4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 static seqlock_t rename_lock __cacheline_aligned_in_smp
= SEQLOCK_UNLOCKED
;
44 EXPORT_SYMBOL(dcache_lock
);
46 static kmem_cache_t
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
64 static LIST_HEAD(dentry_unused
);
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat
= {
71 static void d_callback(struct rcu_head
*head
)
73 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
75 if (dname_external(dentry
))
76 kfree(dentry
->d_name
.name
);
77 kmem_cache_free(dentry_cache
, dentry
);
81 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
84 static void d_free(struct dentry
*dentry
)
86 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
87 dentry
->d_op
->d_release(dentry
);
88 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
92 * Release the dentry's inode, using the filesystem
93 * d_iput() operation if defined.
94 * Called with dcache_lock and per dentry lock held, drops both.
96 static void dentry_iput(struct dentry
* dentry
)
98 struct inode
*inode
= dentry
->d_inode
;
100 dentry
->d_inode
= NULL
;
101 list_del_init(&dentry
->d_alias
);
102 spin_unlock(&dentry
->d_lock
);
103 spin_unlock(&dcache_lock
);
105 fsnotify_inoderemove(inode
);
106 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
107 dentry
->d_op
->d_iput(dentry
, inode
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
119 * This is complicated by the fact that we do not want to put
120 * dentries that are no longer on any hash chain on the unused
121 * list: we'd much rather just get rid of them immediately.
123 * However, that implies that we have to traverse the dentry
124 * tree upwards to the parents which might _also_ now be
125 * scheduled for deletion (it may have been only waiting for
126 * its last child to go away).
128 * This tail recursion is done by hand as we don't want to depend
129 * on the compiler to always get this right (gcc generally doesn't).
130 * Real recursion would eat up our stack space.
134 * dput - release a dentry
135 * @dentry: dentry to release
137 * Release a dentry. This will drop the usage count and if appropriate
138 * call the dentry unlink method as well as removing it from the queues and
139 * releasing its resources. If the parent dentries were scheduled for release
140 * they too may now get deleted.
142 * no dcache lock, please.
145 void dput(struct dentry
*dentry
)
151 if (atomic_read(&dentry
->d_count
) == 1)
153 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
156 spin_lock(&dentry
->d_lock
);
157 if (atomic_read(&dentry
->d_count
)) {
158 spin_unlock(&dentry
->d_lock
);
159 spin_unlock(&dcache_lock
);
164 * AV: ->d_delete() is _NOT_ allowed to block now.
166 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
167 if (dentry
->d_op
->d_delete(dentry
))
170 /* Unreachable? Get rid of it */
171 if (d_unhashed(dentry
))
173 if (list_empty(&dentry
->d_lru
)) {
174 dentry
->d_flags
|= DCACHE_REFERENCED
;
175 list_add(&dentry
->d_lru
, &dentry_unused
);
176 dentry_stat
.nr_unused
++;
178 spin_unlock(&dentry
->d_lock
);
179 spin_unlock(&dcache_lock
);
186 struct dentry
*parent
;
188 /* If dentry was on d_lru list
189 * delete it from there
191 if (!list_empty(&dentry
->d_lru
)) {
192 list_del(&dentry
->d_lru
);
193 dentry_stat
.nr_unused
--;
195 list_del(&dentry
->d_u
.d_child
);
196 dentry_stat
.nr_dentry
--; /* For d_free, below */
197 /*drops the locks, at that point nobody can reach this dentry */
199 parent
= dentry
->d_parent
;
201 if (dentry
== parent
)
209 * d_invalidate - invalidate a dentry
210 * @dentry: dentry to invalidate
212 * Try to invalidate the dentry if it turns out to be
213 * possible. If there are other dentries that can be
214 * reached through this one we can't delete it and we
215 * return -EBUSY. On success we return 0.
220 int d_invalidate(struct dentry
* dentry
)
223 * If it's already been dropped, return OK.
225 spin_lock(&dcache_lock
);
226 if (d_unhashed(dentry
)) {
227 spin_unlock(&dcache_lock
);
231 * Check whether to do a partial shrink_dcache
232 * to get rid of unused child entries.
234 if (!list_empty(&dentry
->d_subdirs
)) {
235 spin_unlock(&dcache_lock
);
236 shrink_dcache_parent(dentry
);
237 spin_lock(&dcache_lock
);
241 * Somebody else still using it?
243 * If it's a directory, we can't drop it
244 * for fear of somebody re-populating it
245 * with children (even though dropping it
246 * would make it unreachable from the root,
247 * we might still populate it if it was a
248 * working directory or similar).
250 spin_lock(&dentry
->d_lock
);
251 if (atomic_read(&dentry
->d_count
) > 1) {
252 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
253 spin_unlock(&dentry
->d_lock
);
254 spin_unlock(&dcache_lock
);
260 spin_unlock(&dentry
->d_lock
);
261 spin_unlock(&dcache_lock
);
265 /* This should be called _only_ with dcache_lock held */
267 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
269 atomic_inc(&dentry
->d_count
);
270 if (!list_empty(&dentry
->d_lru
)) {
271 dentry_stat
.nr_unused
--;
272 list_del_init(&dentry
->d_lru
);
277 struct dentry
* dget_locked(struct dentry
*dentry
)
279 return __dget_locked(dentry
);
283 * d_find_alias - grab a hashed alias of inode
284 * @inode: inode in question
285 * @want_discon: flag, used by d_splice_alias, to request
286 * that only a DISCONNECTED alias be returned.
288 * If inode has a hashed alias, or is a directory and has any alias,
289 * acquire the reference to alias and return it. Otherwise return NULL.
290 * Notice that if inode is a directory there can be only one alias and
291 * it can be unhashed only if it has no children, or if it is the root
294 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295 * any other hashed alias over that one unless @want_discon is set,
296 * in which case only return a DCACHE_DISCONNECTED alias.
299 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
301 struct list_head
*head
, *next
, *tmp
;
302 struct dentry
*alias
, *discon_alias
=NULL
;
304 head
= &inode
->i_dentry
;
305 next
= inode
->i_dentry
.next
;
306 while (next
!= head
) {
310 alias
= list_entry(tmp
, struct dentry
, d_alias
);
311 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
312 if (alias
->d_flags
& DCACHE_DISCONNECTED
)
313 discon_alias
= alias
;
314 else if (!want_discon
) {
315 __dget_locked(alias
);
321 __dget_locked(discon_alias
);
325 struct dentry
* d_find_alias(struct inode
*inode
)
327 struct dentry
*de
= NULL
;
329 if (!list_empty(&inode
->i_dentry
)) {
330 spin_lock(&dcache_lock
);
331 de
= __d_find_alias(inode
, 0);
332 spin_unlock(&dcache_lock
);
338 * Try to kill dentries associated with this inode.
339 * WARNING: you must own a reference to inode.
341 void d_prune_aliases(struct inode
*inode
)
343 struct dentry
*dentry
;
345 spin_lock(&dcache_lock
);
346 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
347 spin_lock(&dentry
->d_lock
);
348 if (!atomic_read(&dentry
->d_count
)) {
349 __dget_locked(dentry
);
351 spin_unlock(&dentry
->d_lock
);
352 spin_unlock(&dcache_lock
);
356 spin_unlock(&dentry
->d_lock
);
358 spin_unlock(&dcache_lock
);
362 * Throw away a dentry - free the inode, dput the parent. This requires that
363 * the LRU list has already been removed.
365 * Called with dcache_lock, drops it and then regains.
366 * Called with dentry->d_lock held, drops it.
368 static void prune_one_dentry(struct dentry
* dentry
)
370 struct dentry
* parent
;
373 list_del(&dentry
->d_u
.d_child
);
374 dentry_stat
.nr_dentry
--; /* For d_free, below */
376 parent
= dentry
->d_parent
;
378 if (parent
!= dentry
)
380 spin_lock(&dcache_lock
);
384 * prune_dcache - shrink the dcache
385 * @count: number of entries to try and free
386 * @sb: if given, ignore dentries for other superblocks
387 * which are being unmounted.
389 * Shrink the dcache. This is done when we need
390 * more memory, or simply when we need to unmount
391 * something (at which point we need to unuse
394 * This function may fail to free any resources if
395 * all the dentries are in use.
398 static void prune_dcache(int count
, struct super_block
*sb
)
400 spin_lock(&dcache_lock
);
401 for (; count
; count
--) {
402 struct dentry
*dentry
;
403 struct list_head
*tmp
;
404 struct rw_semaphore
*s_umount
;
406 cond_resched_lock(&dcache_lock
);
408 tmp
= dentry_unused
.prev
;
410 /* Try to find a dentry for this sb, but don't try
411 * too hard, if they aren't near the tail they will
412 * be moved down again soon
415 while (skip
&& tmp
!= &dentry_unused
&&
416 list_entry(tmp
, struct dentry
, d_lru
)->d_sb
!= sb
) {
421 if (tmp
== &dentry_unused
)
424 prefetch(dentry_unused
.prev
);
425 dentry_stat
.nr_unused
--;
426 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
428 spin_lock(&dentry
->d_lock
);
430 * We found an inuse dentry which was not removed from
431 * dentry_unused because of laziness during lookup. Do not free
432 * it - just keep it off the dentry_unused list.
434 if (atomic_read(&dentry
->d_count
)) {
435 spin_unlock(&dentry
->d_lock
);
438 /* If the dentry was recently referenced, don't free it. */
439 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
440 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
441 list_add(&dentry
->d_lru
, &dentry_unused
);
442 dentry_stat
.nr_unused
++;
443 spin_unlock(&dentry
->d_lock
);
447 * If the dentry is not DCACHED_REFERENCED, it is time
448 * to remove it from the dcache, provided the super block is
449 * NULL (which means we are trying to reclaim memory)
450 * or this dentry belongs to the same super block that
454 * If this dentry is for "my" filesystem, then I can prune it
455 * without taking the s_umount lock (I already hold it).
457 if (sb
&& dentry
->d_sb
== sb
) {
458 prune_one_dentry(dentry
);
462 * ...otherwise we need to be sure this filesystem isn't being
463 * unmounted, otherwise we could race with
464 * generic_shutdown_super(), and end up holding a reference to
465 * an inode while the filesystem is unmounted.
466 * So we try to get s_umount, and make sure s_root isn't NULL.
467 * (Take a local copy of s_umount to avoid a use-after-free of
470 s_umount
= &dentry
->d_sb
->s_umount
;
471 if (down_read_trylock(s_umount
)) {
472 if (dentry
->d_sb
->s_root
!= NULL
) {
473 prune_one_dentry(dentry
);
479 spin_unlock(&dentry
->d_lock
);
480 /* Cannot remove the first dentry, and it isn't appropriate
481 * to move it to the head of the list, so give up, and try
486 spin_unlock(&dcache_lock
);
490 * Shrink the dcache for the specified super block.
491 * This allows us to unmount a device without disturbing
492 * the dcache for the other devices.
494 * This implementation makes just two traversals of the
495 * unused list. On the first pass we move the selected
496 * dentries to the most recent end, and on the second
497 * pass we free them. The second pass must restart after
498 * each dput(), but since the target dentries are all at
499 * the end, it's really just a single traversal.
503 * shrink_dcache_sb - shrink dcache for a superblock
506 * Shrink the dcache for the specified super block. This
507 * is used to free the dcache before unmounting a file
511 void shrink_dcache_sb(struct super_block
* sb
)
513 struct list_head
*tmp
, *next
;
514 struct dentry
*dentry
;
517 * Pass one ... move the dentries for the specified
518 * superblock to the most recent end of the unused list.
520 spin_lock(&dcache_lock
);
521 list_for_each_safe(tmp
, next
, &dentry_unused
) {
522 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
523 if (dentry
->d_sb
!= sb
)
525 list_move(tmp
, &dentry_unused
);
529 * Pass two ... free the dentries for this superblock.
532 list_for_each_safe(tmp
, next
, &dentry_unused
) {
533 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
534 if (dentry
->d_sb
!= sb
)
536 dentry_stat
.nr_unused
--;
538 spin_lock(&dentry
->d_lock
);
539 if (atomic_read(&dentry
->d_count
)) {
540 spin_unlock(&dentry
->d_lock
);
543 prune_one_dentry(dentry
);
544 cond_resched_lock(&dcache_lock
);
547 spin_unlock(&dcache_lock
);
551 * Search for at least 1 mount point in the dentry's subdirs.
552 * We descend to the next level whenever the d_subdirs
553 * list is non-empty and continue searching.
557 * have_submounts - check for mounts over a dentry
558 * @parent: dentry to check.
560 * Return true if the parent or its subdirectories contain
564 int have_submounts(struct dentry
*parent
)
566 struct dentry
*this_parent
= parent
;
567 struct list_head
*next
;
569 spin_lock(&dcache_lock
);
570 if (d_mountpoint(parent
))
573 next
= this_parent
->d_subdirs
.next
;
575 while (next
!= &this_parent
->d_subdirs
) {
576 struct list_head
*tmp
= next
;
577 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
579 /* Have we found a mount point ? */
580 if (d_mountpoint(dentry
))
582 if (!list_empty(&dentry
->d_subdirs
)) {
583 this_parent
= dentry
;
588 * All done at this level ... ascend and resume the search.
590 if (this_parent
!= parent
) {
591 next
= this_parent
->d_u
.d_child
.next
;
592 this_parent
= this_parent
->d_parent
;
595 spin_unlock(&dcache_lock
);
596 return 0; /* No mount points found in tree */
598 spin_unlock(&dcache_lock
);
603 * Search the dentry child list for the specified parent,
604 * and move any unused dentries to the end of the unused
605 * list for prune_dcache(). We descend to the next level
606 * whenever the d_subdirs list is non-empty and continue
609 * It returns zero iff there are no unused children,
610 * otherwise it returns the number of children moved to
611 * the end of the unused list. This may not be the total
612 * number of unused children, because select_parent can
613 * drop the lock and return early due to latency
616 static int select_parent(struct dentry
* parent
)
618 struct dentry
*this_parent
= parent
;
619 struct list_head
*next
;
622 spin_lock(&dcache_lock
);
624 next
= this_parent
->d_subdirs
.next
;
626 while (next
!= &this_parent
->d_subdirs
) {
627 struct list_head
*tmp
= next
;
628 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
631 if (!list_empty(&dentry
->d_lru
)) {
632 dentry_stat
.nr_unused
--;
633 list_del_init(&dentry
->d_lru
);
636 * move only zero ref count dentries to the end
637 * of the unused list for prune_dcache
639 if (!atomic_read(&dentry
->d_count
)) {
640 list_add_tail(&dentry
->d_lru
, &dentry_unused
);
641 dentry_stat
.nr_unused
++;
646 * We can return to the caller if we have found some (this
647 * ensures forward progress). We'll be coming back to find
650 if (found
&& need_resched())
654 * Descend a level if the d_subdirs list is non-empty.
656 if (!list_empty(&dentry
->d_subdirs
)) {
657 this_parent
= dentry
;
662 * All done at this level ... ascend and resume the search.
664 if (this_parent
!= parent
) {
665 next
= this_parent
->d_u
.d_child
.next
;
666 this_parent
= this_parent
->d_parent
;
670 spin_unlock(&dcache_lock
);
675 * shrink_dcache_parent - prune dcache
676 * @parent: parent of entries to prune
678 * Prune the dcache to remove unused children of the parent dentry.
681 void shrink_dcache_parent(struct dentry
* parent
)
685 while ((found
= select_parent(parent
)) != 0)
686 prune_dcache(found
, parent
->d_sb
);
690 * Scan `nr' dentries and return the number which remain.
692 * We need to avoid reentering the filesystem if the caller is performing a
693 * GFP_NOFS allocation attempt. One example deadlock is:
695 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
696 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
697 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
699 * In this case we return -1 to tell the caller that we baled.
701 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
704 if (!(gfp_mask
& __GFP_FS
))
706 prune_dcache(nr
, NULL
);
708 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
712 * d_alloc - allocate a dcache entry
713 * @parent: parent of entry to allocate
714 * @name: qstr of the name
716 * Allocates a dentry. It returns %NULL if there is insufficient memory
717 * available. On a success the dentry is returned. The name passed in is
718 * copied and the copy passed in may be reused after this call.
721 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
723 struct dentry
*dentry
;
726 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
730 if (name
->len
> DNAME_INLINE_LEN
-1) {
731 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
733 kmem_cache_free(dentry_cache
, dentry
);
737 dname
= dentry
->d_iname
;
739 dentry
->d_name
.name
= dname
;
741 dentry
->d_name
.len
= name
->len
;
742 dentry
->d_name
.hash
= name
->hash
;
743 memcpy(dname
, name
->name
, name
->len
);
744 dname
[name
->len
] = 0;
746 atomic_set(&dentry
->d_count
, 1);
747 dentry
->d_flags
= DCACHE_UNHASHED
;
748 spin_lock_init(&dentry
->d_lock
);
749 dentry
->d_inode
= NULL
;
750 dentry
->d_parent
= NULL
;
753 dentry
->d_fsdata
= NULL
;
754 dentry
->d_mounted
= 0;
755 #ifdef CONFIG_PROFILING
756 dentry
->d_cookie
= NULL
;
758 INIT_HLIST_NODE(&dentry
->d_hash
);
759 INIT_LIST_HEAD(&dentry
->d_lru
);
760 INIT_LIST_HEAD(&dentry
->d_subdirs
);
761 INIT_LIST_HEAD(&dentry
->d_alias
);
764 dentry
->d_parent
= dget(parent
);
765 dentry
->d_sb
= parent
->d_sb
;
767 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
770 spin_lock(&dcache_lock
);
772 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
773 dentry_stat
.nr_dentry
++;
774 spin_unlock(&dcache_lock
);
779 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
784 q
.len
= strlen(name
);
785 q
.hash
= full_name_hash(q
.name
, q
.len
);
786 return d_alloc(parent
, &q
);
790 * d_instantiate - fill in inode information for a dentry
791 * @entry: dentry to complete
792 * @inode: inode to attach to this dentry
794 * Fill in inode information in the entry.
796 * This turns negative dentries into productive full members
799 * NOTE! This assumes that the inode count has been incremented
800 * (or otherwise set) by the caller to indicate that it is now
801 * in use by the dcache.
804 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
806 BUG_ON(!list_empty(&entry
->d_alias
));
807 spin_lock(&dcache_lock
);
809 list_add(&entry
->d_alias
, &inode
->i_dentry
);
810 entry
->d_inode
= inode
;
811 fsnotify_d_instantiate(entry
, inode
);
812 spin_unlock(&dcache_lock
);
813 security_d_instantiate(entry
, inode
);
817 * d_instantiate_unique - instantiate a non-aliased dentry
818 * @entry: dentry to instantiate
819 * @inode: inode to attach to this dentry
821 * Fill in inode information in the entry. On success, it returns NULL.
822 * If an unhashed alias of "entry" already exists, then we return the
823 * aliased dentry instead and drop one reference to inode.
825 * Note that in order to avoid conflicts with rename() etc, the caller
826 * had better be holding the parent directory semaphore.
828 * This also assumes that the inode count has been incremented
829 * (or otherwise set) by the caller to indicate that it is now
830 * in use by the dcache.
832 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
834 struct dentry
*alias
;
835 int len
= entry
->d_name
.len
;
836 const char *name
= entry
->d_name
.name
;
837 unsigned int hash
= entry
->d_name
.hash
;
839 BUG_ON(!list_empty(&entry
->d_alias
));
840 spin_lock(&dcache_lock
);
843 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
844 struct qstr
*qstr
= &alias
->d_name
;
846 if (qstr
->hash
!= hash
)
848 if (alias
->d_parent
!= entry
->d_parent
)
850 if (qstr
->len
!= len
)
852 if (memcmp(qstr
->name
, name
, len
))
855 spin_unlock(&dcache_lock
);
856 BUG_ON(!d_unhashed(alias
));
860 list_add(&entry
->d_alias
, &inode
->i_dentry
);
862 entry
->d_inode
= inode
;
863 fsnotify_d_instantiate(entry
, inode
);
864 spin_unlock(&dcache_lock
);
865 security_d_instantiate(entry
, inode
);
868 EXPORT_SYMBOL(d_instantiate_unique
);
871 * d_alloc_root - allocate root dentry
872 * @root_inode: inode to allocate the root for
874 * Allocate a root ("/") dentry for the inode given. The inode is
875 * instantiated and returned. %NULL is returned if there is insufficient
876 * memory or the inode passed is %NULL.
879 struct dentry
* d_alloc_root(struct inode
* root_inode
)
881 struct dentry
*res
= NULL
;
884 static const struct qstr name
= { .name
= "/", .len
= 1 };
886 res
= d_alloc(NULL
, &name
);
888 res
->d_sb
= root_inode
->i_sb
;
890 d_instantiate(res
, root_inode
);
896 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
899 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
900 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
901 return dentry_hashtable
+ (hash
& D_HASHMASK
);
905 * d_alloc_anon - allocate an anonymous dentry
906 * @inode: inode to allocate the dentry for
908 * This is similar to d_alloc_root. It is used by filesystems when
909 * creating a dentry for a given inode, often in the process of
910 * mapping a filehandle to a dentry. The returned dentry may be
911 * anonymous, or may have a full name (if the inode was already
912 * in the cache). The file system may need to make further
913 * efforts to connect this dentry into the dcache properly.
915 * When called on a directory inode, we must ensure that
916 * the inode only ever has one dentry. If a dentry is
917 * found, that is returned instead of allocating a new one.
919 * On successful return, the reference to the inode has been transferred
920 * to the dentry. If %NULL is returned (indicating kmalloc failure),
921 * the reference on the inode has not been released.
924 struct dentry
* d_alloc_anon(struct inode
*inode
)
926 static const struct qstr anonstring
= { .name
= "" };
930 if ((res
= d_find_alias(inode
))) {
935 tmp
= d_alloc(NULL
, &anonstring
);
939 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
941 spin_lock(&dcache_lock
);
942 res
= __d_find_alias(inode
, 0);
944 /* attach a disconnected dentry */
947 spin_lock(&res
->d_lock
);
948 res
->d_sb
= inode
->i_sb
;
950 res
->d_inode
= inode
;
951 res
->d_flags
|= DCACHE_DISCONNECTED
;
952 res
->d_flags
&= ~DCACHE_UNHASHED
;
953 list_add(&res
->d_alias
, &inode
->i_dentry
);
954 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
955 spin_unlock(&res
->d_lock
);
957 inode
= NULL
; /* don't drop reference */
959 spin_unlock(&dcache_lock
);
970 * d_splice_alias - splice a disconnected dentry into the tree if one exists
971 * @inode: the inode which may have a disconnected dentry
972 * @dentry: a negative dentry which we want to point to the inode.
974 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
975 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
976 * and return it, else simply d_add the inode to the dentry and return NULL.
978 * This is needed in the lookup routine of any filesystem that is exportable
979 * (via knfsd) so that we can build dcache paths to directories effectively.
981 * If a dentry was found and moved, then it is returned. Otherwise NULL
982 * is returned. This matches the expected return value of ->lookup.
985 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
987 struct dentry
*new = NULL
;
990 spin_lock(&dcache_lock
);
991 new = __d_find_alias(inode
, 1);
993 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
994 fsnotify_d_instantiate(new, inode
);
995 spin_unlock(&dcache_lock
);
996 security_d_instantiate(new, inode
);
1001 /* d_instantiate takes dcache_lock, so we do it by hand */
1002 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1003 dentry
->d_inode
= inode
;
1004 fsnotify_d_instantiate(dentry
, inode
);
1005 spin_unlock(&dcache_lock
);
1006 security_d_instantiate(dentry
, inode
);
1010 d_add(dentry
, inode
);
1016 * d_lookup - search for a dentry
1017 * @parent: parent dentry
1018 * @name: qstr of name we wish to find
1020 * Searches the children of the parent dentry for the name in question. If
1021 * the dentry is found its reference count is incremented and the dentry
1022 * is returned. The caller must use d_put to free the entry when it has
1023 * finished using it. %NULL is returned on failure.
1025 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1026 * Memory barriers are used while updating and doing lockless traversal.
1027 * To avoid races with d_move while rename is happening, d_lock is used.
1029 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1030 * and name pointer in one structure pointed by d_qstr.
1032 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1033 * lookup is going on.
1035 * dentry_unused list is not updated even if lookup finds the required dentry
1036 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1037 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1040 * d_lookup() is protected against the concurrent renames in some unrelated
1041 * directory using the seqlockt_t rename_lock.
1044 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1046 struct dentry
* dentry
= NULL
;
1050 seq
= read_seqbegin(&rename_lock
);
1051 dentry
= __d_lookup(parent
, name
);
1054 } while (read_seqretry(&rename_lock
, seq
));
1058 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1060 unsigned int len
= name
->len
;
1061 unsigned int hash
= name
->hash
;
1062 const unsigned char *str
= name
->name
;
1063 struct hlist_head
*head
= d_hash(parent
,hash
);
1064 struct dentry
*found
= NULL
;
1065 struct hlist_node
*node
;
1066 struct dentry
*dentry
;
1070 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1073 if (dentry
->d_name
.hash
!= hash
)
1075 if (dentry
->d_parent
!= parent
)
1078 spin_lock(&dentry
->d_lock
);
1081 * Recheck the dentry after taking the lock - d_move may have
1082 * changed things. Don't bother checking the hash because we're
1083 * about to compare the whole name anyway.
1085 if (dentry
->d_parent
!= parent
)
1089 * It is safe to compare names since d_move() cannot
1090 * change the qstr (protected by d_lock).
1092 qstr
= &dentry
->d_name
;
1093 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1094 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1097 if (qstr
->len
!= len
)
1099 if (memcmp(qstr
->name
, str
, len
))
1103 if (!d_unhashed(dentry
)) {
1104 atomic_inc(&dentry
->d_count
);
1107 spin_unlock(&dentry
->d_lock
);
1110 spin_unlock(&dentry
->d_lock
);
1118 * d_hash_and_lookup - hash the qstr then search for a dentry
1119 * @dir: Directory to search in
1120 * @name: qstr of name we wish to find
1122 * On hash failure or on lookup failure NULL is returned.
1124 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1126 struct dentry
*dentry
= NULL
;
1129 * Check for a fs-specific hash function. Note that we must
1130 * calculate the standard hash first, as the d_op->d_hash()
1131 * routine may choose to leave the hash value unchanged.
1133 name
->hash
= full_name_hash(name
->name
, name
->len
);
1134 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1135 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1138 dentry
= d_lookup(dir
, name
);
1144 * d_validate - verify dentry provided from insecure source
1145 * @dentry: The dentry alleged to be valid child of @dparent
1146 * @dparent: The parent dentry (known to be valid)
1147 * @hash: Hash of the dentry
1148 * @len: Length of the name
1150 * An insecure source has sent us a dentry, here we verify it and dget() it.
1151 * This is used by ncpfs in its readdir implementation.
1152 * Zero is returned in the dentry is invalid.
1155 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1157 struct hlist_head
*base
;
1158 struct hlist_node
*lhp
;
1160 /* Check whether the ptr might be valid at all.. */
1161 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1164 if (dentry
->d_parent
!= dparent
)
1167 spin_lock(&dcache_lock
);
1168 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1169 hlist_for_each(lhp
,base
) {
1170 /* hlist_for_each_entry_rcu() not required for d_hash list
1171 * as it is parsed under dcache_lock
1173 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1174 __dget_locked(dentry
);
1175 spin_unlock(&dcache_lock
);
1179 spin_unlock(&dcache_lock
);
1185 * When a file is deleted, we have two options:
1186 * - turn this dentry into a negative dentry
1187 * - unhash this dentry and free it.
1189 * Usually, we want to just turn this into
1190 * a negative dentry, but if anybody else is
1191 * currently using the dentry or the inode
1192 * we can't do that and we fall back on removing
1193 * it from the hash queues and waiting for
1194 * it to be deleted later when it has no users
1198 * d_delete - delete a dentry
1199 * @dentry: The dentry to delete
1201 * Turn the dentry into a negative dentry if possible, otherwise
1202 * remove it from the hash queues so it can be deleted later
1205 void d_delete(struct dentry
* dentry
)
1209 * Are we the only user?
1211 spin_lock(&dcache_lock
);
1212 spin_lock(&dentry
->d_lock
);
1213 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1214 if (atomic_read(&dentry
->d_count
) == 1) {
1215 dentry_iput(dentry
);
1216 fsnotify_nameremove(dentry
, isdir
);
1218 /* remove this and other inotify debug checks after 2.6.18 */
1219 dentry
->d_flags
&= ~DCACHE_INOTIFY_PARENT_WATCHED
;
1223 if (!d_unhashed(dentry
))
1226 spin_unlock(&dentry
->d_lock
);
1227 spin_unlock(&dcache_lock
);
1229 fsnotify_nameremove(dentry
, isdir
);
1232 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1235 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1236 hlist_add_head_rcu(&entry
->d_hash
, list
);
1240 * d_rehash - add an entry back to the hash
1241 * @entry: dentry to add to the hash
1243 * Adds a dentry to the hash according to its name.
1246 void d_rehash(struct dentry
* entry
)
1248 struct hlist_head
*list
= d_hash(entry
->d_parent
, entry
->d_name
.hash
);
1250 spin_lock(&dcache_lock
);
1251 spin_lock(&entry
->d_lock
);
1252 __d_rehash(entry
, list
);
1253 spin_unlock(&entry
->d_lock
);
1254 spin_unlock(&dcache_lock
);
1257 #define do_switch(x,y) do { \
1258 __typeof__ (x) __tmp = x; \
1259 x = y; y = __tmp; } while (0)
1262 * When switching names, the actual string doesn't strictly have to
1263 * be preserved in the target - because we're dropping the target
1264 * anyway. As such, we can just do a simple memcpy() to copy over
1265 * the new name before we switch.
1267 * Note that we have to be a lot more careful about getting the hash
1268 * switched - we have to switch the hash value properly even if it
1269 * then no longer matches the actual (corrupted) string of the target.
1270 * The hash value has to match the hash queue that the dentry is on..
1272 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1274 if (dname_external(target
)) {
1275 if (dname_external(dentry
)) {
1277 * Both external: swap the pointers
1279 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1282 * dentry:internal, target:external. Steal target's
1283 * storage and make target internal.
1285 dentry
->d_name
.name
= target
->d_name
.name
;
1286 target
->d_name
.name
= target
->d_iname
;
1289 if (dname_external(dentry
)) {
1291 * dentry:external, target:internal. Give dentry's
1292 * storage to target and make dentry internal
1294 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1295 target
->d_name
.len
+ 1);
1296 target
->d_name
.name
= dentry
->d_name
.name
;
1297 dentry
->d_name
.name
= dentry
->d_iname
;
1300 * Both are internal. Just copy target to dentry
1302 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1303 target
->d_name
.len
+ 1);
1309 * We cannibalize "target" when moving dentry on top of it,
1310 * because it's going to be thrown away anyway. We could be more
1311 * polite about it, though.
1313 * This forceful removal will result in ugly /proc output if
1314 * somebody holds a file open that got deleted due to a rename.
1315 * We could be nicer about the deleted file, and let it show
1316 * up under the name it got deleted rather than the name that
1321 * d_move - move a dentry
1322 * @dentry: entry to move
1323 * @target: new dentry
1325 * Update the dcache to reflect the move of a file name. Negative
1326 * dcache entries should not be moved in this way.
1329 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1331 struct hlist_head
*list
;
1333 if (!dentry
->d_inode
)
1334 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1336 spin_lock(&dcache_lock
);
1337 write_seqlock(&rename_lock
);
1339 * XXXX: do we really need to take target->d_lock?
1341 if (target
< dentry
) {
1342 spin_lock(&target
->d_lock
);
1343 spin_lock(&dentry
->d_lock
);
1345 spin_lock(&dentry
->d_lock
);
1346 spin_lock(&target
->d_lock
);
1349 /* Move the dentry to the target hash queue, if on different bucket */
1350 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1351 goto already_unhashed
;
1353 hlist_del_rcu(&dentry
->d_hash
);
1356 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1357 __d_rehash(dentry
, list
);
1359 /* Unhash the target: dput() will then get rid of it */
1362 list_del(&dentry
->d_u
.d_child
);
1363 list_del(&target
->d_u
.d_child
);
1365 /* Switch the names.. */
1366 switch_names(dentry
, target
);
1367 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1368 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1370 /* ... and switch the parents */
1371 if (IS_ROOT(dentry
)) {
1372 dentry
->d_parent
= target
->d_parent
;
1373 target
->d_parent
= target
;
1374 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1376 do_switch(dentry
->d_parent
, target
->d_parent
);
1378 /* And add them back to the (new) parent lists */
1379 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1382 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1383 spin_unlock(&target
->d_lock
);
1384 fsnotify_d_move(dentry
);
1385 spin_unlock(&dentry
->d_lock
);
1386 write_sequnlock(&rename_lock
);
1387 spin_unlock(&dcache_lock
);
1391 * d_path - return the path of a dentry
1392 * @dentry: dentry to report
1393 * @vfsmnt: vfsmnt to which the dentry belongs
1394 * @root: root dentry
1395 * @rootmnt: vfsmnt to which the root dentry belongs
1396 * @buffer: buffer to return value in
1397 * @buflen: buffer length
1399 * Convert a dentry into an ASCII path name. If the entry has been deleted
1400 * the string " (deleted)" is appended. Note that this is ambiguous.
1402 * Returns the buffer or an error code if the path was too long.
1404 * "buflen" should be positive. Caller holds the dcache_lock.
1406 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1407 struct dentry
*root
, struct vfsmount
*rootmnt
,
1408 char *buffer
, int buflen
)
1410 char * end
= buffer
+buflen
;
1416 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1421 memcpy(end
, " (deleted)", 10);
1431 struct dentry
* parent
;
1433 if (dentry
== root
&& vfsmnt
== rootmnt
)
1435 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1437 spin_lock(&vfsmount_lock
);
1438 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1439 spin_unlock(&vfsmount_lock
);
1442 dentry
= vfsmnt
->mnt_mountpoint
;
1443 vfsmnt
= vfsmnt
->mnt_parent
;
1444 spin_unlock(&vfsmount_lock
);
1447 parent
= dentry
->d_parent
;
1449 namelen
= dentry
->d_name
.len
;
1450 buflen
-= namelen
+ 1;
1454 memcpy(end
, dentry
->d_name
.name
, namelen
);
1463 namelen
= dentry
->d_name
.len
;
1467 retval
-= namelen
-1; /* hit the slash */
1468 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1471 return ERR_PTR(-ENAMETOOLONG
);
1474 /* write full pathname into buffer and return start of pathname */
1475 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1476 char *buf
, int buflen
)
1479 struct vfsmount
*rootmnt
;
1480 struct dentry
*root
;
1482 read_lock(¤t
->fs
->lock
);
1483 rootmnt
= mntget(current
->fs
->rootmnt
);
1484 root
= dget(current
->fs
->root
);
1485 read_unlock(¤t
->fs
->lock
);
1486 spin_lock(&dcache_lock
);
1487 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1488 spin_unlock(&dcache_lock
);
1495 * NOTE! The user-level library version returns a
1496 * character pointer. The kernel system call just
1497 * returns the length of the buffer filled (which
1498 * includes the ending '\0' character), or a negative
1499 * error value. So libc would do something like
1501 * char *getcwd(char * buf, size_t size)
1505 * retval = sys_getcwd(buf, size);
1512 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1515 struct vfsmount
*pwdmnt
, *rootmnt
;
1516 struct dentry
*pwd
, *root
;
1517 char *page
= (char *) __get_free_page(GFP_USER
);
1522 read_lock(¤t
->fs
->lock
);
1523 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1524 pwd
= dget(current
->fs
->pwd
);
1525 rootmnt
= mntget(current
->fs
->rootmnt
);
1526 root
= dget(current
->fs
->root
);
1527 read_unlock(¤t
->fs
->lock
);
1530 /* Has the current directory has been unlinked? */
1531 spin_lock(&dcache_lock
);
1532 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1536 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1537 spin_unlock(&dcache_lock
);
1539 error
= PTR_ERR(cwd
);
1544 len
= PAGE_SIZE
+ page
- cwd
;
1547 if (copy_to_user(buf
, cwd
, len
))
1551 spin_unlock(&dcache_lock
);
1558 free_page((unsigned long) page
);
1563 * Test whether new_dentry is a subdirectory of old_dentry.
1565 * Trivially implemented using the dcache structure
1569 * is_subdir - is new dentry a subdirectory of old_dentry
1570 * @new_dentry: new dentry
1571 * @old_dentry: old dentry
1573 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1574 * Returns 0 otherwise.
1575 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1578 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1581 struct dentry
* saved
= new_dentry
;
1584 /* need rcu_readlock to protect against the d_parent trashing due to
1589 /* for restarting inner loop in case of seq retry */
1592 seq
= read_seqbegin(&rename_lock
);
1594 if (new_dentry
!= old_dentry
) {
1595 struct dentry
* parent
= new_dentry
->d_parent
;
1596 if (parent
== new_dentry
)
1598 new_dentry
= parent
;
1604 } while (read_seqretry(&rename_lock
, seq
));
1610 void d_genocide(struct dentry
*root
)
1612 struct dentry
*this_parent
= root
;
1613 struct list_head
*next
;
1615 spin_lock(&dcache_lock
);
1617 next
= this_parent
->d_subdirs
.next
;
1619 while (next
!= &this_parent
->d_subdirs
) {
1620 struct list_head
*tmp
= next
;
1621 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1623 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1625 if (!list_empty(&dentry
->d_subdirs
)) {
1626 this_parent
= dentry
;
1629 atomic_dec(&dentry
->d_count
);
1631 if (this_parent
!= root
) {
1632 next
= this_parent
->d_u
.d_child
.next
;
1633 atomic_dec(&this_parent
->d_count
);
1634 this_parent
= this_parent
->d_parent
;
1637 spin_unlock(&dcache_lock
);
1641 * find_inode_number - check for dentry with name
1642 * @dir: directory to check
1643 * @name: Name to find.
1645 * Check whether a dentry already exists for the given name,
1646 * and return the inode number if it has an inode. Otherwise
1649 * This routine is used to post-process directory listings for
1650 * filesystems using synthetic inode numbers, and is necessary
1651 * to keep getcwd() working.
1654 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1656 struct dentry
* dentry
;
1659 dentry
= d_hash_and_lookup(dir
, name
);
1661 if (dentry
->d_inode
)
1662 ino
= dentry
->d_inode
->i_ino
;
1668 static __initdata
unsigned long dhash_entries
;
1669 static int __init
set_dhash_entries(char *str
)
1673 dhash_entries
= simple_strtoul(str
, &str
, 0);
1676 __setup("dhash_entries=", set_dhash_entries
);
1678 static void __init
dcache_init_early(void)
1682 /* If hashes are distributed across NUMA nodes, defer
1683 * hash allocation until vmalloc space is available.
1689 alloc_large_system_hash("Dentry cache",
1690 sizeof(struct hlist_head
),
1698 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1699 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1702 static void __init
dcache_init(unsigned long mempages
)
1707 * A constructor could be added for stable state like the lists,
1708 * but it is probably not worth it because of the cache nature
1711 dentry_cache
= kmem_cache_create("dentry_cache",
1712 sizeof(struct dentry
),
1714 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1718 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
1720 /* Hash may have been set up in dcache_init_early */
1725 alloc_large_system_hash("Dentry cache",
1726 sizeof(struct hlist_head
),
1734 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1735 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1738 /* SLAB cache for __getname() consumers */
1739 kmem_cache_t
*names_cachep __read_mostly
;
1741 /* SLAB cache for file structures */
1742 kmem_cache_t
*filp_cachep __read_mostly
;
1744 EXPORT_SYMBOL(d_genocide
);
1746 extern void bdev_cache_init(void);
1747 extern void chrdev_init(void);
1749 void __init
vfs_caches_init_early(void)
1751 dcache_init_early();
1755 void __init
vfs_caches_init(unsigned long mempages
)
1757 unsigned long reserve
;
1759 /* Base hash sizes on available memory, with a reserve equal to
1760 150% of current kernel size */
1762 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
1763 mempages
-= reserve
;
1765 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
1766 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1768 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
1769 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1771 dcache_init(mempages
);
1772 inode_init(mempages
);
1773 files_init(mempages
);
1779 EXPORT_SYMBOL(d_alloc
);
1780 EXPORT_SYMBOL(d_alloc_anon
);
1781 EXPORT_SYMBOL(d_alloc_root
);
1782 EXPORT_SYMBOL(d_delete
);
1783 EXPORT_SYMBOL(d_find_alias
);
1784 EXPORT_SYMBOL(d_instantiate
);
1785 EXPORT_SYMBOL(d_invalidate
);
1786 EXPORT_SYMBOL(d_lookup
);
1787 EXPORT_SYMBOL(d_move
);
1788 EXPORT_SYMBOL(d_path
);
1789 EXPORT_SYMBOL(d_prune_aliases
);
1790 EXPORT_SYMBOL(d_rehash
);
1791 EXPORT_SYMBOL(d_splice_alias
);
1792 EXPORT_SYMBOL(d_validate
);
1793 EXPORT_SYMBOL(dget_locked
);
1794 EXPORT_SYMBOL(dput
);
1795 EXPORT_SYMBOL(find_inode_number
);
1796 EXPORT_SYMBOL(have_submounts
);
1797 EXPORT_SYMBOL(names_cachep
);
1798 EXPORT_SYMBOL(shrink_dcache_parent
);
1799 EXPORT_SYMBOL(shrink_dcache_sb
);