1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2008 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50 #include <linux/log2.h>
56 #define FW_BUF_SIZE 0x10000
58 #define DRV_MODULE_NAME "bnx2"
59 #define PFX DRV_MODULE_NAME ": "
60 #define DRV_MODULE_VERSION "1.9.0"
61 #define DRV_MODULE_RELDATE "Dec 16, 2008"
63 #define RUN_AT(x) (jiffies + (x))
65 /* Time in jiffies before concluding the transmitter is hung. */
66 #define TX_TIMEOUT (5*HZ)
68 static char version
[] __devinitdata
=
69 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
71 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
72 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_MODULE_VERSION
);
76 static int disable_msi
= 0;
78 module_param(disable_msi
, int, 0);
79 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
95 /* indexed by board_t, above */
98 } board_info
[] __devinitdata
= {
99 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
100 { "HP NC370T Multifunction Gigabit Server Adapter" },
101 { "HP NC370i Multifunction Gigabit Server Adapter" },
102 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
103 { "HP NC370F Multifunction Gigabit Server Adapter" },
104 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
105 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
106 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
107 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
108 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
109 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
112 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
113 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
114 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
115 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
116 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
117 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
118 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
119 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
120 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
121 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
122 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
124 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
126 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
131 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
132 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
133 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
138 static struct flash_spec flash_table
[] =
140 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
141 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
143 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
144 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
145 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
147 /* Expansion entry 0001 */
148 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
149 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
150 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
152 /* Saifun SA25F010 (non-buffered flash) */
153 /* strap, cfg1, & write1 need updates */
154 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
155 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
156 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
157 "Non-buffered flash (128kB)"},
158 /* Saifun SA25F020 (non-buffered flash) */
159 /* strap, cfg1, & write1 need updates */
160 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
162 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
163 "Non-buffered flash (256kB)"},
164 /* Expansion entry 0100 */
165 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
167 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
169 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
170 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
172 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
173 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
174 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
175 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
177 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
178 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
179 /* Saifun SA25F005 (non-buffered flash) */
180 /* strap, cfg1, & write1 need updates */
181 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
183 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
184 "Non-buffered flash (64kB)"},
186 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
187 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
188 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
190 /* Expansion entry 1001 */
191 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
193 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
195 /* Expansion entry 1010 */
196 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
197 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
198 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
200 /* ATMEL AT45DB011B (buffered flash) */
201 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
202 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
203 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
204 "Buffered flash (128kB)"},
205 /* Expansion entry 1100 */
206 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
208 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
210 /* Expansion entry 1101 */
211 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
213 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
215 /* Ateml Expansion entry 1110 */
216 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
217 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
218 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
219 "Entry 1110 (Atmel)"},
220 /* ATMEL AT45DB021B (buffered flash) */
221 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
222 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
223 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
224 "Buffered flash (256kB)"},
227 static struct flash_spec flash_5709
= {
228 .flags
= BNX2_NV_BUFFERED
,
229 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
230 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
231 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
232 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
233 .name
= "5709 Buffered flash (256kB)",
236 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
238 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
244 /* The ring uses 256 indices for 255 entries, one of them
245 * needs to be skipped.
247 diff
= txr
->tx_prod
- txr
->tx_cons
;
248 if (unlikely(diff
>= TX_DESC_CNT
)) {
250 if (diff
== TX_DESC_CNT
)
251 diff
= MAX_TX_DESC_CNT
;
253 return (bp
->tx_ring_size
- diff
);
257 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
261 spin_lock_bh(&bp
->indirect_lock
);
262 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
263 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
264 spin_unlock_bh(&bp
->indirect_lock
);
269 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
271 spin_lock_bh(&bp
->indirect_lock
);
272 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
273 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
274 spin_unlock_bh(&bp
->indirect_lock
);
278 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
280 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
284 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
286 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
290 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
293 spin_lock_bh(&bp
->indirect_lock
);
294 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
297 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
298 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
299 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
300 for (i
= 0; i
< 5; i
++) {
301 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
302 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
307 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
308 REG_WR(bp
, BNX2_CTX_DATA
, val
);
310 spin_unlock_bh(&bp
->indirect_lock
);
314 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
319 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
320 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
321 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
323 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
324 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
329 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
330 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
331 BNX2_EMAC_MDIO_COMM_START_BUSY
;
332 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
334 for (i
= 0; i
< 50; i
++) {
337 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
338 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
341 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
342 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
348 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
357 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
358 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
359 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
361 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
362 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
371 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
376 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
377 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
378 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
380 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
381 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
386 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
387 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
388 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
389 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
391 for (i
= 0; i
< 50; i
++) {
394 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
395 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
401 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
406 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
407 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
408 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
410 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
411 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
420 bnx2_disable_int(struct bnx2
*bp
)
423 struct bnx2_napi
*bnapi
;
425 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
426 bnapi
= &bp
->bnx2_napi
[i
];
427 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
428 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
430 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
434 bnx2_enable_int(struct bnx2
*bp
)
437 struct bnx2_napi
*bnapi
;
439 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
440 bnapi
= &bp
->bnx2_napi
[i
];
442 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
443 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
444 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
445 bnapi
->last_status_idx
);
447 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
448 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
449 bnapi
->last_status_idx
);
451 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
455 bnx2_disable_int_sync(struct bnx2
*bp
)
459 atomic_inc(&bp
->intr_sem
);
460 bnx2_disable_int(bp
);
461 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
462 synchronize_irq(bp
->irq_tbl
[i
].vector
);
466 bnx2_napi_disable(struct bnx2
*bp
)
470 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
471 napi_disable(&bp
->bnx2_napi
[i
].napi
);
475 bnx2_napi_enable(struct bnx2
*bp
)
479 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
480 napi_enable(&bp
->bnx2_napi
[i
].napi
);
484 bnx2_netif_stop(struct bnx2
*bp
)
486 bnx2_disable_int_sync(bp
);
487 if (netif_running(bp
->dev
)) {
488 bnx2_napi_disable(bp
);
489 netif_tx_disable(bp
->dev
);
490 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
495 bnx2_netif_start(struct bnx2
*bp
)
497 if (atomic_dec_and_test(&bp
->intr_sem
)) {
498 if (netif_running(bp
->dev
)) {
499 netif_tx_wake_all_queues(bp
->dev
);
500 bnx2_napi_enable(bp
);
507 bnx2_free_tx_mem(struct bnx2
*bp
)
511 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
512 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
513 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
515 if (txr
->tx_desc_ring
) {
516 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
518 txr
->tx_desc_mapping
);
519 txr
->tx_desc_ring
= NULL
;
521 kfree(txr
->tx_buf_ring
);
522 txr
->tx_buf_ring
= NULL
;
527 bnx2_free_rx_mem(struct bnx2
*bp
)
531 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
532 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
533 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
536 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
537 if (rxr
->rx_desc_ring
[j
])
538 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
539 rxr
->rx_desc_ring
[j
],
540 rxr
->rx_desc_mapping
[j
]);
541 rxr
->rx_desc_ring
[j
] = NULL
;
543 if (rxr
->rx_buf_ring
)
544 vfree(rxr
->rx_buf_ring
);
545 rxr
->rx_buf_ring
= NULL
;
547 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
548 if (rxr
->rx_pg_desc_ring
[j
])
549 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
550 rxr
->rx_pg_desc_ring
[j
],
551 rxr
->rx_pg_desc_mapping
[j
]);
552 rxr
->rx_pg_desc_ring
[j
] = NULL
;
555 vfree(rxr
->rx_pg_ring
);
556 rxr
->rx_pg_ring
= NULL
;
561 bnx2_alloc_tx_mem(struct bnx2
*bp
)
565 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
566 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
567 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
569 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
570 if (txr
->tx_buf_ring
== NULL
)
574 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
575 &txr
->tx_desc_mapping
);
576 if (txr
->tx_desc_ring
== NULL
)
583 bnx2_alloc_rx_mem(struct bnx2
*bp
)
587 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
588 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
589 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
593 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
594 if (rxr
->rx_buf_ring
== NULL
)
597 memset(rxr
->rx_buf_ring
, 0,
598 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
600 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
601 rxr
->rx_desc_ring
[j
] =
602 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
603 &rxr
->rx_desc_mapping
[j
]);
604 if (rxr
->rx_desc_ring
[j
] == NULL
)
609 if (bp
->rx_pg_ring_size
) {
610 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
612 if (rxr
->rx_pg_ring
== NULL
)
615 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
619 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
620 rxr
->rx_pg_desc_ring
[j
] =
621 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
622 &rxr
->rx_pg_desc_mapping
[j
]);
623 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
632 bnx2_free_mem(struct bnx2
*bp
)
635 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
637 bnx2_free_tx_mem(bp
);
638 bnx2_free_rx_mem(bp
);
640 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
641 if (bp
->ctx_blk
[i
]) {
642 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
644 bp
->ctx_blk_mapping
[i
]);
645 bp
->ctx_blk
[i
] = NULL
;
648 if (bnapi
->status_blk
.msi
) {
649 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
650 bnapi
->status_blk
.msi
,
651 bp
->status_blk_mapping
);
652 bnapi
->status_blk
.msi
= NULL
;
653 bp
->stats_blk
= NULL
;
658 bnx2_alloc_mem(struct bnx2
*bp
)
660 int i
, status_blk_size
, err
;
661 struct bnx2_napi
*bnapi
;
664 /* Combine status and statistics blocks into one allocation. */
665 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
666 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
667 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
668 BNX2_SBLK_MSIX_ALIGN_SIZE
);
669 bp
->status_stats_size
= status_blk_size
+
670 sizeof(struct statistics_block
);
672 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
673 &bp
->status_blk_mapping
);
674 if (status_blk
== NULL
)
677 memset(status_blk
, 0, bp
->status_stats_size
);
679 bnapi
= &bp
->bnx2_napi
[0];
680 bnapi
->status_blk
.msi
= status_blk
;
681 bnapi
->hw_tx_cons_ptr
=
682 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
683 bnapi
->hw_rx_cons_ptr
=
684 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
685 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
686 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
687 struct status_block_msix
*sblk
;
689 bnapi
= &bp
->bnx2_napi
[i
];
691 sblk
= (void *) (status_blk
+
692 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
693 bnapi
->status_blk
.msix
= sblk
;
694 bnapi
->hw_tx_cons_ptr
=
695 &sblk
->status_tx_quick_consumer_index
;
696 bnapi
->hw_rx_cons_ptr
=
697 &sblk
->status_rx_quick_consumer_index
;
698 bnapi
->int_num
= i
<< 24;
702 bp
->stats_blk
= status_blk
+ status_blk_size
;
704 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
706 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
707 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
708 if (bp
->ctx_pages
== 0)
710 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
711 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
713 &bp
->ctx_blk_mapping
[i
]);
714 if (bp
->ctx_blk
[i
] == NULL
)
719 err
= bnx2_alloc_rx_mem(bp
);
723 err
= bnx2_alloc_tx_mem(bp
);
735 bnx2_report_fw_link(struct bnx2
*bp
)
737 u32 fw_link_status
= 0;
739 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
745 switch (bp
->line_speed
) {
747 if (bp
->duplex
== DUPLEX_HALF
)
748 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
750 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
753 if (bp
->duplex
== DUPLEX_HALF
)
754 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
756 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
759 if (bp
->duplex
== DUPLEX_HALF
)
760 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
762 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
765 if (bp
->duplex
== DUPLEX_HALF
)
766 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
768 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
772 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
775 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
777 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
778 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
780 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
781 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
782 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
784 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
788 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
790 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
794 bnx2_xceiver_str(struct bnx2
*bp
)
796 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
797 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
802 bnx2_report_link(struct bnx2
*bp
)
805 netif_carrier_on(bp
->dev
);
806 printk(KERN_INFO PFX
"%s NIC %s Link is Up, ", bp
->dev
->name
,
807 bnx2_xceiver_str(bp
));
809 printk("%d Mbps ", bp
->line_speed
);
811 if (bp
->duplex
== DUPLEX_FULL
)
812 printk("full duplex");
814 printk("half duplex");
817 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
818 printk(", receive ");
819 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
820 printk("& transmit ");
823 printk(", transmit ");
825 printk("flow control ON");
830 netif_carrier_off(bp
->dev
);
831 printk(KERN_ERR PFX
"%s NIC %s Link is Down\n", bp
->dev
->name
,
832 bnx2_xceiver_str(bp
));
835 bnx2_report_fw_link(bp
);
839 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
841 u32 local_adv
, remote_adv
;
844 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
845 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
847 if (bp
->duplex
== DUPLEX_FULL
) {
848 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
853 if (bp
->duplex
!= DUPLEX_FULL
) {
857 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
858 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
861 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
862 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
863 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
864 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
865 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
869 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
870 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
872 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
873 u32 new_local_adv
= 0;
874 u32 new_remote_adv
= 0;
876 if (local_adv
& ADVERTISE_1000XPAUSE
)
877 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
878 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
879 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
880 if (remote_adv
& ADVERTISE_1000XPAUSE
)
881 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
882 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
883 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
885 local_adv
= new_local_adv
;
886 remote_adv
= new_remote_adv
;
889 /* See Table 28B-3 of 802.3ab-1999 spec. */
890 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
891 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
892 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
893 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
895 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
896 bp
->flow_ctrl
= FLOW_CTRL_RX
;
900 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
901 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
905 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
906 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
907 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
909 bp
->flow_ctrl
= FLOW_CTRL_TX
;
915 bnx2_5709s_linkup(struct bnx2
*bp
)
921 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
922 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
923 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
925 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
926 bp
->line_speed
= bp
->req_line_speed
;
927 bp
->duplex
= bp
->req_duplex
;
930 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
932 case MII_BNX2_GP_TOP_AN_SPEED_10
:
933 bp
->line_speed
= SPEED_10
;
935 case MII_BNX2_GP_TOP_AN_SPEED_100
:
936 bp
->line_speed
= SPEED_100
;
938 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
939 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
940 bp
->line_speed
= SPEED_1000
;
942 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
943 bp
->line_speed
= SPEED_2500
;
946 if (val
& MII_BNX2_GP_TOP_AN_FD
)
947 bp
->duplex
= DUPLEX_FULL
;
949 bp
->duplex
= DUPLEX_HALF
;
954 bnx2_5708s_linkup(struct bnx2
*bp
)
959 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
960 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
961 case BCM5708S_1000X_STAT1_SPEED_10
:
962 bp
->line_speed
= SPEED_10
;
964 case BCM5708S_1000X_STAT1_SPEED_100
:
965 bp
->line_speed
= SPEED_100
;
967 case BCM5708S_1000X_STAT1_SPEED_1G
:
968 bp
->line_speed
= SPEED_1000
;
970 case BCM5708S_1000X_STAT1_SPEED_2G5
:
971 bp
->line_speed
= SPEED_2500
;
974 if (val
& BCM5708S_1000X_STAT1_FD
)
975 bp
->duplex
= DUPLEX_FULL
;
977 bp
->duplex
= DUPLEX_HALF
;
983 bnx2_5706s_linkup(struct bnx2
*bp
)
985 u32 bmcr
, local_adv
, remote_adv
, common
;
988 bp
->line_speed
= SPEED_1000
;
990 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
991 if (bmcr
& BMCR_FULLDPLX
) {
992 bp
->duplex
= DUPLEX_FULL
;
995 bp
->duplex
= DUPLEX_HALF
;
998 if (!(bmcr
& BMCR_ANENABLE
)) {
1002 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1003 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1005 common
= local_adv
& remote_adv
;
1006 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1008 if (common
& ADVERTISE_1000XFULL
) {
1009 bp
->duplex
= DUPLEX_FULL
;
1012 bp
->duplex
= DUPLEX_HALF
;
1020 bnx2_copper_linkup(struct bnx2
*bp
)
1024 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1025 if (bmcr
& BMCR_ANENABLE
) {
1026 u32 local_adv
, remote_adv
, common
;
1028 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1029 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1031 common
= local_adv
& (remote_adv
>> 2);
1032 if (common
& ADVERTISE_1000FULL
) {
1033 bp
->line_speed
= SPEED_1000
;
1034 bp
->duplex
= DUPLEX_FULL
;
1036 else if (common
& ADVERTISE_1000HALF
) {
1037 bp
->line_speed
= SPEED_1000
;
1038 bp
->duplex
= DUPLEX_HALF
;
1041 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1042 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1044 common
= local_adv
& remote_adv
;
1045 if (common
& ADVERTISE_100FULL
) {
1046 bp
->line_speed
= SPEED_100
;
1047 bp
->duplex
= DUPLEX_FULL
;
1049 else if (common
& ADVERTISE_100HALF
) {
1050 bp
->line_speed
= SPEED_100
;
1051 bp
->duplex
= DUPLEX_HALF
;
1053 else if (common
& ADVERTISE_10FULL
) {
1054 bp
->line_speed
= SPEED_10
;
1055 bp
->duplex
= DUPLEX_FULL
;
1057 else if (common
& ADVERTISE_10HALF
) {
1058 bp
->line_speed
= SPEED_10
;
1059 bp
->duplex
= DUPLEX_HALF
;
1068 if (bmcr
& BMCR_SPEED100
) {
1069 bp
->line_speed
= SPEED_100
;
1072 bp
->line_speed
= SPEED_10
;
1074 if (bmcr
& BMCR_FULLDPLX
) {
1075 bp
->duplex
= DUPLEX_FULL
;
1078 bp
->duplex
= DUPLEX_HALF
;
1086 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1088 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1090 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1091 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1094 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1095 u32 lo_water
, hi_water
;
1097 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1098 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1100 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1101 if (lo_water
>= bp
->rx_ring_size
)
1104 hi_water
= bp
->rx_ring_size
/ 4;
1106 if (hi_water
<= lo_water
)
1109 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1110 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1114 else if (hi_water
== 0)
1116 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1118 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1122 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1127 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1130 bnx2_init_rx_context(bp
, cid
);
1135 bnx2_set_mac_link(struct bnx2
*bp
)
1139 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1140 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1141 (bp
->duplex
== DUPLEX_HALF
)) {
1142 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1145 /* Configure the EMAC mode register. */
1146 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1148 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1149 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1150 BNX2_EMAC_MODE_25G_MODE
);
1153 switch (bp
->line_speed
) {
1155 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1156 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1161 val
|= BNX2_EMAC_MODE_PORT_MII
;
1164 val
|= BNX2_EMAC_MODE_25G_MODE
;
1167 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1172 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1175 /* Set the MAC to operate in the appropriate duplex mode. */
1176 if (bp
->duplex
== DUPLEX_HALF
)
1177 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1178 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1180 /* Enable/disable rx PAUSE. */
1181 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1183 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1184 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1185 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1187 /* Enable/disable tx PAUSE. */
1188 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1189 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1191 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1192 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1193 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1195 /* Acknowledge the interrupt. */
1196 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1198 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1199 bnx2_init_all_rx_contexts(bp
);
1203 bnx2_enable_bmsr1(struct bnx2
*bp
)
1205 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1206 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1207 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1208 MII_BNX2_BLK_ADDR_GP_STATUS
);
1212 bnx2_disable_bmsr1(struct bnx2
*bp
)
1214 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1215 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1216 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1217 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1221 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1226 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1229 if (bp
->autoneg
& AUTONEG_SPEED
)
1230 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1232 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1233 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1235 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1236 if (!(up1
& BCM5708S_UP1_2G5
)) {
1237 up1
|= BCM5708S_UP1_2G5
;
1238 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1242 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1243 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1244 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1250 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1255 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1258 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1259 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1261 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1262 if (up1
& BCM5708S_UP1_2G5
) {
1263 up1
&= ~BCM5708S_UP1_2G5
;
1264 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1268 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1269 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1270 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1276 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1280 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1283 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1286 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1287 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1288 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1289 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1290 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1291 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1293 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1294 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1295 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1297 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1298 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1299 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1302 if (bp
->autoneg
& AUTONEG_SPEED
) {
1303 bmcr
&= ~BMCR_ANENABLE
;
1304 if (bp
->req_duplex
== DUPLEX_FULL
)
1305 bmcr
|= BMCR_FULLDPLX
;
1307 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1311 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1315 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1318 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1321 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1322 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1323 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1324 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1325 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1327 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1328 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1329 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1331 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1332 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1333 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1336 if (bp
->autoneg
& AUTONEG_SPEED
)
1337 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1338 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1342 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1346 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1347 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1349 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1351 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1355 bnx2_set_link(struct bnx2
*bp
)
1360 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1365 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1368 link_up
= bp
->link_up
;
1370 bnx2_enable_bmsr1(bp
);
1371 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1372 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1373 bnx2_disable_bmsr1(bp
);
1375 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1376 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1379 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1380 bnx2_5706s_force_link_dn(bp
, 0);
1381 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1383 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1385 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1386 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1387 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1389 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1390 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1391 bmsr
|= BMSR_LSTATUS
;
1393 bmsr
&= ~BMSR_LSTATUS
;
1396 if (bmsr
& BMSR_LSTATUS
) {
1399 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1400 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1401 bnx2_5706s_linkup(bp
);
1402 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1403 bnx2_5708s_linkup(bp
);
1404 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1405 bnx2_5709s_linkup(bp
);
1408 bnx2_copper_linkup(bp
);
1410 bnx2_resolve_flow_ctrl(bp
);
1413 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1414 (bp
->autoneg
& AUTONEG_SPEED
))
1415 bnx2_disable_forced_2g5(bp
);
1417 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1420 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1421 bmcr
|= BMCR_ANENABLE
;
1422 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1424 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1429 if (bp
->link_up
!= link_up
) {
1430 bnx2_report_link(bp
);
1433 bnx2_set_mac_link(bp
);
1439 bnx2_reset_phy(struct bnx2
*bp
)
1444 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1446 #define PHY_RESET_MAX_WAIT 100
1447 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1450 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1451 if (!(reg
& BMCR_RESET
)) {
1456 if (i
== PHY_RESET_MAX_WAIT
) {
1463 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1467 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1468 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1470 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1471 adv
= ADVERTISE_1000XPAUSE
;
1474 adv
= ADVERTISE_PAUSE_CAP
;
1477 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1478 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1479 adv
= ADVERTISE_1000XPSE_ASYM
;
1482 adv
= ADVERTISE_PAUSE_ASYM
;
1485 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1486 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1487 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1490 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1496 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1499 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1501 u32 speed_arg
= 0, pause_adv
;
1503 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1505 if (bp
->autoneg
& AUTONEG_SPEED
) {
1506 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1507 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1508 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1509 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1510 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1511 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1512 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1513 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1514 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1515 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1516 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1517 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1518 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1520 if (bp
->req_line_speed
== SPEED_2500
)
1521 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1522 else if (bp
->req_line_speed
== SPEED_1000
)
1523 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1524 else if (bp
->req_line_speed
== SPEED_100
) {
1525 if (bp
->req_duplex
== DUPLEX_FULL
)
1526 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1528 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1529 } else if (bp
->req_line_speed
== SPEED_10
) {
1530 if (bp
->req_duplex
== DUPLEX_FULL
)
1531 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1533 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1537 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1538 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1539 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1540 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1542 if (port
== PORT_TP
)
1543 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1544 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1546 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1548 spin_unlock_bh(&bp
->phy_lock
);
1549 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1550 spin_lock_bh(&bp
->phy_lock
);
1556 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1561 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1562 return (bnx2_setup_remote_phy(bp
, port
));
1564 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1566 int force_link_down
= 0;
1568 if (bp
->req_line_speed
== SPEED_2500
) {
1569 if (!bnx2_test_and_enable_2g5(bp
))
1570 force_link_down
= 1;
1571 } else if (bp
->req_line_speed
== SPEED_1000
) {
1572 if (bnx2_test_and_disable_2g5(bp
))
1573 force_link_down
= 1;
1575 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1576 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1578 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1579 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1580 new_bmcr
|= BMCR_SPEED1000
;
1582 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1583 if (bp
->req_line_speed
== SPEED_2500
)
1584 bnx2_enable_forced_2g5(bp
);
1585 else if (bp
->req_line_speed
== SPEED_1000
) {
1586 bnx2_disable_forced_2g5(bp
);
1587 new_bmcr
&= ~0x2000;
1590 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1591 if (bp
->req_line_speed
== SPEED_2500
)
1592 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1594 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1597 if (bp
->req_duplex
== DUPLEX_FULL
) {
1598 adv
|= ADVERTISE_1000XFULL
;
1599 new_bmcr
|= BMCR_FULLDPLX
;
1602 adv
|= ADVERTISE_1000XHALF
;
1603 new_bmcr
&= ~BMCR_FULLDPLX
;
1605 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1606 /* Force a link down visible on the other side */
1608 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1609 ~(ADVERTISE_1000XFULL
|
1610 ADVERTISE_1000XHALF
));
1611 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1612 BMCR_ANRESTART
| BMCR_ANENABLE
);
1615 netif_carrier_off(bp
->dev
);
1616 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1617 bnx2_report_link(bp
);
1619 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1620 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1622 bnx2_resolve_flow_ctrl(bp
);
1623 bnx2_set_mac_link(bp
);
1628 bnx2_test_and_enable_2g5(bp
);
1630 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1631 new_adv
|= ADVERTISE_1000XFULL
;
1633 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1635 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1636 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1638 bp
->serdes_an_pending
= 0;
1639 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1640 /* Force a link down visible on the other side */
1642 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1643 spin_unlock_bh(&bp
->phy_lock
);
1645 spin_lock_bh(&bp
->phy_lock
);
1648 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1649 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1651 /* Speed up link-up time when the link partner
1652 * does not autonegotiate which is very common
1653 * in blade servers. Some blade servers use
1654 * IPMI for kerboard input and it's important
1655 * to minimize link disruptions. Autoneg. involves
1656 * exchanging base pages plus 3 next pages and
1657 * normally completes in about 120 msec.
1659 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1660 bp
->serdes_an_pending
= 1;
1661 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1663 bnx2_resolve_flow_ctrl(bp
);
1664 bnx2_set_mac_link(bp
);
1670 #define ETHTOOL_ALL_FIBRE_SPEED \
1671 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1672 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1673 (ADVERTISED_1000baseT_Full)
1675 #define ETHTOOL_ALL_COPPER_SPEED \
1676 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1677 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1678 ADVERTISED_1000baseT_Full)
1680 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1681 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1683 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1686 bnx2_set_default_remote_link(struct bnx2
*bp
)
1690 if (bp
->phy_port
== PORT_TP
)
1691 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1693 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1695 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1696 bp
->req_line_speed
= 0;
1697 bp
->autoneg
|= AUTONEG_SPEED
;
1698 bp
->advertising
= ADVERTISED_Autoneg
;
1699 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1700 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1701 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1702 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1703 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1704 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1705 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1706 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1707 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1708 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1709 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1710 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1713 bp
->advertising
= 0;
1714 bp
->req_duplex
= DUPLEX_FULL
;
1715 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1716 bp
->req_line_speed
= SPEED_10
;
1717 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1718 bp
->req_duplex
= DUPLEX_HALF
;
1720 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1721 bp
->req_line_speed
= SPEED_100
;
1722 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1723 bp
->req_duplex
= DUPLEX_HALF
;
1725 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1726 bp
->req_line_speed
= SPEED_1000
;
1727 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1728 bp
->req_line_speed
= SPEED_2500
;
1733 bnx2_set_default_link(struct bnx2
*bp
)
1735 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1736 bnx2_set_default_remote_link(bp
);
1740 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1741 bp
->req_line_speed
= 0;
1742 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1745 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1747 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1748 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1749 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1751 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1752 bp
->req_duplex
= DUPLEX_FULL
;
1755 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1759 bnx2_send_heart_beat(struct bnx2
*bp
)
1764 spin_lock(&bp
->indirect_lock
);
1765 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1766 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1767 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1768 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1769 spin_unlock(&bp
->indirect_lock
);
1773 bnx2_remote_phy_event(struct bnx2
*bp
)
1776 u8 link_up
= bp
->link_up
;
1779 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1781 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1782 bnx2_send_heart_beat(bp
);
1784 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1786 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1792 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1793 bp
->duplex
= DUPLEX_FULL
;
1795 case BNX2_LINK_STATUS_10HALF
:
1796 bp
->duplex
= DUPLEX_HALF
;
1797 case BNX2_LINK_STATUS_10FULL
:
1798 bp
->line_speed
= SPEED_10
;
1800 case BNX2_LINK_STATUS_100HALF
:
1801 bp
->duplex
= DUPLEX_HALF
;
1802 case BNX2_LINK_STATUS_100BASE_T4
:
1803 case BNX2_LINK_STATUS_100FULL
:
1804 bp
->line_speed
= SPEED_100
;
1806 case BNX2_LINK_STATUS_1000HALF
:
1807 bp
->duplex
= DUPLEX_HALF
;
1808 case BNX2_LINK_STATUS_1000FULL
:
1809 bp
->line_speed
= SPEED_1000
;
1811 case BNX2_LINK_STATUS_2500HALF
:
1812 bp
->duplex
= DUPLEX_HALF
;
1813 case BNX2_LINK_STATUS_2500FULL
:
1814 bp
->line_speed
= SPEED_2500
;
1822 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1823 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1824 if (bp
->duplex
== DUPLEX_FULL
)
1825 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1827 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
1828 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1829 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
1830 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1833 old_port
= bp
->phy_port
;
1834 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
1835 bp
->phy_port
= PORT_FIBRE
;
1837 bp
->phy_port
= PORT_TP
;
1839 if (old_port
!= bp
->phy_port
)
1840 bnx2_set_default_link(bp
);
1843 if (bp
->link_up
!= link_up
)
1844 bnx2_report_link(bp
);
1846 bnx2_set_mac_link(bp
);
1850 bnx2_set_remote_link(struct bnx2
*bp
)
1854 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
1856 case BNX2_FW_EVT_CODE_LINK_EVENT
:
1857 bnx2_remote_phy_event(bp
);
1859 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
1861 bnx2_send_heart_beat(bp
);
1868 bnx2_setup_copper_phy(struct bnx2
*bp
)
1873 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1875 if (bp
->autoneg
& AUTONEG_SPEED
) {
1876 u32 adv_reg
, adv1000_reg
;
1877 u32 new_adv_reg
= 0;
1878 u32 new_adv1000_reg
= 0;
1880 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
1881 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1882 ADVERTISE_PAUSE_ASYM
);
1884 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1885 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1887 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1888 new_adv_reg
|= ADVERTISE_10HALF
;
1889 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1890 new_adv_reg
|= ADVERTISE_10FULL
;
1891 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1892 new_adv_reg
|= ADVERTISE_100HALF
;
1893 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1894 new_adv_reg
|= ADVERTISE_100FULL
;
1895 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1896 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1898 new_adv_reg
|= ADVERTISE_CSMA
;
1900 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1902 if ((adv1000_reg
!= new_adv1000_reg
) ||
1903 (adv_reg
!= new_adv_reg
) ||
1904 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1906 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
1907 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1908 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
1911 else if (bp
->link_up
) {
1912 /* Flow ctrl may have changed from auto to forced */
1913 /* or vice-versa. */
1915 bnx2_resolve_flow_ctrl(bp
);
1916 bnx2_set_mac_link(bp
);
1922 if (bp
->req_line_speed
== SPEED_100
) {
1923 new_bmcr
|= BMCR_SPEED100
;
1925 if (bp
->req_duplex
== DUPLEX_FULL
) {
1926 new_bmcr
|= BMCR_FULLDPLX
;
1928 if (new_bmcr
!= bmcr
) {
1931 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1932 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1934 if (bmsr
& BMSR_LSTATUS
) {
1935 /* Force link down */
1936 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1937 spin_unlock_bh(&bp
->phy_lock
);
1939 spin_lock_bh(&bp
->phy_lock
);
1941 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1942 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
1945 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1947 /* Normally, the new speed is setup after the link has
1948 * gone down and up again. In some cases, link will not go
1949 * down so we need to set up the new speed here.
1951 if (bmsr
& BMSR_LSTATUS
) {
1952 bp
->line_speed
= bp
->req_line_speed
;
1953 bp
->duplex
= bp
->req_duplex
;
1954 bnx2_resolve_flow_ctrl(bp
);
1955 bnx2_set_mac_link(bp
);
1958 bnx2_resolve_flow_ctrl(bp
);
1959 bnx2_set_mac_link(bp
);
1965 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
1967 if (bp
->loopback
== MAC_LOOPBACK
)
1970 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1971 return (bnx2_setup_serdes_phy(bp
, port
));
1974 return (bnx2_setup_copper_phy(bp
));
1979 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
1983 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
1984 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
1985 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
1986 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
1987 bp
->mii_lpa
= MII_LPA
+ 0x10;
1988 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
1990 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
1991 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
1993 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1997 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
1999 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2000 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2001 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2002 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2004 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2005 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2006 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2007 val
|= BCM5708S_UP1_2G5
;
2009 val
&= ~BCM5708S_UP1_2G5
;
2010 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2012 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2013 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2014 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2015 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2017 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2019 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2020 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2021 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2023 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2029 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2036 bp
->mii_up1
= BCM5708S_UP1
;
2038 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2039 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2040 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2042 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2043 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2044 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2046 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2047 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2048 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2050 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2051 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2052 val
|= BCM5708S_UP1_2G5
;
2053 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2056 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2057 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2058 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2059 /* increase tx signal amplitude */
2060 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2061 BCM5708S_BLK_ADDR_TX_MISC
);
2062 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2063 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2064 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2065 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2068 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2069 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2074 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2075 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2076 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2077 BCM5708S_BLK_ADDR_TX_MISC
);
2078 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2079 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2080 BCM5708S_BLK_ADDR_DIG
);
2087 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2092 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2094 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2095 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2097 if (bp
->dev
->mtu
> 1500) {
2100 /* Set extended packet length bit */
2101 bnx2_write_phy(bp
, 0x18, 0x7);
2102 bnx2_read_phy(bp
, 0x18, &val
);
2103 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2105 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2106 bnx2_read_phy(bp
, 0x1c, &val
);
2107 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2112 bnx2_write_phy(bp
, 0x18, 0x7);
2113 bnx2_read_phy(bp
, 0x18, &val
);
2114 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2116 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2117 bnx2_read_phy(bp
, 0x1c, &val
);
2118 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2125 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2132 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2133 bnx2_write_phy(bp
, 0x18, 0x0c00);
2134 bnx2_write_phy(bp
, 0x17, 0x000a);
2135 bnx2_write_phy(bp
, 0x15, 0x310b);
2136 bnx2_write_phy(bp
, 0x17, 0x201f);
2137 bnx2_write_phy(bp
, 0x15, 0x9506);
2138 bnx2_write_phy(bp
, 0x17, 0x401f);
2139 bnx2_write_phy(bp
, 0x15, 0x14e2);
2140 bnx2_write_phy(bp
, 0x18, 0x0400);
2143 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2144 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2145 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2146 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2148 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2151 if (bp
->dev
->mtu
> 1500) {
2152 /* Set extended packet length bit */
2153 bnx2_write_phy(bp
, 0x18, 0x7);
2154 bnx2_read_phy(bp
, 0x18, &val
);
2155 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2157 bnx2_read_phy(bp
, 0x10, &val
);
2158 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2161 bnx2_write_phy(bp
, 0x18, 0x7);
2162 bnx2_read_phy(bp
, 0x18, &val
);
2163 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2165 bnx2_read_phy(bp
, 0x10, &val
);
2166 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2169 /* ethernet@wirespeed */
2170 bnx2_write_phy(bp
, 0x18, 0x7007);
2171 bnx2_read_phy(bp
, 0x18, &val
);
2172 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2178 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2183 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2184 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2186 bp
->mii_bmcr
= MII_BMCR
;
2187 bp
->mii_bmsr
= MII_BMSR
;
2188 bp
->mii_bmsr1
= MII_BMSR
;
2189 bp
->mii_adv
= MII_ADVERTISE
;
2190 bp
->mii_lpa
= MII_LPA
;
2192 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2194 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2197 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2198 bp
->phy_id
= val
<< 16;
2199 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2200 bp
->phy_id
|= val
& 0xffff;
2202 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2203 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2204 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2205 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2206 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2207 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2208 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2211 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2216 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2222 bnx2_set_mac_loopback(struct bnx2
*bp
)
2226 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2227 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2228 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2229 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2234 static int bnx2_test_link(struct bnx2
*);
2237 bnx2_set_phy_loopback(struct bnx2
*bp
)
2242 spin_lock_bh(&bp
->phy_lock
);
2243 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2245 spin_unlock_bh(&bp
->phy_lock
);
2249 for (i
= 0; i
< 10; i
++) {
2250 if (bnx2_test_link(bp
) == 0)
2255 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2256 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2257 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2258 BNX2_EMAC_MODE_25G_MODE
);
2260 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2261 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2267 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2273 msg_data
|= bp
->fw_wr_seq
;
2275 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2280 /* wait for an acknowledgement. */
2281 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2284 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2286 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2289 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2292 /* If we timed out, inform the firmware that this is the case. */
2293 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2295 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
2298 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2299 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2301 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2306 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2313 bnx2_init_5709_context(struct bnx2
*bp
)
2318 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2319 val
|= (BCM_PAGE_BITS
- 8) << 16;
2320 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2321 for (i
= 0; i
< 10; i
++) {
2322 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2323 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2327 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2330 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2334 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2338 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2339 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2340 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2341 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2342 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2343 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2344 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2345 for (j
= 0; j
< 10; j
++) {
2347 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2348 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2352 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2361 bnx2_init_context(struct bnx2
*bp
)
2367 u32 vcid_addr
, pcid_addr
, offset
;
2372 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2375 vcid_addr
= GET_PCID_ADDR(vcid
);
2377 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2382 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2385 vcid_addr
= GET_CID_ADDR(vcid
);
2386 pcid_addr
= vcid_addr
;
2389 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2390 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2391 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2393 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2394 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2396 /* Zero out the context. */
2397 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2398 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2404 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2410 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2411 if (good_mbuf
== NULL
) {
2412 printk(KERN_ERR PFX
"Failed to allocate memory in "
2413 "bnx2_alloc_bad_rbuf\n");
2417 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2418 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2422 /* Allocate a bunch of mbufs and save the good ones in an array. */
2423 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2424 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2425 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2426 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2428 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2430 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2432 /* The addresses with Bit 9 set are bad memory blocks. */
2433 if (!(val
& (1 << 9))) {
2434 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2438 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2441 /* Free the good ones back to the mbuf pool thus discarding
2442 * all the bad ones. */
2443 while (good_mbuf_cnt
) {
2446 val
= good_mbuf
[good_mbuf_cnt
];
2447 val
= (val
<< 9) | val
| 1;
2449 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2456 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2460 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2462 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2464 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2465 (mac_addr
[4] << 8) | mac_addr
[5];
2467 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2471 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2474 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2475 struct rx_bd
*rxbd
=
2476 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2477 struct page
*page
= alloc_page(GFP_ATOMIC
);
2481 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2482 PCI_DMA_FROMDEVICE
);
2483 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2489 pci_unmap_addr_set(rx_pg
, mapping
, mapping
);
2490 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2491 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2496 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2498 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2499 struct page
*page
= rx_pg
->page
;
2504 pci_unmap_page(bp
->pdev
, pci_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2505 PCI_DMA_FROMDEVICE
);
2512 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2514 struct sk_buff
*skb
;
2515 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2517 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2518 unsigned long align
;
2520 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2525 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2526 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2528 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2529 PCI_DMA_FROMDEVICE
);
2530 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2536 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
2538 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2539 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2541 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2547 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2549 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2550 u32 new_link_state
, old_link_state
;
2553 new_link_state
= sblk
->status_attn_bits
& event
;
2554 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2555 if (new_link_state
!= old_link_state
) {
2557 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2559 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2567 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2569 spin_lock(&bp
->phy_lock
);
2571 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2573 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2574 bnx2_set_remote_link(bp
);
2576 spin_unlock(&bp
->phy_lock
);
2581 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2585 /* Tell compiler that status block fields can change. */
2587 cons
= *bnapi
->hw_tx_cons_ptr
;
2588 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2594 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2596 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2597 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2598 int tx_pkt
= 0, index
;
2599 struct netdev_queue
*txq
;
2601 index
= (bnapi
- bp
->bnx2_napi
);
2602 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2604 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2605 sw_cons
= txr
->tx_cons
;
2607 while (sw_cons
!= hw_cons
) {
2608 struct sw_tx_bd
*tx_buf
;
2609 struct sk_buff
*skb
;
2612 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2614 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2617 /* partial BD completions possible with TSO packets */
2618 if (skb_is_gso(skb
)) {
2619 u16 last_idx
, last_ring_idx
;
2621 last_idx
= sw_cons
+
2622 skb_shinfo(skb
)->nr_frags
+ 1;
2623 last_ring_idx
= sw_ring_cons
+
2624 skb_shinfo(skb
)->nr_frags
+ 1;
2625 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2628 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2633 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
2636 last
= skb_shinfo(skb
)->nr_frags
;
2638 for (i
= 0; i
< last
; i
++) {
2639 sw_cons
= NEXT_TX_BD(sw_cons
);
2642 sw_cons
= NEXT_TX_BD(sw_cons
);
2646 if (tx_pkt
== budget
)
2649 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2652 txr
->hw_tx_cons
= hw_cons
;
2653 txr
->tx_cons
= sw_cons
;
2655 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2656 * before checking for netif_tx_queue_stopped(). Without the
2657 * memory barrier, there is a small possibility that bnx2_start_xmit()
2658 * will miss it and cause the queue to be stopped forever.
2662 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2663 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2664 __netif_tx_lock(txq
, smp_processor_id());
2665 if ((netif_tx_queue_stopped(txq
)) &&
2666 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2667 netif_tx_wake_queue(txq
);
2668 __netif_tx_unlock(txq
);
2675 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2676 struct sk_buff
*skb
, int count
)
2678 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2679 struct rx_bd
*cons_bd
, *prod_bd
;
2682 u16 cons
= rxr
->rx_pg_cons
;
2684 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2686 /* The caller was unable to allocate a new page to replace the
2687 * last one in the frags array, so we need to recycle that page
2688 * and then free the skb.
2692 struct skb_shared_info
*shinfo
;
2694 shinfo
= skb_shinfo(skb
);
2696 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2697 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2699 cons_rx_pg
->page
= page
;
2703 hw_prod
= rxr
->rx_pg_prod
;
2705 for (i
= 0; i
< count
; i
++) {
2706 prod
= RX_PG_RING_IDX(hw_prod
);
2708 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2709 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2710 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2711 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2714 prod_rx_pg
->page
= cons_rx_pg
->page
;
2715 cons_rx_pg
->page
= NULL
;
2716 pci_unmap_addr_set(prod_rx_pg
, mapping
,
2717 pci_unmap_addr(cons_rx_pg
, mapping
));
2719 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2720 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2723 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2724 hw_prod
= NEXT_RX_BD(hw_prod
);
2726 rxr
->rx_pg_prod
= hw_prod
;
2727 rxr
->rx_pg_cons
= cons
;
2731 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2732 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2734 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2735 struct rx_bd
*cons_bd
, *prod_bd
;
2737 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2738 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2740 pci_dma_sync_single_for_device(bp
->pdev
,
2741 pci_unmap_addr(cons_rx_buf
, mapping
),
2742 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2744 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2746 prod_rx_buf
->skb
= skb
;
2751 pci_unmap_addr_set(prod_rx_buf
, mapping
,
2752 pci_unmap_addr(cons_rx_buf
, mapping
));
2754 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2755 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2756 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2757 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2761 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2762 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2766 u16 prod
= ring_idx
& 0xffff;
2768 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2769 if (unlikely(err
)) {
2770 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2772 unsigned int raw_len
= len
+ 4;
2773 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2775 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2780 skb_reserve(skb
, BNX2_RX_OFFSET
);
2781 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2782 PCI_DMA_FROMDEVICE
);
2788 unsigned int i
, frag_len
, frag_size
, pages
;
2789 struct sw_pg
*rx_pg
;
2790 u16 pg_cons
= rxr
->rx_pg_cons
;
2791 u16 pg_prod
= rxr
->rx_pg_prod
;
2793 frag_size
= len
+ 4 - hdr_len
;
2794 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2795 skb_put(skb
, hdr_len
);
2797 for (i
= 0; i
< pages
; i
++) {
2798 dma_addr_t mapping_old
;
2800 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2801 if (unlikely(frag_len
<= 4)) {
2802 unsigned int tail
= 4 - frag_len
;
2804 rxr
->rx_pg_cons
= pg_cons
;
2805 rxr
->rx_pg_prod
= pg_prod
;
2806 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
2813 &skb_shinfo(skb
)->frags
[i
- 1];
2815 skb
->data_len
-= tail
;
2816 skb
->truesize
-= tail
;
2820 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
2822 /* Don't unmap yet. If we're unable to allocate a new
2823 * page, we need to recycle the page and the DMA addr.
2825 mapping_old
= pci_unmap_addr(rx_pg
, mapping
);
2829 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
2832 err
= bnx2_alloc_rx_page(bp
, rxr
,
2833 RX_PG_RING_IDX(pg_prod
));
2834 if (unlikely(err
)) {
2835 rxr
->rx_pg_cons
= pg_cons
;
2836 rxr
->rx_pg_prod
= pg_prod
;
2837 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
2842 pci_unmap_page(bp
->pdev
, mapping_old
,
2843 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2845 frag_size
-= frag_len
;
2846 skb
->data_len
+= frag_len
;
2847 skb
->truesize
+= frag_len
;
2848 skb
->len
+= frag_len
;
2850 pg_prod
= NEXT_RX_BD(pg_prod
);
2851 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
2853 rxr
->rx_pg_prod
= pg_prod
;
2854 rxr
->rx_pg_cons
= pg_cons
;
2860 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
2864 /* Tell compiler that status block fields can change. */
2866 cons
= *bnapi
->hw_rx_cons_ptr
;
2867 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
2873 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2875 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
2876 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
2877 struct l2_fhdr
*rx_hdr
;
2878 int rx_pkt
= 0, pg_ring_used
= 0;
2880 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
2881 sw_cons
= rxr
->rx_cons
;
2882 sw_prod
= rxr
->rx_prod
;
2884 /* Memory barrier necessary as speculative reads of the rx
2885 * buffer can be ahead of the index in the status block
2888 while (sw_cons
!= hw_cons
) {
2889 unsigned int len
, hdr_len
;
2891 struct sw_bd
*rx_buf
;
2892 struct sk_buff
*skb
;
2893 dma_addr_t dma_addr
;
2895 int hw_vlan __maybe_unused
= 0;
2897 sw_ring_cons
= RX_RING_IDX(sw_cons
);
2898 sw_ring_prod
= RX_RING_IDX(sw_prod
);
2900 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
2905 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
2907 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
2908 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
2909 PCI_DMA_FROMDEVICE
);
2911 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
2912 len
= rx_hdr
->l2_fhdr_pkt_len
;
2914 if ((status
= rx_hdr
->l2_fhdr_status
) &
2915 (L2_FHDR_ERRORS_BAD_CRC
|
2916 L2_FHDR_ERRORS_PHY_DECODE
|
2917 L2_FHDR_ERRORS_ALIGNMENT
|
2918 L2_FHDR_ERRORS_TOO_SHORT
|
2919 L2_FHDR_ERRORS_GIANT_FRAME
)) {
2921 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2926 if (status
& L2_FHDR_STATUS_SPLIT
) {
2927 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
2929 } else if (len
> bp
->rx_jumbo_thresh
) {
2930 hdr_len
= bp
->rx_jumbo_thresh
;
2936 if (len
<= bp
->rx_copy_thresh
) {
2937 struct sk_buff
*new_skb
;
2939 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
2940 if (new_skb
== NULL
) {
2941 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
2947 skb_copy_from_linear_data_offset(skb
,
2949 new_skb
->data
, len
+ 6);
2950 skb_reserve(new_skb
, 6);
2951 skb_put(new_skb
, len
);
2953 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
2954 sw_ring_cons
, sw_ring_prod
);
2957 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
2958 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
2961 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
2962 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
2963 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
2970 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
2973 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
2974 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
2975 ve
->h_vlan_TCI
= htons(vtag
);
2980 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
2982 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
2983 (ntohs(skb
->protocol
) != 0x8100)) {
2990 skb
->ip_summed
= CHECKSUM_NONE
;
2992 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
2993 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
2995 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
2996 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
2997 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3002 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
, vtag
);
3005 netif_receive_skb(skb
);
3010 sw_cons
= NEXT_RX_BD(sw_cons
);
3011 sw_prod
= NEXT_RX_BD(sw_prod
);
3013 if ((rx_pkt
== budget
))
3016 /* Refresh hw_cons to see if there is new work */
3017 if (sw_cons
== hw_cons
) {
3018 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3022 rxr
->rx_cons
= sw_cons
;
3023 rxr
->rx_prod
= sw_prod
;
3026 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3028 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3030 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3038 /* MSI ISR - The only difference between this and the INTx ISR
3039 * is that the MSI interrupt is always serviced.
3042 bnx2_msi(int irq
, void *dev_instance
)
3044 struct bnx2_napi
*bnapi
= dev_instance
;
3045 struct bnx2
*bp
= bnapi
->bp
;
3047 prefetch(bnapi
->status_blk
.msi
);
3048 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3049 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3050 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3052 /* Return here if interrupt is disabled. */
3053 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3056 napi_schedule(&bnapi
->napi
);
3062 bnx2_msi_1shot(int irq
, void *dev_instance
)
3064 struct bnx2_napi
*bnapi
= dev_instance
;
3065 struct bnx2
*bp
= bnapi
->bp
;
3067 prefetch(bnapi
->status_blk
.msi
);
3069 /* Return here if interrupt is disabled. */
3070 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3073 napi_schedule(&bnapi
->napi
);
3079 bnx2_interrupt(int irq
, void *dev_instance
)
3081 struct bnx2_napi
*bnapi
= dev_instance
;
3082 struct bnx2
*bp
= bnapi
->bp
;
3083 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3085 /* When using INTx, it is possible for the interrupt to arrive
3086 * at the CPU before the status block posted prior to the
3087 * interrupt. Reading a register will flush the status block.
3088 * When using MSI, the MSI message will always complete after
3089 * the status block write.
3091 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3092 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3093 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3096 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3097 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3098 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3100 /* Read back to deassert IRQ immediately to avoid too many
3101 * spurious interrupts.
3103 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3105 /* Return here if interrupt is shared and is disabled. */
3106 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3109 if (napi_schedule_prep(&bnapi
->napi
)) {
3110 bnapi
->last_status_idx
= sblk
->status_idx
;
3111 __napi_schedule(&bnapi
->napi
);
3118 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3120 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3121 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3123 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3124 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3129 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3130 STATUS_ATTN_BITS_TIMER_ABORT)
3133 bnx2_has_work(struct bnx2_napi
*bnapi
)
3135 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3137 if (bnx2_has_fast_work(bnapi
))
3140 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3141 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3148 bnx2_chk_missed_msi(struct bnx2
*bp
)
3150 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3153 if (bnx2_has_work(bnapi
)) {
3154 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3155 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3158 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3159 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3160 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3161 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3162 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3166 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3169 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3171 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3172 u32 status_attn_bits
= sblk
->status_attn_bits
;
3173 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3175 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3176 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3178 bnx2_phy_int(bp
, bnapi
);
3180 /* This is needed to take care of transient status
3181 * during link changes.
3183 REG_WR(bp
, BNX2_HC_COMMAND
,
3184 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3185 REG_RD(bp
, BNX2_HC_COMMAND
);
3189 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3190 int work_done
, int budget
)
3192 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3193 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3195 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3196 bnx2_tx_int(bp
, bnapi
, 0);
3198 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3199 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3204 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3206 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3207 struct bnx2
*bp
= bnapi
->bp
;
3209 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3212 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3213 if (unlikely(work_done
>= budget
))
3216 bnapi
->last_status_idx
= sblk
->status_idx
;
3217 /* status idx must be read before checking for more work. */
3219 if (likely(!bnx2_has_fast_work(bnapi
))) {
3221 napi_complete(napi
);
3222 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3223 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3224 bnapi
->last_status_idx
);
3231 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3233 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3234 struct bnx2
*bp
= bnapi
->bp
;
3236 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3239 bnx2_poll_link(bp
, bnapi
);
3241 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3243 /* bnapi->last_status_idx is used below to tell the hw how
3244 * much work has been processed, so we must read it before
3245 * checking for more work.
3247 bnapi
->last_status_idx
= sblk
->status_idx
;
3249 if (unlikely(work_done
>= budget
))
3253 if (likely(!bnx2_has_work(bnapi
))) {
3254 napi_complete(napi
);
3255 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3256 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3257 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3258 bnapi
->last_status_idx
);
3261 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3262 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3263 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3264 bnapi
->last_status_idx
);
3266 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3267 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3268 bnapi
->last_status_idx
);
3276 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3277 * from set_multicast.
3280 bnx2_set_rx_mode(struct net_device
*dev
)
3282 struct bnx2
*bp
= netdev_priv(dev
);
3283 u32 rx_mode
, sort_mode
;
3284 struct dev_addr_list
*uc_ptr
;
3287 if (!netif_running(dev
))
3290 spin_lock_bh(&bp
->phy_lock
);
3292 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3293 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3294 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3296 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3297 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3299 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3300 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3302 if (dev
->flags
& IFF_PROMISC
) {
3303 /* Promiscuous mode. */
3304 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3305 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3306 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3308 else if (dev
->flags
& IFF_ALLMULTI
) {
3309 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3310 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3313 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3316 /* Accept one or more multicast(s). */
3317 struct dev_mc_list
*mclist
;
3318 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3323 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3325 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
3326 i
++, mclist
= mclist
->next
) {
3328 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
3330 regidx
= (bit
& 0xe0) >> 5;
3332 mc_filter
[regidx
] |= (1 << bit
);
3335 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3336 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3340 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3344 if (dev
->uc_count
> BNX2_MAX_UNICAST_ADDRESSES
) {
3345 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3346 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3347 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3348 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3349 uc_ptr
= dev
->uc_list
;
3351 /* Add all entries into to the match filter list */
3352 for (i
= 0; i
< dev
->uc_count
; i
++) {
3353 bnx2_set_mac_addr(bp
, uc_ptr
->da_addr
,
3354 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3356 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3357 uc_ptr
= uc_ptr
->next
;
3362 if (rx_mode
!= bp
->rx_mode
) {
3363 bp
->rx_mode
= rx_mode
;
3364 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3367 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3368 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3369 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3371 spin_unlock_bh(&bp
->phy_lock
);
3375 load_rv2p_fw(struct bnx2
*bp
, __le32
*rv2p_code
, u32 rv2p_code_len
,
3381 if (rv2p_proc
== RV2P_PROC2
&& CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3382 val
= le32_to_cpu(rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
]);
3383 val
&= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK
;
3384 val
|= XI_RV2P_PROC2_BD_PAGE_SIZE
;
3385 rv2p_code
[XI_RV2P_PROC2_MAX_BD_PAGE_LOC
] = cpu_to_le32(val
);
3388 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3389 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, le32_to_cpu(*rv2p_code
));
3391 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, le32_to_cpu(*rv2p_code
));
3394 if (rv2p_proc
== RV2P_PROC1
) {
3395 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3396 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
3399 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3400 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
3404 /* Reset the processor, un-stall is done later. */
3405 if (rv2p_proc
== RV2P_PROC1
) {
3406 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3409 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3414 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
3421 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3422 val
|= cpu_reg
->mode_value_halt
;
3423 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3424 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3426 /* Load the Text area. */
3427 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
3431 rc
= zlib_inflate_blob(fw
->text
, FW_BUF_SIZE
, fw
->gz_text
,
3436 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
3437 bnx2_reg_wr_ind(bp
, offset
, le32_to_cpu(fw
->text
[j
]));
3441 /* Load the Data area. */
3442 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
3446 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
3447 bnx2_reg_wr_ind(bp
, offset
, fw
->data
[j
]);
3451 /* Load the SBSS area. */
3452 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
3456 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
3457 bnx2_reg_wr_ind(bp
, offset
, 0);
3461 /* Load the BSS area. */
3462 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
3466 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
3467 bnx2_reg_wr_ind(bp
, offset
, 0);
3471 /* Load the Read-Only area. */
3472 offset
= cpu_reg
->spad_base
+
3473 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
3477 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
3478 bnx2_reg_wr_ind(bp
, offset
, fw
->rodata
[j
]);
3482 /* Clear the pre-fetch instruction. */
3483 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3484 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, fw
->start_addr
);
3486 /* Start the CPU. */
3487 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3488 val
&= ~cpu_reg
->mode_value_halt
;
3489 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3490 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3496 bnx2_init_cpus(struct bnx2
*bp
)
3502 /* Initialize the RV2P processor. */
3503 text
= vmalloc(FW_BUF_SIZE
);
3506 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3507 rv2p
= bnx2_xi_rv2p_proc1
;
3508 rv2p_len
= sizeof(bnx2_xi_rv2p_proc1
);
3510 rv2p
= bnx2_rv2p_proc1
;
3511 rv2p_len
= sizeof(bnx2_rv2p_proc1
);
3513 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3517 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC1
);
3519 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3520 rv2p
= bnx2_xi_rv2p_proc2
;
3521 rv2p_len
= sizeof(bnx2_xi_rv2p_proc2
);
3523 rv2p
= bnx2_rv2p_proc2
;
3524 rv2p_len
= sizeof(bnx2_rv2p_proc2
);
3526 rc
= zlib_inflate_blob(text
, FW_BUF_SIZE
, rv2p
, rv2p_len
);
3530 load_rv2p_fw(bp
, text
, rc
/* == len */, RV2P_PROC2
);
3532 /* Initialize the RX Processor. */
3533 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3534 fw
= &bnx2_rxp_fw_09
;
3536 fw
= &bnx2_rxp_fw_06
;
3539 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, fw
);
3543 /* Initialize the TX Processor. */
3544 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3545 fw
= &bnx2_txp_fw_09
;
3547 fw
= &bnx2_txp_fw_06
;
3550 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, fw
);
3554 /* Initialize the TX Patch-up Processor. */
3555 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3556 fw
= &bnx2_tpat_fw_09
;
3558 fw
= &bnx2_tpat_fw_06
;
3561 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, fw
);
3565 /* Initialize the Completion Processor. */
3566 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3567 fw
= &bnx2_com_fw_09
;
3569 fw
= &bnx2_com_fw_06
;
3572 rc
= load_cpu_fw(bp
, &cpu_reg_com
, fw
);
3576 /* Initialize the Command Processor. */
3577 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3578 fw
= &bnx2_cp_fw_09
;
3580 fw
= &bnx2_cp_fw_06
;
3583 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, fw
);
3591 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3595 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3601 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3602 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3603 PCI_PM_CTRL_PME_STATUS
);
3605 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3606 /* delay required during transition out of D3hot */
3609 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3610 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3611 val
&= ~BNX2_EMAC_MODE_MPKT
;
3612 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3614 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3615 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3616 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3627 autoneg
= bp
->autoneg
;
3628 advertising
= bp
->advertising
;
3630 if (bp
->phy_port
== PORT_TP
) {
3631 bp
->autoneg
= AUTONEG_SPEED
;
3632 bp
->advertising
= ADVERTISED_10baseT_Half
|
3633 ADVERTISED_10baseT_Full
|
3634 ADVERTISED_100baseT_Half
|
3635 ADVERTISED_100baseT_Full
|
3639 spin_lock_bh(&bp
->phy_lock
);
3640 bnx2_setup_phy(bp
, bp
->phy_port
);
3641 spin_unlock_bh(&bp
->phy_lock
);
3643 bp
->autoneg
= autoneg
;
3644 bp
->advertising
= advertising
;
3646 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3648 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3650 /* Enable port mode. */
3651 val
&= ~BNX2_EMAC_MODE_PORT
;
3652 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3653 BNX2_EMAC_MODE_ACPI_RCVD
|
3654 BNX2_EMAC_MODE_MPKT
;
3655 if (bp
->phy_port
== PORT_TP
)
3656 val
|= BNX2_EMAC_MODE_PORT_MII
;
3658 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3659 if (bp
->line_speed
== SPEED_2500
)
3660 val
|= BNX2_EMAC_MODE_25G_MODE
;
3663 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3665 /* receive all multicast */
3666 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3667 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3670 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3671 BNX2_EMAC_RX_MODE_SORT_MODE
);
3673 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3674 BNX2_RPM_SORT_USER0_MC_EN
;
3675 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3676 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3677 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3678 BNX2_RPM_SORT_USER0_ENA
);
3680 /* Need to enable EMAC and RPM for WOL. */
3681 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3682 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3683 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3684 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3686 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3687 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3688 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3690 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3693 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3696 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3697 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3700 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3701 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3702 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3711 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3713 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3716 /* No more memory access after this point until
3717 * device is brought back to D0.
3729 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3734 /* Request access to the flash interface. */
3735 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3736 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3737 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3738 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3744 if (j
>= NVRAM_TIMEOUT_COUNT
)
3751 bnx2_release_nvram_lock(struct bnx2
*bp
)
3756 /* Relinquish nvram interface. */
3757 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
3759 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3760 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3761 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
3767 if (j
>= NVRAM_TIMEOUT_COUNT
)
3775 bnx2_enable_nvram_write(struct bnx2
*bp
)
3779 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3780 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
3782 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
3785 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3786 REG_WR(bp
, BNX2_NVM_COMMAND
,
3787 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
3789 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3792 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3793 if (val
& BNX2_NVM_COMMAND_DONE
)
3797 if (j
>= NVRAM_TIMEOUT_COUNT
)
3804 bnx2_disable_nvram_write(struct bnx2
*bp
)
3808 val
= REG_RD(bp
, BNX2_MISC_CFG
);
3809 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
3814 bnx2_enable_nvram_access(struct bnx2
*bp
)
3818 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3819 /* Enable both bits, even on read. */
3820 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3821 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
3825 bnx2_disable_nvram_access(struct bnx2
*bp
)
3829 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
3830 /* Disable both bits, even after read. */
3831 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
3832 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
3833 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
3837 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
3842 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
3843 /* Buffered flash, no erase needed */
3846 /* Build an erase command */
3847 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
3848 BNX2_NVM_COMMAND_DOIT
;
3850 /* Need to clear DONE bit separately. */
3851 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3853 /* Address of the NVRAM to read from. */
3854 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3856 /* Issue an erase command. */
3857 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3859 /* Wait for completion. */
3860 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3865 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3866 if (val
& BNX2_NVM_COMMAND_DONE
)
3870 if (j
>= NVRAM_TIMEOUT_COUNT
)
3877 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
3882 /* Build the command word. */
3883 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
3885 /* Calculate an offset of a buffered flash, not needed for 5709. */
3886 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3887 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3888 bp
->flash_info
->page_bits
) +
3889 (offset
% bp
->flash_info
->page_size
);
3892 /* Need to clear DONE bit separately. */
3893 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3895 /* Address of the NVRAM to read from. */
3896 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3898 /* Issue a read command. */
3899 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3901 /* Wait for completion. */
3902 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3907 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
3908 if (val
& BNX2_NVM_COMMAND_DONE
) {
3909 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
3910 memcpy(ret_val
, &v
, 4);
3914 if (j
>= NVRAM_TIMEOUT_COUNT
)
3922 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
3928 /* Build the command word. */
3929 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
3931 /* Calculate an offset of a buffered flash, not needed for 5709. */
3932 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
3933 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
3934 bp
->flash_info
->page_bits
) +
3935 (offset
% bp
->flash_info
->page_size
);
3938 /* Need to clear DONE bit separately. */
3939 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
3941 memcpy(&val32
, val
, 4);
3943 /* Write the data. */
3944 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
3946 /* Address of the NVRAM to write to. */
3947 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
3949 /* Issue the write command. */
3950 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
3952 /* Wait for completion. */
3953 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3956 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
3959 if (j
>= NVRAM_TIMEOUT_COUNT
)
3966 bnx2_init_nvram(struct bnx2
*bp
)
3969 int j
, entry_count
, rc
= 0;
3970 struct flash_spec
*flash
;
3972 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3973 bp
->flash_info
= &flash_5709
;
3974 goto get_flash_size
;
3977 /* Determine the selected interface. */
3978 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
3980 entry_count
= ARRAY_SIZE(flash_table
);
3982 if (val
& 0x40000000) {
3984 /* Flash interface has been reconfigured */
3985 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
3987 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
3988 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
3989 bp
->flash_info
= flash
;
3996 /* Not yet been reconfigured */
3998 if (val
& (1 << 23))
3999 mask
= FLASH_BACKUP_STRAP_MASK
;
4001 mask
= FLASH_STRAP_MASK
;
4003 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4006 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4007 bp
->flash_info
= flash
;
4009 /* Request access to the flash interface. */
4010 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4013 /* Enable access to flash interface */
4014 bnx2_enable_nvram_access(bp
);
4016 /* Reconfigure the flash interface */
4017 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4018 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4019 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4020 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4022 /* Disable access to flash interface */
4023 bnx2_disable_nvram_access(bp
);
4024 bnx2_release_nvram_lock(bp
);
4029 } /* if (val & 0x40000000) */
4031 if (j
== entry_count
) {
4032 bp
->flash_info
= NULL
;
4033 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
4038 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4039 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4041 bp
->flash_size
= val
;
4043 bp
->flash_size
= bp
->flash_info
->total_size
;
4049 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4053 u32 cmd_flags
, offset32
, len32
, extra
;
4058 /* Request access to the flash interface. */
4059 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4062 /* Enable access to flash interface */
4063 bnx2_enable_nvram_access(bp
);
4076 pre_len
= 4 - (offset
& 3);
4078 if (pre_len
>= len32
) {
4080 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4081 BNX2_NVM_COMMAND_LAST
;
4084 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4087 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4092 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4099 extra
= 4 - (len32
& 3);
4100 len32
= (len32
+ 4) & ~3;
4107 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4109 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4110 BNX2_NVM_COMMAND_LAST
;
4112 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4114 memcpy(ret_buf
, buf
, 4 - extra
);
4116 else if (len32
> 0) {
4119 /* Read the first word. */
4123 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4125 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4127 /* Advance to the next dword. */
4132 while (len32
> 4 && rc
== 0) {
4133 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4135 /* Advance to the next dword. */
4144 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4145 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4147 memcpy(ret_buf
, buf
, 4 - extra
);
4150 /* Disable access to flash interface */
4151 bnx2_disable_nvram_access(bp
);
4153 bnx2_release_nvram_lock(bp
);
4159 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4162 u32 written
, offset32
, len32
;
4163 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4165 int align_start
, align_end
;
4170 align_start
= align_end
= 0;
4172 if ((align_start
= (offset32
& 3))) {
4174 len32
+= align_start
;
4177 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4182 align_end
= 4 - (len32
& 3);
4184 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4188 if (align_start
|| align_end
) {
4189 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4190 if (align_buf
== NULL
)
4193 memcpy(align_buf
, start
, 4);
4196 memcpy(align_buf
+ len32
- 4, end
, 4);
4198 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4202 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4203 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4204 if (flash_buffer
== NULL
) {
4206 goto nvram_write_end
;
4211 while ((written
< len32
) && (rc
== 0)) {
4212 u32 page_start
, page_end
, data_start
, data_end
;
4213 u32 addr
, cmd_flags
;
4216 /* Find the page_start addr */
4217 page_start
= offset32
+ written
;
4218 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4219 /* Find the page_end addr */
4220 page_end
= page_start
+ bp
->flash_info
->page_size
;
4221 /* Find the data_start addr */
4222 data_start
= (written
== 0) ? offset32
: page_start
;
4223 /* Find the data_end addr */
4224 data_end
= (page_end
> offset32
+ len32
) ?
4225 (offset32
+ len32
) : page_end
;
4227 /* Request access to the flash interface. */
4228 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4229 goto nvram_write_end
;
4231 /* Enable access to flash interface */
4232 bnx2_enable_nvram_access(bp
);
4234 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4235 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4238 /* Read the whole page into the buffer
4239 * (non-buffer flash only) */
4240 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4241 if (j
== (bp
->flash_info
->page_size
- 4)) {
4242 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4244 rc
= bnx2_nvram_read_dword(bp
,
4250 goto nvram_write_end
;
4256 /* Enable writes to flash interface (unlock write-protect) */
4257 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4258 goto nvram_write_end
;
4260 /* Loop to write back the buffer data from page_start to
4263 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4264 /* Erase the page */
4265 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4266 goto nvram_write_end
;
4268 /* Re-enable the write again for the actual write */
4269 bnx2_enable_nvram_write(bp
);
4271 for (addr
= page_start
; addr
< data_start
;
4272 addr
+= 4, i
+= 4) {
4274 rc
= bnx2_nvram_write_dword(bp
, addr
,
4275 &flash_buffer
[i
], cmd_flags
);
4278 goto nvram_write_end
;
4284 /* Loop to write the new data from data_start to data_end */
4285 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4286 if ((addr
== page_end
- 4) ||
4287 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4288 (addr
== data_end
- 4))) {
4290 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4292 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4296 goto nvram_write_end
;
4302 /* Loop to write back the buffer data from data_end
4304 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4305 for (addr
= data_end
; addr
< page_end
;
4306 addr
+= 4, i
+= 4) {
4308 if (addr
== page_end
-4) {
4309 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4311 rc
= bnx2_nvram_write_dword(bp
, addr
,
4312 &flash_buffer
[i
], cmd_flags
);
4315 goto nvram_write_end
;
4321 /* Disable writes to flash interface (lock write-protect) */
4322 bnx2_disable_nvram_write(bp
);
4324 /* Disable access to flash interface */
4325 bnx2_disable_nvram_access(bp
);
4326 bnx2_release_nvram_lock(bp
);
4328 /* Increment written */
4329 written
+= data_end
- data_start
;
4333 kfree(flash_buffer
);
4339 bnx2_init_fw_cap(struct bnx2
*bp
)
4343 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4344 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4346 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4347 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4349 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4350 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4353 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4354 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4355 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4358 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4359 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4362 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4364 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4365 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4366 bp
->phy_port
= PORT_FIBRE
;
4368 bp
->phy_port
= PORT_TP
;
4370 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4371 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4374 if (netif_running(bp
->dev
) && sig
)
4375 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4379 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4381 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4383 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4384 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4388 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4394 /* Wait for the current PCI transaction to complete before
4395 * issuing a reset. */
4396 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4397 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4398 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4399 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4400 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4401 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4404 /* Wait for the firmware to tell us it is ok to issue a reset. */
4405 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4407 /* Deposit a driver reset signature so the firmware knows that
4408 * this is a soft reset. */
4409 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4410 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4412 /* Do a dummy read to force the chip to complete all current transaction
4413 * before we issue a reset. */
4414 val
= REG_RD(bp
, BNX2_MISC_ID
);
4416 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4417 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4418 REG_RD(bp
, BNX2_MISC_COMMAND
);
4421 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4422 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4424 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4427 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4428 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4429 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4432 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4434 /* Reading back any register after chip reset will hang the
4435 * bus on 5706 A0 and A1. The msleep below provides plenty
4436 * of margin for write posting.
4438 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4439 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4442 /* Reset takes approximate 30 usec */
4443 for (i
= 0; i
< 10; i
++) {
4444 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4445 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4446 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4451 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4452 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4453 printk(KERN_ERR PFX
"Chip reset did not complete\n");
4458 /* Make sure byte swapping is properly configured. */
4459 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4460 if (val
!= 0x01020304) {
4461 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
4465 /* Wait for the firmware to finish its initialization. */
4466 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4470 spin_lock_bh(&bp
->phy_lock
);
4471 old_port
= bp
->phy_port
;
4472 bnx2_init_fw_cap(bp
);
4473 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4474 old_port
!= bp
->phy_port
)
4475 bnx2_set_default_remote_link(bp
);
4476 spin_unlock_bh(&bp
->phy_lock
);
4478 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4479 /* Adjust the voltage regular to two steps lower. The default
4480 * of this register is 0x0000000e. */
4481 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4483 /* Remove bad rbuf memory from the free pool. */
4484 rc
= bnx2_alloc_bad_rbuf(bp
);
4487 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
4488 bnx2_setup_msix_tbl(bp
);
4494 bnx2_init_chip(struct bnx2
*bp
)
4499 /* Make sure the interrupt is not active. */
4500 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4502 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4503 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4505 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4507 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4508 DMA_READ_CHANS
<< 12 |
4509 DMA_WRITE_CHANS
<< 16;
4511 val
|= (0x2 << 20) | (1 << 11);
4513 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4516 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4517 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4518 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4520 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4522 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4523 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4524 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4525 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4528 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4531 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4533 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4534 val16
& ~PCI_X_CMD_ERO
);
4537 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4538 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4539 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4540 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4542 /* Initialize context mapping and zero out the quick contexts. The
4543 * context block must have already been enabled. */
4544 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4545 rc
= bnx2_init_5709_context(bp
);
4549 bnx2_init_context(bp
);
4551 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4554 bnx2_init_nvram(bp
);
4556 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4558 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4559 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4560 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4561 if (CHIP_ID(bp
) == CHIP_ID_5709_A0
|| CHIP_ID(bp
) == CHIP_ID_5709_A1
)
4562 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4564 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4566 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4567 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4568 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4570 val
= (BCM_PAGE_BITS
- 8) << 24;
4571 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4573 /* Configure page size. */
4574 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4575 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4576 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4577 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4579 val
= bp
->mac_addr
[0] +
4580 (bp
->mac_addr
[1] << 8) +
4581 (bp
->mac_addr
[2] << 16) +
4583 (bp
->mac_addr
[4] << 8) +
4584 (bp
->mac_addr
[5] << 16);
4585 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4587 /* Program the MTU. Also include 4 bytes for CRC32. */
4589 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4590 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4591 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4592 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4597 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4598 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4599 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4601 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4602 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4604 bp
->idle_chk_status_idx
= 0xffff;
4606 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4608 /* Set up how to generate a link change interrupt. */
4609 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4611 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4612 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4613 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4615 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4616 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4617 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4618 (u64
) bp
->stats_blk_mapping
>> 32);
4620 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4621 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4623 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4624 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4626 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4627 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4629 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4631 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4633 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4634 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4636 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4637 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4639 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4640 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4642 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4643 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4645 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4646 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4648 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4649 BNX2_HC_CONFIG_COLLECT_STATS
;
4652 if (bp
->irq_nvecs
> 1) {
4653 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4654 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4656 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4659 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4660 val
|= BNX2_HC_CONFIG_ONE_SHOT
;
4662 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4664 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4665 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4666 BNX2_HC_SB_CONFIG_1
;
4669 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4670 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4671 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4673 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4674 (bp
->tx_quick_cons_trip_int
<< 16) |
4675 bp
->tx_quick_cons_trip
);
4677 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4678 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4680 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4681 (bp
->rx_quick_cons_trip_int
<< 16) |
4682 bp
->rx_quick_cons_trip
);
4684 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4685 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4688 /* Clear internal stats counters. */
4689 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4691 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4693 /* Initialize the receive filter. */
4694 bnx2_set_rx_mode(bp
->dev
);
4696 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4697 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4698 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4699 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4701 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4704 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4705 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4709 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4715 bnx2_clear_ring_states(struct bnx2
*bp
)
4717 struct bnx2_napi
*bnapi
;
4718 struct bnx2_tx_ring_info
*txr
;
4719 struct bnx2_rx_ring_info
*rxr
;
4722 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4723 bnapi
= &bp
->bnx2_napi
[i
];
4724 txr
= &bnapi
->tx_ring
;
4725 rxr
= &bnapi
->rx_ring
;
4728 txr
->hw_tx_cons
= 0;
4729 rxr
->rx_prod_bseq
= 0;
4732 rxr
->rx_pg_prod
= 0;
4733 rxr
->rx_pg_cons
= 0;
4738 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
4740 u32 val
, offset0
, offset1
, offset2
, offset3
;
4741 u32 cid_addr
= GET_CID_ADDR(cid
);
4743 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4744 offset0
= BNX2_L2CTX_TYPE_XI
;
4745 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
4746 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
4747 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
4749 offset0
= BNX2_L2CTX_TYPE
;
4750 offset1
= BNX2_L2CTX_CMD_TYPE
;
4751 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
4752 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
4754 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
4755 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
4757 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
4758 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
4760 val
= (u64
) txr
->tx_desc_mapping
>> 32;
4761 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
4763 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4764 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
4768 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
4772 struct bnx2_napi
*bnapi
;
4773 struct bnx2_tx_ring_info
*txr
;
4775 bnapi
= &bp
->bnx2_napi
[ring_num
];
4776 txr
= &bnapi
->tx_ring
;
4781 cid
= TX_TSS_CID
+ ring_num
- 1;
4783 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
4785 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
4787 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
4788 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
4791 txr
->tx_prod_bseq
= 0;
4793 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
4794 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
4796 bnx2_init_tx_context(bp
, cid
, txr
);
4800 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
4806 for (i
= 0; i
< num_rings
; i
++) {
4809 rxbd
= &rx_ring
[i
][0];
4810 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
4811 rxbd
->rx_bd_len
= buf_size
;
4812 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
4814 if (i
== (num_rings
- 1))
4818 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
4819 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
4824 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
4827 u16 prod
, ring_prod
;
4828 u32 cid
, rx_cid_addr
, val
;
4829 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
4830 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
4835 cid
= RX_RSS_CID
+ ring_num
- 1;
4837 rx_cid_addr
= GET_CID_ADDR(cid
);
4839 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
4840 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
4842 bnx2_init_rx_context(bp
, cid
);
4844 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4845 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
4846 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
4849 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
4850 if (bp
->rx_pg_ring_size
) {
4851 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
4852 rxr
->rx_pg_desc_mapping
,
4853 PAGE_SIZE
, bp
->rx_max_pg_ring
);
4854 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
4855 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
4856 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
4857 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
4859 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
4860 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
4862 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
4863 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
4865 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
4866 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
4869 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
4870 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
4872 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
4873 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
4875 ring_prod
= prod
= rxr
->rx_pg_prod
;
4876 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
4877 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0)
4879 prod
= NEXT_RX_BD(prod
);
4880 ring_prod
= RX_PG_RING_IDX(prod
);
4882 rxr
->rx_pg_prod
= prod
;
4884 ring_prod
= prod
= rxr
->rx_prod
;
4885 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
4886 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0)
4888 prod
= NEXT_RX_BD(prod
);
4889 ring_prod
= RX_RING_IDX(prod
);
4891 rxr
->rx_prod
= prod
;
4893 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
4894 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
4895 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
4897 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
4898 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
4900 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
4904 bnx2_init_all_rings(struct bnx2
*bp
)
4909 bnx2_clear_ring_states(bp
);
4911 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
4912 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
4913 bnx2_init_tx_ring(bp
, i
);
4915 if (bp
->num_tx_rings
> 1)
4916 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
4919 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
4920 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
4922 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
4923 bnx2_init_rx_ring(bp
, i
);
4925 if (bp
->num_rx_rings
> 1) {
4927 u8
*tbl
= (u8
*) &tbl_32
;
4929 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
4930 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
4932 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
4933 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
4936 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
4937 cpu_to_be32(tbl_32
));
4940 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
4941 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
4943 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
4948 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
4950 u32 max
, num_rings
= 1;
4952 while (ring_size
> MAX_RX_DESC_CNT
) {
4953 ring_size
-= MAX_RX_DESC_CNT
;
4956 /* round to next power of 2 */
4958 while ((max
& num_rings
) == 0)
4961 if (num_rings
!= max
)
4968 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
4970 u32 rx_size
, rx_space
, jumbo_size
;
4972 /* 8 for CRC and VLAN */
4973 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
4975 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
4976 sizeof(struct skb_shared_info
);
4978 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
4979 bp
->rx_pg_ring_size
= 0;
4980 bp
->rx_max_pg_ring
= 0;
4981 bp
->rx_max_pg_ring_idx
= 0;
4982 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
4983 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
4985 jumbo_size
= size
* pages
;
4986 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
4987 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
4989 bp
->rx_pg_ring_size
= jumbo_size
;
4990 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
4992 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
4993 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
4994 bp
->rx_copy_thresh
= 0;
4997 bp
->rx_buf_use_size
= rx_size
;
4999 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5000 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5001 bp
->rx_ring_size
= size
;
5002 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5003 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5007 bnx2_free_tx_skbs(struct bnx2
*bp
)
5011 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5012 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5013 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5016 if (txr
->tx_buf_ring
== NULL
)
5019 for (j
= 0; j
< TX_DESC_CNT
; ) {
5020 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5021 struct sk_buff
*skb
= tx_buf
->skb
;
5028 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5032 j
+= skb_shinfo(skb
)->nr_frags
+ 1;
5039 bnx2_free_rx_skbs(struct bnx2
*bp
)
5043 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5044 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5045 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5048 if (rxr
->rx_buf_ring
== NULL
)
5051 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5052 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5053 struct sk_buff
*skb
= rx_buf
->skb
;
5058 pci_unmap_single(bp
->pdev
,
5059 pci_unmap_addr(rx_buf
, mapping
),
5060 bp
->rx_buf_use_size
,
5061 PCI_DMA_FROMDEVICE
);
5067 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5068 bnx2_free_rx_page(bp
, rxr
, j
);
5073 bnx2_free_skbs(struct bnx2
*bp
)
5075 bnx2_free_tx_skbs(bp
);
5076 bnx2_free_rx_skbs(bp
);
5080 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5084 rc
= bnx2_reset_chip(bp
, reset_code
);
5089 if ((rc
= bnx2_init_chip(bp
)) != 0)
5092 bnx2_init_all_rings(bp
);
5097 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5101 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5104 spin_lock_bh(&bp
->phy_lock
);
5105 bnx2_init_phy(bp
, reset_phy
);
5107 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5108 bnx2_remote_phy_event(bp
);
5109 spin_unlock_bh(&bp
->phy_lock
);
5114 bnx2_shutdown_chip(struct bnx2
*bp
)
5118 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5119 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5121 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5123 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5125 return bnx2_reset_chip(bp
, reset_code
);
5129 bnx2_test_registers(struct bnx2
*bp
)
5133 static const struct {
5136 #define BNX2_FL_NOT_5709 1
5140 { 0x006c, 0, 0x00000000, 0x0000003f },
5141 { 0x0090, 0, 0xffffffff, 0x00000000 },
5142 { 0x0094, 0, 0x00000000, 0x00000000 },
5144 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5145 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5146 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5147 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5148 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5149 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5150 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5151 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5152 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5154 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5155 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5156 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5157 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5158 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5159 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5161 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5162 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5163 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5165 { 0x1000, 0, 0x00000000, 0x00000001 },
5166 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5168 { 0x1408, 0, 0x01c00800, 0x00000000 },
5169 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5170 { 0x14a8, 0, 0x00000000, 0x000001ff },
5171 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5172 { 0x14b0, 0, 0x00000002, 0x00000001 },
5173 { 0x14b8, 0, 0x00000000, 0x00000000 },
5174 { 0x14c0, 0, 0x00000000, 0x00000009 },
5175 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5176 { 0x14cc, 0, 0x00000000, 0x00000001 },
5177 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5179 { 0x1800, 0, 0x00000000, 0x00000001 },
5180 { 0x1804, 0, 0x00000000, 0x00000003 },
5182 { 0x2800, 0, 0x00000000, 0x00000001 },
5183 { 0x2804, 0, 0x00000000, 0x00003f01 },
5184 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5185 { 0x2810, 0, 0xffff0000, 0x00000000 },
5186 { 0x2814, 0, 0xffff0000, 0x00000000 },
5187 { 0x2818, 0, 0xffff0000, 0x00000000 },
5188 { 0x281c, 0, 0xffff0000, 0x00000000 },
5189 { 0x2834, 0, 0xffffffff, 0x00000000 },
5190 { 0x2840, 0, 0x00000000, 0xffffffff },
5191 { 0x2844, 0, 0x00000000, 0xffffffff },
5192 { 0x2848, 0, 0xffffffff, 0x00000000 },
5193 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5195 { 0x2c00, 0, 0x00000000, 0x00000011 },
5196 { 0x2c04, 0, 0x00000000, 0x00030007 },
5198 { 0x3c00, 0, 0x00000000, 0x00000001 },
5199 { 0x3c04, 0, 0x00000000, 0x00070000 },
5200 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5201 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5202 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5203 { 0x3c14, 0, 0x00000000, 0xffffffff },
5204 { 0x3c18, 0, 0x00000000, 0xffffffff },
5205 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5206 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5208 { 0x5004, 0, 0x00000000, 0x0000007f },
5209 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5211 { 0x5c00, 0, 0x00000000, 0x00000001 },
5212 { 0x5c04, 0, 0x00000000, 0x0003000f },
5213 { 0x5c08, 0, 0x00000003, 0x00000000 },
5214 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5215 { 0x5c10, 0, 0x00000000, 0xffffffff },
5216 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5217 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5218 { 0x5c88, 0, 0x00000000, 0x00077373 },
5219 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5221 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5222 { 0x680c, 0, 0xffffffff, 0x00000000 },
5223 { 0x6810, 0, 0xffffffff, 0x00000000 },
5224 { 0x6814, 0, 0xffffffff, 0x00000000 },
5225 { 0x6818, 0, 0xffffffff, 0x00000000 },
5226 { 0x681c, 0, 0xffffffff, 0x00000000 },
5227 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5228 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5229 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5230 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5231 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5232 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5233 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5234 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5235 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5236 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5237 { 0x684c, 0, 0xffffffff, 0x00000000 },
5238 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5239 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5240 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5241 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5242 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5243 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5245 { 0xffff, 0, 0x00000000, 0x00000000 },
5250 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5253 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5254 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5255 u16 flags
= reg_tbl
[i
].flags
;
5257 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5260 offset
= (u32
) reg_tbl
[i
].offset
;
5261 rw_mask
= reg_tbl
[i
].rw_mask
;
5262 ro_mask
= reg_tbl
[i
].ro_mask
;
5264 save_val
= readl(bp
->regview
+ offset
);
5266 writel(0, bp
->regview
+ offset
);
5268 val
= readl(bp
->regview
+ offset
);
5269 if ((val
& rw_mask
) != 0) {
5273 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5277 writel(0xffffffff, bp
->regview
+ offset
);
5279 val
= readl(bp
->regview
+ offset
);
5280 if ((val
& rw_mask
) != rw_mask
) {
5284 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5288 writel(save_val
, bp
->regview
+ offset
);
5292 writel(save_val
, bp
->regview
+ offset
);
5300 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5302 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5303 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5306 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5309 for (offset
= 0; offset
< size
; offset
+= 4) {
5311 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5313 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5323 bnx2_test_memory(struct bnx2
*bp
)
5327 static struct mem_entry
{
5330 } mem_tbl_5706
[] = {
5331 { 0x60000, 0x4000 },
5332 { 0xa0000, 0x3000 },
5333 { 0xe0000, 0x4000 },
5334 { 0x120000, 0x4000 },
5335 { 0x1a0000, 0x4000 },
5336 { 0x160000, 0x4000 },
5340 { 0x60000, 0x4000 },
5341 { 0xa0000, 0x3000 },
5342 { 0xe0000, 0x4000 },
5343 { 0x120000, 0x4000 },
5344 { 0x1a0000, 0x4000 },
5347 struct mem_entry
*mem_tbl
;
5349 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5350 mem_tbl
= mem_tbl_5709
;
5352 mem_tbl
= mem_tbl_5706
;
5354 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5355 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5356 mem_tbl
[i
].len
)) != 0) {
5364 #define BNX2_MAC_LOOPBACK 0
5365 #define BNX2_PHY_LOOPBACK 1
5368 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5370 unsigned int pkt_size
, num_pkts
, i
;
5371 struct sk_buff
*skb
, *rx_skb
;
5372 unsigned char *packet
;
5373 u16 rx_start_idx
, rx_idx
;
5376 struct sw_bd
*rx_buf
;
5377 struct l2_fhdr
*rx_hdr
;
5379 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5380 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5381 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5385 txr
= &tx_napi
->tx_ring
;
5386 rxr
= &bnapi
->rx_ring
;
5387 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5388 bp
->loopback
= MAC_LOOPBACK
;
5389 bnx2_set_mac_loopback(bp
);
5391 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5392 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5395 bp
->loopback
= PHY_LOOPBACK
;
5396 bnx2_set_phy_loopback(bp
);
5401 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5402 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5405 packet
= skb_put(skb
, pkt_size
);
5406 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5407 memset(packet
+ 6, 0x0, 8);
5408 for (i
= 14; i
< pkt_size
; i
++)
5409 packet
[i
] = (unsigned char) (i
& 0xff);
5411 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
5415 map
= skb_shinfo(skb
)->dma_maps
[0];
5417 REG_WR(bp
, BNX2_HC_COMMAND
,
5418 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5420 REG_RD(bp
, BNX2_HC_COMMAND
);
5423 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5427 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5429 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5430 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5431 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5432 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5435 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5436 txr
->tx_prod_bseq
+= pkt_size
;
5438 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5439 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5443 REG_WR(bp
, BNX2_HC_COMMAND
,
5444 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5446 REG_RD(bp
, BNX2_HC_COMMAND
);
5450 skb_dma_unmap(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
);
5453 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5454 goto loopback_test_done
;
5456 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5457 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5458 goto loopback_test_done
;
5461 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5462 rx_skb
= rx_buf
->skb
;
5464 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
5465 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5467 pci_dma_sync_single_for_cpu(bp
->pdev
,
5468 pci_unmap_addr(rx_buf
, mapping
),
5469 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5471 if (rx_hdr
->l2_fhdr_status
&
5472 (L2_FHDR_ERRORS_BAD_CRC
|
5473 L2_FHDR_ERRORS_PHY_DECODE
|
5474 L2_FHDR_ERRORS_ALIGNMENT
|
5475 L2_FHDR_ERRORS_TOO_SHORT
|
5476 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5478 goto loopback_test_done
;
5481 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5482 goto loopback_test_done
;
5485 for (i
= 14; i
< pkt_size
; i
++) {
5486 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5487 goto loopback_test_done
;
5498 #define BNX2_MAC_LOOPBACK_FAILED 1
5499 #define BNX2_PHY_LOOPBACK_FAILED 2
5500 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5501 BNX2_PHY_LOOPBACK_FAILED)
5504 bnx2_test_loopback(struct bnx2
*bp
)
5508 if (!netif_running(bp
->dev
))
5509 return BNX2_LOOPBACK_FAILED
;
5511 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5512 spin_lock_bh(&bp
->phy_lock
);
5513 bnx2_init_phy(bp
, 1);
5514 spin_unlock_bh(&bp
->phy_lock
);
5515 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5516 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5517 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5518 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5522 #define NVRAM_SIZE 0x200
5523 #define CRC32_RESIDUAL 0xdebb20e3
5526 bnx2_test_nvram(struct bnx2
*bp
)
5528 __be32 buf
[NVRAM_SIZE
/ 4];
5529 u8
*data
= (u8
*) buf
;
5533 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5534 goto test_nvram_done
;
5536 magic
= be32_to_cpu(buf
[0]);
5537 if (magic
!= 0x669955aa) {
5539 goto test_nvram_done
;
5542 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5543 goto test_nvram_done
;
5545 csum
= ether_crc_le(0x100, data
);
5546 if (csum
!= CRC32_RESIDUAL
) {
5548 goto test_nvram_done
;
5551 csum
= ether_crc_le(0x100, data
+ 0x100);
5552 if (csum
!= CRC32_RESIDUAL
) {
5561 bnx2_test_link(struct bnx2
*bp
)
5565 if (!netif_running(bp
->dev
))
5568 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5573 spin_lock_bh(&bp
->phy_lock
);
5574 bnx2_enable_bmsr1(bp
);
5575 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5576 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5577 bnx2_disable_bmsr1(bp
);
5578 spin_unlock_bh(&bp
->phy_lock
);
5580 if (bmsr
& BMSR_LSTATUS
) {
5587 bnx2_test_intr(struct bnx2
*bp
)
5592 if (!netif_running(bp
->dev
))
5595 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5597 /* This register is not touched during run-time. */
5598 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5599 REG_RD(bp
, BNX2_HC_COMMAND
);
5601 for (i
= 0; i
< 10; i
++) {
5602 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5608 msleep_interruptible(10);
5616 /* Determining link for parallel detection. */
5618 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5620 u32 mode_ctl
, an_dbg
, exp
;
5622 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5625 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5626 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5628 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5631 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5632 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5633 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5635 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5638 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5639 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5640 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5642 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5649 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5653 spin_lock(&bp
->phy_lock
);
5654 if (bp
->serdes_an_pending
) {
5655 bp
->serdes_an_pending
--;
5657 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5660 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5662 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5664 if (bmcr
& BMCR_ANENABLE
) {
5665 if (bnx2_5706_serdes_has_link(bp
)) {
5666 bmcr
&= ~BMCR_ANENABLE
;
5667 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5668 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5669 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5673 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5674 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5677 bnx2_write_phy(bp
, 0x17, 0x0f01);
5678 bnx2_read_phy(bp
, 0x15, &phy2
);
5682 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5683 bmcr
|= BMCR_ANENABLE
;
5684 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5686 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5689 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5694 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5695 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5696 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5698 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5699 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5700 bnx2_5706s_force_link_dn(bp
, 1);
5701 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5704 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5707 spin_unlock(&bp
->phy_lock
);
5711 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5713 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5716 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
5717 bp
->serdes_an_pending
= 0;
5721 spin_lock(&bp
->phy_lock
);
5722 if (bp
->serdes_an_pending
)
5723 bp
->serdes_an_pending
--;
5724 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5727 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5728 if (bmcr
& BMCR_ANENABLE
) {
5729 bnx2_enable_forced_2g5(bp
);
5730 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
5732 bnx2_disable_forced_2g5(bp
);
5733 bp
->serdes_an_pending
= 2;
5734 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5738 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5740 spin_unlock(&bp
->phy_lock
);
5744 bnx2_timer(unsigned long data
)
5746 struct bnx2
*bp
= (struct bnx2
*) data
;
5748 if (!netif_running(bp
->dev
))
5751 if (atomic_read(&bp
->intr_sem
) != 0)
5752 goto bnx2_restart_timer
;
5754 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
5755 BNX2_FLAG_USING_MSI
)
5756 bnx2_chk_missed_msi(bp
);
5758 bnx2_send_heart_beat(bp
);
5760 bp
->stats_blk
->stat_FwRxDrop
=
5761 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
5763 /* workaround occasional corrupted counters */
5764 if (CHIP_NUM(bp
) == CHIP_NUM_5708
&& bp
->stats_ticks
)
5765 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
5766 BNX2_HC_COMMAND_STATS_NOW
);
5768 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
5769 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
5770 bnx2_5706_serdes_timer(bp
);
5772 bnx2_5708_serdes_timer(bp
);
5776 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5780 bnx2_request_irq(struct bnx2
*bp
)
5782 unsigned long flags
;
5783 struct bnx2_irq
*irq
;
5786 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
5789 flags
= IRQF_SHARED
;
5791 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5792 irq
= &bp
->irq_tbl
[i
];
5793 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
5803 bnx2_free_irq(struct bnx2
*bp
)
5805 struct bnx2_irq
*irq
;
5808 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
5809 irq
= &bp
->irq_tbl
[i
];
5811 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
5814 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5815 pci_disable_msi(bp
->pdev
);
5816 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5817 pci_disable_msix(bp
->pdev
);
5819 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
5823 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
5826 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
5827 struct net_device
*dev
= bp
->dev
;
5828 const int len
= sizeof(bp
->irq_tbl
[0].name
);
5830 bnx2_setup_msix_tbl(bp
);
5831 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
5832 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
5833 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
5835 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5836 msix_ent
[i
].entry
= i
;
5837 msix_ent
[i
].vector
= 0;
5839 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
5840 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
5843 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
5847 bp
->irq_nvecs
= msix_vecs
;
5848 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
5849 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
5850 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
5854 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
5856 int cpus
= num_online_cpus();
5857 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
5859 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
5860 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
5862 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5864 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
5865 bnx2_enable_msix(bp
, msix_vecs
);
5867 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
5868 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
5869 if (pci_enable_msi(bp
->pdev
) == 0) {
5870 bp
->flags
|= BNX2_FLAG_USING_MSI
;
5871 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5872 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
5873 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
5875 bp
->irq_tbl
[0].handler
= bnx2_msi
;
5877 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
5881 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
5882 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
5884 bp
->num_rx_rings
= bp
->irq_nvecs
;
5887 /* Called with rtnl_lock */
5889 bnx2_open(struct net_device
*dev
)
5891 struct bnx2
*bp
= netdev_priv(dev
);
5894 netif_carrier_off(dev
);
5896 bnx2_set_power_state(bp
, PCI_D0
);
5897 bnx2_disable_int(bp
);
5899 bnx2_setup_int_mode(bp
, disable_msi
);
5900 bnx2_napi_enable(bp
);
5901 rc
= bnx2_alloc_mem(bp
);
5905 rc
= bnx2_request_irq(bp
);
5909 rc
= bnx2_init_nic(bp
, 1);
5913 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5915 atomic_set(&bp
->intr_sem
, 0);
5917 bnx2_enable_int(bp
);
5919 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
5920 /* Test MSI to make sure it is working
5921 * If MSI test fails, go back to INTx mode
5923 if (bnx2_test_intr(bp
) != 0) {
5924 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
5925 " using MSI, switching to INTx mode. Please"
5926 " report this failure to the PCI maintainer"
5927 " and include system chipset information.\n",
5930 bnx2_disable_int(bp
);
5933 bnx2_setup_int_mode(bp
, 1);
5935 rc
= bnx2_init_nic(bp
, 0);
5938 rc
= bnx2_request_irq(bp
);
5941 del_timer_sync(&bp
->timer
);
5944 bnx2_enable_int(bp
);
5947 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
5948 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
5949 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
5950 printk(KERN_INFO PFX
"%s: using MSIX\n", dev
->name
);
5952 netif_tx_start_all_queues(dev
);
5957 bnx2_napi_disable(bp
);
5965 bnx2_reset_task(struct work_struct
*work
)
5967 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
5969 if (!netif_running(bp
->dev
))
5972 bnx2_netif_stop(bp
);
5974 bnx2_init_nic(bp
, 1);
5976 atomic_set(&bp
->intr_sem
, 1);
5977 bnx2_netif_start(bp
);
5981 bnx2_tx_timeout(struct net_device
*dev
)
5983 struct bnx2
*bp
= netdev_priv(dev
);
5985 /* This allows the netif to be shutdown gracefully before resetting */
5986 schedule_work(&bp
->reset_task
);
5990 /* Called with rtnl_lock */
5992 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
5994 struct bnx2
*bp
= netdev_priv(dev
);
5996 bnx2_netif_stop(bp
);
5999 bnx2_set_rx_mode(dev
);
6000 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
6001 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
6003 bnx2_netif_start(bp
);
6007 /* Called with netif_tx_lock.
6008 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6009 * netif_wake_queue().
6012 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6014 struct bnx2
*bp
= netdev_priv(dev
);
6017 struct sw_tx_bd
*tx_buf
;
6018 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6019 u16 prod
, ring_prod
;
6021 struct bnx2_napi
*bnapi
;
6022 struct bnx2_tx_ring_info
*txr
;
6023 struct netdev_queue
*txq
;
6024 struct skb_shared_info
*sp
;
6026 /* Determine which tx ring we will be placed on */
6027 i
= skb_get_queue_mapping(skb
);
6028 bnapi
= &bp
->bnx2_napi
[i
];
6029 txr
= &bnapi
->tx_ring
;
6030 txq
= netdev_get_tx_queue(dev
, i
);
6032 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6033 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6034 netif_tx_stop_queue(txq
);
6035 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
6038 return NETDEV_TX_BUSY
;
6040 len
= skb_headlen(skb
);
6041 prod
= txr
->tx_prod
;
6042 ring_prod
= TX_RING_IDX(prod
);
6045 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6046 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6050 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6052 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6055 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6059 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6061 tcp_opt_len
= tcp_optlen(skb
);
6063 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6064 u32 tcp_off
= skb_transport_offset(skb
) -
6065 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6067 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6068 TX_BD_FLAGS_SW_FLAGS
;
6069 if (likely(tcp_off
== 0))
6070 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6073 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6074 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6075 ((tcp_off
& 0x10) <<
6076 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6077 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6081 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6082 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6083 (tcp_opt_len
>> 2)) << 8;
6089 if (skb_dma_map(&bp
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
6091 return NETDEV_TX_OK
;
6094 sp
= skb_shinfo(skb
);
6095 mapping
= sp
->dma_maps
[0];
6097 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6100 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6102 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6103 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6104 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6105 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6107 last_frag
= skb_shinfo(skb
)->nr_frags
;
6109 for (i
= 0; i
< last_frag
; i
++) {
6110 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6112 prod
= NEXT_TX_BD(prod
);
6113 ring_prod
= TX_RING_IDX(prod
);
6114 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6117 mapping
= sp
->dma_maps
[i
+ 1];
6119 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6120 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6121 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6122 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6125 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6127 prod
= NEXT_TX_BD(prod
);
6128 txr
->tx_prod_bseq
+= skb
->len
;
6130 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6131 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6135 txr
->tx_prod
= prod
;
6136 dev
->trans_start
= jiffies
;
6138 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6139 netif_tx_stop_queue(txq
);
6140 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6141 netif_tx_wake_queue(txq
);
6144 return NETDEV_TX_OK
;
6147 /* Called with rtnl_lock */
6149 bnx2_close(struct net_device
*dev
)
6151 struct bnx2
*bp
= netdev_priv(dev
);
6153 cancel_work_sync(&bp
->reset_task
);
6155 bnx2_disable_int_sync(bp
);
6156 bnx2_napi_disable(bp
);
6157 del_timer_sync(&bp
->timer
);
6158 bnx2_shutdown_chip(bp
);
6163 netif_carrier_off(bp
->dev
);
6164 bnx2_set_power_state(bp
, PCI_D3hot
);
6168 #define GET_NET_STATS64(ctr) \
6169 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6170 (unsigned long) (ctr##_lo)
6172 #define GET_NET_STATS32(ctr) \
6175 #if (BITS_PER_LONG == 64)
6176 #define GET_NET_STATS GET_NET_STATS64
6178 #define GET_NET_STATS GET_NET_STATS32
6181 static struct net_device_stats
*
6182 bnx2_get_stats(struct net_device
*dev
)
6184 struct bnx2
*bp
= netdev_priv(dev
);
6185 struct statistics_block
*stats_blk
= bp
->stats_blk
;
6186 struct net_device_stats
*net_stats
= &dev
->stats
;
6188 if (bp
->stats_blk
== NULL
) {
6191 net_stats
->rx_packets
=
6192 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
6193 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
6194 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
6196 net_stats
->tx_packets
=
6197 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
6198 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
6199 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
6201 net_stats
->rx_bytes
=
6202 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
6204 net_stats
->tx_bytes
=
6205 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
6207 net_stats
->multicast
=
6208 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
6210 net_stats
->collisions
=
6211 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
6213 net_stats
->rx_length_errors
=
6214 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
6215 stats_blk
->stat_EtherStatsOverrsizePkts
);
6217 net_stats
->rx_over_errors
=
6218 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
6220 net_stats
->rx_frame_errors
=
6221 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
6223 net_stats
->rx_crc_errors
=
6224 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
6226 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6227 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6228 net_stats
->rx_crc_errors
;
6230 net_stats
->tx_aborted_errors
=
6231 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
6232 stats_blk
->stat_Dot3StatsLateCollisions
);
6234 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6235 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6236 net_stats
->tx_carrier_errors
= 0;
6238 net_stats
->tx_carrier_errors
=
6240 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
6243 net_stats
->tx_errors
=
6245 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6247 net_stats
->tx_aborted_errors
+
6248 net_stats
->tx_carrier_errors
;
6250 net_stats
->rx_missed_errors
=
6251 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
6252 stats_blk
->stat_FwRxDrop
);
6257 /* All ethtool functions called with rtnl_lock */
6260 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6262 struct bnx2
*bp
= netdev_priv(dev
);
6263 int support_serdes
= 0, support_copper
= 0;
6265 cmd
->supported
= SUPPORTED_Autoneg
;
6266 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6269 } else if (bp
->phy_port
== PORT_FIBRE
)
6274 if (support_serdes
) {
6275 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6277 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6278 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6281 if (support_copper
) {
6282 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6283 SUPPORTED_10baseT_Full
|
6284 SUPPORTED_100baseT_Half
|
6285 SUPPORTED_100baseT_Full
|
6286 SUPPORTED_1000baseT_Full
|
6291 spin_lock_bh(&bp
->phy_lock
);
6292 cmd
->port
= bp
->phy_port
;
6293 cmd
->advertising
= bp
->advertising
;
6295 if (bp
->autoneg
& AUTONEG_SPEED
) {
6296 cmd
->autoneg
= AUTONEG_ENABLE
;
6299 cmd
->autoneg
= AUTONEG_DISABLE
;
6302 if (netif_carrier_ok(dev
)) {
6303 cmd
->speed
= bp
->line_speed
;
6304 cmd
->duplex
= bp
->duplex
;
6310 spin_unlock_bh(&bp
->phy_lock
);
6312 cmd
->transceiver
= XCVR_INTERNAL
;
6313 cmd
->phy_address
= bp
->phy_addr
;
6319 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6321 struct bnx2
*bp
= netdev_priv(dev
);
6322 u8 autoneg
= bp
->autoneg
;
6323 u8 req_duplex
= bp
->req_duplex
;
6324 u16 req_line_speed
= bp
->req_line_speed
;
6325 u32 advertising
= bp
->advertising
;
6328 spin_lock_bh(&bp
->phy_lock
);
6330 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6331 goto err_out_unlock
;
6333 if (cmd
->port
!= bp
->phy_port
&&
6334 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6335 goto err_out_unlock
;
6337 /* If device is down, we can store the settings only if the user
6338 * is setting the currently active port.
6340 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6341 goto err_out_unlock
;
6343 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6344 autoneg
|= AUTONEG_SPEED
;
6346 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6348 /* allow advertising 1 speed */
6349 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
6350 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
6351 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
6352 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
6354 if (cmd
->port
== PORT_FIBRE
)
6355 goto err_out_unlock
;
6357 advertising
= cmd
->advertising
;
6359 } else if (cmd
->advertising
== ADVERTISED_2500baseX_Full
) {
6360 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) ||
6361 (cmd
->port
== PORT_TP
))
6362 goto err_out_unlock
;
6363 } else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
)
6364 advertising
= cmd
->advertising
;
6365 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
)
6366 goto err_out_unlock
;
6368 if (cmd
->port
== PORT_FIBRE
)
6369 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6371 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6373 advertising
|= ADVERTISED_Autoneg
;
6376 if (cmd
->port
== PORT_FIBRE
) {
6377 if ((cmd
->speed
!= SPEED_1000
&&
6378 cmd
->speed
!= SPEED_2500
) ||
6379 (cmd
->duplex
!= DUPLEX_FULL
))
6380 goto err_out_unlock
;
6382 if (cmd
->speed
== SPEED_2500
&&
6383 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6384 goto err_out_unlock
;
6386 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6387 goto err_out_unlock
;
6389 autoneg
&= ~AUTONEG_SPEED
;
6390 req_line_speed
= cmd
->speed
;
6391 req_duplex
= cmd
->duplex
;
6395 bp
->autoneg
= autoneg
;
6396 bp
->advertising
= advertising
;
6397 bp
->req_line_speed
= req_line_speed
;
6398 bp
->req_duplex
= req_duplex
;
6401 /* If device is down, the new settings will be picked up when it is
6404 if (netif_running(dev
))
6405 err
= bnx2_setup_phy(bp
, cmd
->port
);
6408 spin_unlock_bh(&bp
->phy_lock
);
6414 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6416 struct bnx2
*bp
= netdev_priv(dev
);
6418 strcpy(info
->driver
, DRV_MODULE_NAME
);
6419 strcpy(info
->version
, DRV_MODULE_VERSION
);
6420 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6421 strcpy(info
->fw_version
, bp
->fw_version
);
6424 #define BNX2_REGDUMP_LEN (32 * 1024)
6427 bnx2_get_regs_len(struct net_device
*dev
)
6429 return BNX2_REGDUMP_LEN
;
6433 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6435 u32
*p
= _p
, i
, offset
;
6437 struct bnx2
*bp
= netdev_priv(dev
);
6438 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6439 0x0800, 0x0880, 0x0c00, 0x0c10,
6440 0x0c30, 0x0d08, 0x1000, 0x101c,
6441 0x1040, 0x1048, 0x1080, 0x10a4,
6442 0x1400, 0x1490, 0x1498, 0x14f0,
6443 0x1500, 0x155c, 0x1580, 0x15dc,
6444 0x1600, 0x1658, 0x1680, 0x16d8,
6445 0x1800, 0x1820, 0x1840, 0x1854,
6446 0x1880, 0x1894, 0x1900, 0x1984,
6447 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6448 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6449 0x2000, 0x2030, 0x23c0, 0x2400,
6450 0x2800, 0x2820, 0x2830, 0x2850,
6451 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6452 0x3c00, 0x3c94, 0x4000, 0x4010,
6453 0x4080, 0x4090, 0x43c0, 0x4458,
6454 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6455 0x4fc0, 0x5010, 0x53c0, 0x5444,
6456 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6457 0x5fc0, 0x6000, 0x6400, 0x6428,
6458 0x6800, 0x6848, 0x684c, 0x6860,
6459 0x6888, 0x6910, 0x8000 };
6463 memset(p
, 0, BNX2_REGDUMP_LEN
);
6465 if (!netif_running(bp
->dev
))
6469 offset
= reg_boundaries
[0];
6471 while (offset
< BNX2_REGDUMP_LEN
) {
6472 *p
++ = REG_RD(bp
, offset
);
6474 if (offset
== reg_boundaries
[i
+ 1]) {
6475 offset
= reg_boundaries
[i
+ 2];
6476 p
= (u32
*) (orig_p
+ offset
);
6483 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6485 struct bnx2
*bp
= netdev_priv(dev
);
6487 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6492 wol
->supported
= WAKE_MAGIC
;
6494 wol
->wolopts
= WAKE_MAGIC
;
6498 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6502 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6504 struct bnx2
*bp
= netdev_priv(dev
);
6506 if (wol
->wolopts
& ~WAKE_MAGIC
)
6509 if (wol
->wolopts
& WAKE_MAGIC
) {
6510 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6522 bnx2_nway_reset(struct net_device
*dev
)
6524 struct bnx2
*bp
= netdev_priv(dev
);
6527 if (!netif_running(dev
))
6530 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6534 spin_lock_bh(&bp
->phy_lock
);
6536 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6539 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6540 spin_unlock_bh(&bp
->phy_lock
);
6544 /* Force a link down visible on the other side */
6545 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6546 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6547 spin_unlock_bh(&bp
->phy_lock
);
6551 spin_lock_bh(&bp
->phy_lock
);
6553 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6554 bp
->serdes_an_pending
= 1;
6555 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6558 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6559 bmcr
&= ~BMCR_LOOPBACK
;
6560 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6562 spin_unlock_bh(&bp
->phy_lock
);
6568 bnx2_get_eeprom_len(struct net_device
*dev
)
6570 struct bnx2
*bp
= netdev_priv(dev
);
6572 if (bp
->flash_info
== NULL
)
6575 return (int) bp
->flash_size
;
6579 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6582 struct bnx2
*bp
= netdev_priv(dev
);
6585 if (!netif_running(dev
))
6588 /* parameters already validated in ethtool_get_eeprom */
6590 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6596 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6599 struct bnx2
*bp
= netdev_priv(dev
);
6602 if (!netif_running(dev
))
6605 /* parameters already validated in ethtool_set_eeprom */
6607 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6613 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6615 struct bnx2
*bp
= netdev_priv(dev
);
6617 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6619 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6620 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6621 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6622 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6624 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6625 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
6626 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
6627 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
6629 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
6635 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6637 struct bnx2
*bp
= netdev_priv(dev
);
6639 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
6640 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
6642 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
6643 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
6645 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
6646 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
6648 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
6649 if (bp
->rx_quick_cons_trip_int
> 0xff)
6650 bp
->rx_quick_cons_trip_int
= 0xff;
6652 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
6653 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
6655 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
6656 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
6658 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
6659 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
6661 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
6662 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
6665 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
6666 if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
6667 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
6668 bp
->stats_ticks
= USEC_PER_SEC
;
6670 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
6671 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6672 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
6674 if (netif_running(bp
->dev
)) {
6675 bnx2_netif_stop(bp
);
6676 bnx2_init_nic(bp
, 0);
6677 bnx2_netif_start(bp
);
6684 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6686 struct bnx2
*bp
= netdev_priv(dev
);
6688 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
6689 ering
->rx_mini_max_pending
= 0;
6690 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
6692 ering
->rx_pending
= bp
->rx_ring_size
;
6693 ering
->rx_mini_pending
= 0;
6694 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
6696 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
6697 ering
->tx_pending
= bp
->tx_ring_size
;
6701 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
6703 if (netif_running(bp
->dev
)) {
6704 bnx2_netif_stop(bp
);
6705 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
6710 bnx2_set_rx_ring_size(bp
, rx
);
6711 bp
->tx_ring_size
= tx
;
6713 if (netif_running(bp
->dev
)) {
6716 rc
= bnx2_alloc_mem(bp
);
6719 bnx2_init_nic(bp
, 0);
6720 bnx2_netif_start(bp
);
6726 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
6728 struct bnx2
*bp
= netdev_priv(dev
);
6731 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
6732 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
6733 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
6737 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
6742 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6744 struct bnx2
*bp
= netdev_priv(dev
);
6746 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
6747 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
6748 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
6752 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
6754 struct bnx2
*bp
= netdev_priv(dev
);
6756 bp
->req_flow_ctrl
= 0;
6757 if (epause
->rx_pause
)
6758 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
6759 if (epause
->tx_pause
)
6760 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
6762 if (epause
->autoneg
) {
6763 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
6766 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
6769 if (netif_running(dev
)) {
6770 spin_lock_bh(&bp
->phy_lock
);
6771 bnx2_setup_phy(bp
, bp
->phy_port
);
6772 spin_unlock_bh(&bp
->phy_lock
);
6779 bnx2_get_rx_csum(struct net_device
*dev
)
6781 struct bnx2
*bp
= netdev_priv(dev
);
6787 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
6789 struct bnx2
*bp
= netdev_priv(dev
);
6796 bnx2_set_tso(struct net_device
*dev
, u32 data
)
6798 struct bnx2
*bp
= netdev_priv(dev
);
6801 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6802 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
6803 dev
->features
|= NETIF_F_TSO6
;
6805 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
6810 #define BNX2_NUM_STATS 46
6813 char string
[ETH_GSTRING_LEN
];
6814 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
6816 { "rx_error_bytes" },
6818 { "tx_error_bytes" },
6819 { "rx_ucast_packets" },
6820 { "rx_mcast_packets" },
6821 { "rx_bcast_packets" },
6822 { "tx_ucast_packets" },
6823 { "tx_mcast_packets" },
6824 { "tx_bcast_packets" },
6825 { "tx_mac_errors" },
6826 { "tx_carrier_errors" },
6827 { "rx_crc_errors" },
6828 { "rx_align_errors" },
6829 { "tx_single_collisions" },
6830 { "tx_multi_collisions" },
6832 { "tx_excess_collisions" },
6833 { "tx_late_collisions" },
6834 { "tx_total_collisions" },
6837 { "rx_undersize_packets" },
6838 { "rx_oversize_packets" },
6839 { "rx_64_byte_packets" },
6840 { "rx_65_to_127_byte_packets" },
6841 { "rx_128_to_255_byte_packets" },
6842 { "rx_256_to_511_byte_packets" },
6843 { "rx_512_to_1023_byte_packets" },
6844 { "rx_1024_to_1522_byte_packets" },
6845 { "rx_1523_to_9022_byte_packets" },
6846 { "tx_64_byte_packets" },
6847 { "tx_65_to_127_byte_packets" },
6848 { "tx_128_to_255_byte_packets" },
6849 { "tx_256_to_511_byte_packets" },
6850 { "tx_512_to_1023_byte_packets" },
6851 { "tx_1024_to_1522_byte_packets" },
6852 { "tx_1523_to_9022_byte_packets" },
6853 { "rx_xon_frames" },
6854 { "rx_xoff_frames" },
6855 { "tx_xon_frames" },
6856 { "tx_xoff_frames" },
6857 { "rx_mac_ctrl_frames" },
6858 { "rx_filtered_packets" },
6860 { "rx_fw_discards" },
6863 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6865 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
6866 STATS_OFFSET32(stat_IfHCInOctets_hi
),
6867 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
6868 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
6869 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
6870 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
6871 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
6872 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
6873 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
6874 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
6875 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
6876 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
6877 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
6878 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
6879 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
6880 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
6881 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
6882 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
6883 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
6884 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
6885 STATS_OFFSET32(stat_EtherStatsCollisions
),
6886 STATS_OFFSET32(stat_EtherStatsFragments
),
6887 STATS_OFFSET32(stat_EtherStatsJabbers
),
6888 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
6889 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
6890 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
6891 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
6892 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
6893 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
6894 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
6895 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
6896 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
6897 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
6898 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
6899 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
6900 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
6901 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
6902 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
6903 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
6904 STATS_OFFSET32(stat_XonPauseFramesReceived
),
6905 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
6906 STATS_OFFSET32(stat_OutXonSent
),
6907 STATS_OFFSET32(stat_OutXoffSent
),
6908 STATS_OFFSET32(stat_MacControlFramesReceived
),
6909 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
6910 STATS_OFFSET32(stat_IfInMBUFDiscards
),
6911 STATS_OFFSET32(stat_FwRxDrop
),
6914 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6915 * skipped because of errata.
6917 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
6918 8,0,8,8,8,8,8,8,8,8,
6919 4,0,4,4,4,4,4,4,4,4,
6920 4,4,4,4,4,4,4,4,4,4,
6921 4,4,4,4,4,4,4,4,4,4,
6925 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
6926 8,0,8,8,8,8,8,8,8,8,
6927 4,4,4,4,4,4,4,4,4,4,
6928 4,4,4,4,4,4,4,4,4,4,
6929 4,4,4,4,4,4,4,4,4,4,
6933 #define BNX2_NUM_TESTS 6
6936 char string
[ETH_GSTRING_LEN
];
6937 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
6938 { "register_test (offline)" },
6939 { "memory_test (offline)" },
6940 { "loopback_test (offline)" },
6941 { "nvram_test (online)" },
6942 { "interrupt_test (online)" },
6943 { "link_test (online)" },
6947 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
6951 return BNX2_NUM_TESTS
;
6953 return BNX2_NUM_STATS
;
6960 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
6962 struct bnx2
*bp
= netdev_priv(dev
);
6964 bnx2_set_power_state(bp
, PCI_D0
);
6966 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
6967 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
6970 bnx2_netif_stop(bp
);
6971 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
6974 if (bnx2_test_registers(bp
) != 0) {
6976 etest
->flags
|= ETH_TEST_FL_FAILED
;
6978 if (bnx2_test_memory(bp
) != 0) {
6980 etest
->flags
|= ETH_TEST_FL_FAILED
;
6982 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
6983 etest
->flags
|= ETH_TEST_FL_FAILED
;
6985 if (!netif_running(bp
->dev
))
6986 bnx2_shutdown_chip(bp
);
6988 bnx2_init_nic(bp
, 1);
6989 bnx2_netif_start(bp
);
6992 /* wait for link up */
6993 for (i
= 0; i
< 7; i
++) {
6996 msleep_interruptible(1000);
7000 if (bnx2_test_nvram(bp
) != 0) {
7002 etest
->flags
|= ETH_TEST_FL_FAILED
;
7004 if (bnx2_test_intr(bp
) != 0) {
7006 etest
->flags
|= ETH_TEST_FL_FAILED
;
7009 if (bnx2_test_link(bp
) != 0) {
7011 etest
->flags
|= ETH_TEST_FL_FAILED
;
7014 if (!netif_running(bp
->dev
))
7015 bnx2_set_power_state(bp
, PCI_D3hot
);
7019 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7021 switch (stringset
) {
7023 memcpy(buf
, bnx2_stats_str_arr
,
7024 sizeof(bnx2_stats_str_arr
));
7027 memcpy(buf
, bnx2_tests_str_arr
,
7028 sizeof(bnx2_tests_str_arr
));
7034 bnx2_get_ethtool_stats(struct net_device
*dev
,
7035 struct ethtool_stats
*stats
, u64
*buf
)
7037 struct bnx2
*bp
= netdev_priv(dev
);
7039 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7040 u8
*stats_len_arr
= NULL
;
7042 if (hw_stats
== NULL
) {
7043 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7047 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7048 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7049 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7050 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7051 stats_len_arr
= bnx2_5706_stats_len_arr
;
7053 stats_len_arr
= bnx2_5708_stats_len_arr
;
7055 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7056 if (stats_len_arr
[i
] == 0) {
7057 /* skip this counter */
7061 if (stats_len_arr
[i
] == 4) {
7062 /* 4-byte counter */
7064 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
7067 /* 8-byte counter */
7068 buf
[i
] = (((u64
) *(hw_stats
+
7069 bnx2_stats_offset_arr
[i
])) << 32) +
7070 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
7075 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7077 struct bnx2
*bp
= netdev_priv(dev
);
7081 bnx2_set_power_state(bp
, PCI_D0
);
7086 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7087 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7089 for (i
= 0; i
< (data
* 2); i
++) {
7091 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7094 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7095 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7096 BNX2_EMAC_LED_100MB_OVERRIDE
|
7097 BNX2_EMAC_LED_10MB_OVERRIDE
|
7098 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7099 BNX2_EMAC_LED_TRAFFIC
);
7101 msleep_interruptible(500);
7102 if (signal_pending(current
))
7105 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7106 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7108 if (!netif_running(dev
))
7109 bnx2_set_power_state(bp
, PCI_D3hot
);
7115 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7117 struct bnx2
*bp
= netdev_priv(dev
);
7119 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7120 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7122 return (ethtool_op_set_tx_csum(dev
, data
));
7125 static const struct ethtool_ops bnx2_ethtool_ops
= {
7126 .get_settings
= bnx2_get_settings
,
7127 .set_settings
= bnx2_set_settings
,
7128 .get_drvinfo
= bnx2_get_drvinfo
,
7129 .get_regs_len
= bnx2_get_regs_len
,
7130 .get_regs
= bnx2_get_regs
,
7131 .get_wol
= bnx2_get_wol
,
7132 .set_wol
= bnx2_set_wol
,
7133 .nway_reset
= bnx2_nway_reset
,
7134 .get_link
= ethtool_op_get_link
,
7135 .get_eeprom_len
= bnx2_get_eeprom_len
,
7136 .get_eeprom
= bnx2_get_eeprom
,
7137 .set_eeprom
= bnx2_set_eeprom
,
7138 .get_coalesce
= bnx2_get_coalesce
,
7139 .set_coalesce
= bnx2_set_coalesce
,
7140 .get_ringparam
= bnx2_get_ringparam
,
7141 .set_ringparam
= bnx2_set_ringparam
,
7142 .get_pauseparam
= bnx2_get_pauseparam
,
7143 .set_pauseparam
= bnx2_set_pauseparam
,
7144 .get_rx_csum
= bnx2_get_rx_csum
,
7145 .set_rx_csum
= bnx2_set_rx_csum
,
7146 .set_tx_csum
= bnx2_set_tx_csum
,
7147 .set_sg
= ethtool_op_set_sg
,
7148 .set_tso
= bnx2_set_tso
,
7149 .self_test
= bnx2_self_test
,
7150 .get_strings
= bnx2_get_strings
,
7151 .phys_id
= bnx2_phys_id
,
7152 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7153 .get_sset_count
= bnx2_get_sset_count
,
7156 /* Called with rtnl_lock */
7158 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7160 struct mii_ioctl_data
*data
= if_mii(ifr
);
7161 struct bnx2
*bp
= netdev_priv(dev
);
7166 data
->phy_id
= bp
->phy_addr
;
7172 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7175 if (!netif_running(dev
))
7178 spin_lock_bh(&bp
->phy_lock
);
7179 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7180 spin_unlock_bh(&bp
->phy_lock
);
7182 data
->val_out
= mii_regval
;
7188 if (!capable(CAP_NET_ADMIN
))
7191 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7194 if (!netif_running(dev
))
7197 spin_lock_bh(&bp
->phy_lock
);
7198 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7199 spin_unlock_bh(&bp
->phy_lock
);
7210 /* Called with rtnl_lock */
7212 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7214 struct sockaddr
*addr
= p
;
7215 struct bnx2
*bp
= netdev_priv(dev
);
7217 if (!is_valid_ether_addr(addr
->sa_data
))
7220 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7221 if (netif_running(dev
))
7222 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7227 /* Called with rtnl_lock */
7229 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7231 struct bnx2
*bp
= netdev_priv(dev
);
7233 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7234 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7238 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7241 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7243 poll_bnx2(struct net_device
*dev
)
7245 struct bnx2
*bp
= netdev_priv(dev
);
7248 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7249 disable_irq(bp
->irq_tbl
[i
].vector
);
7250 bnx2_interrupt(bp
->irq_tbl
[i
].vector
, &bp
->bnx2_napi
[i
]);
7251 enable_irq(bp
->irq_tbl
[i
].vector
);
7256 static void __devinit
7257 bnx2_get_5709_media(struct bnx2
*bp
)
7259 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7260 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7263 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7265 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7266 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7270 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7271 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7273 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7275 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7280 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7288 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7294 static void __devinit
7295 bnx2_get_pci_speed(struct bnx2
*bp
)
7299 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7300 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7303 bp
->flags
|= BNX2_FLAG_PCIX
;
7305 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7307 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7309 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7310 bp
->bus_speed_mhz
= 133;
7313 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7314 bp
->bus_speed_mhz
= 100;
7317 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7318 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7319 bp
->bus_speed_mhz
= 66;
7322 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7323 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7324 bp
->bus_speed_mhz
= 50;
7327 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7328 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7329 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7330 bp
->bus_speed_mhz
= 33;
7335 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7336 bp
->bus_speed_mhz
= 66;
7338 bp
->bus_speed_mhz
= 33;
7341 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7342 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7346 static int __devinit
7347 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7350 unsigned long mem_len
;
7353 u64 dma_mask
, persist_dma_mask
;
7355 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7356 bp
= netdev_priv(dev
);
7361 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7362 rc
= pci_enable_device(pdev
);
7364 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
7368 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7370 "Cannot find PCI device base address, aborting.\n");
7372 goto err_out_disable
;
7375 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7377 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
7378 goto err_out_disable
;
7381 pci_set_master(pdev
);
7382 pci_save_state(pdev
);
7384 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7385 if (bp
->pm_cap
== 0) {
7387 "Cannot find power management capability, aborting.\n");
7389 goto err_out_release
;
7395 spin_lock_init(&bp
->phy_lock
);
7396 spin_lock_init(&bp
->indirect_lock
);
7397 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7399 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7400 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
);
7401 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7402 dev
->irq
= pdev
->irq
;
7404 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7407 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
7409 goto err_out_release
;
7412 /* Configure byte swap and enable write to the reg_window registers.
7413 * Rely on CPU to do target byte swapping on big endian systems
7414 * The chip's target access swapping will not swap all accesses
7416 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7417 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7418 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7420 bnx2_set_power_state(bp
, PCI_D0
);
7422 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7424 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7425 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7427 "Cannot find PCIE capability, aborting.\n");
7431 bp
->flags
|= BNX2_FLAG_PCIE
;
7432 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7433 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7435 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7436 if (bp
->pcix_cap
== 0) {
7438 "Cannot find PCIX capability, aborting.\n");
7444 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7445 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7446 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7449 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7450 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7451 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7454 /* 5708 cannot support DMA addresses > 40-bit. */
7455 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7456 persist_dma_mask
= dma_mask
= DMA_40BIT_MASK
;
7458 persist_dma_mask
= dma_mask
= DMA_64BIT_MASK
;
7460 /* Configure DMA attributes. */
7461 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7462 dev
->features
|= NETIF_F_HIGHDMA
;
7463 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7466 "pci_set_consistent_dma_mask failed, aborting.\n");
7469 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) != 0) {
7470 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
7474 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7475 bnx2_get_pci_speed(bp
);
7477 /* 5706A0 may falsely detect SERR and PERR. */
7478 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7479 reg
= REG_RD(bp
, PCI_COMMAND
);
7480 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7481 REG_WR(bp
, PCI_COMMAND
, reg
);
7483 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7484 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7487 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7491 bnx2_init_nvram(bp
);
7493 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7495 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7496 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7497 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
7499 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
7501 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
7503 /* Get the permanent MAC address. First we need to make sure the
7504 * firmware is actually running.
7506 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
7508 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
7509 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
7510 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
7515 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
7516 for (i
= 0, j
= 0; i
< 3; i
++) {
7519 num
= (u8
) (reg
>> (24 - (i
* 8)));
7520 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
7521 if (num
>= k
|| !skip0
|| k
== 1) {
7522 bp
->fw_version
[j
++] = (num
/ k
) + '0';
7527 bp
->fw_version
[j
++] = '.';
7529 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
7530 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
7533 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
7534 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
7536 for (i
= 0; i
< 30; i
++) {
7537 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7538 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
7543 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
7544 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
7545 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
7546 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
7547 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
7549 bp
->fw_version
[j
++] = ' ';
7550 for (i
= 0; i
< 3; i
++) {
7551 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
7553 memcpy(&bp
->fw_version
[j
], ®
, 4);
7558 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
7559 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
7560 bp
->mac_addr
[1] = (u8
) reg
;
7562 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
7563 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
7564 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
7565 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
7566 bp
->mac_addr
[5] = (u8
) reg
;
7568 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
7569 bnx2_set_rx_ring_size(bp
, 255);
7573 bp
->tx_quick_cons_trip_int
= 20;
7574 bp
->tx_quick_cons_trip
= 20;
7575 bp
->tx_ticks_int
= 80;
7578 bp
->rx_quick_cons_trip_int
= 6;
7579 bp
->rx_quick_cons_trip
= 6;
7580 bp
->rx_ticks_int
= 18;
7583 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7585 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
7589 /* Disable WOL support if we are running on a SERDES chip. */
7590 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7591 bnx2_get_5709_media(bp
);
7592 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
7593 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7595 bp
->phy_port
= PORT_TP
;
7596 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7597 bp
->phy_port
= PORT_FIBRE
;
7598 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
7599 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
7600 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7603 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
7604 /* Don't do parallel detect on this board because of
7605 * some board problems. The link will not go down
7606 * if we do parallel detect.
7608 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
7609 pdev
->subsystem_device
== 0x310c)
7610 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
7613 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
7614 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
7616 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
7617 CHIP_NUM(bp
) == CHIP_NUM_5708
)
7618 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
7619 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
7620 (CHIP_REV(bp
) == CHIP_REV_Ax
||
7621 CHIP_REV(bp
) == CHIP_REV_Bx
))
7622 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
7624 bnx2_init_fw_cap(bp
);
7626 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
7627 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
7628 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
7629 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
7630 bp
->flags
|= BNX2_FLAG_NO_WOL
;
7634 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7635 bp
->tx_quick_cons_trip_int
=
7636 bp
->tx_quick_cons_trip
;
7637 bp
->tx_ticks_int
= bp
->tx_ticks
;
7638 bp
->rx_quick_cons_trip_int
=
7639 bp
->rx_quick_cons_trip
;
7640 bp
->rx_ticks_int
= bp
->rx_ticks
;
7641 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
7642 bp
->com_ticks_int
= bp
->com_ticks
;
7643 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
7646 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7648 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7649 * with byte enables disabled on the unused 32-bit word. This is legal
7650 * but causes problems on the AMD 8132 which will eventually stop
7651 * responding after a while.
7653 * AMD believes this incompatibility is unique to the 5706, and
7654 * prefers to locally disable MSI rather than globally disabling it.
7656 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
7657 struct pci_dev
*amd_8132
= NULL
;
7659 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
7660 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
7663 if (amd_8132
->revision
>= 0x10 &&
7664 amd_8132
->revision
<= 0x13) {
7666 pci_dev_put(amd_8132
);
7672 bnx2_set_default_link(bp
);
7673 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
7675 init_timer(&bp
->timer
);
7676 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
7677 bp
->timer
.data
= (unsigned long) bp
;
7678 bp
->timer
.function
= bnx2_timer
;
7684 iounmap(bp
->regview
);
7689 pci_release_regions(pdev
);
7692 pci_disable_device(pdev
);
7693 pci_set_drvdata(pdev
, NULL
);
7699 static char * __devinit
7700 bnx2_bus_string(struct bnx2
*bp
, char *str
)
7704 if (bp
->flags
& BNX2_FLAG_PCIE
) {
7705 s
+= sprintf(s
, "PCI Express");
7707 s
+= sprintf(s
, "PCI");
7708 if (bp
->flags
& BNX2_FLAG_PCIX
)
7709 s
+= sprintf(s
, "-X");
7710 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
7711 s
+= sprintf(s
, " 32-bit");
7713 s
+= sprintf(s
, " 64-bit");
7714 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
7719 static void __devinit
7720 bnx2_init_napi(struct bnx2
*bp
)
7724 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
7725 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
7726 int (*poll
)(struct napi_struct
*, int);
7731 poll
= bnx2_poll_msix
;
7733 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
7738 static const struct net_device_ops bnx2_netdev_ops
= {
7739 .ndo_open
= bnx2_open
,
7740 .ndo_start_xmit
= bnx2_start_xmit
,
7741 .ndo_stop
= bnx2_close
,
7742 .ndo_get_stats
= bnx2_get_stats
,
7743 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
7744 .ndo_do_ioctl
= bnx2_ioctl
,
7745 .ndo_validate_addr
= eth_validate_addr
,
7746 .ndo_set_mac_address
= bnx2_change_mac_addr
,
7747 .ndo_change_mtu
= bnx2_change_mtu
,
7748 .ndo_tx_timeout
= bnx2_tx_timeout
,
7750 .ndo_vlan_rx_register
= bnx2_vlan_rx_register
,
7752 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7753 .ndo_poll_controller
= poll_bnx2
,
7757 static int __devinit
7758 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7760 static int version_printed
= 0;
7761 struct net_device
*dev
= NULL
;
7766 if (version_printed
++ == 0)
7767 printk(KERN_INFO
"%s", version
);
7769 /* dev zeroed in init_etherdev */
7770 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
7775 rc
= bnx2_init_board(pdev
, dev
);
7781 dev
->netdev_ops
= &bnx2_netdev_ops
;
7782 dev
->watchdog_timeo
= TX_TIMEOUT
;
7783 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
7785 bp
= netdev_priv(dev
);
7788 pci_set_drvdata(pdev
, dev
);
7790 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
7791 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
7793 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
7794 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7795 dev
->features
|= NETIF_F_IPV6_CSUM
;
7798 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7800 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7801 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7802 dev
->features
|= NETIF_F_TSO6
;
7804 if ((rc
= register_netdev(dev
))) {
7805 dev_err(&pdev
->dev
, "Cannot register net device\n");
7807 iounmap(bp
->regview
);
7808 pci_release_regions(pdev
);
7809 pci_disable_device(pdev
);
7810 pci_set_drvdata(pdev
, NULL
);
7815 printk(KERN_INFO
"%s: %s (%c%d) %s found at mem %lx, "
7816 "IRQ %d, node addr %pM\n",
7818 board_info
[ent
->driver_data
].name
,
7819 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
7820 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
7821 bnx2_bus_string(bp
, str
),
7823 bp
->pdev
->irq
, dev
->dev_addr
);
7828 static void __devexit
7829 bnx2_remove_one(struct pci_dev
*pdev
)
7831 struct net_device
*dev
= pci_get_drvdata(pdev
);
7832 struct bnx2
*bp
= netdev_priv(dev
);
7834 flush_scheduled_work();
7836 unregister_netdev(dev
);
7839 iounmap(bp
->regview
);
7842 pci_release_regions(pdev
);
7843 pci_disable_device(pdev
);
7844 pci_set_drvdata(pdev
, NULL
);
7848 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
7850 struct net_device
*dev
= pci_get_drvdata(pdev
);
7851 struct bnx2
*bp
= netdev_priv(dev
);
7853 /* PCI register 4 needs to be saved whether netif_running() or not.
7854 * MSI address and data need to be saved if using MSI and
7857 pci_save_state(pdev
);
7858 if (!netif_running(dev
))
7861 flush_scheduled_work();
7862 bnx2_netif_stop(bp
);
7863 netif_device_detach(dev
);
7864 del_timer_sync(&bp
->timer
);
7865 bnx2_shutdown_chip(bp
);
7867 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
7872 bnx2_resume(struct pci_dev
*pdev
)
7874 struct net_device
*dev
= pci_get_drvdata(pdev
);
7875 struct bnx2
*bp
= netdev_priv(dev
);
7877 pci_restore_state(pdev
);
7878 if (!netif_running(dev
))
7881 bnx2_set_power_state(bp
, PCI_D0
);
7882 netif_device_attach(dev
);
7883 bnx2_init_nic(bp
, 1);
7884 bnx2_netif_start(bp
);
7889 * bnx2_io_error_detected - called when PCI error is detected
7890 * @pdev: Pointer to PCI device
7891 * @state: The current pci connection state
7893 * This function is called after a PCI bus error affecting
7894 * this device has been detected.
7896 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
7897 pci_channel_state_t state
)
7899 struct net_device
*dev
= pci_get_drvdata(pdev
);
7900 struct bnx2
*bp
= netdev_priv(dev
);
7903 netif_device_detach(dev
);
7905 if (netif_running(dev
)) {
7906 bnx2_netif_stop(bp
);
7907 del_timer_sync(&bp
->timer
);
7908 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
7911 pci_disable_device(pdev
);
7914 /* Request a slot slot reset. */
7915 return PCI_ERS_RESULT_NEED_RESET
;
7919 * bnx2_io_slot_reset - called after the pci bus has been reset.
7920 * @pdev: Pointer to PCI device
7922 * Restart the card from scratch, as if from a cold-boot.
7924 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
7926 struct net_device
*dev
= pci_get_drvdata(pdev
);
7927 struct bnx2
*bp
= netdev_priv(dev
);
7930 if (pci_enable_device(pdev
)) {
7932 "Cannot re-enable PCI device after reset.\n");
7934 return PCI_ERS_RESULT_DISCONNECT
;
7936 pci_set_master(pdev
);
7937 pci_restore_state(pdev
);
7939 if (netif_running(dev
)) {
7940 bnx2_set_power_state(bp
, PCI_D0
);
7941 bnx2_init_nic(bp
, 1);
7945 return PCI_ERS_RESULT_RECOVERED
;
7949 * bnx2_io_resume - called when traffic can start flowing again.
7950 * @pdev: Pointer to PCI device
7952 * This callback is called when the error recovery driver tells us that
7953 * its OK to resume normal operation.
7955 static void bnx2_io_resume(struct pci_dev
*pdev
)
7957 struct net_device
*dev
= pci_get_drvdata(pdev
);
7958 struct bnx2
*bp
= netdev_priv(dev
);
7961 if (netif_running(dev
))
7962 bnx2_netif_start(bp
);
7964 netif_device_attach(dev
);
7968 static struct pci_error_handlers bnx2_err_handler
= {
7969 .error_detected
= bnx2_io_error_detected
,
7970 .slot_reset
= bnx2_io_slot_reset
,
7971 .resume
= bnx2_io_resume
,
7974 static struct pci_driver bnx2_pci_driver
= {
7975 .name
= DRV_MODULE_NAME
,
7976 .id_table
= bnx2_pci_tbl
,
7977 .probe
= bnx2_init_one
,
7978 .remove
= __devexit_p(bnx2_remove_one
),
7979 .suspend
= bnx2_suspend
,
7980 .resume
= bnx2_resume
,
7981 .err_handler
= &bnx2_err_handler
,
7984 static int __init
bnx2_init(void)
7986 return pci_register_driver(&bnx2_pci_driver
);
7989 static void __exit
bnx2_cleanup(void)
7991 pci_unregister_driver(&bnx2_pci_driver
);
7994 module_init(bnx2_init
);
7995 module_exit(bnx2_cleanup
);