 * Configure the Rx unit of the MAC after a reset.
1892 static void igb_configure_rx(struct igb_adapter
*adapter
)
1895 struct e1000_hw
*hw
= &adapter
->hw
;
1900 /* disable receives while setting up the descriptors */
1901 rctl
= rd32(E1000_RCTL
);
1902 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1906 if (adapter
->itr_setting
> 3)
1907 wr32(E1000_ITR
, adapter
->itr
);
1909 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1910 * the Base and Length of the Rx Descriptor Ring */
1911 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1912 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1915 wr32(E1000_RDBAL(j
),
1916 rdba
& 0x00000000ffffffffULL
);
1917 wr32(E1000_RDBAH(j
), rdba
>> 32);
1918 wr32(E1000_RDLEN(j
),
1919 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1921 ring
->head
= E1000_RDH(j
);
1922 ring
->tail
= E1000_RDT(j
);
1923 writel(0, hw
->hw_addr
+ ring
->tail
);
1924 writel(0, hw
->hw_addr
+ ring
->head
);
1926 rxdctl
= rd32(E1000_RXDCTL(j
));
1927 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1928 rxdctl
&= 0xFFF00000;
1929 rxdctl
|= IGB_RX_PTHRESH
;
1930 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1931 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1932 wr32(E1000_RXDCTL(j
), rxdctl
);
1933 #ifdef CONFIG_IGB_LRO
1934 /* Intitial LRO Settings */
1935 ring
->lro_mgr
.max_aggr
= MAX_LRO_AGGR
;
1936 ring
->lro_mgr
.max_desc
= MAX_LRO_DESCRIPTORS
;
1937 ring
->lro_mgr
.get_skb_header
= igb_get_skb_hdr
;
1938 ring
->lro_mgr
.features
= LRO_F_NAPI
| LRO_F_EXTRACT_VLAN_ID
;
1939 ring
->lro_mgr
.dev
= adapter
->netdev
;
1940 ring
->lro_mgr
.ip_summed
= CHECKSUM_UNNECESSARY
;
1941 ring
->lro_mgr
.ip_summed_aggr
= CHECKSUM_UNNECESSARY
;
1945 if (adapter
->num_rx_queues
> 1) {
1954 get_random_bytes(&random
[0], 40);
1956 if (hw
->mac
.type
>= e1000_82576
)
1960 for (j
= 0; j
< (32 * 4); j
++) {
1962 adapter
->rx_ring
[(j
% adapter
->num_rx_queues
)].reg_idx
<< shift
;
1965 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1967 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1969 /* Fill out hash function seeds */
1970 for (j
= 0; j
< 10; j
++)
1971 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1973 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1974 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1975 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1976 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1977 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1978 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1979 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1980 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1983 wr32(E1000_MRQC
, mrqc
);
1985 /* Multiqueue and raw packet checksumming are mutually
1986 * exclusive. Note that this not the same as TCP/IP
1987 * checksumming, which works fine. */
1988 rxcsum
= rd32(E1000_RXCSUM
);
1989 rxcsum
|= E1000_RXCSUM_PCSD
;
1990 wr32(E1000_RXCSUM
, rxcsum
);
1992 /* Enable Receive Checksum Offload for TCP and UDP */
1993 rxcsum
= rd32(E1000_RXCSUM
);
1994 if (adapter
->rx_csum
) {
1995 rxcsum
|= E1000_RXCSUM_TUOFL
;
1997 /* Enable IPv4 payload checksum for UDP fragments
1998 * Must be used in conjunction with packet-split. */
1999 if (adapter
->rx_ps_hdr_size
)
2000 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2002 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2003 /* don't need to clear IPPCSE as it defaults to 0 */
2005 wr32(E1000_RXCSUM
, rxcsum
);
2010 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
2012 wr32(E1000_RLPML
, adapter
->max_frame_size
);
2014 /* Enable Receives */
2015 wr32(E1000_RCTL
, rctl
);
2019 * igb_free_tx_resources - Free Tx Resources per Queue
2020 * @tx_ring: Tx descriptor ring for a specific queue
2022 * Free all transmit software resources
2024 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
2026 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
2028 igb_clean_tx_ring(tx_ring
);
2030 vfree(tx_ring
->buffer_info
);
2031 tx_ring
->buffer_info
= NULL
;
2033 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2035 tx_ring
->desc
= NULL
;
2039 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2040 * @adapter: board private structure
2042 * Free all transmit software resources
2044 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
2048 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2049 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
2052 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
2053 struct igb_buffer
*buffer_info
)
2055 if (buffer_info
->dma
) {
2056 pci_unmap_page(adapter
->pdev
,
2058 buffer_info
->length
,
2060 buffer_info
->dma
= 0;
2062 if (buffer_info
->skb
) {
2063 dev_kfree_skb_any(buffer_info
->skb
);
2064 buffer_info
->skb
= NULL
;
2066 buffer_info
->time_stamp
= 0;
2067 /* buffer_info must be completely set up in the transmit path */
2071 * igb_clean_tx_ring - Free Tx Buffers
2072 * @tx_ring: ring to be cleaned
2074 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
2076 struct igb_adapter
*adapter
= tx_ring
->adapter
;
2077 struct igb_buffer
*buffer_info
;
2081 if (!tx_ring
->buffer_info
)
2083 /* Free all the Tx ring sk_buffs */
2085 for (i
= 0; i
< tx_ring
->count
; i
++) {
2086 buffer_info
= &tx_ring
->buffer_info
[i
];
2087 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
2090 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2091 memset(tx_ring
->buffer_info
, 0, size
);
2093 /* Zero out the descriptor ring */
2095 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2097 tx_ring
->next_to_use
= 0;
2098 tx_ring
->next_to_clean
= 0;
2100 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2101 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2105 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2106 * @adapter: board private structure
2108 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
2112 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2113 igb_clean_tx_ring(&adapter
->tx_ring
[i
]);
2117 * igb_free_rx_resources - Free Rx Resources
2118 * @rx_ring: ring to clean the resources from
2120 * Free all receive software resources
2122 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
2124 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
2126 igb_clean_rx_ring(rx_ring
);
2128 vfree(rx_ring
->buffer_info
);
2129 rx_ring
->buffer_info
= NULL
;
2131 #ifdef CONFIG_IGB_LRO
2132 vfree(rx_ring
->lro_mgr
.lro_arr
);
2133 rx_ring
->lro_mgr
.lro_arr
= NULL
;
2136 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2138 rx_ring
->desc
= NULL
;
2142 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2143 * @adapter: board private structure
2145 * Free all receive software resources
2147 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
2151 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2152 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2156 * igb_clean_rx_ring - Free Rx Buffers per Queue
2157 * @rx_ring: ring to free buffers from
2159 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
2161 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2162 struct igb_buffer
*buffer_info
;
2163 struct pci_dev
*pdev
= adapter
->pdev
;
2167 if (!rx_ring
->buffer_info
)
2169 /* Free all the Rx ring sk_buffs */
2170 for (i
= 0; i
< rx_ring
->count
; i
++) {
2171 buffer_info
= &rx_ring
->buffer_info
[i
];
2172 if (buffer_info
->dma
) {
2173 if (adapter
->rx_ps_hdr_size
)
2174 pci_unmap_single(pdev
, buffer_info
->dma
,
2175 adapter
->rx_ps_hdr_size
,
2176 PCI_DMA_FROMDEVICE
);
2178 pci_unmap_single(pdev
, buffer_info
->dma
,
2179 adapter
->rx_buffer_len
,
2180 PCI_DMA_FROMDEVICE
);
2181 buffer_info
->dma
= 0;
2184 if (buffer_info
->skb
) {
2185 dev_kfree_skb(buffer_info
->skb
);
2186 buffer_info
->skb
= NULL
;
2188 if (buffer_info
->page
) {
2189 if (buffer_info
->page_dma
)
2190 pci_unmap_page(pdev
, buffer_info
->page_dma
,
2192 PCI_DMA_FROMDEVICE
);
2193 put_page(buffer_info
->page
);
2194 buffer_info
->page
= NULL
;
2195 buffer_info
->page_dma
= 0;
2196 buffer_info
->page_offset
= 0;
2200 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2201 memset(rx_ring
->buffer_info
, 0, size
);
2203 /* Zero out the descriptor ring */
2204 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2206 rx_ring
->next_to_clean
= 0;
2207 rx_ring
->next_to_use
= 0;
2209 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
2210 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
2214 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2215 * @adapter: board private structure
2217 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
2221 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2222 igb_clean_rx_ring(&adapter
->rx_ring
[i
]);
2226 * igb_set_mac - Change the Ethernet Address of the NIC
2227 * @netdev: network interface device structure
2228 * @p: pointer to an address structure
2230 * Returns 0 on success, negative on failure
2232 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2234 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2235 struct sockaddr
*addr
= p
;
2237 if (!is_valid_ether_addr(addr
->sa_data
))
2238 return -EADDRNOTAVAIL
;
2240 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2241 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2243 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2249 * igb_set_multi - Multicast and Promiscuous mode set
2250 * @netdev: network interface device structure
2252 * The set_multi entry point is called whenever the multicast address
2253 * list or the network interface flags are updated. This routine is
2254 * responsible for configuring the hardware for proper multicast,
2255 * promiscuous mode, and all-multi behavior.
2257 static void igb_set_multi(struct net_device
*netdev
)
2259 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2260 struct e1000_hw
*hw
= &adapter
->hw
;
2261 struct e1000_mac_info
*mac
= &hw
->mac
;
2262 struct dev_mc_list
*mc_ptr
;
2267 /* Check for Promiscuous and All Multicast modes */
2269 rctl
= rd32(E1000_RCTL
);
2271 if (netdev
->flags
& IFF_PROMISC
) {
2272 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2273 rctl
&= ~E1000_RCTL_VFE
;
2275 if (netdev
->flags
& IFF_ALLMULTI
) {
2276 rctl
|= E1000_RCTL_MPE
;
2277 rctl
&= ~E1000_RCTL_UPE
;
2279 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2280 rctl
|= E1000_RCTL_VFE
;
2282 wr32(E1000_RCTL
, rctl
);
2284 if (!netdev
->mc_count
) {
2285 /* nothing to program, so clear mc list */
2286 igb_update_mc_addr_list_82575(hw
, NULL
, 0, 1,
2287 mac
->rar_entry_count
);
2291 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2295 /* The shared function expects a packed array of only addresses. */
2296 mc_ptr
= netdev
->mc_list
;
2298 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2301 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2302 mc_ptr
= mc_ptr
->next
;
2304 igb_update_mc_addr_list_82575(hw
, mta_list
, i
, 1,
2305 mac
->rar_entry_count
);
2309 /* Need to wait a few seconds after link up to get diagnostic information from
2311 static void igb_update_phy_info(unsigned long data
)
2313 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2314 igb_get_phy_info(&adapter
->hw
);
2318 * igb_watchdog - Timer Call-back
2319 * @data: pointer to adapter cast into an unsigned long
2321 static void igb_watchdog(unsigned long data
)
2323 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2324 /* Do the rest outside of interrupt context */
2325 schedule_work(&adapter
->watchdog_task
);
2328 static void igb_watchdog_task(struct work_struct
*work
)
2330 struct igb_adapter
*adapter
= container_of(work
,
2331 struct igb_adapter
, watchdog_task
);
2332 struct e1000_hw
*hw
= &adapter
->hw
;
2334 struct net_device
*netdev
= adapter
->netdev
;
2335 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2336 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2342 if ((netif_carrier_ok(netdev
)) &&
2343 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2346 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2347 if ((ret_val
== E1000_ERR_PHY
) &&
2348 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2350 E1000_PHY_CTRL_GBE_DISABLE
))
2351 dev_info(&adapter
->pdev
->dev
,
2352 "Gigabit has been disabled, downgrading speed\n");
2354 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2355 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2356 link
= mac
->serdes_has_link
;
2358 link
= rd32(E1000_STATUS
) &
2362 if (!netif_carrier_ok(netdev
)) {
2364 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2365 &adapter
->link_speed
,
2366 &adapter
->link_duplex
);
2368 ctrl
= rd32(E1000_CTRL
);
2369 /* Links status message must follow this format */
2370 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s, "
2371 "Flow Control: %s\n",
2373 adapter
->link_speed
,
2374 adapter
->link_duplex
== FULL_DUPLEX
?
2375 "Full Duplex" : "Half Duplex",
2376 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2377 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2378 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2379 E1000_CTRL_TFCE
) ? "TX" : "None")));
2381 /* tweak tx_queue_len according to speed/duplex and
2382 * adjust the timeout factor */
2383 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2384 adapter
->tx_timeout_factor
= 1;
2385 switch (adapter
->link_speed
) {
2387 netdev
->tx_queue_len
= 10;
2388 adapter
->tx_timeout_factor
= 14;
2391 netdev
->tx_queue_len
= 100;
2392 /* maybe add some timeout factor ? */
2396 netif_carrier_on(netdev
);
2397 netif_tx_wake_all_queues(netdev
);
2399 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2400 mod_timer(&adapter
->phy_info_timer
,
2401 round_jiffies(jiffies
+ 2 * HZ
));
2404 if (netif_carrier_ok(netdev
)) {
2405 adapter
->link_speed
= 0;
2406 adapter
->link_duplex
= 0;
2407 /* Links status message must follow this format */
2408 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
2410 netif_carrier_off(netdev
);
2411 netif_tx_stop_all_queues(netdev
);
2412 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2413 mod_timer(&adapter
->phy_info_timer
,
2414 round_jiffies(jiffies
+ 2 * HZ
));
2419 igb_update_stats(adapter
);
2421 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2422 adapter
->tpt_old
= adapter
->stats
.tpt
;
2423 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2424 adapter
->colc_old
= adapter
->stats
.colc
;
2426 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2427 adapter
->gorc_old
= adapter
->stats
.gorc
;
2428 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2429 adapter
->gotc_old
= adapter
->stats
.gotc
;
2431 igb_update_adaptive(&adapter
->hw
);
2433 if (!netif_carrier_ok(netdev
)) {
2434 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2435 /* We've lost link, so the controller stops DMA,
2436 * but we've got queued Tx work that's never going
2437 * to get done, so reset controller to flush Tx.
2438 * (Do the reset outside of interrupt context). */
2439 adapter
->tx_timeout_count
++;
2440 schedule_work(&adapter
->reset_task
);
2444 /* Cause software interrupt to ensure rx ring is cleaned */
2445 if (adapter
->msix_entries
) {
2446 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2447 eics
|= adapter
->rx_ring
[i
].eims_value
;
2448 wr32(E1000_EICS
, eics
);
2450 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2453 /* Force detection of hung controller every watchdog period */
2454 tx_ring
->detect_tx_hung
= true;
2456 /* Reset the timer */
2457 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2458 mod_timer(&adapter
->watchdog_timer
,
2459 round_jiffies(jiffies
+ 2 * HZ
));
2462 enum latency_range
{
2466 latency_invalid
= 255
2471 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2473 * Stores a new ITR value based on strictly on packet size. This
2474 * algorithm is less sophisticated than that used in igb_update_itr,
2475 * due to the difficulty of synchronizing statistics across multiple
2476 * receive rings. The divisors and thresholds used by this fuction
2477 * were determined based on theoretical maximum wire speed and testing
2478 * data, in order to minimize response time while increasing bulk
2480 * This functionality is controlled by the InterruptThrottleRate module
2481 * parameter (see igb_param.c)
2482 * NOTE: This function is called only when operating in a multiqueue
2483 * receive environment.
2484 * @rx_ring: pointer to ring
2486 static void igb_update_ring_itr(struct igb_ring
*rx_ring
)
2488 int new_val
= rx_ring
->itr_val
;
2489 int avg_wire_size
= 0;
2490 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2492 if (!rx_ring
->total_packets
)
2493 goto clear_counts
; /* no packets, so don't do anything */
2495 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2496 * ints/sec - ITR timer value of 120 ticks.
2498 if (adapter
->link_speed
!= SPEED_1000
) {
2502 avg_wire_size
= rx_ring
->total_bytes
/ rx_ring
->total_packets
;
2504 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2505 avg_wire_size
+= 24;
2507 /* Don't starve jumbo frames */
2508 avg_wire_size
= min(avg_wire_size
, 3000);
2510 /* Give a little boost to mid-size frames */
2511 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
2512 new_val
= avg_wire_size
/ 3;
2514 new_val
= avg_wire_size
/ 2;
2517 if (new_val
!= rx_ring
->itr_val
) {
2518 rx_ring
->itr_val
= new_val
;
2519 rx_ring
->set_itr
= 1;
2522 rx_ring
->total_bytes
= 0;
2523 rx_ring
->total_packets
= 0;
2527 * igb_update_itr - update the dynamic ITR value based on statistics
2528 * Stores a new ITR value based on packets and byte
2529 * counts during the last interrupt. The advantage of per interrupt
2530 * computation is faster updates and more accurate ITR for the current
2531 * traffic pattern. Constants in this function were computed
2532 * based on theoretical maximum wire speed and thresholds were set based
2533 * on testing data as well as attempting to minimize response time
2534 * while increasing bulk throughput.
2535 * this functionality is controlled by the InterruptThrottleRate module
2536 * parameter (see igb_param.c)
2537 * NOTE: These calculations are only valid when operating in a single-
2538 * queue environment.
2539 * @adapter: pointer to adapter
2540 * @itr_setting: current adapter->itr
2541 * @packets: the number of packets during this measurement interval
2542 * @bytes: the number of bytes during this measurement interval
2544 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2545 int packets
, int bytes
)
2547 unsigned int retval
= itr_setting
;
2550 goto update_itr_done
;
2552 switch (itr_setting
) {
2553 case lowest_latency
:
2554 /* handle TSO and jumbo frames */
2555 if (bytes
/packets
> 8000)
2556 retval
= bulk_latency
;
2557 else if ((packets
< 5) && (bytes
> 512))
2558 retval
= low_latency
;
2560 case low_latency
: /* 50 usec aka 20000 ints/s */
2561 if (bytes
> 10000) {
2562 /* this if handles the TSO accounting */
2563 if (bytes
/packets
> 8000) {
2564 retval
= bulk_latency
;
2565 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2566 retval
= bulk_latency
;
2567 } else if ((packets
> 35)) {
2568 retval
= lowest_latency
;
2570 } else if (bytes
/packets
> 2000) {
2571 retval
= bulk_latency
;
2572 } else if (packets
<= 2 && bytes
< 512) {
2573 retval
= lowest_latency
;
2576 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2577 if (bytes
> 25000) {
2579 retval
= low_latency
;
2580 } else if (bytes
< 6000) {
2581 retval
= low_latency
;
2590 static void igb_set_itr(struct igb_adapter
*adapter
)
2593 u32 new_itr
= adapter
->itr
;
2595 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2596 if (adapter
->link_speed
!= SPEED_1000
) {
2602 adapter
->rx_itr
= igb_update_itr(adapter
,
2604 adapter
->rx_ring
->total_packets
,
2605 adapter
->rx_ring
->total_bytes
);
2607 if (adapter
->rx_ring
->buddy
) {
2608 adapter
->tx_itr
= igb_update_itr(adapter
,
2610 adapter
->tx_ring
->total_packets
,
2611 adapter
->tx_ring
->total_bytes
);
2613 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2615 current_itr
= adapter
->rx_itr
;
2618 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2619 if (adapter
->itr_setting
== 3 &&
2620 current_itr
== lowest_latency
)
2621 current_itr
= low_latency
;
2623 switch (current_itr
) {
2624 /* counts and packets in update_itr are dependent on these numbers */
2625 case lowest_latency
:
2629 new_itr
= 20000; /* aka hwitr = ~200 */
2639 adapter
->rx_ring
->total_bytes
= 0;
2640 adapter
->rx_ring
->total_packets
= 0;
2641 if (adapter
->rx_ring
->buddy
) {
2642 adapter
->rx_ring
->buddy
->total_bytes
= 0;
2643 adapter
->rx_ring
->buddy
->total_packets
= 0;
2646 if (new_itr
!= adapter
->itr
) {
2647 /* this attempts to bias the interrupt rate towards Bulk
2648 * by adding intermediate steps when interrupt rate is
2650 new_itr
= new_itr
> adapter
->itr
?
2651 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2653 /* Don't write the value here; it resets the adapter's
2654 * internal timer, and causes us to delay far longer than
2655 * we should between interrupts. Instead, we write the ITR
2656 * value at the beginning of the next interrupt so the timing
2657 * ends up being correct.
2659 adapter
->itr
= new_itr
;
2660 adapter
->rx_ring
->itr_val
= 1000000000 / (new_itr
* 256);
2661 adapter
->rx_ring
->set_itr
= 1;
2668 #define IGB_TX_FLAGS_CSUM 0x00000001
2669 #define IGB_TX_FLAGS_VLAN 0x00000002
2670 #define IGB_TX_FLAGS_TSO 0x00000004
2671 #define IGB_TX_FLAGS_IPV4 0x00000008
2672 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2673 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2675 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2676 struct igb_ring
*tx_ring
,
2677 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2679 struct e1000_adv_tx_context_desc
*context_desc
;
2682 struct igb_buffer
*buffer_info
;
2683 u32 info
= 0, tu_cmd
= 0;
2684 u32 mss_l4len_idx
, l4len
;
2687 if (skb_header_cloned(skb
)) {
2688 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2693 l4len
= tcp_hdrlen(skb
);
2696 if (skb
->protocol
== htons(ETH_P_IP
)) {
2697 struct iphdr
*iph
= ip_hdr(skb
);
2700 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2704 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2705 ipv6_hdr(skb
)->payload_len
= 0;
2706 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2707 &ipv6_hdr(skb
)->daddr
,
2711 i
= tx_ring
->next_to_use
;
2713 buffer_info
= &tx_ring
->buffer_info
[i
];
2714 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2715 /* VLAN MACLEN IPLEN */
2716 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2717 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2718 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2719 *hdr_len
+= skb_network_offset(skb
);
2720 info
|= skb_network_header_len(skb
);
2721 *hdr_len
+= skb_network_header_len(skb
);
2722 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2724 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2725 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2727 if (skb
->protocol
== htons(ETH_P_IP
))
2728 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2729 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2731 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2734 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2735 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2737 /* Context index must be unique per ring. */
2738 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2739 mss_l4len_idx
|= tx_ring
->queue_index
<< 4;
2741 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2742 context_desc
->seqnum_seed
= 0;
2744 buffer_info
->time_stamp
= jiffies
;
2745 buffer_info
->next_to_watch
= i
;
2746 buffer_info
->dma
= 0;
2748 if (i
== tx_ring
->count
)
2751 tx_ring
->next_to_use
= i
;
2756 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2757 struct igb_ring
*tx_ring
,
2758 struct sk_buff
*skb
, u32 tx_flags
)
2760 struct e1000_adv_tx_context_desc
*context_desc
;
2762 struct igb_buffer
*buffer_info
;
2763 u32 info
= 0, tu_cmd
= 0;
2765 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2766 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2767 i
= tx_ring
->next_to_use
;
2768 buffer_info
= &tx_ring
->buffer_info
[i
];
2769 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2771 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2772 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2773 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2774 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2775 info
|= skb_network_header_len(skb
);
2777 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2779 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2781 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2782 switch (skb
->protocol
) {
2783 case __constant_htons(ETH_P_IP
):
2784 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2785 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2786 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2788 case __constant_htons(ETH_P_IPV6
):
2789 /* XXX what about other V6 headers?? */
2790 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2791 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2794 if (unlikely(net_ratelimit()))
2795 dev_warn(&adapter
->pdev
->dev
,
2796 "partial checksum but proto=%x!\n",
2802 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2803 context_desc
->seqnum_seed
= 0;
2804 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2805 context_desc
->mss_l4len_idx
=
2806 cpu_to_le32(tx_ring
->queue_index
<< 4);
2808 buffer_info
->time_stamp
= jiffies
;
2809 buffer_info
->next_to_watch
= i
;
2810 buffer_info
->dma
= 0;
2813 if (i
== tx_ring
->count
)
2815 tx_ring
->next_to_use
= i
;
2824 #define IGB_MAX_TXD_PWR 16
2825 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2827 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2828 struct igb_ring
*tx_ring
, struct sk_buff
*skb
,
2831 struct igb_buffer
*buffer_info
;
2832 unsigned int len
= skb_headlen(skb
);
2833 unsigned int count
= 0, i
;
2836 i
= tx_ring
->next_to_use
;
2838 buffer_info
= &tx_ring
->buffer_info
[i
];
2839 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2840 buffer_info
->length
= len
;
2841 /* set time_stamp *before* dma to help avoid a possible race */
2842 buffer_info
->time_stamp
= jiffies
;
2843 buffer_info
->next_to_watch
= i
;
2844 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2848 if (i
== tx_ring
->count
)
2851 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2852 struct skb_frag_struct
*frag
;
2854 frag
= &skb_shinfo(skb
)->frags
[f
];
2857 buffer_info
= &tx_ring
->buffer_info
[i
];
2858 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2859 buffer_info
->length
= len
;
2860 buffer_info
->time_stamp
= jiffies
;
2861 buffer_info
->next_to_watch
= i
;
2862 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2870 if (i
== tx_ring
->count
)
2874 i
= ((i
== 0) ? tx_ring
->count
- 1 : i
- 1);
2875 tx_ring
->buffer_info
[i
].skb
= skb
;
2876 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2881 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2882 struct igb_ring
*tx_ring
,
2883 int tx_flags
, int count
, u32 paylen
,
2886 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2887 struct igb_buffer
*buffer_info
;
2888 u32 olinfo_status
= 0, cmd_type_len
;
2891 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2892 E1000_ADVTXD_DCMD_DEXT
);
2894 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2895 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2897 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2898 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2900 /* insert tcp checksum */
2901 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2903 /* insert ip checksum */
2904 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2905 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2907 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2908 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2911 if ((adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
) &&
2912 (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2913 IGB_TX_FLAGS_VLAN
)))
2914 olinfo_status
|= tx_ring
->queue_index
<< 4;
2916 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2918 i
= tx_ring
->next_to_use
;
2920 buffer_info
= &tx_ring
->buffer_info
[i
];
2921 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2922 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2923 tx_desc
->read
.cmd_type_len
=
2924 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2925 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2927 if (i
== tx_ring
->count
)
2931 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2932 /* Force memory writes to complete before letting h/w
2933 * know there are new descriptors to fetch. (Only
2934 * applicable for weak-ordered memory model archs,
2935 * such as IA-64). */
2938 tx_ring
->next_to_use
= i
;
2939 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2940 /* we need this if more than one processor can write to our tail
2941 * at a time, it syncronizes IO on IA64/Altix systems */
2945 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2946 struct igb_ring
*tx_ring
, int size
)
2948 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2950 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
2952 /* Herbert's original patch had:
2953 * smp_mb__after_netif_stop_queue();
2954 * but since that doesn't exist yet, just open code it. */
2957 /* We need to check again in a case another CPU has just
2958 * made room available. */
2959 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2963 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
2964 ++adapter
->restart_queue
;
2968 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2969 struct igb_ring
*tx_ring
, int size
)
2971 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2973 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2976 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2978 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2979 struct net_device
*netdev
,
2980 struct igb_ring
*tx_ring
)
2982 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2984 unsigned int tx_flags
= 0;
2989 len
= skb_headlen(skb
);
2991 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2992 dev_kfree_skb_any(skb
);
2993 return NETDEV_TX_OK
;
2996 if (skb
->len
<= 0) {
2997 dev_kfree_skb_any(skb
);
2998 return NETDEV_TX_OK
;
3001 /* need: 1 descriptor per page,
3002 * + 2 desc gap to keep tail from touching head,
3003 * + 1 desc for skb->data,
3004 * + 1 desc for context descriptor,
3005 * otherwise try next time */
3006 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
3007 /* this is a hard error */
3008 return NETDEV_TX_BUSY
;
3012 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3013 tx_flags
|= IGB_TX_FLAGS_VLAN
;
3014 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
3017 if (skb
->protocol
== htons(ETH_P_IP
))
3018 tx_flags
|= IGB_TX_FLAGS_IPV4
;
3020 first
= tx_ring
->next_to_use
;
3022 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
3026 dev_kfree_skb_any(skb
);
3027 return NETDEV_TX_OK
;
3031 tx_flags
|= IGB_TX_FLAGS_TSO
;
3032 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
3033 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
3034 tx_flags
|= IGB_TX_FLAGS_CSUM
;
3036 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
3037 igb_tx_map_adv(adapter
, tx_ring
, skb
, first
),
3040 netdev
->trans_start
= jiffies
;
3042 /* Make sure there is space in the ring for the next send. */
3043 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
3045 return NETDEV_TX_OK
;
3048 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
3050 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3051 struct igb_ring
*tx_ring
;
3054 r_idx
= skb
->queue_mapping
& (IGB_MAX_TX_QUEUES
- 1);
3055 tx_ring
= adapter
->multi_tx_table
[r_idx
];
3057 /* This goes back to the question of how to logically map a tx queue
3058 * to a flow. Right now, performance is impacted slightly negatively
3059 * if using multiple tx queues. If the stack breaks away from a
3060 * single qdisc implementation, we can look at this again. */
3061 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
3065 * igb_tx_timeout - Respond to a Tx Hang
3066 * @netdev: network interface device structure
3068 static void igb_tx_timeout(struct net_device
*netdev
)
3070 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3071 struct e1000_hw
*hw
= &adapter
->hw
;
3073 /* Do the reset outside of interrupt context */
3074 adapter
->tx_timeout_count
++;
3075 schedule_work(&adapter
->reset_task
);
3076 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
3077 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
3080 static void igb_reset_task(struct work_struct
*work
)
3082 struct igb_adapter
*adapter
;
3083 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
3085 igb_reinit_locked(adapter
);
3089 * igb_get_stats - Get System Network Statistics
3090 * @netdev: network interface device structure
3092 * Returns the address of the device statistics structure.
3093 * The statistics are actually updated from the timer callback.
3095 static struct net_device_stats
*
3096 igb_get_stats(struct net_device
*netdev
)
3098 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3100 /* only return the current stats */
3101 return &adapter
->net_stats
;
3105 * igb_change_mtu - Change the Maximum Transfer Unit
3106 * @netdev: network interface device structure
3107 * @new_mtu: new value for maximum frame size
3109 * Returns 0 on success, negative on failure
3111 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
3113 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3114 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3116 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3117 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3118 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
3122 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3123 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3124 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
3128 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
3130 /* igb_down has a dependency on max_frame_size */
3131 adapter
->max_frame_size
= max_frame
;
3132 if (netif_running(netdev
))
3135 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3136 * means we reserve 2 more, this pushes us to allocate from the next
3138 * i.e. RXBUFFER_2048 --> size-4096 slab
3141 if (max_frame
<= IGB_RXBUFFER_256
)
3142 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
3143 else if (max_frame
<= IGB_RXBUFFER_512
)
3144 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
3145 else if (max_frame
<= IGB_RXBUFFER_1024
)
3146 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3147 else if (max_frame
<= IGB_RXBUFFER_2048
)
3148 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
3150 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3151 adapter
->rx_buffer_len
= IGB_RXBUFFER_16384
;
3153 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
3155 /* adjust allocation if LPE protects us, and we aren't using SBP */
3156 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3157 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
3158 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3160 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
3161 netdev
->mtu
, new_mtu
);
3162 netdev
->mtu
= new_mtu
;
3164 if (netif_running(netdev
))
3169 clear_bit(__IGB_RESETTING
, &adapter
->state
);
3175 * igb_update_stats - Update the board statistics counters
3176 * @adapter: board private structure
3179 void igb_update_stats(struct igb_adapter
*adapter
)
3181 struct e1000_hw
*hw
= &adapter
->hw
;
3182 struct pci_dev
*pdev
= adapter
->pdev
;
3185 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3188 * Prevent stats update while adapter is being reset, or if the pci
3189 * connection is down.
3191 if (adapter
->link_speed
== 0)
3193 if (pci_channel_offline(pdev
))
3196 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
3197 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
3198 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
3199 rd32(E1000_GORCH
); /* clear GORCL */
3200 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
3201 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
3202 adapter
->stats
.roc
+= rd32(E1000_ROC
);
3204 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
3205 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
3206 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
3207 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
3208 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
3209 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
3210 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
3211 adapter
->stats
.sec
+= rd32(E1000_SEC
);
3213 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
3214 adapter
->stats
.scc
+= rd32(E1000_SCC
);
3215 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
3216 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
3217 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
3218 adapter
->stats
.dc
+= rd32(E1000_DC
);
3219 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
3220 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
3221 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
3222 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
3223 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
3224 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
3225 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
3226 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
3227 rd32(E1000_GOTCH
); /* clear GOTCL */
3228 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
3229 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
3230 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
3231 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
3232 adapter
->stats
.tor
+= rd32(E1000_TORH
);
3233 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
3234 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
3236 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
3237 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
3238 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
3239 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
3240 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
3241 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
3243 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
3244 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
3246 /* used for adaptive IFS */
3248 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
3249 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3250 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
3251 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3253 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
3254 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
3255 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
3256 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
3257 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
3259 adapter
->stats
.iac
+= rd32(E1000_IAC
);
3260 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
3261 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
3262 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
3263 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
3264 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
3265 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
3266 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
3267 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
3269 /* Fill out the OS statistics structure */
3270 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3271 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3275 /* RLEC on some newer hardware can be incorrect so build
3276 * our own version based on RUC and ROC */
3277 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3278 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3279 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3280 adapter
->stats
.cexterr
;
3281 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3283 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3284 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3285 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3288 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3289 adapter
->stats
.latecol
;
3290 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3291 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3292 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3294 /* Tx Dropped needs to be maintained elsewhere */
3297 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3298 if ((adapter
->link_speed
== SPEED_1000
) &&
3299 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
,
3301 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3302 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3306 /* Management Stats */
3307 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3308 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3309 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3313 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3315 struct net_device
*netdev
= data
;
3316 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3317 struct e1000_hw
*hw
= &adapter
->hw
;
3318 u32 icr
= rd32(E1000_ICR
);
3320 /* reading ICR causes bit 31 of EICR to be cleared */
3321 if (!(icr
& E1000_ICR_LSC
))
3322 goto no_link_interrupt
;
3323 hw
->mac
.get_link_status
= 1;
3324 /* guard against interrupt when we're going down */
3325 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3326 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3329 wr32(E1000_IMS
, E1000_IMS_LSC
);
3330 wr32(E1000_EIMS
, adapter
->eims_other
);
3335 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3337 struct igb_ring
*tx_ring
= data
;
3338 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3339 struct e1000_hw
*hw
= &adapter
->hw
;
3341 #ifdef CONFIG_IGB_DCA
3342 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3343 igb_update_tx_dca(tx_ring
);
3345 tx_ring
->total_bytes
= 0;
3346 tx_ring
->total_packets
= 0;
3348 /* auto mask will automatically reenable the interrupt when we write
3350 if (!igb_clean_tx_irq(tx_ring
))
3351 /* Ring was not completely cleaned, so fire another interrupt */
3352 wr32(E1000_EICS
, tx_ring
->eims_value
);
3354 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3359 static void igb_write_itr(struct igb_ring
*ring
)
3361 struct e1000_hw
*hw
= &ring
->adapter
->hw
;
3362 if ((ring
->adapter
->itr_setting
& 3) && ring
->set_itr
) {
3363 switch (hw
->mac
.type
) {
3365 wr32(ring
->itr_register
,
3370 wr32(ring
->itr_register
,
3372 (ring
->itr_val
<< 16));
3379 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3381 struct igb_ring
*rx_ring
= data
;
3383 /* Write the ITR value calculated at the end of the
3384 * previous interrupt.
3387 igb_write_itr(rx_ring
);
3389 if (napi_schedule_prep(&rx_ring
->napi
))
3390 __napi_schedule(&rx_ring
->napi
);
3392 #ifdef CONFIG_IGB_DCA
3393 if (rx_ring
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3394 igb_update_rx_dca(rx_ring
);
3399 #ifdef CONFIG_IGB_DCA
3400 static void igb_update_rx_dca(struct igb_ring
*rx_ring
)
3403 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3404 struct e1000_hw
*hw
= &adapter
->hw
;
3405 int cpu
= get_cpu();
3406 int q
= rx_ring
->reg_idx
;
3408 if (rx_ring
->cpu
!= cpu
) {
3409 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
3410 if (hw
->mac
.type
== e1000_82576
) {
3411 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
3412 dca_rxctrl
|= dca_get_tag(cpu
) <<
3413 E1000_DCA_RXCTRL_CPUID_SHIFT
;
3415 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
3416 dca_rxctrl
|= dca_get_tag(cpu
);
3418 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
3419 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
3420 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
3421 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
3427 static void igb_update_tx_dca(struct igb_ring
*tx_ring
)
3430 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3431 struct e1000_hw
*hw
= &adapter
->hw
;
3432 int cpu
= get_cpu();
3433 int q
= tx_ring
->reg_idx
;
3435 if (tx_ring
->cpu
!= cpu
) {
3436 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
3437 if (hw
->mac
.type
== e1000_82576
) {
3438 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
3439 dca_txctrl
|= dca_get_tag(cpu
) <<
3440 E1000_DCA_TXCTRL_CPUID_SHIFT
;
3442 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
3443 dca_txctrl
|= dca_get_tag(cpu
);
3445 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
3446 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
3452 static void igb_setup_dca(struct igb_adapter
*adapter
)
3456 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
3459 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3460 adapter
->tx_ring
[i
].cpu
= -1;
3461 igb_update_tx_dca(&adapter
->tx_ring
[i
]);
3463 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3464 adapter
->rx_ring
[i
].cpu
= -1;
3465 igb_update_rx_dca(&adapter
->rx_ring
[i
]);
3469 static int __igb_notify_dca(struct device
*dev
, void *data
)
3471 struct net_device
*netdev
= dev_get_drvdata(dev
);
3472 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3473 struct e1000_hw
*hw
= &adapter
->hw
;
3474 unsigned long event
= *(unsigned long *)data
;
3476 if (!(adapter
->flags
& IGB_FLAG_HAS_DCA
))
3480 case DCA_PROVIDER_ADD
:
3481 /* if already enabled, don't do it again */
3482 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3484 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3485 /* Always use CB2 mode, difference is masked
3486 * in the CB driver. */
3487 wr32(E1000_DCA_CTRL
, 2);
3488 if (dca_add_requester(dev
) == 0) {
3489 dev_info(&adapter
->pdev
->dev
, "DCA enabled\n");
3490 igb_setup_dca(adapter
);
3493 /* Fall Through since DCA is disabled. */
3494 case DCA_PROVIDER_REMOVE
:
3495 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3496 /* without this a class_device is left
3497 * hanging around in the sysfs model */
3498 dca_remove_requester(dev
);
3499 dev_info(&adapter
->pdev
->dev
, "DCA disabled\n");
3500 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3501 wr32(E1000_DCA_CTRL
, 1);
3509 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
3514 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
3517 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
3519 #endif /* CONFIG_IGB_DCA */
3522 * igb_intr_msi - Interrupt Handler
3523 * @irq: interrupt number
3524 * @data: pointer to a network interface device structure
3526 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3528 struct net_device
*netdev
= data
;
3529 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3530 struct e1000_hw
*hw
= &adapter
->hw
;
3531 /* read ICR disables interrupts using IAM */
3532 u32 icr
= rd32(E1000_ICR
);
3534 igb_write_itr(adapter
->rx_ring
);
3536 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3537 hw
->mac
.get_link_status
= 1;
3538 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3539 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3542 napi_schedule(&adapter
->rx_ring
[0].napi
);
3548 * igb_intr - Interrupt Handler
3549 * @irq: interrupt number
3550 * @data: pointer to a network interface device structure
3552 static irqreturn_t
igb_intr(int irq
, void *data
)
3554 struct net_device
*netdev
= data
;
3555 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3556 struct e1000_hw
*hw
= &adapter
->hw
;
3557 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3558 * need for the IMC write */
3559 u32 icr
= rd32(E1000_ICR
);
3562 return IRQ_NONE
; /* Not our interrupt */
3564 igb_write_itr(adapter
->rx_ring
);
3566 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3567 * not set, then the adapter didn't send an interrupt */
3568 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3571 eicr
= rd32(E1000_EICR
);
3573 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3574 hw
->mac
.get_link_status
= 1;
3575 /* guard against interrupt when we're going down */
3576 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3577 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3580 napi_schedule(&adapter
->rx_ring
[0].napi
);
3586 * igb_poll - NAPI Rx polling callback
3587 * @napi: napi polling structure
3588 * @budget: count of how many packets we should handle
3590 static int igb_poll(struct napi_struct
*napi
, int budget
)
3592 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3593 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3594 struct net_device
*netdev
= adapter
->netdev
;
3595 int tx_clean_complete
, work_done
= 0;
3597 /* this poll routine only supports one tx and one rx queue */
3598 #ifdef CONFIG_IGB_DCA
3599 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3600 igb_update_tx_dca(&adapter
->tx_ring
[0]);
3602 tx_clean_complete
= igb_clean_tx_irq(&adapter
->tx_ring
[0]);
3604 #ifdef CONFIG_IGB_DCA
3605 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3606 igb_update_rx_dca(&adapter
->rx_ring
[0]);
3608 igb_clean_rx_irq_adv(&adapter
->rx_ring
[0], &work_done
, budget
);
3610 /* If no Tx and not enough Rx work done, exit the polling mode */
3611 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3612 !netif_running(netdev
)) {
3613 if (adapter
->itr_setting
& 3)
3614 igb_set_itr(adapter
);
3615 napi_complete(napi
);
3616 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3617 igb_irq_enable(adapter
);
3624 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3626 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3627 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3628 struct e1000_hw
*hw
= &adapter
->hw
;
3629 struct net_device
*netdev
= adapter
->netdev
;
3632 #ifdef CONFIG_IGB_DCA
3633 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3634 igb_update_rx_dca(rx_ring
);
3636 igb_clean_rx_irq_adv(rx_ring
, &work_done
, budget
);
3639 /* If not enough Rx work done, exit the polling mode */
3640 if ((work_done
== 0) || !netif_running(netdev
)) {
3641 napi_complete(napi
);
3643 if (adapter
->itr_setting
& 3) {
3644 if (adapter
->num_rx_queues
== 1)
3645 igb_set_itr(adapter
);
3647 igb_update_ring_itr(rx_ring
);
3650 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3651 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3660 * igb_clean_tx_irq - Reclaim resources after transmit completes
3661 * @adapter: board private structure
3662 * returns true if ring is completely cleaned
3664 static bool igb_clean_tx_irq(struct igb_ring
*tx_ring
)
3666 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3667 struct net_device
*netdev
= adapter
->netdev
;
3668 struct e1000_hw
*hw
= &adapter
->hw
;
3669 struct igb_buffer
*buffer_info
;
3670 struct sk_buff
*skb
;
3671 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
3672 unsigned int total_bytes
= 0, total_packets
= 0;
3673 unsigned int i
, eop
, count
= 0;
3674 bool cleaned
= false;
3676 i
= tx_ring
->next_to_clean
;
3677 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3678 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
3680 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3681 (count
< tx_ring
->count
)) {
3682 for (cleaned
= false; !cleaned
; count
++) {
3683 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
3684 buffer_info
= &tx_ring
->buffer_info
[i
];
3685 cleaned
= (i
== eop
);
3686 skb
= buffer_info
->skb
;
3689 unsigned int segs
, bytecount
;
3690 /* gso_segs is currently only valid for tcp */
3691 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3692 /* multiply data chunks by size of headers */
3693 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3695 total_packets
+= segs
;
3696 total_bytes
+= bytecount
;
3699 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3700 tx_desc
->wb
.status
= 0;
3703 if (i
== tx_ring
->count
)
3707 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3708 eop_desc
= E1000_TX_DESC_ADV(*tx_ring
, eop
);
3711 tx_ring
->next_to_clean
= i
;
3713 if (unlikely(count
&&
3714 netif_carrier_ok(netdev
) &&
3715 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3716 /* Make sure that anybody stopping the queue after this
3717 * sees the new next_to_clean.
3720 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
3721 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3722 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
3723 ++adapter
->restart_queue
;
3727 if (tx_ring
->detect_tx_hung
) {
3728 /* Detect a transmit hang in hardware, this serializes the
3729 * check with the clearing of time_stamp and movement of i */
3730 tx_ring
->detect_tx_hung
= false;
3731 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3732 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3733 (adapter
->tx_timeout_factor
* HZ
))
3734 && !(rd32(E1000_STATUS
) &
3735 E1000_STATUS_TXOFF
)) {
3737 /* detected Tx unit hang */
3738 dev_err(&adapter
->pdev
->dev
,
3739 "Detected Tx Unit Hang\n"
3743 " next_to_use <%x>\n"
3744 " next_to_clean <%x>\n"
3745 "buffer_info[next_to_clean]\n"
3746 " time_stamp <%lx>\n"
3747 " next_to_watch <%x>\n"
3749 " desc.status <%x>\n",
3750 tx_ring
->queue_index
,
3751 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3752 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3753 tx_ring
->next_to_use
,
3754 tx_ring
->next_to_clean
,
3755 tx_ring
->buffer_info
[i
].time_stamp
,
3758 eop_desc
->wb
.status
);
3759 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
3762 tx_ring
->total_bytes
+= total_bytes
;
3763 tx_ring
->total_packets
+= total_packets
;
3764 tx_ring
->tx_stats
.bytes
+= total_bytes
;
3765 tx_ring
->tx_stats
.packets
+= total_packets
;
3766 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3767 adapter
->net_stats
.tx_packets
+= total_packets
;
3768 return (count
< tx_ring
->count
);
3771 #ifdef CONFIG_IGB_LRO
3773 * igb_get_skb_hdr - helper function for LRO header processing
3774 * @skb: pointer to sk_buff to be added to LRO packet
3775 * @iphdr: pointer to ip header structure
3776 * @tcph: pointer to tcp header structure
3777 * @hdr_flags: pointer to header flags
3778 * @priv: pointer to the receive descriptor for the current sk_buff
3780 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **iphdr
, void **tcph
,
3781 u64
*hdr_flags
, void *priv
)
3783 union e1000_adv_rx_desc
*rx_desc
= priv
;
3784 u16 pkt_type
= rx_desc
->wb
.lower
.lo_dword
.pkt_info
&
3785 (E1000_RXDADV_PKTTYPE_IPV4
| E1000_RXDADV_PKTTYPE_TCP
);
3787 /* Verify that this is a valid IPv4 TCP packet */
3788 if (pkt_type
!= (E1000_RXDADV_PKTTYPE_IPV4
|
3789 E1000_RXDADV_PKTTYPE_TCP
))
3792 /* Set network headers */
3793 skb_reset_network_header(skb
);
3794 skb_set_transport_header(skb
, ip_hdrlen(skb
));
3795 *iphdr
= ip_hdr(skb
);
3796 *tcph
= tcp_hdr(skb
);
3797 *hdr_flags
= LRO_IPV4
| LRO_TCP
;
3802 #endif /* CONFIG_IGB_LRO */
3805 * igb_receive_skb - helper function to handle rx indications
3806 * @ring: pointer to receive ring receving this packet
3807 * @status: descriptor status field as written by hardware
3808 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3809 * @skb: pointer to sk_buff to be indicated to stack
3811 static void igb_receive_skb(struct igb_ring
*ring
, u8 status
,
3812 union e1000_adv_rx_desc
* rx_desc
,
3813 struct sk_buff
*skb
)
3815 struct igb_adapter
* adapter
= ring
->adapter
;
3816 bool vlan_extracted
= (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
));
3818 #ifdef CONFIG_IGB_LRO
3819 if (adapter
->netdev
->features
& NETIF_F_LRO
&&
3820 skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3822 lro_vlan_hwaccel_receive_skb(&ring
->lro_mgr
, skb
,
3824 le16_to_cpu(rx_desc
->wb
.upper
.vlan
),
3827 lro_receive_skb(&ring
->lro_mgr
,skb
, rx_desc
);
3832 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3833 le16_to_cpu(rx_desc
->wb
.upper
.vlan
));
3836 netif_receive_skb(skb
);
3837 #ifdef CONFIG_IGB_LRO
3843 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3844 u32 status_err
, struct sk_buff
*skb
)
3846 skb
->ip_summed
= CHECKSUM_NONE
;
3848 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3849 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3851 /* TCP/UDP checksum error bit is set */
3853 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3854 /* let the stack verify checksum errors */
3855 adapter
->hw_csum_err
++;
3858 /* It must be a TCP or UDP packet with a valid checksum */
3859 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3860 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3862 adapter
->hw_csum_good
++;
3865 static bool igb_clean_rx_irq_adv(struct igb_ring
*rx_ring
,
3866 int *work_done
, int budget
)
3868 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3869 struct net_device
*netdev
= adapter
->netdev
;
3870 struct pci_dev
*pdev
= adapter
->pdev
;
3871 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3872 struct igb_buffer
*buffer_info
, *next_buffer
;
3873 struct sk_buff
*skb
;
3875 u32 length
, hlen
, staterr
;
3876 bool cleaned
= false;
3877 int cleaned_count
= 0;
3878 unsigned int total_bytes
= 0, total_packets
= 0;
3880 i
= rx_ring
->next_to_clean
;
3881 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3882 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3884 while (staterr
& E1000_RXD_STAT_DD
) {
3885 if (*work_done
>= budget
)
3888 buffer_info
= &rx_ring
->buffer_info
[i
];
3890 /* HW will not DMA in data larger than the given buffer, even
3891 * if it parses the (NFS, of course) header to be larger. In
3892 * that case, it fills the header buffer and spills the rest
3895 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
3896 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
3897 if (hlen
> adapter
->rx_ps_hdr_size
)
3898 hlen
= adapter
->rx_ps_hdr_size
;
3900 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3904 skb
= buffer_info
->skb
;
3905 prefetch(skb
->data
- NET_IP_ALIGN
);
3906 buffer_info
->skb
= NULL
;
3907 if (!adapter
->rx_ps_hdr_size
) {
3908 pci_unmap_single(pdev
, buffer_info
->dma
,
3909 adapter
->rx_buffer_len
+
3911 PCI_DMA_FROMDEVICE
);
3912 skb_put(skb
, length
);
3916 if (!skb_shinfo(skb
)->nr_frags
) {
3917 pci_unmap_single(pdev
, buffer_info
->dma
,
3918 adapter
->rx_ps_hdr_size
+
3920 PCI_DMA_FROMDEVICE
);
3925 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3926 PAGE_SIZE
/ 2, PCI_DMA_FROMDEVICE
);
3927 buffer_info
->page_dma
= 0;
3929 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
3931 buffer_info
->page_offset
,
3934 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
3935 (page_count(buffer_info
->page
) != 1))
3936 buffer_info
->page
= NULL
;
3938 get_page(buffer_info
->page
);
3941 skb
->data_len
+= length
;
3943 skb
->truesize
+= length
;
3947 if (i
== rx_ring
->count
)
3949 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3951 next_buffer
= &rx_ring
->buffer_info
[i
];
3953 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
3954 buffer_info
->skb
= next_buffer
->skb
;
3955 buffer_info
->dma
= next_buffer
->dma
;
3956 next_buffer
->skb
= skb
;
3957 next_buffer
->dma
= 0;
3961 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3962 dev_kfree_skb_irq(skb
);
3966 total_bytes
+= skb
->len
;
3969 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3971 skb
->protocol
= eth_type_trans(skb
, netdev
);
3973 igb_receive_skb(rx_ring
, staterr
, rx_desc
, skb
);
3976 rx_desc
->wb
.upper
.status_error
= 0;
3978 /* return some buffers to hardware, one at a time is too slow */
3979 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3980 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
3984 /* use prefetched values */
3986 buffer_info
= next_buffer
;
3988 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3991 rx_ring
->next_to_clean
= i
;
3992 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3994 #ifdef CONFIG_IGB_LRO
3995 if (rx_ring
->lro_used
) {
3996 lro_flush_all(&rx_ring
->lro_mgr
);
3997 rx_ring
->lro_used
= 0;
4002 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
4004 rx_ring
->total_packets
+= total_packets
;
4005 rx_ring
->total_bytes
+= total_bytes
;
4006 rx_ring
->rx_stats
.packets
+= total_packets
;
4007 rx_ring
->rx_stats
.bytes
+= total_bytes
;
4008 adapter
->net_stats
.rx_bytes
+= total_bytes
;
4009 adapter
->net_stats
.rx_packets
+= total_packets
;
4015 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4016 * @adapter: address of board private structure
4018 static void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
,
4021 struct igb_adapter
*adapter
= rx_ring
->adapter
;
4022 struct net_device
*netdev
= adapter
->netdev
;
4023 struct pci_dev
*pdev
= adapter
->pdev
;
4024 union e1000_adv_rx_desc
*rx_desc
;
4025 struct igb_buffer
*buffer_info
;
4026 struct sk_buff
*skb
;
4029 i
= rx_ring
->next_to_use
;
4030 buffer_info
= &rx_ring
->buffer_info
[i
];
4032 while (cleaned_count
--) {
4033 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4035 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
4036 if (!buffer_info
->page
) {
4037 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4038 if (!buffer_info
->page
) {
4039 adapter
->alloc_rx_buff_failed
++;
4042 buffer_info
->page_offset
= 0;
4044 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
4046 buffer_info
->page_dma
=
4049 buffer_info
->page_offset
,
4051 PCI_DMA_FROMDEVICE
);
4054 if (!buffer_info
->skb
) {
4057 if (adapter
->rx_ps_hdr_size
)
4058 bufsz
= adapter
->rx_ps_hdr_size
;
4060 bufsz
= adapter
->rx_buffer_len
;
4061 bufsz
+= NET_IP_ALIGN
;
4062 skb
= netdev_alloc_skb(netdev
, bufsz
);
4065 adapter
->alloc_rx_buff_failed
++;
4069 /* Make buffer alignment 2 beyond a 16 byte boundary
4070 * this will result in a 16 byte aligned IP header after
4071 * the 14 byte MAC header is removed
4073 skb_reserve(skb
, NET_IP_ALIGN
);
4075 buffer_info
->skb
= skb
;
4076 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4078 PCI_DMA_FROMDEVICE
);
4081 /* Refresh the desc even if buffer_addrs didn't change because
4082 * each write-back erases this info. */
4083 if (adapter
->rx_ps_hdr_size
) {
4084 rx_desc
->read
.pkt_addr
=
4085 cpu_to_le64(buffer_info
->page_dma
);
4086 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
4088 rx_desc
->read
.pkt_addr
=
4089 cpu_to_le64(buffer_info
->dma
);
4090 rx_desc
->read
.hdr_addr
= 0;
4094 if (i
== rx_ring
->count
)
4096 buffer_info
= &rx_ring
->buffer_info
[i
];
4100 if (rx_ring
->next_to_use
!= i
) {
4101 rx_ring
->next_to_use
= i
;
4103 i
= (rx_ring
->count
- 1);
4107 /* Force memory writes to complete before letting h/w
4108 * know there are new descriptors to fetch. (Only
4109 * applicable for weak-ordered memory model archs,
4110 * such as IA-64). */
4112 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
4122 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4124 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4125 struct mii_ioctl_data
*data
= if_mii(ifr
);
4127 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4132 data
->phy_id
= adapter
->hw
.phy
.addr
;
4135 if (!capable(CAP_NET_ADMIN
))
4137 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4154 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4160 return igb_mii_ioctl(netdev
, ifr
, cmd
);
4166 static void igb_vlan_rx_register(struct net_device
*netdev
,
4167 struct vlan_group
*grp
)
4169 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4170 struct e1000_hw
*hw
= &adapter
->hw
;
4173 igb_irq_disable(adapter
);
4174 adapter
->vlgrp
= grp
;
4177 /* enable VLAN tag insert/strip */
4178 ctrl
= rd32(E1000_CTRL
);
4179 ctrl
|= E1000_CTRL_VME
;
4180 wr32(E1000_CTRL
, ctrl
);
4182 /* enable VLAN receive filtering */
4183 rctl
= rd32(E1000_RCTL
);
4184 rctl
&= ~E1000_RCTL_CFIEN
;
4185 wr32(E1000_RCTL
, rctl
);
4186 igb_update_mng_vlan(adapter
);
4188 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
4190 /* disable VLAN tag insert/strip */
4191 ctrl
= rd32(E1000_CTRL
);
4192 ctrl
&= ~E1000_CTRL_VME
;
4193 wr32(E1000_CTRL
, ctrl
);
4195 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
4196 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4197 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
4200 adapter
->max_frame_size
);
4203 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4204 igb_irq_enable(adapter
);
4207 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4209 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4210 struct e1000_hw
*hw
= &adapter
->hw
;
4213 if ((adapter
->hw
.mng_cookie
.status
&
4214 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4215 (vid
== adapter
->mng_vlan_id
))
4217 /* add VID to filter table */
4218 index
= (vid
>> 5) & 0x7F;
4219 vfta
= array_rd32(E1000_VFTA
, index
);
4220 vfta
|= (1 << (vid
& 0x1F));
4221 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4224 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4226 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4227 struct e1000_hw
*hw
= &adapter
->hw
;
4230 igb_irq_disable(adapter
);
4231 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4233 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4234 igb_irq_enable(adapter
);
4236 if ((adapter
->hw
.mng_cookie
.status
&
4237 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4238 (vid
== adapter
->mng_vlan_id
)) {
4239 /* release control to f/w */
4240 igb_release_hw_control(adapter
);
4244 /* remove VID from filter table */
4245 index
= (vid
>> 5) & 0x7F;
4246 vfta
= array_rd32(E1000_VFTA
, index
);
4247 vfta
&= ~(1 << (vid
& 0x1F));
4248 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4251 static void igb_restore_vlan(struct igb_adapter
*adapter
)
4253 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4255 if (adapter
->vlgrp
) {
4257 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4258 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4260 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
4265 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
4267 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4271 /* Fiber NICs only allow 1000 gbps Full duplex */
4272 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
4273 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4274 dev_err(&adapter
->pdev
->dev
,
4275 "Unsupported Speed/Duplex configuration\n");
4280 case SPEED_10
+ DUPLEX_HALF
:
4281 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
4283 case SPEED_10
+ DUPLEX_FULL
:
4284 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
4286 case SPEED_100
+ DUPLEX_HALF
:
4287 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
4289 case SPEED_100
+ DUPLEX_FULL
:
4290 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
4292 case SPEED_1000
+ DUPLEX_FULL
:
4294 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4296 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4298 dev_err(&adapter
->pdev
->dev
,
4299 "Unsupported Speed/Duplex configuration\n");
4306 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4308 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4309 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4310 struct e1000_hw
*hw
= &adapter
->hw
;
4311 u32 ctrl
, rctl
, status
;
4312 u32 wufc
= adapter
->wol
;
4317 netif_device_detach(netdev
);
4319 if (netif_running(netdev
))
4322 igb_reset_interrupt_capability(adapter
);
4324 igb_free_queues(adapter
);
4327 retval
= pci_save_state(pdev
);
4332 status
= rd32(E1000_STATUS
);
4333 if (status
& E1000_STATUS_LU
)
4334 wufc
&= ~E1000_WUFC_LNKC
;
4337 igb_setup_rctl(adapter
);
4338 igb_set_multi(netdev
);
4340 /* turn on all-multi mode if wake on multicast is enabled */
4341 if (wufc
& E1000_WUFC_MC
) {
4342 rctl
= rd32(E1000_RCTL
);
4343 rctl
|= E1000_RCTL_MPE
;
4344 wr32(E1000_RCTL
, rctl
);
4347 ctrl
= rd32(E1000_CTRL
);
4348 /* advertise wake from D3Cold */
4349 #define E1000_CTRL_ADVD3WUC 0x00100000
4350 /* phy power management enable */
4351 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4352 ctrl
|= E1000_CTRL_ADVD3WUC
;
4353 wr32(E1000_CTRL
, ctrl
);
4355 /* Allow time for pending master requests to run */
4356 igb_disable_pcie_master(&adapter
->hw
);
4358 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
4359 wr32(E1000_WUFC
, wufc
);
4362 wr32(E1000_WUFC
, 0);
4365 /* make sure adapter isn't asleep if manageability/wol is enabled */
4366 if (wufc
|| adapter
->en_mng_pt
) {
4367 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4368 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4370 igb_shutdown_fiber_serdes_link_82575(hw
);
4371 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4372 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4375 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4376 * would have already happened in close and is redundant. */
4377 igb_release_hw_control(adapter
);
4379 pci_disable_device(pdev
);
4381 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4387 static int igb_resume(struct pci_dev
*pdev
)
4389 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4390 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4391 struct e1000_hw
*hw
= &adapter
->hw
;
4394 pci_set_power_state(pdev
, PCI_D0
);
4395 pci_restore_state(pdev
);
4397 if (adapter
->need_ioport
)
4398 err
= pci_enable_device(pdev
);
4400 err
= pci_enable_device_mem(pdev
);
4403 "igb: Cannot enable PCI device from suspend\n");
4406 pci_set_master(pdev
);
4408 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4409 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4411 igb_set_interrupt_capability(adapter
);
4413 if (igb_alloc_queues(adapter
)) {
4414 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
4418 /* e1000_power_up_phy(adapter); */
4421 wr32(E1000_WUS
, ~0);
4423 if (netif_running(netdev
)) {
4424 err
= igb_open(netdev
);
4429 netif_device_attach(netdev
);
4431 /* let the f/w know that the h/w is now under the control of the
4433 igb_get_hw_control(adapter
);
4439 static void igb_shutdown(struct pci_dev
*pdev
)
4441 igb_suspend(pdev
, PMSG_SUSPEND
);
4444 #ifdef CONFIG_NET_POLL_CONTROLLER
4446 * Polling 'interrupt' - used by things like netconsole to send skbs
4447 * without having to re-enable interrupts. It's not called while
4448 * the interrupt routine is executing.
4450 static void igb_netpoll(struct net_device
*netdev
)
4452 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4456 igb_irq_disable(adapter
);
4457 adapter
->flags
|= IGB_FLAG_IN_NETPOLL
;
4459 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4460 igb_clean_tx_irq(&adapter
->tx_ring
[i
]);
4462 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4463 igb_clean_rx_irq_adv(&adapter
->rx_ring
[i
],
4465 adapter
->rx_ring
[i
].napi
.weight
);
4467 adapter
->flags
&= ~IGB_FLAG_IN_NETPOLL
;
4468 igb_irq_enable(adapter
);
4470 #endif /* CONFIG_NET_POLL_CONTROLLER */
4473 * igb_io_error_detected - called when PCI error is detected
4474 * @pdev: Pointer to PCI device
4475 * @state: The current pci connection state
4477 * This function is called after a PCI bus error affecting
4478 * this device has been detected.
4480 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4481 pci_channel_state_t state
)
4483 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4484 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4486 netif_device_detach(netdev
);
4488 if (netif_running(netdev
))
4490 pci_disable_device(pdev
);
4492 /* Request a slot slot reset. */
4493 return PCI_ERS_RESULT_NEED_RESET
;
4497 * igb_io_slot_reset - called after the pci bus has been reset.
4498 * @pdev: Pointer to PCI device
4500 * Restart the card from scratch, as if from a cold-boot. Implementation
4501 * resembles the first-half of the igb_resume routine.
4503 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4505 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4506 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4507 struct e1000_hw
*hw
= &adapter
->hw
;
4508 pci_ers_result_t result
;
4511 if (adapter
->need_ioport
)
4512 err
= pci_enable_device(pdev
);
4514 err
= pci_enable_device_mem(pdev
);
4518 "Cannot re-enable PCI device after reset.\n");
4519 result
= PCI_ERS_RESULT_DISCONNECT
;
4521 pci_set_master(pdev
);
4522 pci_restore_state(pdev
);
4524 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4525 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4528 wr32(E1000_WUS
, ~0);
4529 result
= PCI_ERS_RESULT_RECOVERED
;
4532 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
4534 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
4535 "failed 0x%0x\n", err
);
4536 /* non-fatal, continue */
4543 * igb_io_resume - called when traffic can start flowing again.
4544 * @pdev: Pointer to PCI device
4546 * This callback is called when the error recovery driver tells us that
4547 * its OK to resume normal operation. Implementation resembles the
4548 * second-half of the igb_resume routine.
4550 static void igb_io_resume(struct pci_dev
*pdev
)
4552 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4553 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4555 if (netif_running(netdev
)) {
4556 if (igb_up(adapter
)) {
4557 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4562 netif_device_attach(netdev
);
4564 /* let the f/w know that the h/w is now under the control of the
4566 igb_get_hw_control(adapter
);