Merge commit 'v2.6.29-rc4' into core/percpu
[linux-2.6/verdex.git] / kernel / sched.c
blobfc17fd91ab576b9d0ce16325eb78caf07ad82bb0
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
250 #endif
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
262 struct cfs_rq;
264 static LIST_HEAD(task_groups);
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
289 #endif
291 struct rcu_head rcu;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
349 #define MIN_SHARES 2
350 #define MAX_SHARES (1UL << 18)
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
358 struct task_group init_task_group;
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
363 struct task_group *tg;
365 #ifdef CONFIG_USER_SCHED
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
372 #else
373 tg = &init_task_group;
374 #endif
375 return tg;
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
384 #endif
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
392 #else
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
397 return NULL;
400 #endif /* CONFIG_GROUP_SCHED */
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
407 u64 exec_clock;
408 u64 min_vruntime;
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
413 struct list_head tasks;
414 struct list_head *balance_iterator;
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
420 struct sched_entity *curr, *next, *last;
422 unsigned int nr_spread_over;
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
438 #ifdef CONFIG_SMP
440 * the part of load.weight contributed by tasks
442 unsigned long task_weight;
445 * h_load = weight * f(tg)
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
450 unsigned long h_load;
453 * this cpu's part of tg->shares
455 unsigned long shares;
458 * load.weight at the time we set shares
460 unsigned long rq_weight;
461 #endif
462 #endif
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 unsigned long rt_nr_migratory;
474 int overloaded;
475 #endif
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489 #endif
492 #ifdef CONFIG_SMP
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
502 struct root_domain {
503 atomic_t refcount;
504 cpumask_var_t span;
505 cpumask_var_t online;
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
511 cpumask_var_t rto_mask;
512 atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
530 static struct root_domain def_root_domain;
532 #endif
535 * This is the main, per-CPU runqueue data structure.
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
541 struct rq {
542 /* runqueue lock: */
543 spinlock_t lock;
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
562 struct cfs_rq cfs;
563 struct rt_rq rt;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
568 #endif
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list;
571 #endif
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
579 unsigned long nr_uninterruptible;
581 struct task_struct *curr, *idle;
582 unsigned long next_balance;
583 struct mm_struct *prev_mm;
585 u64 clock;
587 atomic_t nr_iowait;
589 #ifdef CONFIG_SMP
590 struct root_domain *rd;
591 struct sched_domain *sd;
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
596 /* cpu of this runqueue: */
597 int cpu;
598 int online;
600 unsigned long avg_load_per_task;
602 struct task_struct *migration_thread;
603 struct list_head migration_queue;
604 #endif
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
626 /* schedule() stats */
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
635 /* BKL stats */
636 unsigned int bkl_count;
637 #endif
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
642 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
647 static inline int cpu_of(struct rq *rq)
649 #ifdef CONFIG_SMP
650 return rq->cpu;
651 #else
652 return 0;
653 #endif
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671 static inline void update_rq_clock(struct rq *rq)
673 rq->clock = sched_clock_cpu(cpu_of(rq));
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
681 #else
682 # define const_debug static const
683 #endif
686 * runqueue_is_locked
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
692 int runqueue_is_locked(void)
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
704 * Debugging: various feature bits
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
710 enum {
711 #include "sched_features.h"
714 #undef SCHED_FEAT
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
719 const_debug unsigned int sysctl_sched_features =
720 #include "sched_features.h"
723 #undef SCHED_FEAT
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
727 #name ,
729 static __read_mostly char *sched_feat_names[] = {
730 #include "sched_features.h"
731 NULL
734 #undef SCHED_FEAT
736 static int sched_feat_show(struct seq_file *m, void *v)
738 int i;
740 for (i = 0; sched_feat_names[i]; i++) {
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
745 seq_puts(m, "\n");
747 return 0;
750 static ssize_t
751 sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
759 if (cnt > 63)
760 cnt = 63;
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
765 buf[cnt] = 0;
767 if (strncmp(buf, "NO_", 3) == 0) {
768 neg = 1;
769 cmp += 3;
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
784 if (!sched_feat_names[i])
785 return -EINVAL;
787 filp->f_pos += cnt;
789 return cnt;
792 static int sched_feat_open(struct inode *inode, struct file *filp)
794 return single_open(filp, sched_feat_show, NULL);
797 static struct file_operations sched_feat_fops = {
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
805 static __init int sched_init_debug(void)
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
810 return 0;
812 late_initcall(sched_init_debug);
814 #endif
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
822 const_debug unsigned int sysctl_sched_nr_migrate = 32;
825 * ratelimit for updating the group shares.
826 * default: 0.25ms
828 unsigned int sysctl_sched_shares_ratelimit = 250000;
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
835 unsigned int sysctl_sched_shares_thresh = 4;
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
841 unsigned int sysctl_sched_rt_period = 1000000;
843 static __read_mostly int scheduler_running;
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
849 int sysctl_sched_rt_runtime = 950000;
851 static inline u64 global_rt_period(void)
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
856 static inline u64 global_rt_runtime(void)
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
871 static inline int task_current(struct rq *rq, struct task_struct *p)
873 return rq->curr == p;
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
879 return task_current(rq, p);
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
899 spin_unlock_irq(&rq->lock);
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 #ifdef CONFIG_SMP
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
931 #ifdef CONFIG_SMP
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
970 struct rq *rq;
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
982 void task_rq_unlock_wait(struct task_struct *p)
984 struct rq *rq = task_rq(p);
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
990 static void __task_rq_unlock(struct rq *rq)
991 __releases(rq->lock)
993 spin_unlock(&rq->lock);
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 __releases(rq->lock)
999 spin_unlock_irqrestore(&rq->lock, *flags);
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1008 struct rq *rq;
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1014 return rq;
1017 #ifdef CONFIG_SCHED_HRTICK
1019 * Use HR-timers to deliver accurate preemption points.
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1034 static inline int hrtick_enabled(struct rq *rq)
1036 if (!sched_feat(HRTICK))
1037 return 0;
1038 if (!cpu_active(cpu_of(rq)))
1039 return 0;
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1043 static void hrtick_clear(struct rq *rq)
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1064 return HRTIMER_NORESTART;
1067 #ifdef CONFIG_SMP
1069 * called from hardirq (IPI) context
1071 static void __hrtick_start(void *arg)
1073 struct rq *rq = arg;
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1082 * Called to set the hrtick timer state.
1084 * called with rq->lock held and irqs disabled
1086 static void hrtick_start(struct rq *rq, u64 delay)
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1091 hrtimer_set_expires(timer, time);
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1101 static int
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1104 int cpu = (int)(long)hcpu;
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1114 return NOTIFY_OK;
1117 return NOTIFY_DONE;
1120 static __init void init_hrtick(void)
1122 hotcpu_notifier(hotplug_hrtick, 0);
1124 #else
1126 * Called to set the hrtick timer state.
1128 * called with rq->lock held and irqs disabled
1130 static void hrtick_start(struct rq *rq, u64 delay)
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1187 return;
1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1257 assert_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1260 #endif /* CONFIG_SMP */
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1264 #else
1265 # define WMULT_CONST (1UL << 32)
1266 #endif
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1276 * delta *= weight / lw
1278 static unsigned long
1279 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1282 u64 tmp;
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1292 tmp = (u64)delta_exec * weight;
1294 * Check whether we'd overflow the 64-bit multiplication:
1296 if (unlikely(tmp > WMULT_CONST))
1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1298 WMULT_SHIFT/2);
1299 else
1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1305 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1307 lw->weight += inc;
1308 lw->inv_weight = 0;
1311 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1313 lw->weight -= dec;
1314 lw->inv_weight = 0;
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1326 #define WEIGHT_IDLEPRIO 3
1327 #define WMULT_IDLEPRIO 1431655765
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
1341 static const int prio_to_weight[40] = {
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1359 static const u32 prio_to_wmult[40] = {
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1370 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1377 struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1383 #ifdef CONFIG_SMP
1384 static unsigned long
1385 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1390 static int
1391 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
1394 #endif
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 #else
1399 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 #endif
1402 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404 update_load_add(&rq->load, load);
1407 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409 update_load_sub(&rq->load, load);
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor)(struct task_group *, void *);
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1419 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1421 struct task_group *parent, *child;
1422 int ret;
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426 down:
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1435 continue;
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
1445 out_unlock:
1446 rcu_read_unlock();
1448 return ret;
1451 static int tg_nop(struct task_group *tg, void *data)
1453 return 0;
1455 #endif
1457 #ifdef CONFIG_SMP
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1462 static unsigned long cpu_avg_load_per_task(int cpu)
1464 struct rq *rq = cpu_rq(cpu);
1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
1469 else
1470 rq->avg_load_per_task = 0;
1472 return rq->avg_load_per_task;
1475 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1480 * Calculate and set the cpu's group shares.
1482 static void
1483 update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
1486 unsigned long shares;
1487 unsigned long rq_weight;
1489 if (!tg->se[cpu])
1490 return;
1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
1508 spin_lock_irqsave(&rq->lock, flags);
1509 tg->cfs_rq[cpu]->shares = shares;
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
1521 static int tg_shares_up(struct task_group *tg, void *data)
1523 unsigned long weight, rq_weight = 0;
1524 unsigned long shares = 0;
1525 struct sched_domain *sd = data;
1526 int i;
1528 for_each_cpu(i, sched_domain_span(sd)) {
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
1540 shares += tg->cfs_rq[i]->shares;
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
1549 for_each_cpu(i, sched_domain_span(sd))
1550 update_group_shares_cpu(tg, i, shares, rq_weight);
1552 return 0;
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
1560 static int tg_load_down(struct task_group *tg, void *data)
1562 unsigned long load;
1563 long cpu = (long)data;
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1573 tg->cfs_rq[cpu]->h_load = load;
1575 return 0;
1578 static void update_shares(struct sched_domain *sd)
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
1589 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1596 static void update_h_load(long cpu)
1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1601 #else
1603 static inline void update_shares(struct sched_domain *sd)
1607 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1611 #endif
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1616 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1621 int ret = 0;
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1637 return ret;
1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1646 #endif
1648 #ifdef CONFIG_FAIR_GROUP_SCHED
1649 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1651 #ifdef CONFIG_SMP
1652 cfs_rq->shares = shares;
1653 #endif
1655 #endif
1657 #include "sched_stats.h"
1658 #include "sched_idletask.c"
1659 #include "sched_fair.c"
1660 #include "sched_rt.c"
1661 #ifdef CONFIG_SCHED_DEBUG
1662 # include "sched_debug.c"
1663 #endif
1665 #define sched_class_highest (&rt_sched_class)
1666 #define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
1669 static void inc_nr_running(struct rq *rq)
1671 rq->nr_running++;
1674 static void dec_nr_running(struct rq *rq)
1676 rq->nr_running--;
1679 static void set_load_weight(struct task_struct *p)
1681 if (task_has_rt_policy(p)) {
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1688 * SCHED_IDLE tasks get minimal weight:
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1700 static void update_avg(u64 *avg, u64 sample)
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1706 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1708 sched_info_queued(p);
1709 p->sched_class->enqueue_task(rq, p, wakeup);
1710 p->se.on_rq = 1;
1713 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1721 sched_info_dequeued(p);
1722 p->sched_class->dequeue_task(rq, p, sleep);
1723 p->se.on_rq = 0;
1727 * __normal_prio - return the priority that is based on the static prio
1729 static inline int __normal_prio(struct task_struct *p)
1731 return p->static_prio;
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1741 static inline int normal_prio(struct task_struct *p)
1743 int prio;
1745 if (task_has_rt_policy(p))
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1759 static int effective_prio(struct task_struct *p)
1761 p->normal_prio = normal_prio(p);
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1773 * activate_task - move a task to the runqueue.
1775 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1777 if (task_contributes_to_load(p))
1778 rq->nr_uninterruptible--;
1780 enqueue_task(rq, p, wakeup);
1781 inc_nr_running(rq);
1785 * deactivate_task - remove a task from the runqueue.
1787 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1789 if (task_contributes_to_load(p))
1790 rq->nr_uninterruptible++;
1792 dequeue_task(rq, p, sleep);
1793 dec_nr_running(rq);
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1800 inline int task_curr(const struct task_struct *p)
1802 return cpu_curr(task_cpu(p)) == p;
1805 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1807 set_task_rq(p, cpu);
1808 #ifdef CONFIG_SMP
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1814 smp_wmb();
1815 task_thread_info(p)->cpu = cpu;
1816 #endif
1819 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1831 #ifdef CONFIG_SMP
1833 /* Used instead of source_load when we know the type == 0 */
1834 static unsigned long weighted_cpuload(const int cpu)
1836 return cpu_rq(cpu)->load.weight;
1840 * Is this task likely cache-hot:
1842 static int
1843 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1845 s64 delta;
1848 * Buddy candidates are cache hot:
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
1853 return 1;
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1863 delta = now - p->se.exec_start;
1865 return delta < (s64)sysctl_sched_migration_cost;
1869 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1875 u64 clock_offset;
1877 clock_offset = old_rq->clock - new_rq->clock;
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1881 #ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1893 #endif
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
1897 __set_task_cpu(p, new_cpu);
1900 struct migration_req {
1901 struct list_head list;
1903 struct task_struct *task;
1904 int dest_cpu;
1906 struct completion done;
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1913 static int
1914 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1916 struct rq *rq = task_rq(p);
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1922 if (!p->se.on_rq && !task_running(rq, p)) {
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1927 init_completion(&req->done);
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
1932 return 1;
1936 * wait_task_inactive - wait for a thread to unschedule.
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1951 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1953 unsigned long flags;
1954 int running, on_rq;
1955 unsigned long ncsw;
1956 struct rq *rq;
1958 for (;;) {
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1965 rq = task_rq(p);
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
1981 cpu_relax();
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1989 rq = task_rq_lock(p, &flags);
1990 trace_sched_wait_task(rq, p);
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
1993 ncsw = 0;
1994 if (!match_state || p->state == match_state)
1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1996 task_rq_unlock(rq, &flags);
1999 * If it changed from the expected state, bail out now.
2001 if (unlikely(!ncsw))
2002 break;
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2008 * Oops. Go back and try again..
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2034 break;
2037 return ncsw;
2040 /***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2053 void kick_process(struct task_struct *p)
2055 int cpu;
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2071 static unsigned long source_load(int cpu, int type)
2073 struct rq *rq = cpu_rq(cpu);
2074 unsigned long total = weighted_cpuload(cpu);
2076 if (type == 0 || !sched_feat(LB_BIAS))
2077 return total;
2079 return min(rq->cpu_load[type-1], total);
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
2086 static unsigned long target_load(int cpu, int type)
2088 struct rq *rq = cpu_rq(cpu);
2089 unsigned long total = weighted_cpuload(cpu);
2091 if (type == 0 || !sched_feat(LB_BIAS))
2092 return total;
2094 return max(rq->cpu_load[type-1], total);
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2101 static struct sched_group *
2102 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2114 /* Skip over this group if it has no CPUs allowed */
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
2117 continue;
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2125 for_each_cpu(i, sched_group_cpus(group)) {
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2132 avg_load += load;
2135 /* Adjust by relative CPU power of the group */
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2146 } while (group = group->next, group != sd->groups);
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2156 static int
2157 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2163 /* Traverse only the allowed CPUs */
2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2165 load = weighted_cpuload(i);
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2173 return idlest;
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2181 * Balance, ie. select the least loaded group.
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2185 * preempt must be disabled.
2187 static int sched_balance_self(int cpu, int flag)
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
2192 for_each_domain(cpu, tmp) {
2194 * If power savings logic is enabled for a domain, stop there.
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
2198 if (tmp->flags & flag)
2199 sd = tmp;
2202 if (sd)
2203 update_shares(sd);
2205 while (sd) {
2206 struct sched_group *group;
2207 int new_cpu, weight;
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2214 group = find_idlest_group(sd, t, cpu);
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2220 new_cpu = find_idlest_cpu(group, t, cpu);
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2227 /* Now try balancing at a lower domain level of new_cpu */
2228 cpu = new_cpu;
2229 weight = cpumask_weight(sched_domain_span(sd));
2230 sd = NULL;
2231 for_each_domain(cpu, tmp) {
2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2237 /* while loop will break here if sd == NULL */
2240 return cpu;
2243 #endif /* CONFIG_SMP */
2245 /***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2257 * returns failure only if the task is already active.
2259 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2261 int cpu, orig_cpu, this_cpu, success = 0;
2262 unsigned long flags;
2263 long old_state;
2264 struct rq *rq;
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2269 if (!sync) {
2270 if (current->se.avg_overlap < sysctl_sched_migration_cost &&
2271 p->se.avg_overlap < sysctl_sched_migration_cost)
2272 sync = 1;
2273 } else {
2274 if (current->se.avg_overlap >= sysctl_sched_migration_cost ||
2275 p->se.avg_overlap >= sysctl_sched_migration_cost)
2276 sync = 0;
2279 #ifdef CONFIG_SMP
2280 if (sched_feat(LB_WAKEUP_UPDATE)) {
2281 struct sched_domain *sd;
2283 this_cpu = raw_smp_processor_id();
2284 cpu = task_cpu(p);
2286 for_each_domain(this_cpu, sd) {
2287 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2288 update_shares(sd);
2289 break;
2293 #endif
2295 smp_wmb();
2296 rq = task_rq_lock(p, &flags);
2297 update_rq_clock(rq);
2298 old_state = p->state;
2299 if (!(old_state & state))
2300 goto out;
2302 if (p->se.on_rq)
2303 goto out_running;
2305 cpu = task_cpu(p);
2306 orig_cpu = cpu;
2307 this_cpu = smp_processor_id();
2309 #ifdef CONFIG_SMP
2310 if (unlikely(task_running(rq, p)))
2311 goto out_activate;
2313 cpu = p->sched_class->select_task_rq(p, sync);
2314 if (cpu != orig_cpu) {
2315 set_task_cpu(p, cpu);
2316 task_rq_unlock(rq, &flags);
2317 /* might preempt at this point */
2318 rq = task_rq_lock(p, &flags);
2319 old_state = p->state;
2320 if (!(old_state & state))
2321 goto out;
2322 if (p->se.on_rq)
2323 goto out_running;
2325 this_cpu = smp_processor_id();
2326 cpu = task_cpu(p);
2329 #ifdef CONFIG_SCHEDSTATS
2330 schedstat_inc(rq, ttwu_count);
2331 if (cpu == this_cpu)
2332 schedstat_inc(rq, ttwu_local);
2333 else {
2334 struct sched_domain *sd;
2335 for_each_domain(this_cpu, sd) {
2336 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2337 schedstat_inc(sd, ttwu_wake_remote);
2338 break;
2342 #endif /* CONFIG_SCHEDSTATS */
2344 out_activate:
2345 #endif /* CONFIG_SMP */
2346 schedstat_inc(p, se.nr_wakeups);
2347 if (sync)
2348 schedstat_inc(p, se.nr_wakeups_sync);
2349 if (orig_cpu != cpu)
2350 schedstat_inc(p, se.nr_wakeups_migrate);
2351 if (cpu == this_cpu)
2352 schedstat_inc(p, se.nr_wakeups_local);
2353 else
2354 schedstat_inc(p, se.nr_wakeups_remote);
2355 activate_task(rq, p, 1);
2356 success = 1;
2358 out_running:
2359 trace_sched_wakeup(rq, p, success);
2360 check_preempt_curr(rq, p, sync);
2362 p->state = TASK_RUNNING;
2363 #ifdef CONFIG_SMP
2364 if (p->sched_class->task_wake_up)
2365 p->sched_class->task_wake_up(rq, p);
2366 #endif
2367 out:
2368 current->se.last_wakeup = current->se.sum_exec_runtime;
2370 task_rq_unlock(rq, &flags);
2372 return success;
2375 int wake_up_process(struct task_struct *p)
2377 return try_to_wake_up(p, TASK_ALL, 0);
2379 EXPORT_SYMBOL(wake_up_process);
2381 int wake_up_state(struct task_struct *p, unsigned int state)
2383 return try_to_wake_up(p, state, 0);
2387 * Perform scheduler related setup for a newly forked process p.
2388 * p is forked by current.
2390 * __sched_fork() is basic setup used by init_idle() too:
2392 static void __sched_fork(struct task_struct *p)
2394 p->se.exec_start = 0;
2395 p->se.sum_exec_runtime = 0;
2396 p->se.prev_sum_exec_runtime = 0;
2397 p->se.last_wakeup = 0;
2398 p->se.avg_overlap = 0;
2400 #ifdef CONFIG_SCHEDSTATS
2401 p->se.wait_start = 0;
2402 p->se.sum_sleep_runtime = 0;
2403 p->se.sleep_start = 0;
2404 p->se.block_start = 0;
2405 p->se.sleep_max = 0;
2406 p->se.block_max = 0;
2407 p->se.exec_max = 0;
2408 p->se.slice_max = 0;
2409 p->se.wait_max = 0;
2410 #endif
2412 INIT_LIST_HEAD(&p->rt.run_list);
2413 p->se.on_rq = 0;
2414 INIT_LIST_HEAD(&p->se.group_node);
2416 #ifdef CONFIG_PREEMPT_NOTIFIERS
2417 INIT_HLIST_HEAD(&p->preempt_notifiers);
2418 #endif
2421 * We mark the process as running here, but have not actually
2422 * inserted it onto the runqueue yet. This guarantees that
2423 * nobody will actually run it, and a signal or other external
2424 * event cannot wake it up and insert it on the runqueue either.
2426 p->state = TASK_RUNNING;
2430 * fork()/clone()-time setup:
2432 void sched_fork(struct task_struct *p, int clone_flags)
2434 int cpu = get_cpu();
2436 __sched_fork(p);
2438 #ifdef CONFIG_SMP
2439 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2440 #endif
2441 set_task_cpu(p, cpu);
2444 * Make sure we do not leak PI boosting priority to the child:
2446 p->prio = current->normal_prio;
2447 if (!rt_prio(p->prio))
2448 p->sched_class = &fair_sched_class;
2450 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2451 if (likely(sched_info_on()))
2452 memset(&p->sched_info, 0, sizeof(p->sched_info));
2453 #endif
2454 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2455 p->oncpu = 0;
2456 #endif
2457 #ifdef CONFIG_PREEMPT
2458 /* Want to start with kernel preemption disabled. */
2459 task_thread_info(p)->preempt_count = 1;
2460 #endif
2461 put_cpu();
2465 * wake_up_new_task - wake up a newly created task for the first time.
2467 * This function will do some initial scheduler statistics housekeeping
2468 * that must be done for every newly created context, then puts the task
2469 * on the runqueue and wakes it.
2471 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2473 unsigned long flags;
2474 struct rq *rq;
2476 rq = task_rq_lock(p, &flags);
2477 BUG_ON(p->state != TASK_RUNNING);
2478 update_rq_clock(rq);
2480 p->prio = effective_prio(p);
2482 if (!p->sched_class->task_new || !current->se.on_rq) {
2483 activate_task(rq, p, 0);
2484 } else {
2486 * Let the scheduling class do new task startup
2487 * management (if any):
2489 p->sched_class->task_new(rq, p);
2490 inc_nr_running(rq);
2492 trace_sched_wakeup_new(rq, p, 1);
2493 check_preempt_curr(rq, p, 0);
2494 #ifdef CONFIG_SMP
2495 if (p->sched_class->task_wake_up)
2496 p->sched_class->task_wake_up(rq, p);
2497 #endif
2498 task_rq_unlock(rq, &flags);
2501 #ifdef CONFIG_PREEMPT_NOTIFIERS
2504 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2505 * @notifier: notifier struct to register
2507 void preempt_notifier_register(struct preempt_notifier *notifier)
2509 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2511 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2514 * preempt_notifier_unregister - no longer interested in preemption notifications
2515 * @notifier: notifier struct to unregister
2517 * This is safe to call from within a preemption notifier.
2519 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2521 hlist_del(&notifier->link);
2523 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2525 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2527 struct preempt_notifier *notifier;
2528 struct hlist_node *node;
2530 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2531 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2534 static void
2535 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 struct task_struct *next)
2538 struct preempt_notifier *notifier;
2539 struct hlist_node *node;
2541 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2542 notifier->ops->sched_out(notifier, next);
2545 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2547 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2551 static void
2552 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2553 struct task_struct *next)
2557 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2560 * prepare_task_switch - prepare to switch tasks
2561 * @rq: the runqueue preparing to switch
2562 * @prev: the current task that is being switched out
2563 * @next: the task we are going to switch to.
2565 * This is called with the rq lock held and interrupts off. It must
2566 * be paired with a subsequent finish_task_switch after the context
2567 * switch.
2569 * prepare_task_switch sets up locking and calls architecture specific
2570 * hooks.
2572 static inline void
2573 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2574 struct task_struct *next)
2576 fire_sched_out_preempt_notifiers(prev, next);
2577 prepare_lock_switch(rq, next);
2578 prepare_arch_switch(next);
2582 * finish_task_switch - clean up after a task-switch
2583 * @rq: runqueue associated with task-switch
2584 * @prev: the thread we just switched away from.
2586 * finish_task_switch must be called after the context switch, paired
2587 * with a prepare_task_switch call before the context switch.
2588 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2589 * and do any other architecture-specific cleanup actions.
2591 * Note that we may have delayed dropping an mm in context_switch(). If
2592 * so, we finish that here outside of the runqueue lock. (Doing it
2593 * with the lock held can cause deadlocks; see schedule() for
2594 * details.)
2596 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2597 __releases(rq->lock)
2599 struct mm_struct *mm = rq->prev_mm;
2600 long prev_state;
2602 rq->prev_mm = NULL;
2605 * A task struct has one reference for the use as "current".
2606 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2607 * schedule one last time. The schedule call will never return, and
2608 * the scheduled task must drop that reference.
2609 * The test for TASK_DEAD must occur while the runqueue locks are
2610 * still held, otherwise prev could be scheduled on another cpu, die
2611 * there before we look at prev->state, and then the reference would
2612 * be dropped twice.
2613 * Manfred Spraul <manfred@colorfullife.com>
2615 prev_state = prev->state;
2616 finish_arch_switch(prev);
2617 finish_lock_switch(rq, prev);
2618 #ifdef CONFIG_SMP
2619 if (current->sched_class->post_schedule)
2620 current->sched_class->post_schedule(rq);
2621 #endif
2623 fire_sched_in_preempt_notifiers(current);
2624 if (mm)
2625 mmdrop(mm);
2626 if (unlikely(prev_state == TASK_DEAD)) {
2628 * Remove function-return probe instances associated with this
2629 * task and put them back on the free list.
2631 kprobe_flush_task(prev);
2632 put_task_struct(prev);
2637 * schedule_tail - first thing a freshly forked thread must call.
2638 * @prev: the thread we just switched away from.
2640 asmlinkage void schedule_tail(struct task_struct *prev)
2641 __releases(rq->lock)
2643 struct rq *rq = this_rq();
2645 finish_task_switch(rq, prev);
2646 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2647 /* In this case, finish_task_switch does not reenable preemption */
2648 preempt_enable();
2649 #endif
2650 if (current->set_child_tid)
2651 put_user(task_pid_vnr(current), current->set_child_tid);
2655 * context_switch - switch to the new MM and the new
2656 * thread's register state.
2658 static inline void
2659 context_switch(struct rq *rq, struct task_struct *prev,
2660 struct task_struct *next)
2662 struct mm_struct *mm, *oldmm;
2664 prepare_task_switch(rq, prev, next);
2665 trace_sched_switch(rq, prev, next);
2666 mm = next->mm;
2667 oldmm = prev->active_mm;
2669 * For paravirt, this is coupled with an exit in switch_to to
2670 * combine the page table reload and the switch backend into
2671 * one hypercall.
2673 arch_enter_lazy_cpu_mode();
2675 if (unlikely(!mm)) {
2676 next->active_mm = oldmm;
2677 atomic_inc(&oldmm->mm_count);
2678 enter_lazy_tlb(oldmm, next);
2679 } else
2680 switch_mm(oldmm, mm, next);
2682 if (unlikely(!prev->mm)) {
2683 prev->active_mm = NULL;
2684 rq->prev_mm = oldmm;
2687 * Since the runqueue lock will be released by the next
2688 * task (which is an invalid locking op but in the case
2689 * of the scheduler it's an obvious special-case), so we
2690 * do an early lockdep release here:
2692 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2693 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2694 #endif
2696 /* Here we just switch the register state and the stack. */
2697 switch_to(prev, next, prev);
2699 barrier();
2701 * this_rq must be evaluated again because prev may have moved
2702 * CPUs since it called schedule(), thus the 'rq' on its stack
2703 * frame will be invalid.
2705 finish_task_switch(this_rq(), prev);
2709 * nr_running, nr_uninterruptible and nr_context_switches:
2711 * externally visible scheduler statistics: current number of runnable
2712 * threads, current number of uninterruptible-sleeping threads, total
2713 * number of context switches performed since bootup.
2715 unsigned long nr_running(void)
2717 unsigned long i, sum = 0;
2719 for_each_online_cpu(i)
2720 sum += cpu_rq(i)->nr_running;
2722 return sum;
2725 unsigned long nr_uninterruptible(void)
2727 unsigned long i, sum = 0;
2729 for_each_possible_cpu(i)
2730 sum += cpu_rq(i)->nr_uninterruptible;
2733 * Since we read the counters lockless, it might be slightly
2734 * inaccurate. Do not allow it to go below zero though:
2736 if (unlikely((long)sum < 0))
2737 sum = 0;
2739 return sum;
2742 unsigned long long nr_context_switches(void)
2744 int i;
2745 unsigned long long sum = 0;
2747 for_each_possible_cpu(i)
2748 sum += cpu_rq(i)->nr_switches;
2750 return sum;
2753 unsigned long nr_iowait(void)
2755 unsigned long i, sum = 0;
2757 for_each_possible_cpu(i)
2758 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2760 return sum;
2763 unsigned long nr_active(void)
2765 unsigned long i, running = 0, uninterruptible = 0;
2767 for_each_online_cpu(i) {
2768 running += cpu_rq(i)->nr_running;
2769 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2772 if (unlikely((long)uninterruptible < 0))
2773 uninterruptible = 0;
2775 return running + uninterruptible;
2779 * Update rq->cpu_load[] statistics. This function is usually called every
2780 * scheduler tick (TICK_NSEC).
2782 static void update_cpu_load(struct rq *this_rq)
2784 unsigned long this_load = this_rq->load.weight;
2785 int i, scale;
2787 this_rq->nr_load_updates++;
2789 /* Update our load: */
2790 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2791 unsigned long old_load, new_load;
2793 /* scale is effectively 1 << i now, and >> i divides by scale */
2795 old_load = this_rq->cpu_load[i];
2796 new_load = this_load;
2798 * Round up the averaging division if load is increasing. This
2799 * prevents us from getting stuck on 9 if the load is 10, for
2800 * example.
2802 if (new_load > old_load)
2803 new_load += scale-1;
2804 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2808 #ifdef CONFIG_SMP
2811 * double_rq_lock - safely lock two runqueues
2813 * Note this does not disable interrupts like task_rq_lock,
2814 * you need to do so manually before calling.
2816 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2817 __acquires(rq1->lock)
2818 __acquires(rq2->lock)
2820 BUG_ON(!irqs_disabled());
2821 if (rq1 == rq2) {
2822 spin_lock(&rq1->lock);
2823 __acquire(rq2->lock); /* Fake it out ;) */
2824 } else {
2825 if (rq1 < rq2) {
2826 spin_lock(&rq1->lock);
2827 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2828 } else {
2829 spin_lock(&rq2->lock);
2830 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2833 update_rq_clock(rq1);
2834 update_rq_clock(rq2);
2838 * double_rq_unlock - safely unlock two runqueues
2840 * Note this does not restore interrupts like task_rq_unlock,
2841 * you need to do so manually after calling.
2843 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2844 __releases(rq1->lock)
2845 __releases(rq2->lock)
2847 spin_unlock(&rq1->lock);
2848 if (rq1 != rq2)
2849 spin_unlock(&rq2->lock);
2850 else
2851 __release(rq2->lock);
2855 * If dest_cpu is allowed for this process, migrate the task to it.
2856 * This is accomplished by forcing the cpu_allowed mask to only
2857 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2858 * the cpu_allowed mask is restored.
2860 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2862 struct migration_req req;
2863 unsigned long flags;
2864 struct rq *rq;
2866 rq = task_rq_lock(p, &flags);
2867 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2868 || unlikely(!cpu_active(dest_cpu)))
2869 goto out;
2871 /* force the process onto the specified CPU */
2872 if (migrate_task(p, dest_cpu, &req)) {
2873 /* Need to wait for migration thread (might exit: take ref). */
2874 struct task_struct *mt = rq->migration_thread;
2876 get_task_struct(mt);
2877 task_rq_unlock(rq, &flags);
2878 wake_up_process(mt);
2879 put_task_struct(mt);
2880 wait_for_completion(&req.done);
2882 return;
2884 out:
2885 task_rq_unlock(rq, &flags);
2889 * sched_exec - execve() is a valuable balancing opportunity, because at
2890 * this point the task has the smallest effective memory and cache footprint.
2892 void sched_exec(void)
2894 int new_cpu, this_cpu = get_cpu();
2895 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2896 put_cpu();
2897 if (new_cpu != this_cpu)
2898 sched_migrate_task(current, new_cpu);
2902 * pull_task - move a task from a remote runqueue to the local runqueue.
2903 * Both runqueues must be locked.
2905 static void pull_task(struct rq *src_rq, struct task_struct *p,
2906 struct rq *this_rq, int this_cpu)
2908 deactivate_task(src_rq, p, 0);
2909 set_task_cpu(p, this_cpu);
2910 activate_task(this_rq, p, 0);
2912 * Note that idle threads have a prio of MAX_PRIO, for this test
2913 * to be always true for them.
2915 check_preempt_curr(this_rq, p, 0);
2919 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2921 static
2922 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2923 struct sched_domain *sd, enum cpu_idle_type idle,
2924 int *all_pinned)
2927 * We do not migrate tasks that are:
2928 * 1) running (obviously), or
2929 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2930 * 3) are cache-hot on their current CPU.
2932 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2933 schedstat_inc(p, se.nr_failed_migrations_affine);
2934 return 0;
2936 *all_pinned = 0;
2938 if (task_running(rq, p)) {
2939 schedstat_inc(p, se.nr_failed_migrations_running);
2940 return 0;
2944 * Aggressive migration if:
2945 * 1) task is cache cold, or
2946 * 2) too many balance attempts have failed.
2949 if (!task_hot(p, rq->clock, sd) ||
2950 sd->nr_balance_failed > sd->cache_nice_tries) {
2951 #ifdef CONFIG_SCHEDSTATS
2952 if (task_hot(p, rq->clock, sd)) {
2953 schedstat_inc(sd, lb_hot_gained[idle]);
2954 schedstat_inc(p, se.nr_forced_migrations);
2956 #endif
2957 return 1;
2960 if (task_hot(p, rq->clock, sd)) {
2961 schedstat_inc(p, se.nr_failed_migrations_hot);
2962 return 0;
2964 return 1;
2967 static unsigned long
2968 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2969 unsigned long max_load_move, struct sched_domain *sd,
2970 enum cpu_idle_type idle, int *all_pinned,
2971 int *this_best_prio, struct rq_iterator *iterator)
2973 int loops = 0, pulled = 0, pinned = 0;
2974 struct task_struct *p;
2975 long rem_load_move = max_load_move;
2977 if (max_load_move == 0)
2978 goto out;
2980 pinned = 1;
2983 * Start the load-balancing iterator:
2985 p = iterator->start(iterator->arg);
2986 next:
2987 if (!p || loops++ > sysctl_sched_nr_migrate)
2988 goto out;
2990 if ((p->se.load.weight >> 1) > rem_load_move ||
2991 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2992 p = iterator->next(iterator->arg);
2993 goto next;
2996 pull_task(busiest, p, this_rq, this_cpu);
2997 pulled++;
2998 rem_load_move -= p->se.load.weight;
3001 * We only want to steal up to the prescribed amount of weighted load.
3003 if (rem_load_move > 0) {
3004 if (p->prio < *this_best_prio)
3005 *this_best_prio = p->prio;
3006 p = iterator->next(iterator->arg);
3007 goto next;
3009 out:
3011 * Right now, this is one of only two places pull_task() is called,
3012 * so we can safely collect pull_task() stats here rather than
3013 * inside pull_task().
3015 schedstat_add(sd, lb_gained[idle], pulled);
3017 if (all_pinned)
3018 *all_pinned = pinned;
3020 return max_load_move - rem_load_move;
3024 * move_tasks tries to move up to max_load_move weighted load from busiest to
3025 * this_rq, as part of a balancing operation within domain "sd".
3026 * Returns 1 if successful and 0 otherwise.
3028 * Called with both runqueues locked.
3030 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3031 unsigned long max_load_move,
3032 struct sched_domain *sd, enum cpu_idle_type idle,
3033 int *all_pinned)
3035 const struct sched_class *class = sched_class_highest;
3036 unsigned long total_load_moved = 0;
3037 int this_best_prio = this_rq->curr->prio;
3039 do {
3040 total_load_moved +=
3041 class->load_balance(this_rq, this_cpu, busiest,
3042 max_load_move - total_load_moved,
3043 sd, idle, all_pinned, &this_best_prio);
3044 class = class->next;
3046 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3047 break;
3049 } while (class && max_load_move > total_load_moved);
3051 return total_load_moved > 0;
3054 static int
3055 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle,
3057 struct rq_iterator *iterator)
3059 struct task_struct *p = iterator->start(iterator->arg);
3060 int pinned = 0;
3062 while (p) {
3063 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3064 pull_task(busiest, p, this_rq, this_cpu);
3066 * Right now, this is only the second place pull_task()
3067 * is called, so we can safely collect pull_task()
3068 * stats here rather than inside pull_task().
3070 schedstat_inc(sd, lb_gained[idle]);
3072 return 1;
3074 p = iterator->next(iterator->arg);
3077 return 0;
3081 * move_one_task tries to move exactly one task from busiest to this_rq, as
3082 * part of active balancing operations within "domain".
3083 * Returns 1 if successful and 0 otherwise.
3085 * Called with both runqueues locked.
3087 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3088 struct sched_domain *sd, enum cpu_idle_type idle)
3090 const struct sched_class *class;
3092 for (class = sched_class_highest; class; class = class->next)
3093 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3094 return 1;
3096 return 0;
3100 * find_busiest_group finds and returns the busiest CPU group within the
3101 * domain. It calculates and returns the amount of weighted load which
3102 * should be moved to restore balance via the imbalance parameter.
3104 static struct sched_group *
3105 find_busiest_group(struct sched_domain *sd, int this_cpu,
3106 unsigned long *imbalance, enum cpu_idle_type idle,
3107 int *sd_idle, const struct cpumask *cpus, int *balance)
3109 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3110 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3111 unsigned long max_pull;
3112 unsigned long busiest_load_per_task, busiest_nr_running;
3113 unsigned long this_load_per_task, this_nr_running;
3114 int load_idx, group_imb = 0;
3115 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3116 int power_savings_balance = 1;
3117 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3118 unsigned long min_nr_running = ULONG_MAX;
3119 struct sched_group *group_min = NULL, *group_leader = NULL;
3120 #endif
3122 max_load = this_load = total_load = total_pwr = 0;
3123 busiest_load_per_task = busiest_nr_running = 0;
3124 this_load_per_task = this_nr_running = 0;
3126 if (idle == CPU_NOT_IDLE)
3127 load_idx = sd->busy_idx;
3128 else if (idle == CPU_NEWLY_IDLE)
3129 load_idx = sd->newidle_idx;
3130 else
3131 load_idx = sd->idle_idx;
3133 do {
3134 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3135 int local_group;
3136 int i;
3137 int __group_imb = 0;
3138 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3139 unsigned long sum_nr_running, sum_weighted_load;
3140 unsigned long sum_avg_load_per_task;
3141 unsigned long avg_load_per_task;
3143 local_group = cpumask_test_cpu(this_cpu,
3144 sched_group_cpus(group));
3146 if (local_group)
3147 balance_cpu = cpumask_first(sched_group_cpus(group));
3149 /* Tally up the load of all CPUs in the group */
3150 sum_weighted_load = sum_nr_running = avg_load = 0;
3151 sum_avg_load_per_task = avg_load_per_task = 0;
3153 max_cpu_load = 0;
3154 min_cpu_load = ~0UL;
3156 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3157 struct rq *rq = cpu_rq(i);
3159 if (*sd_idle && rq->nr_running)
3160 *sd_idle = 0;
3162 /* Bias balancing toward cpus of our domain */
3163 if (local_group) {
3164 if (idle_cpu(i) && !first_idle_cpu) {
3165 first_idle_cpu = 1;
3166 balance_cpu = i;
3169 load = target_load(i, load_idx);
3170 } else {
3171 load = source_load(i, load_idx);
3172 if (load > max_cpu_load)
3173 max_cpu_load = load;
3174 if (min_cpu_load > load)
3175 min_cpu_load = load;
3178 avg_load += load;
3179 sum_nr_running += rq->nr_running;
3180 sum_weighted_load += weighted_cpuload(i);
3182 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3186 * First idle cpu or the first cpu(busiest) in this sched group
3187 * is eligible for doing load balancing at this and above
3188 * domains. In the newly idle case, we will allow all the cpu's
3189 * to do the newly idle load balance.
3191 if (idle != CPU_NEWLY_IDLE && local_group &&
3192 balance_cpu != this_cpu && balance) {
3193 *balance = 0;
3194 goto ret;
3197 total_load += avg_load;
3198 total_pwr += group->__cpu_power;
3200 /* Adjust by relative CPU power of the group */
3201 avg_load = sg_div_cpu_power(group,
3202 avg_load * SCHED_LOAD_SCALE);
3206 * Consider the group unbalanced when the imbalance is larger
3207 * than the average weight of two tasks.
3209 * APZ: with cgroup the avg task weight can vary wildly and
3210 * might not be a suitable number - should we keep a
3211 * normalized nr_running number somewhere that negates
3212 * the hierarchy?
3214 avg_load_per_task = sg_div_cpu_power(group,
3215 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3217 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3218 __group_imb = 1;
3220 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3222 if (local_group) {
3223 this_load = avg_load;
3224 this = group;
3225 this_nr_running = sum_nr_running;
3226 this_load_per_task = sum_weighted_load;
3227 } else if (avg_load > max_load &&
3228 (sum_nr_running > group_capacity || __group_imb)) {
3229 max_load = avg_load;
3230 busiest = group;
3231 busiest_nr_running = sum_nr_running;
3232 busiest_load_per_task = sum_weighted_load;
3233 group_imb = __group_imb;
3236 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3238 * Busy processors will not participate in power savings
3239 * balance.
3241 if (idle == CPU_NOT_IDLE ||
3242 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3243 goto group_next;
3246 * If the local group is idle or completely loaded
3247 * no need to do power savings balance at this domain
3249 if (local_group && (this_nr_running >= group_capacity ||
3250 !this_nr_running))
3251 power_savings_balance = 0;
3254 * If a group is already running at full capacity or idle,
3255 * don't include that group in power savings calculations
3257 if (!power_savings_balance || sum_nr_running >= group_capacity
3258 || !sum_nr_running)
3259 goto group_next;
3262 * Calculate the group which has the least non-idle load.
3263 * This is the group from where we need to pick up the load
3264 * for saving power
3266 if ((sum_nr_running < min_nr_running) ||
3267 (sum_nr_running == min_nr_running &&
3268 cpumask_first(sched_group_cpus(group)) >
3269 cpumask_first(sched_group_cpus(group_min)))) {
3270 group_min = group;
3271 min_nr_running = sum_nr_running;
3272 min_load_per_task = sum_weighted_load /
3273 sum_nr_running;
3277 * Calculate the group which is almost near its
3278 * capacity but still has some space to pick up some load
3279 * from other group and save more power
3281 if (sum_nr_running <= group_capacity - 1) {
3282 if (sum_nr_running > leader_nr_running ||
3283 (sum_nr_running == leader_nr_running &&
3284 cpumask_first(sched_group_cpus(group)) <
3285 cpumask_first(sched_group_cpus(group_leader)))) {
3286 group_leader = group;
3287 leader_nr_running = sum_nr_running;
3290 group_next:
3291 #endif
3292 group = group->next;
3293 } while (group != sd->groups);
3295 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3296 goto out_balanced;
3298 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3300 if (this_load >= avg_load ||
3301 100*max_load <= sd->imbalance_pct*this_load)
3302 goto out_balanced;
3304 busiest_load_per_task /= busiest_nr_running;
3305 if (group_imb)
3306 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3309 * We're trying to get all the cpus to the average_load, so we don't
3310 * want to push ourselves above the average load, nor do we wish to
3311 * reduce the max loaded cpu below the average load, as either of these
3312 * actions would just result in more rebalancing later, and ping-pong
3313 * tasks around. Thus we look for the minimum possible imbalance.
3314 * Negative imbalances (*we* are more loaded than anyone else) will
3315 * be counted as no imbalance for these purposes -- we can't fix that
3316 * by pulling tasks to us. Be careful of negative numbers as they'll
3317 * appear as very large values with unsigned longs.
3319 if (max_load <= busiest_load_per_task)
3320 goto out_balanced;
3323 * In the presence of smp nice balancing, certain scenarios can have
3324 * max load less than avg load(as we skip the groups at or below
3325 * its cpu_power, while calculating max_load..)
3327 if (max_load < avg_load) {
3328 *imbalance = 0;
3329 goto small_imbalance;
3332 /* Don't want to pull so many tasks that a group would go idle */
3333 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3335 /* How much load to actually move to equalise the imbalance */
3336 *imbalance = min(max_pull * busiest->__cpu_power,
3337 (avg_load - this_load) * this->__cpu_power)
3338 / SCHED_LOAD_SCALE;
3341 * if *imbalance is less than the average load per runnable task
3342 * there is no gaurantee that any tasks will be moved so we'll have
3343 * a think about bumping its value to force at least one task to be
3344 * moved
3346 if (*imbalance < busiest_load_per_task) {
3347 unsigned long tmp, pwr_now, pwr_move;
3348 unsigned int imbn;
3350 small_imbalance:
3351 pwr_move = pwr_now = 0;
3352 imbn = 2;
3353 if (this_nr_running) {
3354 this_load_per_task /= this_nr_running;
3355 if (busiest_load_per_task > this_load_per_task)
3356 imbn = 1;
3357 } else
3358 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3360 if (max_load - this_load + busiest_load_per_task >=
3361 busiest_load_per_task * imbn) {
3362 *imbalance = busiest_load_per_task;
3363 return busiest;
3367 * OK, we don't have enough imbalance to justify moving tasks,
3368 * however we may be able to increase total CPU power used by
3369 * moving them.
3372 pwr_now += busiest->__cpu_power *
3373 min(busiest_load_per_task, max_load);
3374 pwr_now += this->__cpu_power *
3375 min(this_load_per_task, this_load);
3376 pwr_now /= SCHED_LOAD_SCALE;
3378 /* Amount of load we'd subtract */
3379 tmp = sg_div_cpu_power(busiest,
3380 busiest_load_per_task * SCHED_LOAD_SCALE);
3381 if (max_load > tmp)
3382 pwr_move += busiest->__cpu_power *
3383 min(busiest_load_per_task, max_load - tmp);
3385 /* Amount of load we'd add */
3386 if (max_load * busiest->__cpu_power <
3387 busiest_load_per_task * SCHED_LOAD_SCALE)
3388 tmp = sg_div_cpu_power(this,
3389 max_load * busiest->__cpu_power);
3390 else
3391 tmp = sg_div_cpu_power(this,
3392 busiest_load_per_task * SCHED_LOAD_SCALE);
3393 pwr_move += this->__cpu_power *
3394 min(this_load_per_task, this_load + tmp);
3395 pwr_move /= SCHED_LOAD_SCALE;
3397 /* Move if we gain throughput */
3398 if (pwr_move > pwr_now)
3399 *imbalance = busiest_load_per_task;
3402 return busiest;
3404 out_balanced:
3405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3406 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3407 goto ret;
3409 if (this == group_leader && group_leader != group_min) {
3410 *imbalance = min_load_per_task;
3411 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3412 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3413 cpumask_first(sched_group_cpus(group_leader));
3415 return group_min;
3417 #endif
3418 ret:
3419 *imbalance = 0;
3420 return NULL;
3424 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3426 static struct rq *
3427 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3428 unsigned long imbalance, const struct cpumask *cpus)
3430 struct rq *busiest = NULL, *rq;
3431 unsigned long max_load = 0;
3432 int i;
3434 for_each_cpu(i, sched_group_cpus(group)) {
3435 unsigned long wl;
3437 if (!cpumask_test_cpu(i, cpus))
3438 continue;
3440 rq = cpu_rq(i);
3441 wl = weighted_cpuload(i);
3443 if (rq->nr_running == 1 && wl > imbalance)
3444 continue;
3446 if (wl > max_load) {
3447 max_load = wl;
3448 busiest = rq;
3452 return busiest;
3456 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3457 * so long as it is large enough.
3459 #define MAX_PINNED_INTERVAL 512
3462 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3463 * tasks if there is an imbalance.
3465 static int load_balance(int this_cpu, struct rq *this_rq,
3466 struct sched_domain *sd, enum cpu_idle_type idle,
3467 int *balance, struct cpumask *cpus)
3469 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3470 struct sched_group *group;
3471 unsigned long imbalance;
3472 struct rq *busiest;
3473 unsigned long flags;
3475 cpumask_setall(cpus);
3478 * When power savings policy is enabled for the parent domain, idle
3479 * sibling can pick up load irrespective of busy siblings. In this case,
3480 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3481 * portraying it as CPU_NOT_IDLE.
3483 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3484 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3485 sd_idle = 1;
3487 schedstat_inc(sd, lb_count[idle]);
3489 redo:
3490 update_shares(sd);
3491 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3492 cpus, balance);
3494 if (*balance == 0)
3495 goto out_balanced;
3497 if (!group) {
3498 schedstat_inc(sd, lb_nobusyg[idle]);
3499 goto out_balanced;
3502 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3503 if (!busiest) {
3504 schedstat_inc(sd, lb_nobusyq[idle]);
3505 goto out_balanced;
3508 BUG_ON(busiest == this_rq);
3510 schedstat_add(sd, lb_imbalance[idle], imbalance);
3512 ld_moved = 0;
3513 if (busiest->nr_running > 1) {
3515 * Attempt to move tasks. If find_busiest_group has found
3516 * an imbalance but busiest->nr_running <= 1, the group is
3517 * still unbalanced. ld_moved simply stays zero, so it is
3518 * correctly treated as an imbalance.
3520 local_irq_save(flags);
3521 double_rq_lock(this_rq, busiest);
3522 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3523 imbalance, sd, idle, &all_pinned);
3524 double_rq_unlock(this_rq, busiest);
3525 local_irq_restore(flags);
3528 * some other cpu did the load balance for us.
3530 if (ld_moved && this_cpu != smp_processor_id())
3531 resched_cpu(this_cpu);
3533 /* All tasks on this runqueue were pinned by CPU affinity */
3534 if (unlikely(all_pinned)) {
3535 cpumask_clear_cpu(cpu_of(busiest), cpus);
3536 if (!cpumask_empty(cpus))
3537 goto redo;
3538 goto out_balanced;
3542 if (!ld_moved) {
3543 schedstat_inc(sd, lb_failed[idle]);
3544 sd->nr_balance_failed++;
3546 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3548 spin_lock_irqsave(&busiest->lock, flags);
3550 /* don't kick the migration_thread, if the curr
3551 * task on busiest cpu can't be moved to this_cpu
3553 if (!cpumask_test_cpu(this_cpu,
3554 &busiest->curr->cpus_allowed)) {
3555 spin_unlock_irqrestore(&busiest->lock, flags);
3556 all_pinned = 1;
3557 goto out_one_pinned;
3560 if (!busiest->active_balance) {
3561 busiest->active_balance = 1;
3562 busiest->push_cpu = this_cpu;
3563 active_balance = 1;
3565 spin_unlock_irqrestore(&busiest->lock, flags);
3566 if (active_balance)
3567 wake_up_process(busiest->migration_thread);
3570 * We've kicked active balancing, reset the failure
3571 * counter.
3573 sd->nr_balance_failed = sd->cache_nice_tries+1;
3575 } else
3576 sd->nr_balance_failed = 0;
3578 if (likely(!active_balance)) {
3579 /* We were unbalanced, so reset the balancing interval */
3580 sd->balance_interval = sd->min_interval;
3581 } else {
3583 * If we've begun active balancing, start to back off. This
3584 * case may not be covered by the all_pinned logic if there
3585 * is only 1 task on the busy runqueue (because we don't call
3586 * move_tasks).
3588 if (sd->balance_interval < sd->max_interval)
3589 sd->balance_interval *= 2;
3592 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3594 ld_moved = -1;
3596 goto out;
3598 out_balanced:
3599 schedstat_inc(sd, lb_balanced[idle]);
3601 sd->nr_balance_failed = 0;
3603 out_one_pinned:
3604 /* tune up the balancing interval */
3605 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3606 (sd->balance_interval < sd->max_interval))
3607 sd->balance_interval *= 2;
3609 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3611 ld_moved = -1;
3612 else
3613 ld_moved = 0;
3614 out:
3615 if (ld_moved)
3616 update_shares(sd);
3617 return ld_moved;
3621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3622 * tasks if there is an imbalance.
3624 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3625 * this_rq is locked.
3627 static int
3628 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3629 struct cpumask *cpus)
3631 struct sched_group *group;
3632 struct rq *busiest = NULL;
3633 unsigned long imbalance;
3634 int ld_moved = 0;
3635 int sd_idle = 0;
3636 int all_pinned = 0;
3638 cpumask_setall(cpus);
3641 * When power savings policy is enabled for the parent domain, idle
3642 * sibling can pick up load irrespective of busy siblings. In this case,
3643 * let the state of idle sibling percolate up as IDLE, instead of
3644 * portraying it as CPU_NOT_IDLE.
3646 if (sd->flags & SD_SHARE_CPUPOWER &&
3647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3648 sd_idle = 1;
3650 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3651 redo:
3652 update_shares_locked(this_rq, sd);
3653 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3654 &sd_idle, cpus, NULL);
3655 if (!group) {
3656 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3657 goto out_balanced;
3660 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3661 if (!busiest) {
3662 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3663 goto out_balanced;
3666 BUG_ON(busiest == this_rq);
3668 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3670 ld_moved = 0;
3671 if (busiest->nr_running > 1) {
3672 /* Attempt to move tasks */
3673 double_lock_balance(this_rq, busiest);
3674 /* this_rq->clock is already updated */
3675 update_rq_clock(busiest);
3676 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3677 imbalance, sd, CPU_NEWLY_IDLE,
3678 &all_pinned);
3679 double_unlock_balance(this_rq, busiest);
3681 if (unlikely(all_pinned)) {
3682 cpumask_clear_cpu(cpu_of(busiest), cpus);
3683 if (!cpumask_empty(cpus))
3684 goto redo;
3688 if (!ld_moved) {
3689 int active_balance = 0;
3691 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3692 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3694 return -1;
3696 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3697 return -1;
3699 if (sd->nr_balance_failed++ < 2)
3700 return -1;
3703 * The only task running in a non-idle cpu can be moved to this
3704 * cpu in an attempt to completely freeup the other CPU
3705 * package. The same method used to move task in load_balance()
3706 * have been extended for load_balance_newidle() to speedup
3707 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3709 * The package power saving logic comes from
3710 * find_busiest_group(). If there are no imbalance, then
3711 * f_b_g() will return NULL. However when sched_mc={1,2} then
3712 * f_b_g() will select a group from which a running task may be
3713 * pulled to this cpu in order to make the other package idle.
3714 * If there is no opportunity to make a package idle and if
3715 * there are no imbalance, then f_b_g() will return NULL and no
3716 * action will be taken in load_balance_newidle().
3718 * Under normal task pull operation due to imbalance, there
3719 * will be more than one task in the source run queue and
3720 * move_tasks() will succeed. ld_moved will be true and this
3721 * active balance code will not be triggered.
3724 /* Lock busiest in correct order while this_rq is held */
3725 double_lock_balance(this_rq, busiest);
3728 * don't kick the migration_thread, if the curr
3729 * task on busiest cpu can't be moved to this_cpu
3731 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3732 double_unlock_balance(this_rq, busiest);
3733 all_pinned = 1;
3734 return ld_moved;
3737 if (!busiest->active_balance) {
3738 busiest->active_balance = 1;
3739 busiest->push_cpu = this_cpu;
3740 active_balance = 1;
3743 double_unlock_balance(this_rq, busiest);
3745 * Should not call ttwu while holding a rq->lock
3747 spin_unlock(&this_rq->lock);
3748 if (active_balance)
3749 wake_up_process(busiest->migration_thread);
3750 spin_lock(&this_rq->lock);
3752 } else
3753 sd->nr_balance_failed = 0;
3755 update_shares_locked(this_rq, sd);
3756 return ld_moved;
3758 out_balanced:
3759 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3760 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3762 return -1;
3763 sd->nr_balance_failed = 0;
3765 return 0;
3769 * idle_balance is called by schedule() if this_cpu is about to become
3770 * idle. Attempts to pull tasks from other CPUs.
3772 static void idle_balance(int this_cpu, struct rq *this_rq)
3774 struct sched_domain *sd;
3775 int pulled_task = 0;
3776 unsigned long next_balance = jiffies + HZ;
3777 cpumask_var_t tmpmask;
3779 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3780 return;
3782 for_each_domain(this_cpu, sd) {
3783 unsigned long interval;
3785 if (!(sd->flags & SD_LOAD_BALANCE))
3786 continue;
3788 if (sd->flags & SD_BALANCE_NEWIDLE)
3789 /* If we've pulled tasks over stop searching: */
3790 pulled_task = load_balance_newidle(this_cpu, this_rq,
3791 sd, tmpmask);
3793 interval = msecs_to_jiffies(sd->balance_interval);
3794 if (time_after(next_balance, sd->last_balance + interval))
3795 next_balance = sd->last_balance + interval;
3796 if (pulled_task)
3797 break;
3799 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3801 * We are going idle. next_balance may be set based on
3802 * a busy processor. So reset next_balance.
3804 this_rq->next_balance = next_balance;
3806 free_cpumask_var(tmpmask);
3810 * active_load_balance is run by migration threads. It pushes running tasks
3811 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3812 * running on each physical CPU where possible, and avoids physical /
3813 * logical imbalances.
3815 * Called with busiest_rq locked.
3817 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3819 int target_cpu = busiest_rq->push_cpu;
3820 struct sched_domain *sd;
3821 struct rq *target_rq;
3823 /* Is there any task to move? */
3824 if (busiest_rq->nr_running <= 1)
3825 return;
3827 target_rq = cpu_rq(target_cpu);
3830 * This condition is "impossible", if it occurs
3831 * we need to fix it. Originally reported by
3832 * Bjorn Helgaas on a 128-cpu setup.
3834 BUG_ON(busiest_rq == target_rq);
3836 /* move a task from busiest_rq to target_rq */
3837 double_lock_balance(busiest_rq, target_rq);
3838 update_rq_clock(busiest_rq);
3839 update_rq_clock(target_rq);
3841 /* Search for an sd spanning us and the target CPU. */
3842 for_each_domain(target_cpu, sd) {
3843 if ((sd->flags & SD_LOAD_BALANCE) &&
3844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3845 break;
3848 if (likely(sd)) {
3849 schedstat_inc(sd, alb_count);
3851 if (move_one_task(target_rq, target_cpu, busiest_rq,
3852 sd, CPU_IDLE))
3853 schedstat_inc(sd, alb_pushed);
3854 else
3855 schedstat_inc(sd, alb_failed);
3857 double_unlock_balance(busiest_rq, target_rq);
3860 #ifdef CONFIG_NO_HZ
3861 static struct {
3862 atomic_t load_balancer;
3863 cpumask_var_t cpu_mask;
3864 } nohz ____cacheline_aligned = {
3865 .load_balancer = ATOMIC_INIT(-1),
3869 * This routine will try to nominate the ilb (idle load balancing)
3870 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3871 * load balancing on behalf of all those cpus. If all the cpus in the system
3872 * go into this tickless mode, then there will be no ilb owner (as there is
3873 * no need for one) and all the cpus will sleep till the next wakeup event
3874 * arrives...
3876 * For the ilb owner, tick is not stopped. And this tick will be used
3877 * for idle load balancing. ilb owner will still be part of
3878 * nohz.cpu_mask..
3880 * While stopping the tick, this cpu will become the ilb owner if there
3881 * is no other owner. And will be the owner till that cpu becomes busy
3882 * or if all cpus in the system stop their ticks at which point
3883 * there is no need for ilb owner.
3885 * When the ilb owner becomes busy, it nominates another owner, during the
3886 * next busy scheduler_tick()
3888 int select_nohz_load_balancer(int stop_tick)
3890 int cpu = smp_processor_id();
3892 if (stop_tick) {
3893 cpumask_set_cpu(cpu, nohz.cpu_mask);
3894 cpu_rq(cpu)->in_nohz_recently = 1;
3897 * If we are going offline and still the leader, give up!
3899 if (!cpu_active(cpu) &&
3900 atomic_read(&nohz.load_balancer) == cpu) {
3901 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3902 BUG();
3903 return 0;
3906 /* time for ilb owner also to sleep */
3907 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3908 if (atomic_read(&nohz.load_balancer) == cpu)
3909 atomic_set(&nohz.load_balancer, -1);
3910 return 0;
3913 if (atomic_read(&nohz.load_balancer) == -1) {
3914 /* make me the ilb owner */
3915 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3916 return 1;
3917 } else if (atomic_read(&nohz.load_balancer) == cpu)
3918 return 1;
3919 } else {
3920 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3921 return 0;
3923 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3925 if (atomic_read(&nohz.load_balancer) == cpu)
3926 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3927 BUG();
3929 return 0;
3931 #endif
3933 static DEFINE_SPINLOCK(balancing);
3936 * It checks each scheduling domain to see if it is due to be balanced,
3937 * and initiates a balancing operation if so.
3939 * Balancing parameters are set up in arch_init_sched_domains.
3941 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3943 int balance = 1;
3944 struct rq *rq = cpu_rq(cpu);
3945 unsigned long interval;
3946 struct sched_domain *sd;
3947 /* Earliest time when we have to do rebalance again */
3948 unsigned long next_balance = jiffies + 60*HZ;
3949 int update_next_balance = 0;
3950 int need_serialize;
3951 cpumask_var_t tmp;
3953 /* Fails alloc? Rebalancing probably not a priority right now. */
3954 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3955 return;
3957 for_each_domain(cpu, sd) {
3958 if (!(sd->flags & SD_LOAD_BALANCE))
3959 continue;
3961 interval = sd->balance_interval;
3962 if (idle != CPU_IDLE)
3963 interval *= sd->busy_factor;
3965 /* scale ms to jiffies */
3966 interval = msecs_to_jiffies(interval);
3967 if (unlikely(!interval))
3968 interval = 1;
3969 if (interval > HZ*NR_CPUS/10)
3970 interval = HZ*NR_CPUS/10;
3972 need_serialize = sd->flags & SD_SERIALIZE;
3974 if (need_serialize) {
3975 if (!spin_trylock(&balancing))
3976 goto out;
3979 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3980 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3982 * We've pulled tasks over so either we're no
3983 * longer idle, or one of our SMT siblings is
3984 * not idle.
3986 idle = CPU_NOT_IDLE;
3988 sd->last_balance = jiffies;
3990 if (need_serialize)
3991 spin_unlock(&balancing);
3992 out:
3993 if (time_after(next_balance, sd->last_balance + interval)) {
3994 next_balance = sd->last_balance + interval;
3995 update_next_balance = 1;
3999 * Stop the load balance at this level. There is another
4000 * CPU in our sched group which is doing load balancing more
4001 * actively.
4003 if (!balance)
4004 break;
4008 * next_balance will be updated only when there is a need.
4009 * When the cpu is attached to null domain for ex, it will not be
4010 * updated.
4012 if (likely(update_next_balance))
4013 rq->next_balance = next_balance;
4015 free_cpumask_var(tmp);
4019 * run_rebalance_domains is triggered when needed from the scheduler tick.
4020 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4021 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4023 static void run_rebalance_domains(struct softirq_action *h)
4025 int this_cpu = smp_processor_id();
4026 struct rq *this_rq = cpu_rq(this_cpu);
4027 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4028 CPU_IDLE : CPU_NOT_IDLE;
4030 rebalance_domains(this_cpu, idle);
4032 #ifdef CONFIG_NO_HZ
4034 * If this cpu is the owner for idle load balancing, then do the
4035 * balancing on behalf of the other idle cpus whose ticks are
4036 * stopped.
4038 if (this_rq->idle_at_tick &&
4039 atomic_read(&nohz.load_balancer) == this_cpu) {
4040 struct rq *rq;
4041 int balance_cpu;
4043 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4044 if (balance_cpu == this_cpu)
4045 continue;
4048 * If this cpu gets work to do, stop the load balancing
4049 * work being done for other cpus. Next load
4050 * balancing owner will pick it up.
4052 if (need_resched())
4053 break;
4055 rebalance_domains(balance_cpu, CPU_IDLE);
4057 rq = cpu_rq(balance_cpu);
4058 if (time_after(this_rq->next_balance, rq->next_balance))
4059 this_rq->next_balance = rq->next_balance;
4062 #endif
4066 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4068 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4069 * idle load balancing owner or decide to stop the periodic load balancing,
4070 * if the whole system is idle.
4072 static inline void trigger_load_balance(struct rq *rq, int cpu)
4074 #ifdef CONFIG_NO_HZ
4076 * If we were in the nohz mode recently and busy at the current
4077 * scheduler tick, then check if we need to nominate new idle
4078 * load balancer.
4080 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4081 rq->in_nohz_recently = 0;
4083 if (atomic_read(&nohz.load_balancer) == cpu) {
4084 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4085 atomic_set(&nohz.load_balancer, -1);
4088 if (atomic_read(&nohz.load_balancer) == -1) {
4090 * simple selection for now: Nominate the
4091 * first cpu in the nohz list to be the next
4092 * ilb owner.
4094 * TBD: Traverse the sched domains and nominate
4095 * the nearest cpu in the nohz.cpu_mask.
4097 int ilb = cpumask_first(nohz.cpu_mask);
4099 if (ilb < nr_cpu_ids)
4100 resched_cpu(ilb);
4105 * If this cpu is idle and doing idle load balancing for all the
4106 * cpus with ticks stopped, is it time for that to stop?
4108 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4109 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4110 resched_cpu(cpu);
4111 return;
4115 * If this cpu is idle and the idle load balancing is done by
4116 * someone else, then no need raise the SCHED_SOFTIRQ
4118 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4119 cpumask_test_cpu(cpu, nohz.cpu_mask))
4120 return;
4121 #endif
4122 if (time_after_eq(jiffies, rq->next_balance))
4123 raise_softirq(SCHED_SOFTIRQ);
4126 #else /* CONFIG_SMP */
4129 * on UP we do not need to balance between CPUs:
4131 static inline void idle_balance(int cpu, struct rq *rq)
4135 #endif
4137 DEFINE_PER_CPU(struct kernel_stat, kstat);
4139 EXPORT_PER_CPU_SYMBOL(kstat);
4142 * Return any ns on the sched_clock that have not yet been banked in
4143 * @p in case that task is currently running.
4145 unsigned long long task_delta_exec(struct task_struct *p)
4147 unsigned long flags;
4148 struct rq *rq;
4149 u64 ns = 0;
4151 rq = task_rq_lock(p, &flags);
4153 if (task_current(rq, p)) {
4154 u64 delta_exec;
4156 update_rq_clock(rq);
4157 delta_exec = rq->clock - p->se.exec_start;
4158 if ((s64)delta_exec > 0)
4159 ns = delta_exec;
4162 task_rq_unlock(rq, &flags);
4164 return ns;
4168 * Account user cpu time to a process.
4169 * @p: the process that the cpu time gets accounted to
4170 * @cputime: the cpu time spent in user space since the last update
4171 * @cputime_scaled: cputime scaled by cpu frequency
4173 void account_user_time(struct task_struct *p, cputime_t cputime,
4174 cputime_t cputime_scaled)
4176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4177 cputime64_t tmp;
4179 /* Add user time to process. */
4180 p->utime = cputime_add(p->utime, cputime);
4181 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4182 account_group_user_time(p, cputime);
4184 /* Add user time to cpustat. */
4185 tmp = cputime_to_cputime64(cputime);
4186 if (TASK_NICE(p) > 0)
4187 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4188 else
4189 cpustat->user = cputime64_add(cpustat->user, tmp);
4190 /* Account for user time used */
4191 acct_update_integrals(p);
4195 * Account guest cpu time to a process.
4196 * @p: the process that the cpu time gets accounted to
4197 * @cputime: the cpu time spent in virtual machine since the last update
4198 * @cputime_scaled: cputime scaled by cpu frequency
4200 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4201 cputime_t cputime_scaled)
4203 cputime64_t tmp;
4204 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4206 tmp = cputime_to_cputime64(cputime);
4208 /* Add guest time to process. */
4209 p->utime = cputime_add(p->utime, cputime);
4210 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4211 account_group_user_time(p, cputime);
4212 p->gtime = cputime_add(p->gtime, cputime);
4214 /* Add guest time to cpustat. */
4215 cpustat->user = cputime64_add(cpustat->user, tmp);
4216 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4220 * Account system cpu time to a process.
4221 * @p: the process that the cpu time gets accounted to
4222 * @hardirq_offset: the offset to subtract from hardirq_count()
4223 * @cputime: the cpu time spent in kernel space since the last update
4224 * @cputime_scaled: cputime scaled by cpu frequency
4226 void account_system_time(struct task_struct *p, int hardirq_offset,
4227 cputime_t cputime, cputime_t cputime_scaled)
4229 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4230 cputime64_t tmp;
4232 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4233 account_guest_time(p, cputime, cputime_scaled);
4234 return;
4237 /* Add system time to process. */
4238 p->stime = cputime_add(p->stime, cputime);
4239 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4240 account_group_system_time(p, cputime);
4242 /* Add system time to cpustat. */
4243 tmp = cputime_to_cputime64(cputime);
4244 if (hardirq_count() - hardirq_offset)
4245 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4246 else if (softirq_count())
4247 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4248 else
4249 cpustat->system = cputime64_add(cpustat->system, tmp);
4251 /* Account for system time used */
4252 acct_update_integrals(p);
4256 * Account for involuntary wait time.
4257 * @steal: the cpu time spent in involuntary wait
4259 void account_steal_time(cputime_t cputime)
4261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4262 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4264 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4268 * Account for idle time.
4269 * @cputime: the cpu time spent in idle wait
4271 void account_idle_time(cputime_t cputime)
4273 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4274 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4275 struct rq *rq = this_rq();
4277 if (atomic_read(&rq->nr_iowait) > 0)
4278 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4279 else
4280 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4283 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4286 * Account a single tick of cpu time.
4287 * @p: the process that the cpu time gets accounted to
4288 * @user_tick: indicates if the tick is a user or a system tick
4290 void account_process_tick(struct task_struct *p, int user_tick)
4292 cputime_t one_jiffy = jiffies_to_cputime(1);
4293 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4294 struct rq *rq = this_rq();
4296 if (user_tick)
4297 account_user_time(p, one_jiffy, one_jiffy_scaled);
4298 else if (p != rq->idle)
4299 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4300 one_jiffy_scaled);
4301 else
4302 account_idle_time(one_jiffy);
4306 * Account multiple ticks of steal time.
4307 * @p: the process from which the cpu time has been stolen
4308 * @ticks: number of stolen ticks
4310 void account_steal_ticks(unsigned long ticks)
4312 account_steal_time(jiffies_to_cputime(ticks));
4316 * Account multiple ticks of idle time.
4317 * @ticks: number of stolen ticks
4319 void account_idle_ticks(unsigned long ticks)
4321 account_idle_time(jiffies_to_cputime(ticks));
4324 #endif
4327 * Use precise platform statistics if available:
4329 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4330 cputime_t task_utime(struct task_struct *p)
4332 return p->utime;
4335 cputime_t task_stime(struct task_struct *p)
4337 return p->stime;
4339 #else
4340 cputime_t task_utime(struct task_struct *p)
4342 clock_t utime = cputime_to_clock_t(p->utime),
4343 total = utime + cputime_to_clock_t(p->stime);
4344 u64 temp;
4347 * Use CFS's precise accounting:
4349 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4351 if (total) {
4352 temp *= utime;
4353 do_div(temp, total);
4355 utime = (clock_t)temp;
4357 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4358 return p->prev_utime;
4361 cputime_t task_stime(struct task_struct *p)
4363 clock_t stime;
4366 * Use CFS's precise accounting. (we subtract utime from
4367 * the total, to make sure the total observed by userspace
4368 * grows monotonically - apps rely on that):
4370 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4371 cputime_to_clock_t(task_utime(p));
4373 if (stime >= 0)
4374 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4376 return p->prev_stime;
4378 #endif
4380 inline cputime_t task_gtime(struct task_struct *p)
4382 return p->gtime;
4386 * This function gets called by the timer code, with HZ frequency.
4387 * We call it with interrupts disabled.
4389 * It also gets called by the fork code, when changing the parent's
4390 * timeslices.
4392 void scheduler_tick(void)
4394 int cpu = smp_processor_id();
4395 struct rq *rq = cpu_rq(cpu);
4396 struct task_struct *curr = rq->curr;
4398 sched_clock_tick();
4400 spin_lock(&rq->lock);
4401 update_rq_clock(rq);
4402 update_cpu_load(rq);
4403 curr->sched_class->task_tick(rq, curr, 0);
4404 spin_unlock(&rq->lock);
4406 #ifdef CONFIG_SMP
4407 rq->idle_at_tick = idle_cpu(cpu);
4408 trigger_load_balance(rq, cpu);
4409 #endif
4412 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4413 defined(CONFIG_PREEMPT_TRACER))
4415 static inline unsigned long get_parent_ip(unsigned long addr)
4417 if (in_lock_functions(addr)) {
4418 addr = CALLER_ADDR2;
4419 if (in_lock_functions(addr))
4420 addr = CALLER_ADDR3;
4422 return addr;
4425 void __kprobes add_preempt_count(int val)
4427 #ifdef CONFIG_DEBUG_PREEMPT
4429 * Underflow?
4431 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4432 return;
4433 #endif
4434 preempt_count() += val;
4435 #ifdef CONFIG_DEBUG_PREEMPT
4437 * Spinlock count overflowing soon?
4439 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4440 PREEMPT_MASK - 10);
4441 #endif
4442 if (preempt_count() == val)
4443 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4445 EXPORT_SYMBOL(add_preempt_count);
4447 void __kprobes sub_preempt_count(int val)
4449 #ifdef CONFIG_DEBUG_PREEMPT
4451 * Underflow?
4453 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4454 return;
4456 * Is the spinlock portion underflowing?
4458 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4459 !(preempt_count() & PREEMPT_MASK)))
4460 return;
4461 #endif
4463 if (preempt_count() == val)
4464 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4465 preempt_count() -= val;
4467 EXPORT_SYMBOL(sub_preempt_count);
4469 #endif
4472 * Print scheduling while atomic bug:
4474 static noinline void __schedule_bug(struct task_struct *prev)
4476 struct pt_regs *regs = get_irq_regs();
4478 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4479 prev->comm, prev->pid, preempt_count());
4481 debug_show_held_locks(prev);
4482 print_modules();
4483 if (irqs_disabled())
4484 print_irqtrace_events(prev);
4486 if (regs)
4487 show_regs(regs);
4488 else
4489 dump_stack();
4493 * Various schedule()-time debugging checks and statistics:
4495 static inline void schedule_debug(struct task_struct *prev)
4498 * Test if we are atomic. Since do_exit() needs to call into
4499 * schedule() atomically, we ignore that path for now.
4500 * Otherwise, whine if we are scheduling when we should not be.
4502 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4503 __schedule_bug(prev);
4505 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4507 schedstat_inc(this_rq(), sched_count);
4508 #ifdef CONFIG_SCHEDSTATS
4509 if (unlikely(prev->lock_depth >= 0)) {
4510 schedstat_inc(this_rq(), bkl_count);
4511 schedstat_inc(prev, sched_info.bkl_count);
4513 #endif
4517 * Pick up the highest-prio task:
4519 static inline struct task_struct *
4520 pick_next_task(struct rq *rq, struct task_struct *prev)
4522 const struct sched_class *class;
4523 struct task_struct *p;
4526 * Optimization: we know that if all tasks are in
4527 * the fair class we can call that function directly:
4529 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4530 p = fair_sched_class.pick_next_task(rq);
4531 if (likely(p))
4532 return p;
4535 class = sched_class_highest;
4536 for ( ; ; ) {
4537 p = class->pick_next_task(rq);
4538 if (p)
4539 return p;
4541 * Will never be NULL as the idle class always
4542 * returns a non-NULL p:
4544 class = class->next;
4549 * schedule() is the main scheduler function.
4551 asmlinkage void __sched schedule(void)
4553 struct task_struct *prev, *next;
4554 unsigned long *switch_count;
4555 struct rq *rq;
4556 int cpu;
4558 need_resched:
4559 preempt_disable();
4560 cpu = smp_processor_id();
4561 rq = cpu_rq(cpu);
4562 rcu_qsctr_inc(cpu);
4563 prev = rq->curr;
4564 switch_count = &prev->nivcsw;
4566 release_kernel_lock(prev);
4567 need_resched_nonpreemptible:
4569 schedule_debug(prev);
4571 if (sched_feat(HRTICK))
4572 hrtick_clear(rq);
4574 spin_lock_irq(&rq->lock);
4575 update_rq_clock(rq);
4576 clear_tsk_need_resched(prev);
4578 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4579 if (unlikely(signal_pending_state(prev->state, prev)))
4580 prev->state = TASK_RUNNING;
4581 else
4582 deactivate_task(rq, prev, 1);
4583 switch_count = &prev->nvcsw;
4586 #ifdef CONFIG_SMP
4587 if (prev->sched_class->pre_schedule)
4588 prev->sched_class->pre_schedule(rq, prev);
4589 #endif
4591 if (unlikely(!rq->nr_running))
4592 idle_balance(cpu, rq);
4594 prev->sched_class->put_prev_task(rq, prev);
4595 next = pick_next_task(rq, prev);
4597 if (likely(prev != next)) {
4598 sched_info_switch(prev, next);
4600 rq->nr_switches++;
4601 rq->curr = next;
4602 ++*switch_count;
4604 context_switch(rq, prev, next); /* unlocks the rq */
4606 * the context switch might have flipped the stack from under
4607 * us, hence refresh the local variables.
4609 cpu = smp_processor_id();
4610 rq = cpu_rq(cpu);
4611 } else
4612 spin_unlock_irq(&rq->lock);
4614 if (unlikely(reacquire_kernel_lock(current) < 0))
4615 goto need_resched_nonpreemptible;
4617 preempt_enable_no_resched();
4618 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4619 goto need_resched;
4621 EXPORT_SYMBOL(schedule);
4623 #ifdef CONFIG_PREEMPT
4625 * this is the entry point to schedule() from in-kernel preemption
4626 * off of preempt_enable. Kernel preemptions off return from interrupt
4627 * occur there and call schedule directly.
4629 asmlinkage void __sched preempt_schedule(void)
4631 struct thread_info *ti = current_thread_info();
4634 * If there is a non-zero preempt_count or interrupts are disabled,
4635 * we do not want to preempt the current task. Just return..
4637 if (likely(ti->preempt_count || irqs_disabled()))
4638 return;
4640 do {
4641 add_preempt_count(PREEMPT_ACTIVE);
4642 schedule();
4643 sub_preempt_count(PREEMPT_ACTIVE);
4646 * Check again in case we missed a preemption opportunity
4647 * between schedule and now.
4649 barrier();
4650 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4652 EXPORT_SYMBOL(preempt_schedule);
4655 * this is the entry point to schedule() from kernel preemption
4656 * off of irq context.
4657 * Note, that this is called and return with irqs disabled. This will
4658 * protect us against recursive calling from irq.
4660 asmlinkage void __sched preempt_schedule_irq(void)
4662 struct thread_info *ti = current_thread_info();
4664 /* Catch callers which need to be fixed */
4665 BUG_ON(ti->preempt_count || !irqs_disabled());
4667 do {
4668 add_preempt_count(PREEMPT_ACTIVE);
4669 local_irq_enable();
4670 schedule();
4671 local_irq_disable();
4672 sub_preempt_count(PREEMPT_ACTIVE);
4675 * Check again in case we missed a preemption opportunity
4676 * between schedule and now.
4678 barrier();
4679 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4682 #endif /* CONFIG_PREEMPT */
4684 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4685 void *key)
4687 return try_to_wake_up(curr->private, mode, sync);
4689 EXPORT_SYMBOL(default_wake_function);
4692 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4693 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4694 * number) then we wake all the non-exclusive tasks and one exclusive task.
4696 * There are circumstances in which we can try to wake a task which has already
4697 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4698 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4700 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4701 int nr_exclusive, int sync, void *key)
4703 wait_queue_t *curr, *next;
4705 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4706 unsigned flags = curr->flags;
4708 if (curr->func(curr, mode, sync, key) &&
4709 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4710 break;
4715 * __wake_up - wake up threads blocked on a waitqueue.
4716 * @q: the waitqueue
4717 * @mode: which threads
4718 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4719 * @key: is directly passed to the wakeup function
4721 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4722 int nr_exclusive, void *key)
4724 unsigned long flags;
4726 spin_lock_irqsave(&q->lock, flags);
4727 __wake_up_common(q, mode, nr_exclusive, 0, key);
4728 spin_unlock_irqrestore(&q->lock, flags);
4730 EXPORT_SYMBOL(__wake_up);
4733 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4735 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4737 __wake_up_common(q, mode, 1, 0, NULL);
4741 * __wake_up_sync - wake up threads blocked on a waitqueue.
4742 * @q: the waitqueue
4743 * @mode: which threads
4744 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4746 * The sync wakeup differs that the waker knows that it will schedule
4747 * away soon, so while the target thread will be woken up, it will not
4748 * be migrated to another CPU - ie. the two threads are 'synchronized'
4749 * with each other. This can prevent needless bouncing between CPUs.
4751 * On UP it can prevent extra preemption.
4753 void
4754 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4756 unsigned long flags;
4757 int sync = 1;
4759 if (unlikely(!q))
4760 return;
4762 if (unlikely(!nr_exclusive))
4763 sync = 0;
4765 spin_lock_irqsave(&q->lock, flags);
4766 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4767 spin_unlock_irqrestore(&q->lock, flags);
4769 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4772 * complete: - signals a single thread waiting on this completion
4773 * @x: holds the state of this particular completion
4775 * This will wake up a single thread waiting on this completion. Threads will be
4776 * awakened in the same order in which they were queued.
4778 * See also complete_all(), wait_for_completion() and related routines.
4780 void complete(struct completion *x)
4782 unsigned long flags;
4784 spin_lock_irqsave(&x->wait.lock, flags);
4785 x->done++;
4786 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4787 spin_unlock_irqrestore(&x->wait.lock, flags);
4789 EXPORT_SYMBOL(complete);
4792 * complete_all: - signals all threads waiting on this completion
4793 * @x: holds the state of this particular completion
4795 * This will wake up all threads waiting on this particular completion event.
4797 void complete_all(struct completion *x)
4799 unsigned long flags;
4801 spin_lock_irqsave(&x->wait.lock, flags);
4802 x->done += UINT_MAX/2;
4803 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4804 spin_unlock_irqrestore(&x->wait.lock, flags);
4806 EXPORT_SYMBOL(complete_all);
4808 static inline long __sched
4809 do_wait_for_common(struct completion *x, long timeout, int state)
4811 if (!x->done) {
4812 DECLARE_WAITQUEUE(wait, current);
4814 wait.flags |= WQ_FLAG_EXCLUSIVE;
4815 __add_wait_queue_tail(&x->wait, &wait);
4816 do {
4817 if (signal_pending_state(state, current)) {
4818 timeout = -ERESTARTSYS;
4819 break;
4821 __set_current_state(state);
4822 spin_unlock_irq(&x->wait.lock);
4823 timeout = schedule_timeout(timeout);
4824 spin_lock_irq(&x->wait.lock);
4825 } while (!x->done && timeout);
4826 __remove_wait_queue(&x->wait, &wait);
4827 if (!x->done)
4828 return timeout;
4830 x->done--;
4831 return timeout ?: 1;
4834 static long __sched
4835 wait_for_common(struct completion *x, long timeout, int state)
4837 might_sleep();
4839 spin_lock_irq(&x->wait.lock);
4840 timeout = do_wait_for_common(x, timeout, state);
4841 spin_unlock_irq(&x->wait.lock);
4842 return timeout;
4846 * wait_for_completion: - waits for completion of a task
4847 * @x: holds the state of this particular completion
4849 * This waits to be signaled for completion of a specific task. It is NOT
4850 * interruptible and there is no timeout.
4852 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4853 * and interrupt capability. Also see complete().
4855 void __sched wait_for_completion(struct completion *x)
4857 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4859 EXPORT_SYMBOL(wait_for_completion);
4862 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4863 * @x: holds the state of this particular completion
4864 * @timeout: timeout value in jiffies
4866 * This waits for either a completion of a specific task to be signaled or for a
4867 * specified timeout to expire. The timeout is in jiffies. It is not
4868 * interruptible.
4870 unsigned long __sched
4871 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4873 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4875 EXPORT_SYMBOL(wait_for_completion_timeout);
4878 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4879 * @x: holds the state of this particular completion
4881 * This waits for completion of a specific task to be signaled. It is
4882 * interruptible.
4884 int __sched wait_for_completion_interruptible(struct completion *x)
4886 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4887 if (t == -ERESTARTSYS)
4888 return t;
4889 return 0;
4891 EXPORT_SYMBOL(wait_for_completion_interruptible);
4894 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4895 * @x: holds the state of this particular completion
4896 * @timeout: timeout value in jiffies
4898 * This waits for either a completion of a specific task to be signaled or for a
4899 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4901 unsigned long __sched
4902 wait_for_completion_interruptible_timeout(struct completion *x,
4903 unsigned long timeout)
4905 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4907 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4910 * wait_for_completion_killable: - waits for completion of a task (killable)
4911 * @x: holds the state of this particular completion
4913 * This waits to be signaled for completion of a specific task. It can be
4914 * interrupted by a kill signal.
4916 int __sched wait_for_completion_killable(struct completion *x)
4918 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4919 if (t == -ERESTARTSYS)
4920 return t;
4921 return 0;
4923 EXPORT_SYMBOL(wait_for_completion_killable);
4926 * try_wait_for_completion - try to decrement a completion without blocking
4927 * @x: completion structure
4929 * Returns: 0 if a decrement cannot be done without blocking
4930 * 1 if a decrement succeeded.
4932 * If a completion is being used as a counting completion,
4933 * attempt to decrement the counter without blocking. This
4934 * enables us to avoid waiting if the resource the completion
4935 * is protecting is not available.
4937 bool try_wait_for_completion(struct completion *x)
4939 int ret = 1;
4941 spin_lock_irq(&x->wait.lock);
4942 if (!x->done)
4943 ret = 0;
4944 else
4945 x->done--;
4946 spin_unlock_irq(&x->wait.lock);
4947 return ret;
4949 EXPORT_SYMBOL(try_wait_for_completion);
4952 * completion_done - Test to see if a completion has any waiters
4953 * @x: completion structure
4955 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4956 * 1 if there are no waiters.
4959 bool completion_done(struct completion *x)
4961 int ret = 1;
4963 spin_lock_irq(&x->wait.lock);
4964 if (!x->done)
4965 ret = 0;
4966 spin_unlock_irq(&x->wait.lock);
4967 return ret;
4969 EXPORT_SYMBOL(completion_done);
4971 static long __sched
4972 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4974 unsigned long flags;
4975 wait_queue_t wait;
4977 init_waitqueue_entry(&wait, current);
4979 __set_current_state(state);
4981 spin_lock_irqsave(&q->lock, flags);
4982 __add_wait_queue(q, &wait);
4983 spin_unlock(&q->lock);
4984 timeout = schedule_timeout(timeout);
4985 spin_lock_irq(&q->lock);
4986 __remove_wait_queue(q, &wait);
4987 spin_unlock_irqrestore(&q->lock, flags);
4989 return timeout;
4992 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4994 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4996 EXPORT_SYMBOL(interruptible_sleep_on);
4998 long __sched
4999 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5001 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5003 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5005 void __sched sleep_on(wait_queue_head_t *q)
5007 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5009 EXPORT_SYMBOL(sleep_on);
5011 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5013 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5015 EXPORT_SYMBOL(sleep_on_timeout);
5017 #ifdef CONFIG_RT_MUTEXES
5020 * rt_mutex_setprio - set the current priority of a task
5021 * @p: task
5022 * @prio: prio value (kernel-internal form)
5024 * This function changes the 'effective' priority of a task. It does
5025 * not touch ->normal_prio like __setscheduler().
5027 * Used by the rt_mutex code to implement priority inheritance logic.
5029 void rt_mutex_setprio(struct task_struct *p, int prio)
5031 unsigned long flags;
5032 int oldprio, on_rq, running;
5033 struct rq *rq;
5034 const struct sched_class *prev_class = p->sched_class;
5036 BUG_ON(prio < 0 || prio > MAX_PRIO);
5038 rq = task_rq_lock(p, &flags);
5039 update_rq_clock(rq);
5041 oldprio = p->prio;
5042 on_rq = p->se.on_rq;
5043 running = task_current(rq, p);
5044 if (on_rq)
5045 dequeue_task(rq, p, 0);
5046 if (running)
5047 p->sched_class->put_prev_task(rq, p);
5049 if (rt_prio(prio))
5050 p->sched_class = &rt_sched_class;
5051 else
5052 p->sched_class = &fair_sched_class;
5054 p->prio = prio;
5056 if (running)
5057 p->sched_class->set_curr_task(rq);
5058 if (on_rq) {
5059 enqueue_task(rq, p, 0);
5061 check_class_changed(rq, p, prev_class, oldprio, running);
5063 task_rq_unlock(rq, &flags);
5066 #endif
5068 void set_user_nice(struct task_struct *p, long nice)
5070 int old_prio, delta, on_rq;
5071 unsigned long flags;
5072 struct rq *rq;
5074 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5075 return;
5077 * We have to be careful, if called from sys_setpriority(),
5078 * the task might be in the middle of scheduling on another CPU.
5080 rq = task_rq_lock(p, &flags);
5081 update_rq_clock(rq);
5083 * The RT priorities are set via sched_setscheduler(), but we still
5084 * allow the 'normal' nice value to be set - but as expected
5085 * it wont have any effect on scheduling until the task is
5086 * SCHED_FIFO/SCHED_RR:
5088 if (task_has_rt_policy(p)) {
5089 p->static_prio = NICE_TO_PRIO(nice);
5090 goto out_unlock;
5092 on_rq = p->se.on_rq;
5093 if (on_rq)
5094 dequeue_task(rq, p, 0);
5096 p->static_prio = NICE_TO_PRIO(nice);
5097 set_load_weight(p);
5098 old_prio = p->prio;
5099 p->prio = effective_prio(p);
5100 delta = p->prio - old_prio;
5102 if (on_rq) {
5103 enqueue_task(rq, p, 0);
5105 * If the task increased its priority or is running and
5106 * lowered its priority, then reschedule its CPU:
5108 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5109 resched_task(rq->curr);
5111 out_unlock:
5112 task_rq_unlock(rq, &flags);
5114 EXPORT_SYMBOL(set_user_nice);
5117 * can_nice - check if a task can reduce its nice value
5118 * @p: task
5119 * @nice: nice value
5121 int can_nice(const struct task_struct *p, const int nice)
5123 /* convert nice value [19,-20] to rlimit style value [1,40] */
5124 int nice_rlim = 20 - nice;
5126 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5127 capable(CAP_SYS_NICE));
5130 #ifdef __ARCH_WANT_SYS_NICE
5133 * sys_nice - change the priority of the current process.
5134 * @increment: priority increment
5136 * sys_setpriority is a more generic, but much slower function that
5137 * does similar things.
5139 SYSCALL_DEFINE1(nice, int, increment)
5141 long nice, retval;
5144 * Setpriority might change our priority at the same moment.
5145 * We don't have to worry. Conceptually one call occurs first
5146 * and we have a single winner.
5148 if (increment < -40)
5149 increment = -40;
5150 if (increment > 40)
5151 increment = 40;
5153 nice = PRIO_TO_NICE(current->static_prio) + increment;
5154 if (nice < -20)
5155 nice = -20;
5156 if (nice > 19)
5157 nice = 19;
5159 if (increment < 0 && !can_nice(current, nice))
5160 return -EPERM;
5162 retval = security_task_setnice(current, nice);
5163 if (retval)
5164 return retval;
5166 set_user_nice(current, nice);
5167 return 0;
5170 #endif
5173 * task_prio - return the priority value of a given task.
5174 * @p: the task in question.
5176 * This is the priority value as seen by users in /proc.
5177 * RT tasks are offset by -200. Normal tasks are centered
5178 * around 0, value goes from -16 to +15.
5180 int task_prio(const struct task_struct *p)
5182 return p->prio - MAX_RT_PRIO;
5186 * task_nice - return the nice value of a given task.
5187 * @p: the task in question.
5189 int task_nice(const struct task_struct *p)
5191 return TASK_NICE(p);
5193 EXPORT_SYMBOL(task_nice);
5196 * idle_cpu - is a given cpu idle currently?
5197 * @cpu: the processor in question.
5199 int idle_cpu(int cpu)
5201 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5205 * idle_task - return the idle task for a given cpu.
5206 * @cpu: the processor in question.
5208 struct task_struct *idle_task(int cpu)
5210 return cpu_rq(cpu)->idle;
5214 * find_process_by_pid - find a process with a matching PID value.
5215 * @pid: the pid in question.
5217 static struct task_struct *find_process_by_pid(pid_t pid)
5219 return pid ? find_task_by_vpid(pid) : current;
5222 /* Actually do priority change: must hold rq lock. */
5223 static void
5224 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5226 BUG_ON(p->se.on_rq);
5228 p->policy = policy;
5229 switch (p->policy) {
5230 case SCHED_NORMAL:
5231 case SCHED_BATCH:
5232 case SCHED_IDLE:
5233 p->sched_class = &fair_sched_class;
5234 break;
5235 case SCHED_FIFO:
5236 case SCHED_RR:
5237 p->sched_class = &rt_sched_class;
5238 break;
5241 p->rt_priority = prio;
5242 p->normal_prio = normal_prio(p);
5243 /* we are holding p->pi_lock already */
5244 p->prio = rt_mutex_getprio(p);
5245 set_load_weight(p);
5249 * check the target process has a UID that matches the current process's
5251 static bool check_same_owner(struct task_struct *p)
5253 const struct cred *cred = current_cred(), *pcred;
5254 bool match;
5256 rcu_read_lock();
5257 pcred = __task_cred(p);
5258 match = (cred->euid == pcred->euid ||
5259 cred->euid == pcred->uid);
5260 rcu_read_unlock();
5261 return match;
5264 static int __sched_setscheduler(struct task_struct *p, int policy,
5265 struct sched_param *param, bool user)
5267 int retval, oldprio, oldpolicy = -1, on_rq, running;
5268 unsigned long flags;
5269 const struct sched_class *prev_class = p->sched_class;
5270 struct rq *rq;
5272 /* may grab non-irq protected spin_locks */
5273 BUG_ON(in_interrupt());
5274 recheck:
5275 /* double check policy once rq lock held */
5276 if (policy < 0)
5277 policy = oldpolicy = p->policy;
5278 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5279 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5280 policy != SCHED_IDLE)
5281 return -EINVAL;
5283 * Valid priorities for SCHED_FIFO and SCHED_RR are
5284 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5285 * SCHED_BATCH and SCHED_IDLE is 0.
5287 if (param->sched_priority < 0 ||
5288 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5289 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5290 return -EINVAL;
5291 if (rt_policy(policy) != (param->sched_priority != 0))
5292 return -EINVAL;
5295 * Allow unprivileged RT tasks to decrease priority:
5297 if (user && !capable(CAP_SYS_NICE)) {
5298 if (rt_policy(policy)) {
5299 unsigned long rlim_rtprio;
5301 if (!lock_task_sighand(p, &flags))
5302 return -ESRCH;
5303 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5304 unlock_task_sighand(p, &flags);
5306 /* can't set/change the rt policy */
5307 if (policy != p->policy && !rlim_rtprio)
5308 return -EPERM;
5310 /* can't increase priority */
5311 if (param->sched_priority > p->rt_priority &&
5312 param->sched_priority > rlim_rtprio)
5313 return -EPERM;
5316 * Like positive nice levels, dont allow tasks to
5317 * move out of SCHED_IDLE either:
5319 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5320 return -EPERM;
5322 /* can't change other user's priorities */
5323 if (!check_same_owner(p))
5324 return -EPERM;
5327 if (user) {
5328 #ifdef CONFIG_RT_GROUP_SCHED
5330 * Do not allow realtime tasks into groups that have no runtime
5331 * assigned.
5333 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5334 task_group(p)->rt_bandwidth.rt_runtime == 0)
5335 return -EPERM;
5336 #endif
5338 retval = security_task_setscheduler(p, policy, param);
5339 if (retval)
5340 return retval;
5344 * make sure no PI-waiters arrive (or leave) while we are
5345 * changing the priority of the task:
5347 spin_lock_irqsave(&p->pi_lock, flags);
5349 * To be able to change p->policy safely, the apropriate
5350 * runqueue lock must be held.
5352 rq = __task_rq_lock(p);
5353 /* recheck policy now with rq lock held */
5354 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5355 policy = oldpolicy = -1;
5356 __task_rq_unlock(rq);
5357 spin_unlock_irqrestore(&p->pi_lock, flags);
5358 goto recheck;
5360 update_rq_clock(rq);
5361 on_rq = p->se.on_rq;
5362 running = task_current(rq, p);
5363 if (on_rq)
5364 deactivate_task(rq, p, 0);
5365 if (running)
5366 p->sched_class->put_prev_task(rq, p);
5368 oldprio = p->prio;
5369 __setscheduler(rq, p, policy, param->sched_priority);
5371 if (running)
5372 p->sched_class->set_curr_task(rq);
5373 if (on_rq) {
5374 activate_task(rq, p, 0);
5376 check_class_changed(rq, p, prev_class, oldprio, running);
5378 __task_rq_unlock(rq);
5379 spin_unlock_irqrestore(&p->pi_lock, flags);
5381 rt_mutex_adjust_pi(p);
5383 return 0;
5387 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5388 * @p: the task in question.
5389 * @policy: new policy.
5390 * @param: structure containing the new RT priority.
5392 * NOTE that the task may be already dead.
5394 int sched_setscheduler(struct task_struct *p, int policy,
5395 struct sched_param *param)
5397 return __sched_setscheduler(p, policy, param, true);
5399 EXPORT_SYMBOL_GPL(sched_setscheduler);
5402 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5403 * @p: the task in question.
5404 * @policy: new policy.
5405 * @param: structure containing the new RT priority.
5407 * Just like sched_setscheduler, only don't bother checking if the
5408 * current context has permission. For example, this is needed in
5409 * stop_machine(): we create temporary high priority worker threads,
5410 * but our caller might not have that capability.
5412 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5413 struct sched_param *param)
5415 return __sched_setscheduler(p, policy, param, false);
5418 static int
5419 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5421 struct sched_param lparam;
5422 struct task_struct *p;
5423 int retval;
5425 if (!param || pid < 0)
5426 return -EINVAL;
5427 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5428 return -EFAULT;
5430 rcu_read_lock();
5431 retval = -ESRCH;
5432 p = find_process_by_pid(pid);
5433 if (p != NULL)
5434 retval = sched_setscheduler(p, policy, &lparam);
5435 rcu_read_unlock();
5437 return retval;
5441 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5442 * @pid: the pid in question.
5443 * @policy: new policy.
5444 * @param: structure containing the new RT priority.
5446 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5447 struct sched_param __user *, param)
5449 /* negative values for policy are not valid */
5450 if (policy < 0)
5451 return -EINVAL;
5453 return do_sched_setscheduler(pid, policy, param);
5457 * sys_sched_setparam - set/change the RT priority of a thread
5458 * @pid: the pid in question.
5459 * @param: structure containing the new RT priority.
5461 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5463 return do_sched_setscheduler(pid, -1, param);
5467 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5468 * @pid: the pid in question.
5470 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5472 struct task_struct *p;
5473 int retval;
5475 if (pid < 0)
5476 return -EINVAL;
5478 retval = -ESRCH;
5479 read_lock(&tasklist_lock);
5480 p = find_process_by_pid(pid);
5481 if (p) {
5482 retval = security_task_getscheduler(p);
5483 if (!retval)
5484 retval = p->policy;
5486 read_unlock(&tasklist_lock);
5487 return retval;
5491 * sys_sched_getscheduler - get the RT priority of a thread
5492 * @pid: the pid in question.
5493 * @param: structure containing the RT priority.
5495 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5497 struct sched_param lp;
5498 struct task_struct *p;
5499 int retval;
5501 if (!param || pid < 0)
5502 return -EINVAL;
5504 read_lock(&tasklist_lock);
5505 p = find_process_by_pid(pid);
5506 retval = -ESRCH;
5507 if (!p)
5508 goto out_unlock;
5510 retval = security_task_getscheduler(p);
5511 if (retval)
5512 goto out_unlock;
5514 lp.sched_priority = p->rt_priority;
5515 read_unlock(&tasklist_lock);
5518 * This one might sleep, we cannot do it with a spinlock held ...
5520 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5522 return retval;
5524 out_unlock:
5525 read_unlock(&tasklist_lock);
5526 return retval;
5529 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5531 cpumask_var_t cpus_allowed, new_mask;
5532 struct task_struct *p;
5533 int retval;
5535 get_online_cpus();
5536 read_lock(&tasklist_lock);
5538 p = find_process_by_pid(pid);
5539 if (!p) {
5540 read_unlock(&tasklist_lock);
5541 put_online_cpus();
5542 return -ESRCH;
5546 * It is not safe to call set_cpus_allowed with the
5547 * tasklist_lock held. We will bump the task_struct's
5548 * usage count and then drop tasklist_lock.
5550 get_task_struct(p);
5551 read_unlock(&tasklist_lock);
5553 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5554 retval = -ENOMEM;
5555 goto out_put_task;
5557 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5558 retval = -ENOMEM;
5559 goto out_free_cpus_allowed;
5561 retval = -EPERM;
5562 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5563 goto out_unlock;
5565 retval = security_task_setscheduler(p, 0, NULL);
5566 if (retval)
5567 goto out_unlock;
5569 cpuset_cpus_allowed(p, cpus_allowed);
5570 cpumask_and(new_mask, in_mask, cpus_allowed);
5571 again:
5572 retval = set_cpus_allowed_ptr(p, new_mask);
5574 if (!retval) {
5575 cpuset_cpus_allowed(p, cpus_allowed);
5576 if (!cpumask_subset(new_mask, cpus_allowed)) {
5578 * We must have raced with a concurrent cpuset
5579 * update. Just reset the cpus_allowed to the
5580 * cpuset's cpus_allowed
5582 cpumask_copy(new_mask, cpus_allowed);
5583 goto again;
5586 out_unlock:
5587 free_cpumask_var(new_mask);
5588 out_free_cpus_allowed:
5589 free_cpumask_var(cpus_allowed);
5590 out_put_task:
5591 put_task_struct(p);
5592 put_online_cpus();
5593 return retval;
5596 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5597 struct cpumask *new_mask)
5599 if (len < cpumask_size())
5600 cpumask_clear(new_mask);
5601 else if (len > cpumask_size())
5602 len = cpumask_size();
5604 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5608 * sys_sched_setaffinity - set the cpu affinity of a process
5609 * @pid: pid of the process
5610 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5611 * @user_mask_ptr: user-space pointer to the new cpu mask
5613 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5614 unsigned long __user *, user_mask_ptr)
5616 cpumask_var_t new_mask;
5617 int retval;
5619 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5620 return -ENOMEM;
5622 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5623 if (retval == 0)
5624 retval = sched_setaffinity(pid, new_mask);
5625 free_cpumask_var(new_mask);
5626 return retval;
5629 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5631 struct task_struct *p;
5632 int retval;
5634 get_online_cpus();
5635 read_lock(&tasklist_lock);
5637 retval = -ESRCH;
5638 p = find_process_by_pid(pid);
5639 if (!p)
5640 goto out_unlock;
5642 retval = security_task_getscheduler(p);
5643 if (retval)
5644 goto out_unlock;
5646 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5648 out_unlock:
5649 read_unlock(&tasklist_lock);
5650 put_online_cpus();
5652 return retval;
5656 * sys_sched_getaffinity - get the cpu affinity of a process
5657 * @pid: pid of the process
5658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5659 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5661 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5662 unsigned long __user *, user_mask_ptr)
5664 int ret;
5665 cpumask_var_t mask;
5667 if (len < cpumask_size())
5668 return -EINVAL;
5670 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5671 return -ENOMEM;
5673 ret = sched_getaffinity(pid, mask);
5674 if (ret == 0) {
5675 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5676 ret = -EFAULT;
5677 else
5678 ret = cpumask_size();
5680 free_cpumask_var(mask);
5682 return ret;
5686 * sys_sched_yield - yield the current processor to other threads.
5688 * This function yields the current CPU to other tasks. If there are no
5689 * other threads running on this CPU then this function will return.
5691 SYSCALL_DEFINE0(sched_yield)
5693 struct rq *rq = this_rq_lock();
5695 schedstat_inc(rq, yld_count);
5696 current->sched_class->yield_task(rq);
5699 * Since we are going to call schedule() anyway, there's
5700 * no need to preempt or enable interrupts:
5702 __release(rq->lock);
5703 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5704 _raw_spin_unlock(&rq->lock);
5705 preempt_enable_no_resched();
5707 schedule();
5709 return 0;
5712 static void __cond_resched(void)
5714 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5715 __might_sleep(__FILE__, __LINE__);
5716 #endif
5718 * The BKS might be reacquired before we have dropped
5719 * PREEMPT_ACTIVE, which could trigger a second
5720 * cond_resched() call.
5722 do {
5723 add_preempt_count(PREEMPT_ACTIVE);
5724 schedule();
5725 sub_preempt_count(PREEMPT_ACTIVE);
5726 } while (need_resched());
5729 int __sched _cond_resched(void)
5731 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5732 system_state == SYSTEM_RUNNING) {
5733 __cond_resched();
5734 return 1;
5736 return 0;
5738 EXPORT_SYMBOL(_cond_resched);
5741 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5742 * call schedule, and on return reacquire the lock.
5744 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5745 * operations here to prevent schedule() from being called twice (once via
5746 * spin_unlock(), once by hand).
5748 int cond_resched_lock(spinlock_t *lock)
5750 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5751 int ret = 0;
5753 if (spin_needbreak(lock) || resched) {
5754 spin_unlock(lock);
5755 if (resched && need_resched())
5756 __cond_resched();
5757 else
5758 cpu_relax();
5759 ret = 1;
5760 spin_lock(lock);
5762 return ret;
5764 EXPORT_SYMBOL(cond_resched_lock);
5766 int __sched cond_resched_softirq(void)
5768 BUG_ON(!in_softirq());
5770 if (need_resched() && system_state == SYSTEM_RUNNING) {
5771 local_bh_enable();
5772 __cond_resched();
5773 local_bh_disable();
5774 return 1;
5776 return 0;
5778 EXPORT_SYMBOL(cond_resched_softirq);
5781 * yield - yield the current processor to other threads.
5783 * This is a shortcut for kernel-space yielding - it marks the
5784 * thread runnable and calls sys_sched_yield().
5786 void __sched yield(void)
5788 set_current_state(TASK_RUNNING);
5789 sys_sched_yield();
5791 EXPORT_SYMBOL(yield);
5794 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5795 * that process accounting knows that this is a task in IO wait state.
5797 * But don't do that if it is a deliberate, throttling IO wait (this task
5798 * has set its backing_dev_info: the queue against which it should throttle)
5800 void __sched io_schedule(void)
5802 struct rq *rq = &__raw_get_cpu_var(runqueues);
5804 delayacct_blkio_start();
5805 atomic_inc(&rq->nr_iowait);
5806 schedule();
5807 atomic_dec(&rq->nr_iowait);
5808 delayacct_blkio_end();
5810 EXPORT_SYMBOL(io_schedule);
5812 long __sched io_schedule_timeout(long timeout)
5814 struct rq *rq = &__raw_get_cpu_var(runqueues);
5815 long ret;
5817 delayacct_blkio_start();
5818 atomic_inc(&rq->nr_iowait);
5819 ret = schedule_timeout(timeout);
5820 atomic_dec(&rq->nr_iowait);
5821 delayacct_blkio_end();
5822 return ret;
5826 * sys_sched_get_priority_max - return maximum RT priority.
5827 * @policy: scheduling class.
5829 * this syscall returns the maximum rt_priority that can be used
5830 * by a given scheduling class.
5832 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5834 int ret = -EINVAL;
5836 switch (policy) {
5837 case SCHED_FIFO:
5838 case SCHED_RR:
5839 ret = MAX_USER_RT_PRIO-1;
5840 break;
5841 case SCHED_NORMAL:
5842 case SCHED_BATCH:
5843 case SCHED_IDLE:
5844 ret = 0;
5845 break;
5847 return ret;
5851 * sys_sched_get_priority_min - return minimum RT priority.
5852 * @policy: scheduling class.
5854 * this syscall returns the minimum rt_priority that can be used
5855 * by a given scheduling class.
5857 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5859 int ret = -EINVAL;
5861 switch (policy) {
5862 case SCHED_FIFO:
5863 case SCHED_RR:
5864 ret = 1;
5865 break;
5866 case SCHED_NORMAL:
5867 case SCHED_BATCH:
5868 case SCHED_IDLE:
5869 ret = 0;
5871 return ret;
5875 * sys_sched_rr_get_interval - return the default timeslice of a process.
5876 * @pid: pid of the process.
5877 * @interval: userspace pointer to the timeslice value.
5879 * this syscall writes the default timeslice value of a given process
5880 * into the user-space timespec buffer. A value of '0' means infinity.
5882 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5883 struct timespec __user *, interval)
5885 struct task_struct *p;
5886 unsigned int time_slice;
5887 int retval;
5888 struct timespec t;
5890 if (pid < 0)
5891 return -EINVAL;
5893 retval = -ESRCH;
5894 read_lock(&tasklist_lock);
5895 p = find_process_by_pid(pid);
5896 if (!p)
5897 goto out_unlock;
5899 retval = security_task_getscheduler(p);
5900 if (retval)
5901 goto out_unlock;
5904 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5905 * tasks that are on an otherwise idle runqueue:
5907 time_slice = 0;
5908 if (p->policy == SCHED_RR) {
5909 time_slice = DEF_TIMESLICE;
5910 } else if (p->policy != SCHED_FIFO) {
5911 struct sched_entity *se = &p->se;
5912 unsigned long flags;
5913 struct rq *rq;
5915 rq = task_rq_lock(p, &flags);
5916 if (rq->cfs.load.weight)
5917 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5918 task_rq_unlock(rq, &flags);
5920 read_unlock(&tasklist_lock);
5921 jiffies_to_timespec(time_slice, &t);
5922 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5923 return retval;
5925 out_unlock:
5926 read_unlock(&tasklist_lock);
5927 return retval;
5930 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5932 void sched_show_task(struct task_struct *p)
5934 unsigned long free = 0;
5935 unsigned state;
5937 state = p->state ? __ffs(p->state) + 1 : 0;
5938 printk(KERN_INFO "%-13.13s %c", p->comm,
5939 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5940 #if BITS_PER_LONG == 32
5941 if (state == TASK_RUNNING)
5942 printk(KERN_CONT " running ");
5943 else
5944 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5945 #else
5946 if (state == TASK_RUNNING)
5947 printk(KERN_CONT " running task ");
5948 else
5949 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5950 #endif
5951 #ifdef CONFIG_DEBUG_STACK_USAGE
5952 free = stack_not_used(p);
5953 #endif
5954 printk(KERN_CONT "%5lu %5d %6d\n", free,
5955 task_pid_nr(p), task_pid_nr(p->real_parent));
5957 show_stack(p, NULL);
5960 void show_state_filter(unsigned long state_filter)
5962 struct task_struct *g, *p;
5964 #if BITS_PER_LONG == 32
5965 printk(KERN_INFO
5966 " task PC stack pid father\n");
5967 #else
5968 printk(KERN_INFO
5969 " task PC stack pid father\n");
5970 #endif
5971 read_lock(&tasklist_lock);
5972 do_each_thread(g, p) {
5974 * reset the NMI-timeout, listing all files on a slow
5975 * console might take alot of time:
5977 touch_nmi_watchdog();
5978 if (!state_filter || (p->state & state_filter))
5979 sched_show_task(p);
5980 } while_each_thread(g, p);
5982 touch_all_softlockup_watchdogs();
5984 #ifdef CONFIG_SCHED_DEBUG
5985 sysrq_sched_debug_show();
5986 #endif
5987 read_unlock(&tasklist_lock);
5989 * Only show locks if all tasks are dumped:
5991 if (state_filter == -1)
5992 debug_show_all_locks();
5995 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5997 idle->sched_class = &idle_sched_class;
6001 * init_idle - set up an idle thread for a given CPU
6002 * @idle: task in question
6003 * @cpu: cpu the idle task belongs to
6005 * NOTE: this function does not set the idle thread's NEED_RESCHED
6006 * flag, to make booting more robust.
6008 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6010 struct rq *rq = cpu_rq(cpu);
6011 unsigned long flags;
6013 spin_lock_irqsave(&rq->lock, flags);
6015 __sched_fork(idle);
6016 idle->se.exec_start = sched_clock();
6018 idle->prio = idle->normal_prio = MAX_PRIO;
6019 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6020 __set_task_cpu(idle, cpu);
6022 rq->curr = rq->idle = idle;
6023 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6024 idle->oncpu = 1;
6025 #endif
6026 spin_unlock_irqrestore(&rq->lock, flags);
6028 /* Set the preempt count _outside_ the spinlocks! */
6029 #if defined(CONFIG_PREEMPT)
6030 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6031 #else
6032 task_thread_info(idle)->preempt_count = 0;
6033 #endif
6035 * The idle tasks have their own, simple scheduling class:
6037 idle->sched_class = &idle_sched_class;
6038 ftrace_graph_init_task(idle);
6042 * In a system that switches off the HZ timer nohz_cpu_mask
6043 * indicates which cpus entered this state. This is used
6044 * in the rcu update to wait only for active cpus. For system
6045 * which do not switch off the HZ timer nohz_cpu_mask should
6046 * always be CPU_BITS_NONE.
6048 cpumask_var_t nohz_cpu_mask;
6051 * Increase the granularity value when there are more CPUs,
6052 * because with more CPUs the 'effective latency' as visible
6053 * to users decreases. But the relationship is not linear,
6054 * so pick a second-best guess by going with the log2 of the
6055 * number of CPUs.
6057 * This idea comes from the SD scheduler of Con Kolivas:
6059 static inline void sched_init_granularity(void)
6061 unsigned int factor = 1 + ilog2(num_online_cpus());
6062 const unsigned long limit = 200000000;
6064 sysctl_sched_min_granularity *= factor;
6065 if (sysctl_sched_min_granularity > limit)
6066 sysctl_sched_min_granularity = limit;
6068 sysctl_sched_latency *= factor;
6069 if (sysctl_sched_latency > limit)
6070 sysctl_sched_latency = limit;
6072 sysctl_sched_wakeup_granularity *= factor;
6074 sysctl_sched_shares_ratelimit *= factor;
6077 #ifdef CONFIG_SMP
6079 * This is how migration works:
6081 * 1) we queue a struct migration_req structure in the source CPU's
6082 * runqueue and wake up that CPU's migration thread.
6083 * 2) we down() the locked semaphore => thread blocks.
6084 * 3) migration thread wakes up (implicitly it forces the migrated
6085 * thread off the CPU)
6086 * 4) it gets the migration request and checks whether the migrated
6087 * task is still in the wrong runqueue.
6088 * 5) if it's in the wrong runqueue then the migration thread removes
6089 * it and puts it into the right queue.
6090 * 6) migration thread up()s the semaphore.
6091 * 7) we wake up and the migration is done.
6095 * Change a given task's CPU affinity. Migrate the thread to a
6096 * proper CPU and schedule it away if the CPU it's executing on
6097 * is removed from the allowed bitmask.
6099 * NOTE: the caller must have a valid reference to the task, the
6100 * task must not exit() & deallocate itself prematurely. The
6101 * call is not atomic; no spinlocks may be held.
6103 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6105 struct migration_req req;
6106 unsigned long flags;
6107 struct rq *rq;
6108 int ret = 0;
6110 rq = task_rq_lock(p, &flags);
6111 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6112 ret = -EINVAL;
6113 goto out;
6116 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6117 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6118 ret = -EINVAL;
6119 goto out;
6122 if (p->sched_class->set_cpus_allowed)
6123 p->sched_class->set_cpus_allowed(p, new_mask);
6124 else {
6125 cpumask_copy(&p->cpus_allowed, new_mask);
6126 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6129 /* Can the task run on the task's current CPU? If so, we're done */
6130 if (cpumask_test_cpu(task_cpu(p), new_mask))
6131 goto out;
6133 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6134 /* Need help from migration thread: drop lock and wait. */
6135 task_rq_unlock(rq, &flags);
6136 wake_up_process(rq->migration_thread);
6137 wait_for_completion(&req.done);
6138 tlb_migrate_finish(p->mm);
6139 return 0;
6141 out:
6142 task_rq_unlock(rq, &flags);
6144 return ret;
6146 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6149 * Move (not current) task off this cpu, onto dest cpu. We're doing
6150 * this because either it can't run here any more (set_cpus_allowed()
6151 * away from this CPU, or CPU going down), or because we're
6152 * attempting to rebalance this task on exec (sched_exec).
6154 * So we race with normal scheduler movements, but that's OK, as long
6155 * as the task is no longer on this CPU.
6157 * Returns non-zero if task was successfully migrated.
6159 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6161 struct rq *rq_dest, *rq_src;
6162 int ret = 0, on_rq;
6164 if (unlikely(!cpu_active(dest_cpu)))
6165 return ret;
6167 rq_src = cpu_rq(src_cpu);
6168 rq_dest = cpu_rq(dest_cpu);
6170 double_rq_lock(rq_src, rq_dest);
6171 /* Already moved. */
6172 if (task_cpu(p) != src_cpu)
6173 goto done;
6174 /* Affinity changed (again). */
6175 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6176 goto fail;
6178 on_rq = p->se.on_rq;
6179 if (on_rq)
6180 deactivate_task(rq_src, p, 0);
6182 set_task_cpu(p, dest_cpu);
6183 if (on_rq) {
6184 activate_task(rq_dest, p, 0);
6185 check_preempt_curr(rq_dest, p, 0);
6187 done:
6188 ret = 1;
6189 fail:
6190 double_rq_unlock(rq_src, rq_dest);
6191 return ret;
6195 * migration_thread - this is a highprio system thread that performs
6196 * thread migration by bumping thread off CPU then 'pushing' onto
6197 * another runqueue.
6199 static int migration_thread(void *data)
6201 int cpu = (long)data;
6202 struct rq *rq;
6204 rq = cpu_rq(cpu);
6205 BUG_ON(rq->migration_thread != current);
6207 set_current_state(TASK_INTERRUPTIBLE);
6208 while (!kthread_should_stop()) {
6209 struct migration_req *req;
6210 struct list_head *head;
6212 spin_lock_irq(&rq->lock);
6214 if (cpu_is_offline(cpu)) {
6215 spin_unlock_irq(&rq->lock);
6216 goto wait_to_die;
6219 if (rq->active_balance) {
6220 active_load_balance(rq, cpu);
6221 rq->active_balance = 0;
6224 head = &rq->migration_queue;
6226 if (list_empty(head)) {
6227 spin_unlock_irq(&rq->lock);
6228 schedule();
6229 set_current_state(TASK_INTERRUPTIBLE);
6230 continue;
6232 req = list_entry(head->next, struct migration_req, list);
6233 list_del_init(head->next);
6235 spin_unlock(&rq->lock);
6236 __migrate_task(req->task, cpu, req->dest_cpu);
6237 local_irq_enable();
6239 complete(&req->done);
6241 __set_current_state(TASK_RUNNING);
6242 return 0;
6244 wait_to_die:
6245 /* Wait for kthread_stop */
6246 set_current_state(TASK_INTERRUPTIBLE);
6247 while (!kthread_should_stop()) {
6248 schedule();
6249 set_current_state(TASK_INTERRUPTIBLE);
6251 __set_current_state(TASK_RUNNING);
6252 return 0;
6255 #ifdef CONFIG_HOTPLUG_CPU
6257 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6259 int ret;
6261 local_irq_disable();
6262 ret = __migrate_task(p, src_cpu, dest_cpu);
6263 local_irq_enable();
6264 return ret;
6268 * Figure out where task on dead CPU should go, use force if necessary.
6270 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6272 int dest_cpu;
6273 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6275 again:
6276 /* Look for allowed, online CPU in same node. */
6277 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6278 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6279 goto move;
6281 /* Any allowed, online CPU? */
6282 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6283 if (dest_cpu < nr_cpu_ids)
6284 goto move;
6286 /* No more Mr. Nice Guy. */
6287 if (dest_cpu >= nr_cpu_ids) {
6288 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6289 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6292 * Don't tell them about moving exiting tasks or
6293 * kernel threads (both mm NULL), since they never
6294 * leave kernel.
6296 if (p->mm && printk_ratelimit()) {
6297 printk(KERN_INFO "process %d (%s) no "
6298 "longer affine to cpu%d\n",
6299 task_pid_nr(p), p->comm, dead_cpu);
6303 move:
6304 /* It can have affinity changed while we were choosing. */
6305 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6306 goto again;
6310 * While a dead CPU has no uninterruptible tasks queued at this point,
6311 * it might still have a nonzero ->nr_uninterruptible counter, because
6312 * for performance reasons the counter is not stricly tracking tasks to
6313 * their home CPUs. So we just add the counter to another CPU's counter,
6314 * to keep the global sum constant after CPU-down:
6316 static void migrate_nr_uninterruptible(struct rq *rq_src)
6318 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6319 unsigned long flags;
6321 local_irq_save(flags);
6322 double_rq_lock(rq_src, rq_dest);
6323 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6324 rq_src->nr_uninterruptible = 0;
6325 double_rq_unlock(rq_src, rq_dest);
6326 local_irq_restore(flags);
6329 /* Run through task list and migrate tasks from the dead cpu. */
6330 static void migrate_live_tasks(int src_cpu)
6332 struct task_struct *p, *t;
6334 read_lock(&tasklist_lock);
6336 do_each_thread(t, p) {
6337 if (p == current)
6338 continue;
6340 if (task_cpu(p) == src_cpu)
6341 move_task_off_dead_cpu(src_cpu, p);
6342 } while_each_thread(t, p);
6344 read_unlock(&tasklist_lock);
6348 * Schedules idle task to be the next runnable task on current CPU.
6349 * It does so by boosting its priority to highest possible.
6350 * Used by CPU offline code.
6352 void sched_idle_next(void)
6354 int this_cpu = smp_processor_id();
6355 struct rq *rq = cpu_rq(this_cpu);
6356 struct task_struct *p = rq->idle;
6357 unsigned long flags;
6359 /* cpu has to be offline */
6360 BUG_ON(cpu_online(this_cpu));
6363 * Strictly not necessary since rest of the CPUs are stopped by now
6364 * and interrupts disabled on the current cpu.
6366 spin_lock_irqsave(&rq->lock, flags);
6368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6370 update_rq_clock(rq);
6371 activate_task(rq, p, 0);
6373 spin_unlock_irqrestore(&rq->lock, flags);
6377 * Ensures that the idle task is using init_mm right before its cpu goes
6378 * offline.
6380 void idle_task_exit(void)
6382 struct mm_struct *mm = current->active_mm;
6384 BUG_ON(cpu_online(smp_processor_id()));
6386 if (mm != &init_mm)
6387 switch_mm(mm, &init_mm, current);
6388 mmdrop(mm);
6391 /* called under rq->lock with disabled interrupts */
6392 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6394 struct rq *rq = cpu_rq(dead_cpu);
6396 /* Must be exiting, otherwise would be on tasklist. */
6397 BUG_ON(!p->exit_state);
6399 /* Cannot have done final schedule yet: would have vanished. */
6400 BUG_ON(p->state == TASK_DEAD);
6402 get_task_struct(p);
6405 * Drop lock around migration; if someone else moves it,
6406 * that's OK. No task can be added to this CPU, so iteration is
6407 * fine.
6409 spin_unlock_irq(&rq->lock);
6410 move_task_off_dead_cpu(dead_cpu, p);
6411 spin_lock_irq(&rq->lock);
6413 put_task_struct(p);
6416 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6417 static void migrate_dead_tasks(unsigned int dead_cpu)
6419 struct rq *rq = cpu_rq(dead_cpu);
6420 struct task_struct *next;
6422 for ( ; ; ) {
6423 if (!rq->nr_running)
6424 break;
6425 update_rq_clock(rq);
6426 next = pick_next_task(rq, rq->curr);
6427 if (!next)
6428 break;
6429 next->sched_class->put_prev_task(rq, next);
6430 migrate_dead(dead_cpu, next);
6434 #endif /* CONFIG_HOTPLUG_CPU */
6436 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6438 static struct ctl_table sd_ctl_dir[] = {
6440 .procname = "sched_domain",
6441 .mode = 0555,
6443 {0, },
6446 static struct ctl_table sd_ctl_root[] = {
6448 .ctl_name = CTL_KERN,
6449 .procname = "kernel",
6450 .mode = 0555,
6451 .child = sd_ctl_dir,
6453 {0, },
6456 static struct ctl_table *sd_alloc_ctl_entry(int n)
6458 struct ctl_table *entry =
6459 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6461 return entry;
6464 static void sd_free_ctl_entry(struct ctl_table **tablep)
6466 struct ctl_table *entry;
6469 * In the intermediate directories, both the child directory and
6470 * procname are dynamically allocated and could fail but the mode
6471 * will always be set. In the lowest directory the names are
6472 * static strings and all have proc handlers.
6474 for (entry = *tablep; entry->mode; entry++) {
6475 if (entry->child)
6476 sd_free_ctl_entry(&entry->child);
6477 if (entry->proc_handler == NULL)
6478 kfree(entry->procname);
6481 kfree(*tablep);
6482 *tablep = NULL;
6485 static void
6486 set_table_entry(struct ctl_table *entry,
6487 const char *procname, void *data, int maxlen,
6488 mode_t mode, proc_handler *proc_handler)
6490 entry->procname = procname;
6491 entry->data = data;
6492 entry->maxlen = maxlen;
6493 entry->mode = mode;
6494 entry->proc_handler = proc_handler;
6497 static struct ctl_table *
6498 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6500 struct ctl_table *table = sd_alloc_ctl_entry(13);
6502 if (table == NULL)
6503 return NULL;
6505 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6506 sizeof(long), 0644, proc_doulongvec_minmax);
6507 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6508 sizeof(long), 0644, proc_doulongvec_minmax);
6509 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6510 sizeof(int), 0644, proc_dointvec_minmax);
6511 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6512 sizeof(int), 0644, proc_dointvec_minmax);
6513 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6514 sizeof(int), 0644, proc_dointvec_minmax);
6515 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6516 sizeof(int), 0644, proc_dointvec_minmax);
6517 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6518 sizeof(int), 0644, proc_dointvec_minmax);
6519 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6520 sizeof(int), 0644, proc_dointvec_minmax);
6521 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6522 sizeof(int), 0644, proc_dointvec_minmax);
6523 set_table_entry(&table[9], "cache_nice_tries",
6524 &sd->cache_nice_tries,
6525 sizeof(int), 0644, proc_dointvec_minmax);
6526 set_table_entry(&table[10], "flags", &sd->flags,
6527 sizeof(int), 0644, proc_dointvec_minmax);
6528 set_table_entry(&table[11], "name", sd->name,
6529 CORENAME_MAX_SIZE, 0444, proc_dostring);
6530 /* &table[12] is terminator */
6532 return table;
6535 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6537 struct ctl_table *entry, *table;
6538 struct sched_domain *sd;
6539 int domain_num = 0, i;
6540 char buf[32];
6542 for_each_domain(cpu, sd)
6543 domain_num++;
6544 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6545 if (table == NULL)
6546 return NULL;
6548 i = 0;
6549 for_each_domain(cpu, sd) {
6550 snprintf(buf, 32, "domain%d", i);
6551 entry->procname = kstrdup(buf, GFP_KERNEL);
6552 entry->mode = 0555;
6553 entry->child = sd_alloc_ctl_domain_table(sd);
6554 entry++;
6555 i++;
6557 return table;
6560 static struct ctl_table_header *sd_sysctl_header;
6561 static void register_sched_domain_sysctl(void)
6563 int i, cpu_num = num_online_cpus();
6564 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6565 char buf[32];
6567 WARN_ON(sd_ctl_dir[0].child);
6568 sd_ctl_dir[0].child = entry;
6570 if (entry == NULL)
6571 return;
6573 for_each_online_cpu(i) {
6574 snprintf(buf, 32, "cpu%d", i);
6575 entry->procname = kstrdup(buf, GFP_KERNEL);
6576 entry->mode = 0555;
6577 entry->child = sd_alloc_ctl_cpu_table(i);
6578 entry++;
6581 WARN_ON(sd_sysctl_header);
6582 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6585 /* may be called multiple times per register */
6586 static void unregister_sched_domain_sysctl(void)
6588 if (sd_sysctl_header)
6589 unregister_sysctl_table(sd_sysctl_header);
6590 sd_sysctl_header = NULL;
6591 if (sd_ctl_dir[0].child)
6592 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6594 #else
6595 static void register_sched_domain_sysctl(void)
6598 static void unregister_sched_domain_sysctl(void)
6601 #endif
6603 static void set_rq_online(struct rq *rq)
6605 if (!rq->online) {
6606 const struct sched_class *class;
6608 cpumask_set_cpu(rq->cpu, rq->rd->online);
6609 rq->online = 1;
6611 for_each_class(class) {
6612 if (class->rq_online)
6613 class->rq_online(rq);
6618 static void set_rq_offline(struct rq *rq)
6620 if (rq->online) {
6621 const struct sched_class *class;
6623 for_each_class(class) {
6624 if (class->rq_offline)
6625 class->rq_offline(rq);
6628 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6629 rq->online = 0;
6634 * migration_call - callback that gets triggered when a CPU is added.
6635 * Here we can start up the necessary migration thread for the new CPU.
6637 static int __cpuinit
6638 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6640 struct task_struct *p;
6641 int cpu = (long)hcpu;
6642 unsigned long flags;
6643 struct rq *rq;
6645 switch (action) {
6647 case CPU_UP_PREPARE:
6648 case CPU_UP_PREPARE_FROZEN:
6649 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6650 if (IS_ERR(p))
6651 return NOTIFY_BAD;
6652 kthread_bind(p, cpu);
6653 /* Must be high prio: stop_machine expects to yield to it. */
6654 rq = task_rq_lock(p, &flags);
6655 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6656 task_rq_unlock(rq, &flags);
6657 cpu_rq(cpu)->migration_thread = p;
6658 break;
6660 case CPU_ONLINE:
6661 case CPU_ONLINE_FROZEN:
6662 /* Strictly unnecessary, as first user will wake it. */
6663 wake_up_process(cpu_rq(cpu)->migration_thread);
6665 /* Update our root-domain */
6666 rq = cpu_rq(cpu);
6667 spin_lock_irqsave(&rq->lock, flags);
6668 if (rq->rd) {
6669 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6671 set_rq_online(rq);
6673 spin_unlock_irqrestore(&rq->lock, flags);
6674 break;
6676 #ifdef CONFIG_HOTPLUG_CPU
6677 case CPU_UP_CANCELED:
6678 case CPU_UP_CANCELED_FROZEN:
6679 if (!cpu_rq(cpu)->migration_thread)
6680 break;
6681 /* Unbind it from offline cpu so it can run. Fall thru. */
6682 kthread_bind(cpu_rq(cpu)->migration_thread,
6683 cpumask_any(cpu_online_mask));
6684 kthread_stop(cpu_rq(cpu)->migration_thread);
6685 cpu_rq(cpu)->migration_thread = NULL;
6686 break;
6688 case CPU_DEAD:
6689 case CPU_DEAD_FROZEN:
6690 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6691 migrate_live_tasks(cpu);
6692 rq = cpu_rq(cpu);
6693 kthread_stop(rq->migration_thread);
6694 rq->migration_thread = NULL;
6695 /* Idle task back to normal (off runqueue, low prio) */
6696 spin_lock_irq(&rq->lock);
6697 update_rq_clock(rq);
6698 deactivate_task(rq, rq->idle, 0);
6699 rq->idle->static_prio = MAX_PRIO;
6700 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6701 rq->idle->sched_class = &idle_sched_class;
6702 migrate_dead_tasks(cpu);
6703 spin_unlock_irq(&rq->lock);
6704 cpuset_unlock();
6705 migrate_nr_uninterruptible(rq);
6706 BUG_ON(rq->nr_running != 0);
6709 * No need to migrate the tasks: it was best-effort if
6710 * they didn't take sched_hotcpu_mutex. Just wake up
6711 * the requestors.
6713 spin_lock_irq(&rq->lock);
6714 while (!list_empty(&rq->migration_queue)) {
6715 struct migration_req *req;
6717 req = list_entry(rq->migration_queue.next,
6718 struct migration_req, list);
6719 list_del_init(&req->list);
6720 spin_unlock_irq(&rq->lock);
6721 complete(&req->done);
6722 spin_lock_irq(&rq->lock);
6724 spin_unlock_irq(&rq->lock);
6725 break;
6727 case CPU_DYING:
6728 case CPU_DYING_FROZEN:
6729 /* Update our root-domain */
6730 rq = cpu_rq(cpu);
6731 spin_lock_irqsave(&rq->lock, flags);
6732 if (rq->rd) {
6733 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6734 set_rq_offline(rq);
6736 spin_unlock_irqrestore(&rq->lock, flags);
6737 break;
6738 #endif
6740 return NOTIFY_OK;
6743 /* Register at highest priority so that task migration (migrate_all_tasks)
6744 * happens before everything else.
6746 static struct notifier_block __cpuinitdata migration_notifier = {
6747 .notifier_call = migration_call,
6748 .priority = 10
6751 static int __init migration_init(void)
6753 void *cpu = (void *)(long)smp_processor_id();
6754 int err;
6756 /* Start one for the boot CPU: */
6757 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6758 BUG_ON(err == NOTIFY_BAD);
6759 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6760 register_cpu_notifier(&migration_notifier);
6762 return err;
6764 early_initcall(migration_init);
6765 #endif
6767 #ifdef CONFIG_SMP
6769 #ifdef CONFIG_SCHED_DEBUG
6771 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6772 struct cpumask *groupmask)
6774 struct sched_group *group = sd->groups;
6775 char str[256];
6777 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6778 cpumask_clear(groupmask);
6780 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6782 if (!(sd->flags & SD_LOAD_BALANCE)) {
6783 printk("does not load-balance\n");
6784 if (sd->parent)
6785 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6786 " has parent");
6787 return -1;
6790 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6792 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6793 printk(KERN_ERR "ERROR: domain->span does not contain "
6794 "CPU%d\n", cpu);
6796 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6797 printk(KERN_ERR "ERROR: domain->groups does not contain"
6798 " CPU%d\n", cpu);
6801 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6802 do {
6803 if (!group) {
6804 printk("\n");
6805 printk(KERN_ERR "ERROR: group is NULL\n");
6806 break;
6809 if (!group->__cpu_power) {
6810 printk(KERN_CONT "\n");
6811 printk(KERN_ERR "ERROR: domain->cpu_power not "
6812 "set\n");
6813 break;
6816 if (!cpumask_weight(sched_group_cpus(group))) {
6817 printk(KERN_CONT "\n");
6818 printk(KERN_ERR "ERROR: empty group\n");
6819 break;
6822 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6823 printk(KERN_CONT "\n");
6824 printk(KERN_ERR "ERROR: repeated CPUs\n");
6825 break;
6828 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6830 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6831 printk(KERN_CONT " %s", str);
6833 group = group->next;
6834 } while (group != sd->groups);
6835 printk(KERN_CONT "\n");
6837 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6838 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6840 if (sd->parent &&
6841 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6842 printk(KERN_ERR "ERROR: parent span is not a superset "
6843 "of domain->span\n");
6844 return 0;
6847 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6849 cpumask_var_t groupmask;
6850 int level = 0;
6852 if (!sd) {
6853 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6854 return;
6857 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6859 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6860 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6861 return;
6864 for (;;) {
6865 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6866 break;
6867 level++;
6868 sd = sd->parent;
6869 if (!sd)
6870 break;
6872 free_cpumask_var(groupmask);
6874 #else /* !CONFIG_SCHED_DEBUG */
6875 # define sched_domain_debug(sd, cpu) do { } while (0)
6876 #endif /* CONFIG_SCHED_DEBUG */
6878 static int sd_degenerate(struct sched_domain *sd)
6880 if (cpumask_weight(sched_domain_span(sd)) == 1)
6881 return 1;
6883 /* Following flags need at least 2 groups */
6884 if (sd->flags & (SD_LOAD_BALANCE |
6885 SD_BALANCE_NEWIDLE |
6886 SD_BALANCE_FORK |
6887 SD_BALANCE_EXEC |
6888 SD_SHARE_CPUPOWER |
6889 SD_SHARE_PKG_RESOURCES)) {
6890 if (sd->groups != sd->groups->next)
6891 return 0;
6894 /* Following flags don't use groups */
6895 if (sd->flags & (SD_WAKE_IDLE |
6896 SD_WAKE_AFFINE |
6897 SD_WAKE_BALANCE))
6898 return 0;
6900 return 1;
6903 static int
6904 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6906 unsigned long cflags = sd->flags, pflags = parent->flags;
6908 if (sd_degenerate(parent))
6909 return 1;
6911 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6912 return 0;
6914 /* Does parent contain flags not in child? */
6915 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6916 if (cflags & SD_WAKE_AFFINE)
6917 pflags &= ~SD_WAKE_BALANCE;
6918 /* Flags needing groups don't count if only 1 group in parent */
6919 if (parent->groups == parent->groups->next) {
6920 pflags &= ~(SD_LOAD_BALANCE |
6921 SD_BALANCE_NEWIDLE |
6922 SD_BALANCE_FORK |
6923 SD_BALANCE_EXEC |
6924 SD_SHARE_CPUPOWER |
6925 SD_SHARE_PKG_RESOURCES);
6926 if (nr_node_ids == 1)
6927 pflags &= ~SD_SERIALIZE;
6929 if (~cflags & pflags)
6930 return 0;
6932 return 1;
6935 static void free_rootdomain(struct root_domain *rd)
6937 cpupri_cleanup(&rd->cpupri);
6939 free_cpumask_var(rd->rto_mask);
6940 free_cpumask_var(rd->online);
6941 free_cpumask_var(rd->span);
6942 kfree(rd);
6945 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6947 unsigned long flags;
6949 spin_lock_irqsave(&rq->lock, flags);
6951 if (rq->rd) {
6952 struct root_domain *old_rd = rq->rd;
6954 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6955 set_rq_offline(rq);
6957 cpumask_clear_cpu(rq->cpu, old_rd->span);
6959 if (atomic_dec_and_test(&old_rd->refcount))
6960 free_rootdomain(old_rd);
6963 atomic_inc(&rd->refcount);
6964 rq->rd = rd;
6966 cpumask_set_cpu(rq->cpu, rd->span);
6967 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6968 set_rq_online(rq);
6970 spin_unlock_irqrestore(&rq->lock, flags);
6973 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
6975 memset(rd, 0, sizeof(*rd));
6977 if (bootmem) {
6978 alloc_bootmem_cpumask_var(&def_root_domain.span);
6979 alloc_bootmem_cpumask_var(&def_root_domain.online);
6980 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6981 cpupri_init(&rd->cpupri, true);
6982 return 0;
6985 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6986 goto out;
6987 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6988 goto free_span;
6989 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6990 goto free_online;
6992 if (cpupri_init(&rd->cpupri, false) != 0)
6993 goto free_rto_mask;
6994 return 0;
6996 free_rto_mask:
6997 free_cpumask_var(rd->rto_mask);
6998 free_online:
6999 free_cpumask_var(rd->online);
7000 free_span:
7001 free_cpumask_var(rd->span);
7002 out:
7003 return -ENOMEM;
7006 static void init_defrootdomain(void)
7008 init_rootdomain(&def_root_domain, true);
7010 atomic_set(&def_root_domain.refcount, 1);
7013 static struct root_domain *alloc_rootdomain(void)
7015 struct root_domain *rd;
7017 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7018 if (!rd)
7019 return NULL;
7021 if (init_rootdomain(rd, false) != 0) {
7022 kfree(rd);
7023 return NULL;
7026 return rd;
7030 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7031 * hold the hotplug lock.
7033 static void
7034 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7036 struct rq *rq = cpu_rq(cpu);
7037 struct sched_domain *tmp;
7039 /* Remove the sched domains which do not contribute to scheduling. */
7040 for (tmp = sd; tmp; ) {
7041 struct sched_domain *parent = tmp->parent;
7042 if (!parent)
7043 break;
7045 if (sd_parent_degenerate(tmp, parent)) {
7046 tmp->parent = parent->parent;
7047 if (parent->parent)
7048 parent->parent->child = tmp;
7049 } else
7050 tmp = tmp->parent;
7053 if (sd && sd_degenerate(sd)) {
7054 sd = sd->parent;
7055 if (sd)
7056 sd->child = NULL;
7059 sched_domain_debug(sd, cpu);
7061 rq_attach_root(rq, rd);
7062 rcu_assign_pointer(rq->sd, sd);
7065 /* cpus with isolated domains */
7066 static cpumask_var_t cpu_isolated_map;
7068 /* Setup the mask of cpus configured for isolated domains */
7069 static int __init isolated_cpu_setup(char *str)
7071 cpulist_parse(str, cpu_isolated_map);
7072 return 1;
7075 __setup("isolcpus=", isolated_cpu_setup);
7078 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7079 * to a function which identifies what group(along with sched group) a CPU
7080 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7081 * (due to the fact that we keep track of groups covered with a struct cpumask).
7083 * init_sched_build_groups will build a circular linked list of the groups
7084 * covered by the given span, and will set each group's ->cpumask correctly,
7085 * and ->cpu_power to 0.
7087 static void
7088 init_sched_build_groups(const struct cpumask *span,
7089 const struct cpumask *cpu_map,
7090 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7091 struct sched_group **sg,
7092 struct cpumask *tmpmask),
7093 struct cpumask *covered, struct cpumask *tmpmask)
7095 struct sched_group *first = NULL, *last = NULL;
7096 int i;
7098 cpumask_clear(covered);
7100 for_each_cpu(i, span) {
7101 struct sched_group *sg;
7102 int group = group_fn(i, cpu_map, &sg, tmpmask);
7103 int j;
7105 if (cpumask_test_cpu(i, covered))
7106 continue;
7108 cpumask_clear(sched_group_cpus(sg));
7109 sg->__cpu_power = 0;
7111 for_each_cpu(j, span) {
7112 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7113 continue;
7115 cpumask_set_cpu(j, covered);
7116 cpumask_set_cpu(j, sched_group_cpus(sg));
7118 if (!first)
7119 first = sg;
7120 if (last)
7121 last->next = sg;
7122 last = sg;
7124 last->next = first;
7127 #define SD_NODES_PER_DOMAIN 16
7129 #ifdef CONFIG_NUMA
7132 * find_next_best_node - find the next node to include in a sched_domain
7133 * @node: node whose sched_domain we're building
7134 * @used_nodes: nodes already in the sched_domain
7136 * Find the next node to include in a given scheduling domain. Simply
7137 * finds the closest node not already in the @used_nodes map.
7139 * Should use nodemask_t.
7141 static int find_next_best_node(int node, nodemask_t *used_nodes)
7143 int i, n, val, min_val, best_node = 0;
7145 min_val = INT_MAX;
7147 for (i = 0; i < nr_node_ids; i++) {
7148 /* Start at @node */
7149 n = (node + i) % nr_node_ids;
7151 if (!nr_cpus_node(n))
7152 continue;
7154 /* Skip already used nodes */
7155 if (node_isset(n, *used_nodes))
7156 continue;
7158 /* Simple min distance search */
7159 val = node_distance(node, n);
7161 if (val < min_val) {
7162 min_val = val;
7163 best_node = n;
7167 node_set(best_node, *used_nodes);
7168 return best_node;
7172 * sched_domain_node_span - get a cpumask for a node's sched_domain
7173 * @node: node whose cpumask we're constructing
7174 * @span: resulting cpumask
7176 * Given a node, construct a good cpumask for its sched_domain to span. It
7177 * should be one that prevents unnecessary balancing, but also spreads tasks
7178 * out optimally.
7180 static void sched_domain_node_span(int node, struct cpumask *span)
7182 nodemask_t used_nodes;
7183 int i;
7185 cpumask_clear(span);
7186 nodes_clear(used_nodes);
7188 cpumask_or(span, span, cpumask_of_node(node));
7189 node_set(node, used_nodes);
7191 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7192 int next_node = find_next_best_node(node, &used_nodes);
7194 cpumask_or(span, span, cpumask_of_node(next_node));
7197 #endif /* CONFIG_NUMA */
7199 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7202 * The cpus mask in sched_group and sched_domain hangs off the end.
7203 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7204 * for nr_cpu_ids < CONFIG_NR_CPUS.
7206 struct static_sched_group {
7207 struct sched_group sg;
7208 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7211 struct static_sched_domain {
7212 struct sched_domain sd;
7213 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7217 * SMT sched-domains:
7219 #ifdef CONFIG_SCHED_SMT
7220 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7221 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7223 static int
7224 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7225 struct sched_group **sg, struct cpumask *unused)
7227 if (sg)
7228 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7229 return cpu;
7231 #endif /* CONFIG_SCHED_SMT */
7234 * multi-core sched-domains:
7236 #ifdef CONFIG_SCHED_MC
7237 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7238 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7239 #endif /* CONFIG_SCHED_MC */
7241 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7242 static int
7243 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7244 struct sched_group **sg, struct cpumask *mask)
7246 int group;
7248 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7249 group = cpumask_first(mask);
7250 if (sg)
7251 *sg = &per_cpu(sched_group_core, group).sg;
7252 return group;
7254 #elif defined(CONFIG_SCHED_MC)
7255 static int
7256 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7257 struct sched_group **sg, struct cpumask *unused)
7259 if (sg)
7260 *sg = &per_cpu(sched_group_core, cpu).sg;
7261 return cpu;
7263 #endif
7265 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7266 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7268 static int
7269 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7270 struct sched_group **sg, struct cpumask *mask)
7272 int group;
7273 #ifdef CONFIG_SCHED_MC
7274 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7275 group = cpumask_first(mask);
7276 #elif defined(CONFIG_SCHED_SMT)
7277 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7278 group = cpumask_first(mask);
7279 #else
7280 group = cpu;
7281 #endif
7282 if (sg)
7283 *sg = &per_cpu(sched_group_phys, group).sg;
7284 return group;
7287 #ifdef CONFIG_NUMA
7289 * The init_sched_build_groups can't handle what we want to do with node
7290 * groups, so roll our own. Now each node has its own list of groups which
7291 * gets dynamically allocated.
7293 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7294 static struct sched_group ***sched_group_nodes_bycpu;
7296 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7297 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7299 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7300 struct sched_group **sg,
7301 struct cpumask *nodemask)
7303 int group;
7305 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7306 group = cpumask_first(nodemask);
7308 if (sg)
7309 *sg = &per_cpu(sched_group_allnodes, group).sg;
7310 return group;
7313 static void init_numa_sched_groups_power(struct sched_group *group_head)
7315 struct sched_group *sg = group_head;
7316 int j;
7318 if (!sg)
7319 return;
7320 do {
7321 for_each_cpu(j, sched_group_cpus(sg)) {
7322 struct sched_domain *sd;
7324 sd = &per_cpu(phys_domains, j).sd;
7325 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7327 * Only add "power" once for each
7328 * physical package.
7330 continue;
7333 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7335 sg = sg->next;
7336 } while (sg != group_head);
7338 #endif /* CONFIG_NUMA */
7340 #ifdef CONFIG_NUMA
7341 /* Free memory allocated for various sched_group structures */
7342 static void free_sched_groups(const struct cpumask *cpu_map,
7343 struct cpumask *nodemask)
7345 int cpu, i;
7347 for_each_cpu(cpu, cpu_map) {
7348 struct sched_group **sched_group_nodes
7349 = sched_group_nodes_bycpu[cpu];
7351 if (!sched_group_nodes)
7352 continue;
7354 for (i = 0; i < nr_node_ids; i++) {
7355 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7357 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7358 if (cpumask_empty(nodemask))
7359 continue;
7361 if (sg == NULL)
7362 continue;
7363 sg = sg->next;
7364 next_sg:
7365 oldsg = sg;
7366 sg = sg->next;
7367 kfree(oldsg);
7368 if (oldsg != sched_group_nodes[i])
7369 goto next_sg;
7371 kfree(sched_group_nodes);
7372 sched_group_nodes_bycpu[cpu] = NULL;
7375 #else /* !CONFIG_NUMA */
7376 static void free_sched_groups(const struct cpumask *cpu_map,
7377 struct cpumask *nodemask)
7380 #endif /* CONFIG_NUMA */
7383 * Initialize sched groups cpu_power.
7385 * cpu_power indicates the capacity of sched group, which is used while
7386 * distributing the load between different sched groups in a sched domain.
7387 * Typically cpu_power for all the groups in a sched domain will be same unless
7388 * there are asymmetries in the topology. If there are asymmetries, group
7389 * having more cpu_power will pickup more load compared to the group having
7390 * less cpu_power.
7392 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7393 * the maximum number of tasks a group can handle in the presence of other idle
7394 * or lightly loaded groups in the same sched domain.
7396 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7398 struct sched_domain *child;
7399 struct sched_group *group;
7401 WARN_ON(!sd || !sd->groups);
7403 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7404 return;
7406 child = sd->child;
7408 sd->groups->__cpu_power = 0;
7411 * For perf policy, if the groups in child domain share resources
7412 * (for example cores sharing some portions of the cache hierarchy
7413 * or SMT), then set this domain groups cpu_power such that each group
7414 * can handle only one task, when there are other idle groups in the
7415 * same sched domain.
7417 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7418 (child->flags &
7419 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7420 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7421 return;
7425 * add cpu_power of each child group to this groups cpu_power
7427 group = child->groups;
7428 do {
7429 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7430 group = group->next;
7431 } while (group != child->groups);
7435 * Initializers for schedule domains
7436 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7439 #ifdef CONFIG_SCHED_DEBUG
7440 # define SD_INIT_NAME(sd, type) sd->name = #type
7441 #else
7442 # define SD_INIT_NAME(sd, type) do { } while (0)
7443 #endif
7445 #define SD_INIT(sd, type) sd_init_##type(sd)
7447 #define SD_INIT_FUNC(type) \
7448 static noinline void sd_init_##type(struct sched_domain *sd) \
7450 memset(sd, 0, sizeof(*sd)); \
7451 *sd = SD_##type##_INIT; \
7452 sd->level = SD_LV_##type; \
7453 SD_INIT_NAME(sd, type); \
7456 SD_INIT_FUNC(CPU)
7457 #ifdef CONFIG_NUMA
7458 SD_INIT_FUNC(ALLNODES)
7459 SD_INIT_FUNC(NODE)
7460 #endif
7461 #ifdef CONFIG_SCHED_SMT
7462 SD_INIT_FUNC(SIBLING)
7463 #endif
7464 #ifdef CONFIG_SCHED_MC
7465 SD_INIT_FUNC(MC)
7466 #endif
7468 static int default_relax_domain_level = -1;
7470 static int __init setup_relax_domain_level(char *str)
7472 unsigned long val;
7474 val = simple_strtoul(str, NULL, 0);
7475 if (val < SD_LV_MAX)
7476 default_relax_domain_level = val;
7478 return 1;
7480 __setup("relax_domain_level=", setup_relax_domain_level);
7482 static void set_domain_attribute(struct sched_domain *sd,
7483 struct sched_domain_attr *attr)
7485 int request;
7487 if (!attr || attr->relax_domain_level < 0) {
7488 if (default_relax_domain_level < 0)
7489 return;
7490 else
7491 request = default_relax_domain_level;
7492 } else
7493 request = attr->relax_domain_level;
7494 if (request < sd->level) {
7495 /* turn off idle balance on this domain */
7496 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7497 } else {
7498 /* turn on idle balance on this domain */
7499 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7504 * Build sched domains for a given set of cpus and attach the sched domains
7505 * to the individual cpus
7507 static int __build_sched_domains(const struct cpumask *cpu_map,
7508 struct sched_domain_attr *attr)
7510 int i, err = -ENOMEM;
7511 struct root_domain *rd;
7512 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7513 tmpmask;
7514 #ifdef CONFIG_NUMA
7515 cpumask_var_t domainspan, covered, notcovered;
7516 struct sched_group **sched_group_nodes = NULL;
7517 int sd_allnodes = 0;
7519 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7520 goto out;
7521 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7522 goto free_domainspan;
7523 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7524 goto free_covered;
7525 #endif
7527 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7528 goto free_notcovered;
7529 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7530 goto free_nodemask;
7531 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7532 goto free_this_sibling_map;
7533 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7534 goto free_this_core_map;
7535 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7536 goto free_send_covered;
7538 #ifdef CONFIG_NUMA
7540 * Allocate the per-node list of sched groups
7542 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7543 GFP_KERNEL);
7544 if (!sched_group_nodes) {
7545 printk(KERN_WARNING "Can not alloc sched group node list\n");
7546 goto free_tmpmask;
7548 #endif
7550 rd = alloc_rootdomain();
7551 if (!rd) {
7552 printk(KERN_WARNING "Cannot alloc root domain\n");
7553 goto free_sched_groups;
7556 #ifdef CONFIG_NUMA
7557 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7558 #endif
7561 * Set up domains for cpus specified by the cpu_map.
7563 for_each_cpu(i, cpu_map) {
7564 struct sched_domain *sd = NULL, *p;
7566 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7568 #ifdef CONFIG_NUMA
7569 if (cpumask_weight(cpu_map) >
7570 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7571 sd = &per_cpu(allnodes_domains, i).sd;
7572 SD_INIT(sd, ALLNODES);
7573 set_domain_attribute(sd, attr);
7574 cpumask_copy(sched_domain_span(sd), cpu_map);
7575 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7576 p = sd;
7577 sd_allnodes = 1;
7578 } else
7579 p = NULL;
7581 sd = &per_cpu(node_domains, i).sd;
7582 SD_INIT(sd, NODE);
7583 set_domain_attribute(sd, attr);
7584 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7585 sd->parent = p;
7586 if (p)
7587 p->child = sd;
7588 cpumask_and(sched_domain_span(sd),
7589 sched_domain_span(sd), cpu_map);
7590 #endif
7592 p = sd;
7593 sd = &per_cpu(phys_domains, i).sd;
7594 SD_INIT(sd, CPU);
7595 set_domain_attribute(sd, attr);
7596 cpumask_copy(sched_domain_span(sd), nodemask);
7597 sd->parent = p;
7598 if (p)
7599 p->child = sd;
7600 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7602 #ifdef CONFIG_SCHED_MC
7603 p = sd;
7604 sd = &per_cpu(core_domains, i).sd;
7605 SD_INIT(sd, MC);
7606 set_domain_attribute(sd, attr);
7607 cpumask_and(sched_domain_span(sd), cpu_map,
7608 cpu_coregroup_mask(i));
7609 sd->parent = p;
7610 p->child = sd;
7611 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7612 #endif
7614 #ifdef CONFIG_SCHED_SMT
7615 p = sd;
7616 sd = &per_cpu(cpu_domains, i).sd;
7617 SD_INIT(sd, SIBLING);
7618 set_domain_attribute(sd, attr);
7619 cpumask_and(sched_domain_span(sd),
7620 &per_cpu(cpu_sibling_map, i), cpu_map);
7621 sd->parent = p;
7622 p->child = sd;
7623 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7624 #endif
7627 #ifdef CONFIG_SCHED_SMT
7628 /* Set up CPU (sibling) groups */
7629 for_each_cpu(i, cpu_map) {
7630 cpumask_and(this_sibling_map,
7631 &per_cpu(cpu_sibling_map, i), cpu_map);
7632 if (i != cpumask_first(this_sibling_map))
7633 continue;
7635 init_sched_build_groups(this_sibling_map, cpu_map,
7636 &cpu_to_cpu_group,
7637 send_covered, tmpmask);
7639 #endif
7641 #ifdef CONFIG_SCHED_MC
7642 /* Set up multi-core groups */
7643 for_each_cpu(i, cpu_map) {
7644 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7645 if (i != cpumask_first(this_core_map))
7646 continue;
7648 init_sched_build_groups(this_core_map, cpu_map,
7649 &cpu_to_core_group,
7650 send_covered, tmpmask);
7652 #endif
7654 /* Set up physical groups */
7655 for (i = 0; i < nr_node_ids; i++) {
7656 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7657 if (cpumask_empty(nodemask))
7658 continue;
7660 init_sched_build_groups(nodemask, cpu_map,
7661 &cpu_to_phys_group,
7662 send_covered, tmpmask);
7665 #ifdef CONFIG_NUMA
7666 /* Set up node groups */
7667 if (sd_allnodes) {
7668 init_sched_build_groups(cpu_map, cpu_map,
7669 &cpu_to_allnodes_group,
7670 send_covered, tmpmask);
7673 for (i = 0; i < nr_node_ids; i++) {
7674 /* Set up node groups */
7675 struct sched_group *sg, *prev;
7676 int j;
7678 cpumask_clear(covered);
7679 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7680 if (cpumask_empty(nodemask)) {
7681 sched_group_nodes[i] = NULL;
7682 continue;
7685 sched_domain_node_span(i, domainspan);
7686 cpumask_and(domainspan, domainspan, cpu_map);
7688 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7689 GFP_KERNEL, i);
7690 if (!sg) {
7691 printk(KERN_WARNING "Can not alloc domain group for "
7692 "node %d\n", i);
7693 goto error;
7695 sched_group_nodes[i] = sg;
7696 for_each_cpu(j, nodemask) {
7697 struct sched_domain *sd;
7699 sd = &per_cpu(node_domains, j).sd;
7700 sd->groups = sg;
7702 sg->__cpu_power = 0;
7703 cpumask_copy(sched_group_cpus(sg), nodemask);
7704 sg->next = sg;
7705 cpumask_or(covered, covered, nodemask);
7706 prev = sg;
7708 for (j = 0; j < nr_node_ids; j++) {
7709 int n = (i + j) % nr_node_ids;
7711 cpumask_complement(notcovered, covered);
7712 cpumask_and(tmpmask, notcovered, cpu_map);
7713 cpumask_and(tmpmask, tmpmask, domainspan);
7714 if (cpumask_empty(tmpmask))
7715 break;
7717 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7718 if (cpumask_empty(tmpmask))
7719 continue;
7721 sg = kmalloc_node(sizeof(struct sched_group) +
7722 cpumask_size(),
7723 GFP_KERNEL, i);
7724 if (!sg) {
7725 printk(KERN_WARNING
7726 "Can not alloc domain group for node %d\n", j);
7727 goto error;
7729 sg->__cpu_power = 0;
7730 cpumask_copy(sched_group_cpus(sg), tmpmask);
7731 sg->next = prev->next;
7732 cpumask_or(covered, covered, tmpmask);
7733 prev->next = sg;
7734 prev = sg;
7737 #endif
7739 /* Calculate CPU power for physical packages and nodes */
7740 #ifdef CONFIG_SCHED_SMT
7741 for_each_cpu(i, cpu_map) {
7742 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7744 init_sched_groups_power(i, sd);
7746 #endif
7747 #ifdef CONFIG_SCHED_MC
7748 for_each_cpu(i, cpu_map) {
7749 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7751 init_sched_groups_power(i, sd);
7753 #endif
7755 for_each_cpu(i, cpu_map) {
7756 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7758 init_sched_groups_power(i, sd);
7761 #ifdef CONFIG_NUMA
7762 for (i = 0; i < nr_node_ids; i++)
7763 init_numa_sched_groups_power(sched_group_nodes[i]);
7765 if (sd_allnodes) {
7766 struct sched_group *sg;
7768 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7769 tmpmask);
7770 init_numa_sched_groups_power(sg);
7772 #endif
7774 /* Attach the domains */
7775 for_each_cpu(i, cpu_map) {
7776 struct sched_domain *sd;
7777 #ifdef CONFIG_SCHED_SMT
7778 sd = &per_cpu(cpu_domains, i).sd;
7779 #elif defined(CONFIG_SCHED_MC)
7780 sd = &per_cpu(core_domains, i).sd;
7781 #else
7782 sd = &per_cpu(phys_domains, i).sd;
7783 #endif
7784 cpu_attach_domain(sd, rd, i);
7787 err = 0;
7789 free_tmpmask:
7790 free_cpumask_var(tmpmask);
7791 free_send_covered:
7792 free_cpumask_var(send_covered);
7793 free_this_core_map:
7794 free_cpumask_var(this_core_map);
7795 free_this_sibling_map:
7796 free_cpumask_var(this_sibling_map);
7797 free_nodemask:
7798 free_cpumask_var(nodemask);
7799 free_notcovered:
7800 #ifdef CONFIG_NUMA
7801 free_cpumask_var(notcovered);
7802 free_covered:
7803 free_cpumask_var(covered);
7804 free_domainspan:
7805 free_cpumask_var(domainspan);
7806 out:
7807 #endif
7808 return err;
7810 free_sched_groups:
7811 #ifdef CONFIG_NUMA
7812 kfree(sched_group_nodes);
7813 #endif
7814 goto free_tmpmask;
7816 #ifdef CONFIG_NUMA
7817 error:
7818 free_sched_groups(cpu_map, tmpmask);
7819 free_rootdomain(rd);
7820 goto free_tmpmask;
7821 #endif
7824 static int build_sched_domains(const struct cpumask *cpu_map)
7826 return __build_sched_domains(cpu_map, NULL);
7829 static struct cpumask *doms_cur; /* current sched domains */
7830 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7831 static struct sched_domain_attr *dattr_cur;
7832 /* attribues of custom domains in 'doms_cur' */
7835 * Special case: If a kmalloc of a doms_cur partition (array of
7836 * cpumask) fails, then fallback to a single sched domain,
7837 * as determined by the single cpumask fallback_doms.
7839 static cpumask_var_t fallback_doms;
7842 * arch_update_cpu_topology lets virtualized architectures update the
7843 * cpu core maps. It is supposed to return 1 if the topology changed
7844 * or 0 if it stayed the same.
7846 int __attribute__((weak)) arch_update_cpu_topology(void)
7848 return 0;
7852 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7853 * For now this just excludes isolated cpus, but could be used to
7854 * exclude other special cases in the future.
7856 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7858 int err;
7860 arch_update_cpu_topology();
7861 ndoms_cur = 1;
7862 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7863 if (!doms_cur)
7864 doms_cur = fallback_doms;
7865 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7866 dattr_cur = NULL;
7867 err = build_sched_domains(doms_cur);
7868 register_sched_domain_sysctl();
7870 return err;
7873 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7874 struct cpumask *tmpmask)
7876 free_sched_groups(cpu_map, tmpmask);
7880 * Detach sched domains from a group of cpus specified in cpu_map
7881 * These cpus will now be attached to the NULL domain
7883 static void detach_destroy_domains(const struct cpumask *cpu_map)
7885 /* Save because hotplug lock held. */
7886 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7887 int i;
7889 for_each_cpu(i, cpu_map)
7890 cpu_attach_domain(NULL, &def_root_domain, i);
7891 synchronize_sched();
7892 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7895 /* handle null as "default" */
7896 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7897 struct sched_domain_attr *new, int idx_new)
7899 struct sched_domain_attr tmp;
7901 /* fast path */
7902 if (!new && !cur)
7903 return 1;
7905 tmp = SD_ATTR_INIT;
7906 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7907 new ? (new + idx_new) : &tmp,
7908 sizeof(struct sched_domain_attr));
7912 * Partition sched domains as specified by the 'ndoms_new'
7913 * cpumasks in the array doms_new[] of cpumasks. This compares
7914 * doms_new[] to the current sched domain partitioning, doms_cur[].
7915 * It destroys each deleted domain and builds each new domain.
7917 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7918 * The masks don't intersect (don't overlap.) We should setup one
7919 * sched domain for each mask. CPUs not in any of the cpumasks will
7920 * not be load balanced. If the same cpumask appears both in the
7921 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7922 * it as it is.
7924 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7925 * ownership of it and will kfree it when done with it. If the caller
7926 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7927 * ndoms_new == 1, and partition_sched_domains() will fallback to
7928 * the single partition 'fallback_doms', it also forces the domains
7929 * to be rebuilt.
7931 * If doms_new == NULL it will be replaced with cpu_online_mask.
7932 * ndoms_new == 0 is a special case for destroying existing domains,
7933 * and it will not create the default domain.
7935 * Call with hotplug lock held
7937 /* FIXME: Change to struct cpumask *doms_new[] */
7938 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7939 struct sched_domain_attr *dattr_new)
7941 int i, j, n;
7942 int new_topology;
7944 mutex_lock(&sched_domains_mutex);
7946 /* always unregister in case we don't destroy any domains */
7947 unregister_sched_domain_sysctl();
7949 /* Let architecture update cpu core mappings. */
7950 new_topology = arch_update_cpu_topology();
7952 n = doms_new ? ndoms_new : 0;
7954 /* Destroy deleted domains */
7955 for (i = 0; i < ndoms_cur; i++) {
7956 for (j = 0; j < n && !new_topology; j++) {
7957 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7958 && dattrs_equal(dattr_cur, i, dattr_new, j))
7959 goto match1;
7961 /* no match - a current sched domain not in new doms_new[] */
7962 detach_destroy_domains(doms_cur + i);
7963 match1:
7967 if (doms_new == NULL) {
7968 ndoms_cur = 0;
7969 doms_new = fallback_doms;
7970 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7971 WARN_ON_ONCE(dattr_new);
7974 /* Build new domains */
7975 for (i = 0; i < ndoms_new; i++) {
7976 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7977 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7978 && dattrs_equal(dattr_new, i, dattr_cur, j))
7979 goto match2;
7981 /* no match - add a new doms_new */
7982 __build_sched_domains(doms_new + i,
7983 dattr_new ? dattr_new + i : NULL);
7984 match2:
7988 /* Remember the new sched domains */
7989 if (doms_cur != fallback_doms)
7990 kfree(doms_cur);
7991 kfree(dattr_cur); /* kfree(NULL) is safe */
7992 doms_cur = doms_new;
7993 dattr_cur = dattr_new;
7994 ndoms_cur = ndoms_new;
7996 register_sched_domain_sysctl();
7998 mutex_unlock(&sched_domains_mutex);
8001 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8002 static void arch_reinit_sched_domains(void)
8004 get_online_cpus();
8006 /* Destroy domains first to force the rebuild */
8007 partition_sched_domains(0, NULL, NULL);
8009 rebuild_sched_domains();
8010 put_online_cpus();
8013 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8015 unsigned int level = 0;
8017 if (sscanf(buf, "%u", &level) != 1)
8018 return -EINVAL;
8021 * level is always be positive so don't check for
8022 * level < POWERSAVINGS_BALANCE_NONE which is 0
8023 * What happens on 0 or 1 byte write,
8024 * need to check for count as well?
8027 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8028 return -EINVAL;
8030 if (smt)
8031 sched_smt_power_savings = level;
8032 else
8033 sched_mc_power_savings = level;
8035 arch_reinit_sched_domains();
8037 return count;
8040 #ifdef CONFIG_SCHED_MC
8041 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8042 char *page)
8044 return sprintf(page, "%u\n", sched_mc_power_savings);
8046 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8047 const char *buf, size_t count)
8049 return sched_power_savings_store(buf, count, 0);
8051 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8052 sched_mc_power_savings_show,
8053 sched_mc_power_savings_store);
8054 #endif
8056 #ifdef CONFIG_SCHED_SMT
8057 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8058 char *page)
8060 return sprintf(page, "%u\n", sched_smt_power_savings);
8062 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8063 const char *buf, size_t count)
8065 return sched_power_savings_store(buf, count, 1);
8067 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8068 sched_smt_power_savings_show,
8069 sched_smt_power_savings_store);
8070 #endif
8072 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8074 int err = 0;
8076 #ifdef CONFIG_SCHED_SMT
8077 if (smt_capable())
8078 err = sysfs_create_file(&cls->kset.kobj,
8079 &attr_sched_smt_power_savings.attr);
8080 #endif
8081 #ifdef CONFIG_SCHED_MC
8082 if (!err && mc_capable())
8083 err = sysfs_create_file(&cls->kset.kobj,
8084 &attr_sched_mc_power_savings.attr);
8085 #endif
8086 return err;
8088 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8090 #ifndef CONFIG_CPUSETS
8092 * Add online and remove offline CPUs from the scheduler domains.
8093 * When cpusets are enabled they take over this function.
8095 static int update_sched_domains(struct notifier_block *nfb,
8096 unsigned long action, void *hcpu)
8098 switch (action) {
8099 case CPU_ONLINE:
8100 case CPU_ONLINE_FROZEN:
8101 case CPU_DEAD:
8102 case CPU_DEAD_FROZEN:
8103 partition_sched_domains(1, NULL, NULL);
8104 return NOTIFY_OK;
8106 default:
8107 return NOTIFY_DONE;
8110 #endif
8112 static int update_runtime(struct notifier_block *nfb,
8113 unsigned long action, void *hcpu)
8115 int cpu = (int)(long)hcpu;
8117 switch (action) {
8118 case CPU_DOWN_PREPARE:
8119 case CPU_DOWN_PREPARE_FROZEN:
8120 disable_runtime(cpu_rq(cpu));
8121 return NOTIFY_OK;
8123 case CPU_DOWN_FAILED:
8124 case CPU_DOWN_FAILED_FROZEN:
8125 case CPU_ONLINE:
8126 case CPU_ONLINE_FROZEN:
8127 enable_runtime(cpu_rq(cpu));
8128 return NOTIFY_OK;
8130 default:
8131 return NOTIFY_DONE;
8135 void __init sched_init_smp(void)
8137 cpumask_var_t non_isolated_cpus;
8139 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8141 #if defined(CONFIG_NUMA)
8142 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8143 GFP_KERNEL);
8144 BUG_ON(sched_group_nodes_bycpu == NULL);
8145 #endif
8146 get_online_cpus();
8147 mutex_lock(&sched_domains_mutex);
8148 arch_init_sched_domains(cpu_online_mask);
8149 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8150 if (cpumask_empty(non_isolated_cpus))
8151 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8152 mutex_unlock(&sched_domains_mutex);
8153 put_online_cpus();
8155 #ifndef CONFIG_CPUSETS
8156 /* XXX: Theoretical race here - CPU may be hotplugged now */
8157 hotcpu_notifier(update_sched_domains, 0);
8158 #endif
8160 /* RT runtime code needs to handle some hotplug events */
8161 hotcpu_notifier(update_runtime, 0);
8163 init_hrtick();
8165 /* Move init over to a non-isolated CPU */
8166 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8167 BUG();
8168 sched_init_granularity();
8169 free_cpumask_var(non_isolated_cpus);
8171 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8172 init_sched_rt_class();
8174 #else
8175 void __init sched_init_smp(void)
8177 sched_init_granularity();
8179 #endif /* CONFIG_SMP */
8181 int in_sched_functions(unsigned long addr)
8183 return in_lock_functions(addr) ||
8184 (addr >= (unsigned long)__sched_text_start
8185 && addr < (unsigned long)__sched_text_end);
8188 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8190 cfs_rq->tasks_timeline = RB_ROOT;
8191 INIT_LIST_HEAD(&cfs_rq->tasks);
8192 #ifdef CONFIG_FAIR_GROUP_SCHED
8193 cfs_rq->rq = rq;
8194 #endif
8195 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8198 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8200 struct rt_prio_array *array;
8201 int i;
8203 array = &rt_rq->active;
8204 for (i = 0; i < MAX_RT_PRIO; i++) {
8205 INIT_LIST_HEAD(array->queue + i);
8206 __clear_bit(i, array->bitmap);
8208 /* delimiter for bitsearch: */
8209 __set_bit(MAX_RT_PRIO, array->bitmap);
8211 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8212 rt_rq->highest_prio = MAX_RT_PRIO;
8213 #endif
8214 #ifdef CONFIG_SMP
8215 rt_rq->rt_nr_migratory = 0;
8216 rt_rq->overloaded = 0;
8217 #endif
8219 rt_rq->rt_time = 0;
8220 rt_rq->rt_throttled = 0;
8221 rt_rq->rt_runtime = 0;
8222 spin_lock_init(&rt_rq->rt_runtime_lock);
8224 #ifdef CONFIG_RT_GROUP_SCHED
8225 rt_rq->rt_nr_boosted = 0;
8226 rt_rq->rq = rq;
8227 #endif
8230 #ifdef CONFIG_FAIR_GROUP_SCHED
8231 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8232 struct sched_entity *se, int cpu, int add,
8233 struct sched_entity *parent)
8235 struct rq *rq = cpu_rq(cpu);
8236 tg->cfs_rq[cpu] = cfs_rq;
8237 init_cfs_rq(cfs_rq, rq);
8238 cfs_rq->tg = tg;
8239 if (add)
8240 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8242 tg->se[cpu] = se;
8243 /* se could be NULL for init_task_group */
8244 if (!se)
8245 return;
8247 if (!parent)
8248 se->cfs_rq = &rq->cfs;
8249 else
8250 se->cfs_rq = parent->my_q;
8252 se->my_q = cfs_rq;
8253 se->load.weight = tg->shares;
8254 se->load.inv_weight = 0;
8255 se->parent = parent;
8257 #endif
8259 #ifdef CONFIG_RT_GROUP_SCHED
8260 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8261 struct sched_rt_entity *rt_se, int cpu, int add,
8262 struct sched_rt_entity *parent)
8264 struct rq *rq = cpu_rq(cpu);
8266 tg->rt_rq[cpu] = rt_rq;
8267 init_rt_rq(rt_rq, rq);
8268 rt_rq->tg = tg;
8269 rt_rq->rt_se = rt_se;
8270 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8271 if (add)
8272 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8274 tg->rt_se[cpu] = rt_se;
8275 if (!rt_se)
8276 return;
8278 if (!parent)
8279 rt_se->rt_rq = &rq->rt;
8280 else
8281 rt_se->rt_rq = parent->my_q;
8283 rt_se->my_q = rt_rq;
8284 rt_se->parent = parent;
8285 INIT_LIST_HEAD(&rt_se->run_list);
8287 #endif
8289 void __init sched_init(void)
8291 int i, j;
8292 unsigned long alloc_size = 0, ptr;
8294 #ifdef CONFIG_FAIR_GROUP_SCHED
8295 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8296 #endif
8297 #ifdef CONFIG_RT_GROUP_SCHED
8298 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8299 #endif
8300 #ifdef CONFIG_USER_SCHED
8301 alloc_size *= 2;
8302 #endif
8304 * As sched_init() is called before page_alloc is setup,
8305 * we use alloc_bootmem().
8307 if (alloc_size) {
8308 ptr = (unsigned long)alloc_bootmem(alloc_size);
8310 #ifdef CONFIG_FAIR_GROUP_SCHED
8311 init_task_group.se = (struct sched_entity **)ptr;
8312 ptr += nr_cpu_ids * sizeof(void **);
8314 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8315 ptr += nr_cpu_ids * sizeof(void **);
8317 #ifdef CONFIG_USER_SCHED
8318 root_task_group.se = (struct sched_entity **)ptr;
8319 ptr += nr_cpu_ids * sizeof(void **);
8321 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8322 ptr += nr_cpu_ids * sizeof(void **);
8323 #endif /* CONFIG_USER_SCHED */
8324 #endif /* CONFIG_FAIR_GROUP_SCHED */
8325 #ifdef CONFIG_RT_GROUP_SCHED
8326 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8327 ptr += nr_cpu_ids * sizeof(void **);
8329 init_task_group.rt_rq = (struct rt_rq **)ptr;
8330 ptr += nr_cpu_ids * sizeof(void **);
8332 #ifdef CONFIG_USER_SCHED
8333 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8334 ptr += nr_cpu_ids * sizeof(void **);
8336 root_task_group.rt_rq = (struct rt_rq **)ptr;
8337 ptr += nr_cpu_ids * sizeof(void **);
8338 #endif /* CONFIG_USER_SCHED */
8339 #endif /* CONFIG_RT_GROUP_SCHED */
8342 #ifdef CONFIG_SMP
8343 init_defrootdomain();
8344 #endif
8346 init_rt_bandwidth(&def_rt_bandwidth,
8347 global_rt_period(), global_rt_runtime());
8349 #ifdef CONFIG_RT_GROUP_SCHED
8350 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8351 global_rt_period(), global_rt_runtime());
8352 #ifdef CONFIG_USER_SCHED
8353 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8354 global_rt_period(), RUNTIME_INF);
8355 #endif /* CONFIG_USER_SCHED */
8356 #endif /* CONFIG_RT_GROUP_SCHED */
8358 #ifdef CONFIG_GROUP_SCHED
8359 list_add(&init_task_group.list, &task_groups);
8360 INIT_LIST_HEAD(&init_task_group.children);
8362 #ifdef CONFIG_USER_SCHED
8363 INIT_LIST_HEAD(&root_task_group.children);
8364 init_task_group.parent = &root_task_group;
8365 list_add(&init_task_group.siblings, &root_task_group.children);
8366 #endif /* CONFIG_USER_SCHED */
8367 #endif /* CONFIG_GROUP_SCHED */
8369 for_each_possible_cpu(i) {
8370 struct rq *rq;
8372 rq = cpu_rq(i);
8373 spin_lock_init(&rq->lock);
8374 rq->nr_running = 0;
8375 init_cfs_rq(&rq->cfs, rq);
8376 init_rt_rq(&rq->rt, rq);
8377 #ifdef CONFIG_FAIR_GROUP_SCHED
8378 init_task_group.shares = init_task_group_load;
8379 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8380 #ifdef CONFIG_CGROUP_SCHED
8382 * How much cpu bandwidth does init_task_group get?
8384 * In case of task-groups formed thr' the cgroup filesystem, it
8385 * gets 100% of the cpu resources in the system. This overall
8386 * system cpu resource is divided among the tasks of
8387 * init_task_group and its child task-groups in a fair manner,
8388 * based on each entity's (task or task-group's) weight
8389 * (se->load.weight).
8391 * In other words, if init_task_group has 10 tasks of weight
8392 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8393 * then A0's share of the cpu resource is:
8395 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8397 * We achieve this by letting init_task_group's tasks sit
8398 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8400 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8401 #elif defined CONFIG_USER_SCHED
8402 root_task_group.shares = NICE_0_LOAD;
8403 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8405 * In case of task-groups formed thr' the user id of tasks,
8406 * init_task_group represents tasks belonging to root user.
8407 * Hence it forms a sibling of all subsequent groups formed.
8408 * In this case, init_task_group gets only a fraction of overall
8409 * system cpu resource, based on the weight assigned to root
8410 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8411 * by letting tasks of init_task_group sit in a separate cfs_rq
8412 * (init_cfs_rq) and having one entity represent this group of
8413 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8415 init_tg_cfs_entry(&init_task_group,
8416 &per_cpu(init_cfs_rq, i),
8417 &per_cpu(init_sched_entity, i), i, 1,
8418 root_task_group.se[i]);
8420 #endif
8421 #endif /* CONFIG_FAIR_GROUP_SCHED */
8423 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8424 #ifdef CONFIG_RT_GROUP_SCHED
8425 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8426 #ifdef CONFIG_CGROUP_SCHED
8427 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8428 #elif defined CONFIG_USER_SCHED
8429 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8430 init_tg_rt_entry(&init_task_group,
8431 &per_cpu(init_rt_rq, i),
8432 &per_cpu(init_sched_rt_entity, i), i, 1,
8433 root_task_group.rt_se[i]);
8434 #endif
8435 #endif
8437 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8438 rq->cpu_load[j] = 0;
8439 #ifdef CONFIG_SMP
8440 rq->sd = NULL;
8441 rq->rd = NULL;
8442 rq->active_balance = 0;
8443 rq->next_balance = jiffies;
8444 rq->push_cpu = 0;
8445 rq->cpu = i;
8446 rq->online = 0;
8447 rq->migration_thread = NULL;
8448 INIT_LIST_HEAD(&rq->migration_queue);
8449 rq_attach_root(rq, &def_root_domain);
8450 #endif
8451 init_rq_hrtick(rq);
8452 atomic_set(&rq->nr_iowait, 0);
8455 set_load_weight(&init_task);
8457 #ifdef CONFIG_PREEMPT_NOTIFIERS
8458 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8459 #endif
8461 #ifdef CONFIG_SMP
8462 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8463 #endif
8465 #ifdef CONFIG_RT_MUTEXES
8466 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8467 #endif
8470 * The boot idle thread does lazy MMU switching as well:
8472 atomic_inc(&init_mm.mm_count);
8473 enter_lazy_tlb(&init_mm, current);
8476 * Make us the idle thread. Technically, schedule() should not be
8477 * called from this thread, however somewhere below it might be,
8478 * but because we are the idle thread, we just pick up running again
8479 * when this runqueue becomes "idle".
8481 init_idle(current, smp_processor_id());
8483 * During early bootup we pretend to be a normal task:
8485 current->sched_class = &fair_sched_class;
8487 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8488 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8489 #ifdef CONFIG_SMP
8490 #ifdef CONFIG_NO_HZ
8491 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8492 #endif
8493 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8494 #endif /* SMP */
8496 scheduler_running = 1;
8499 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8500 void __might_sleep(char *file, int line)
8502 #ifdef in_atomic
8503 static unsigned long prev_jiffy; /* ratelimiting */
8505 if ((!in_atomic() && !irqs_disabled()) ||
8506 system_state != SYSTEM_RUNNING || oops_in_progress)
8507 return;
8508 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8509 return;
8510 prev_jiffy = jiffies;
8512 printk(KERN_ERR
8513 "BUG: sleeping function called from invalid context at %s:%d\n",
8514 file, line);
8515 printk(KERN_ERR
8516 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8517 in_atomic(), irqs_disabled(),
8518 current->pid, current->comm);
8520 debug_show_held_locks(current);
8521 if (irqs_disabled())
8522 print_irqtrace_events(current);
8523 dump_stack();
8524 #endif
8526 EXPORT_SYMBOL(__might_sleep);
8527 #endif
8529 #ifdef CONFIG_MAGIC_SYSRQ
8530 static void normalize_task(struct rq *rq, struct task_struct *p)
8532 int on_rq;
8534 update_rq_clock(rq);
8535 on_rq = p->se.on_rq;
8536 if (on_rq)
8537 deactivate_task(rq, p, 0);
8538 __setscheduler(rq, p, SCHED_NORMAL, 0);
8539 if (on_rq) {
8540 activate_task(rq, p, 0);
8541 resched_task(rq->curr);
8545 void normalize_rt_tasks(void)
8547 struct task_struct *g, *p;
8548 unsigned long flags;
8549 struct rq *rq;
8551 read_lock_irqsave(&tasklist_lock, flags);
8552 do_each_thread(g, p) {
8554 * Only normalize user tasks:
8556 if (!p->mm)
8557 continue;
8559 p->se.exec_start = 0;
8560 #ifdef CONFIG_SCHEDSTATS
8561 p->se.wait_start = 0;
8562 p->se.sleep_start = 0;
8563 p->se.block_start = 0;
8564 #endif
8566 if (!rt_task(p)) {
8568 * Renice negative nice level userspace
8569 * tasks back to 0:
8571 if (TASK_NICE(p) < 0 && p->mm)
8572 set_user_nice(p, 0);
8573 continue;
8576 spin_lock(&p->pi_lock);
8577 rq = __task_rq_lock(p);
8579 normalize_task(rq, p);
8581 __task_rq_unlock(rq);
8582 spin_unlock(&p->pi_lock);
8583 } while_each_thread(g, p);
8585 read_unlock_irqrestore(&tasklist_lock, flags);
8588 #endif /* CONFIG_MAGIC_SYSRQ */
8590 #ifdef CONFIG_IA64
8592 * These functions are only useful for the IA64 MCA handling.
8594 * They can only be called when the whole system has been
8595 * stopped - every CPU needs to be quiescent, and no scheduling
8596 * activity can take place. Using them for anything else would
8597 * be a serious bug, and as a result, they aren't even visible
8598 * under any other configuration.
8602 * curr_task - return the current task for a given cpu.
8603 * @cpu: the processor in question.
8605 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8607 struct task_struct *curr_task(int cpu)
8609 return cpu_curr(cpu);
8613 * set_curr_task - set the current task for a given cpu.
8614 * @cpu: the processor in question.
8615 * @p: the task pointer to set.
8617 * Description: This function must only be used when non-maskable interrupts
8618 * are serviced on a separate stack. It allows the architecture to switch the
8619 * notion of the current task on a cpu in a non-blocking manner. This function
8620 * must be called with all CPU's synchronized, and interrupts disabled, the
8621 * and caller must save the original value of the current task (see
8622 * curr_task() above) and restore that value before reenabling interrupts and
8623 * re-starting the system.
8625 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8627 void set_curr_task(int cpu, struct task_struct *p)
8629 cpu_curr(cpu) = p;
8632 #endif
8634 #ifdef CONFIG_FAIR_GROUP_SCHED
8635 static void free_fair_sched_group(struct task_group *tg)
8637 int i;
8639 for_each_possible_cpu(i) {
8640 if (tg->cfs_rq)
8641 kfree(tg->cfs_rq[i]);
8642 if (tg->se)
8643 kfree(tg->se[i]);
8646 kfree(tg->cfs_rq);
8647 kfree(tg->se);
8650 static
8651 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8653 struct cfs_rq *cfs_rq;
8654 struct sched_entity *se;
8655 struct rq *rq;
8656 int i;
8658 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8659 if (!tg->cfs_rq)
8660 goto err;
8661 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8662 if (!tg->se)
8663 goto err;
8665 tg->shares = NICE_0_LOAD;
8667 for_each_possible_cpu(i) {
8668 rq = cpu_rq(i);
8670 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8671 GFP_KERNEL, cpu_to_node(i));
8672 if (!cfs_rq)
8673 goto err;
8675 se = kzalloc_node(sizeof(struct sched_entity),
8676 GFP_KERNEL, cpu_to_node(i));
8677 if (!se)
8678 goto err;
8680 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8683 return 1;
8685 err:
8686 return 0;
8689 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8691 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8692 &cpu_rq(cpu)->leaf_cfs_rq_list);
8695 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8697 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8699 #else /* !CONFG_FAIR_GROUP_SCHED */
8700 static inline void free_fair_sched_group(struct task_group *tg)
8704 static inline
8705 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8707 return 1;
8710 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8714 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8717 #endif /* CONFIG_FAIR_GROUP_SCHED */
8719 #ifdef CONFIG_RT_GROUP_SCHED
8720 static void free_rt_sched_group(struct task_group *tg)
8722 int i;
8724 destroy_rt_bandwidth(&tg->rt_bandwidth);
8726 for_each_possible_cpu(i) {
8727 if (tg->rt_rq)
8728 kfree(tg->rt_rq[i]);
8729 if (tg->rt_se)
8730 kfree(tg->rt_se[i]);
8733 kfree(tg->rt_rq);
8734 kfree(tg->rt_se);
8737 static
8738 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8740 struct rt_rq *rt_rq;
8741 struct sched_rt_entity *rt_se;
8742 struct rq *rq;
8743 int i;
8745 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8746 if (!tg->rt_rq)
8747 goto err;
8748 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8749 if (!tg->rt_se)
8750 goto err;
8752 init_rt_bandwidth(&tg->rt_bandwidth,
8753 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8755 for_each_possible_cpu(i) {
8756 rq = cpu_rq(i);
8758 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8759 GFP_KERNEL, cpu_to_node(i));
8760 if (!rt_rq)
8761 goto err;
8763 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8764 GFP_KERNEL, cpu_to_node(i));
8765 if (!rt_se)
8766 goto err;
8768 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8771 return 1;
8773 err:
8774 return 0;
8777 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8779 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8780 &cpu_rq(cpu)->leaf_rt_rq_list);
8783 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8785 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8787 #else /* !CONFIG_RT_GROUP_SCHED */
8788 static inline void free_rt_sched_group(struct task_group *tg)
8792 static inline
8793 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8795 return 1;
8798 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8802 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8805 #endif /* CONFIG_RT_GROUP_SCHED */
8807 #ifdef CONFIG_GROUP_SCHED
8808 static void free_sched_group(struct task_group *tg)
8810 free_fair_sched_group(tg);
8811 free_rt_sched_group(tg);
8812 kfree(tg);
8815 /* allocate runqueue etc for a new task group */
8816 struct task_group *sched_create_group(struct task_group *parent)
8818 struct task_group *tg;
8819 unsigned long flags;
8820 int i;
8822 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8823 if (!tg)
8824 return ERR_PTR(-ENOMEM);
8826 if (!alloc_fair_sched_group(tg, parent))
8827 goto err;
8829 if (!alloc_rt_sched_group(tg, parent))
8830 goto err;
8832 spin_lock_irqsave(&task_group_lock, flags);
8833 for_each_possible_cpu(i) {
8834 register_fair_sched_group(tg, i);
8835 register_rt_sched_group(tg, i);
8837 list_add_rcu(&tg->list, &task_groups);
8839 WARN_ON(!parent); /* root should already exist */
8841 tg->parent = parent;
8842 INIT_LIST_HEAD(&tg->children);
8843 list_add_rcu(&tg->siblings, &parent->children);
8844 spin_unlock_irqrestore(&task_group_lock, flags);
8846 return tg;
8848 err:
8849 free_sched_group(tg);
8850 return ERR_PTR(-ENOMEM);
8853 /* rcu callback to free various structures associated with a task group */
8854 static void free_sched_group_rcu(struct rcu_head *rhp)
8856 /* now it should be safe to free those cfs_rqs */
8857 free_sched_group(container_of(rhp, struct task_group, rcu));
8860 /* Destroy runqueue etc associated with a task group */
8861 void sched_destroy_group(struct task_group *tg)
8863 unsigned long flags;
8864 int i;
8866 spin_lock_irqsave(&task_group_lock, flags);
8867 for_each_possible_cpu(i) {
8868 unregister_fair_sched_group(tg, i);
8869 unregister_rt_sched_group(tg, i);
8871 list_del_rcu(&tg->list);
8872 list_del_rcu(&tg->siblings);
8873 spin_unlock_irqrestore(&task_group_lock, flags);
8875 /* wait for possible concurrent references to cfs_rqs complete */
8876 call_rcu(&tg->rcu, free_sched_group_rcu);
8879 /* change task's runqueue when it moves between groups.
8880 * The caller of this function should have put the task in its new group
8881 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8882 * reflect its new group.
8884 void sched_move_task(struct task_struct *tsk)
8886 int on_rq, running;
8887 unsigned long flags;
8888 struct rq *rq;
8890 rq = task_rq_lock(tsk, &flags);
8892 update_rq_clock(rq);
8894 running = task_current(rq, tsk);
8895 on_rq = tsk->se.on_rq;
8897 if (on_rq)
8898 dequeue_task(rq, tsk, 0);
8899 if (unlikely(running))
8900 tsk->sched_class->put_prev_task(rq, tsk);
8902 set_task_rq(tsk, task_cpu(tsk));
8904 #ifdef CONFIG_FAIR_GROUP_SCHED
8905 if (tsk->sched_class->moved_group)
8906 tsk->sched_class->moved_group(tsk);
8907 #endif
8909 if (unlikely(running))
8910 tsk->sched_class->set_curr_task(rq);
8911 if (on_rq)
8912 enqueue_task(rq, tsk, 0);
8914 task_rq_unlock(rq, &flags);
8916 #endif /* CONFIG_GROUP_SCHED */
8918 #ifdef CONFIG_FAIR_GROUP_SCHED
8919 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8921 struct cfs_rq *cfs_rq = se->cfs_rq;
8922 int on_rq;
8924 on_rq = se->on_rq;
8925 if (on_rq)
8926 dequeue_entity(cfs_rq, se, 0);
8928 se->load.weight = shares;
8929 se->load.inv_weight = 0;
8931 if (on_rq)
8932 enqueue_entity(cfs_rq, se, 0);
8935 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8937 struct cfs_rq *cfs_rq = se->cfs_rq;
8938 struct rq *rq = cfs_rq->rq;
8939 unsigned long flags;
8941 spin_lock_irqsave(&rq->lock, flags);
8942 __set_se_shares(se, shares);
8943 spin_unlock_irqrestore(&rq->lock, flags);
8946 static DEFINE_MUTEX(shares_mutex);
8948 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8950 int i;
8951 unsigned long flags;
8954 * We can't change the weight of the root cgroup.
8956 if (!tg->se[0])
8957 return -EINVAL;
8959 if (shares < MIN_SHARES)
8960 shares = MIN_SHARES;
8961 else if (shares > MAX_SHARES)
8962 shares = MAX_SHARES;
8964 mutex_lock(&shares_mutex);
8965 if (tg->shares == shares)
8966 goto done;
8968 spin_lock_irqsave(&task_group_lock, flags);
8969 for_each_possible_cpu(i)
8970 unregister_fair_sched_group(tg, i);
8971 list_del_rcu(&tg->siblings);
8972 spin_unlock_irqrestore(&task_group_lock, flags);
8974 /* wait for any ongoing reference to this group to finish */
8975 synchronize_sched();
8978 * Now we are free to modify the group's share on each cpu
8979 * w/o tripping rebalance_share or load_balance_fair.
8981 tg->shares = shares;
8982 for_each_possible_cpu(i) {
8984 * force a rebalance
8986 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8987 set_se_shares(tg->se[i], shares);
8991 * Enable load balance activity on this group, by inserting it back on
8992 * each cpu's rq->leaf_cfs_rq_list.
8994 spin_lock_irqsave(&task_group_lock, flags);
8995 for_each_possible_cpu(i)
8996 register_fair_sched_group(tg, i);
8997 list_add_rcu(&tg->siblings, &tg->parent->children);
8998 spin_unlock_irqrestore(&task_group_lock, flags);
8999 done:
9000 mutex_unlock(&shares_mutex);
9001 return 0;
9004 unsigned long sched_group_shares(struct task_group *tg)
9006 return tg->shares;
9008 #endif
9010 #ifdef CONFIG_RT_GROUP_SCHED
9012 * Ensure that the real time constraints are schedulable.
9014 static DEFINE_MUTEX(rt_constraints_mutex);
9016 static unsigned long to_ratio(u64 period, u64 runtime)
9018 if (runtime == RUNTIME_INF)
9019 return 1ULL << 20;
9021 return div64_u64(runtime << 20, period);
9024 /* Must be called with tasklist_lock held */
9025 static inline int tg_has_rt_tasks(struct task_group *tg)
9027 struct task_struct *g, *p;
9029 do_each_thread(g, p) {
9030 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9031 return 1;
9032 } while_each_thread(g, p);
9034 return 0;
9037 struct rt_schedulable_data {
9038 struct task_group *tg;
9039 u64 rt_period;
9040 u64 rt_runtime;
9043 static int tg_schedulable(struct task_group *tg, void *data)
9045 struct rt_schedulable_data *d = data;
9046 struct task_group *child;
9047 unsigned long total, sum = 0;
9048 u64 period, runtime;
9050 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9051 runtime = tg->rt_bandwidth.rt_runtime;
9053 if (tg == d->tg) {
9054 period = d->rt_period;
9055 runtime = d->rt_runtime;
9058 #ifdef CONFIG_USER_SCHED
9059 if (tg == &root_task_group) {
9060 period = global_rt_period();
9061 runtime = global_rt_runtime();
9063 #endif
9066 * Cannot have more runtime than the period.
9068 if (runtime > period && runtime != RUNTIME_INF)
9069 return -EINVAL;
9072 * Ensure we don't starve existing RT tasks.
9074 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9075 return -EBUSY;
9077 total = to_ratio(period, runtime);
9080 * Nobody can have more than the global setting allows.
9082 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9083 return -EINVAL;
9086 * The sum of our children's runtime should not exceed our own.
9088 list_for_each_entry_rcu(child, &tg->children, siblings) {
9089 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9090 runtime = child->rt_bandwidth.rt_runtime;
9092 if (child == d->tg) {
9093 period = d->rt_period;
9094 runtime = d->rt_runtime;
9097 sum += to_ratio(period, runtime);
9100 if (sum > total)
9101 return -EINVAL;
9103 return 0;
9106 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9108 struct rt_schedulable_data data = {
9109 .tg = tg,
9110 .rt_period = period,
9111 .rt_runtime = runtime,
9114 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9117 static int tg_set_bandwidth(struct task_group *tg,
9118 u64 rt_period, u64 rt_runtime)
9120 int i, err = 0;
9122 mutex_lock(&rt_constraints_mutex);
9123 read_lock(&tasklist_lock);
9124 err = __rt_schedulable(tg, rt_period, rt_runtime);
9125 if (err)
9126 goto unlock;
9128 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9129 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9130 tg->rt_bandwidth.rt_runtime = rt_runtime;
9132 for_each_possible_cpu(i) {
9133 struct rt_rq *rt_rq = tg->rt_rq[i];
9135 spin_lock(&rt_rq->rt_runtime_lock);
9136 rt_rq->rt_runtime = rt_runtime;
9137 spin_unlock(&rt_rq->rt_runtime_lock);
9139 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9140 unlock:
9141 read_unlock(&tasklist_lock);
9142 mutex_unlock(&rt_constraints_mutex);
9144 return err;
9147 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9149 u64 rt_runtime, rt_period;
9151 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9152 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9153 if (rt_runtime_us < 0)
9154 rt_runtime = RUNTIME_INF;
9156 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9159 long sched_group_rt_runtime(struct task_group *tg)
9161 u64 rt_runtime_us;
9163 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9164 return -1;
9166 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9167 do_div(rt_runtime_us, NSEC_PER_USEC);
9168 return rt_runtime_us;
9171 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9173 u64 rt_runtime, rt_period;
9175 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9176 rt_runtime = tg->rt_bandwidth.rt_runtime;
9178 if (rt_period == 0)
9179 return -EINVAL;
9181 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9184 long sched_group_rt_period(struct task_group *tg)
9186 u64 rt_period_us;
9188 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9189 do_div(rt_period_us, NSEC_PER_USEC);
9190 return rt_period_us;
9193 static int sched_rt_global_constraints(void)
9195 u64 runtime, period;
9196 int ret = 0;
9198 if (sysctl_sched_rt_period <= 0)
9199 return -EINVAL;
9201 runtime = global_rt_runtime();
9202 period = global_rt_period();
9205 * Sanity check on the sysctl variables.
9207 if (runtime > period && runtime != RUNTIME_INF)
9208 return -EINVAL;
9210 mutex_lock(&rt_constraints_mutex);
9211 read_lock(&tasklist_lock);
9212 ret = __rt_schedulable(NULL, 0, 0);
9213 read_unlock(&tasklist_lock);
9214 mutex_unlock(&rt_constraints_mutex);
9216 return ret;
9218 #else /* !CONFIG_RT_GROUP_SCHED */
9219 static int sched_rt_global_constraints(void)
9221 unsigned long flags;
9222 int i;
9224 if (sysctl_sched_rt_period <= 0)
9225 return -EINVAL;
9227 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9228 for_each_possible_cpu(i) {
9229 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9231 spin_lock(&rt_rq->rt_runtime_lock);
9232 rt_rq->rt_runtime = global_rt_runtime();
9233 spin_unlock(&rt_rq->rt_runtime_lock);
9235 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9237 return 0;
9239 #endif /* CONFIG_RT_GROUP_SCHED */
9241 int sched_rt_handler(struct ctl_table *table, int write,
9242 struct file *filp, void __user *buffer, size_t *lenp,
9243 loff_t *ppos)
9245 int ret;
9246 int old_period, old_runtime;
9247 static DEFINE_MUTEX(mutex);
9249 mutex_lock(&mutex);
9250 old_period = sysctl_sched_rt_period;
9251 old_runtime = sysctl_sched_rt_runtime;
9253 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9255 if (!ret && write) {
9256 ret = sched_rt_global_constraints();
9257 if (ret) {
9258 sysctl_sched_rt_period = old_period;
9259 sysctl_sched_rt_runtime = old_runtime;
9260 } else {
9261 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9262 def_rt_bandwidth.rt_period =
9263 ns_to_ktime(global_rt_period());
9266 mutex_unlock(&mutex);
9268 return ret;
9271 #ifdef CONFIG_CGROUP_SCHED
9273 /* return corresponding task_group object of a cgroup */
9274 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9276 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9277 struct task_group, css);
9280 static struct cgroup_subsys_state *
9281 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9283 struct task_group *tg, *parent;
9285 if (!cgrp->parent) {
9286 /* This is early initialization for the top cgroup */
9287 return &init_task_group.css;
9290 parent = cgroup_tg(cgrp->parent);
9291 tg = sched_create_group(parent);
9292 if (IS_ERR(tg))
9293 return ERR_PTR(-ENOMEM);
9295 return &tg->css;
9298 static void
9299 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9301 struct task_group *tg = cgroup_tg(cgrp);
9303 sched_destroy_group(tg);
9306 static int
9307 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9308 struct task_struct *tsk)
9310 #ifdef CONFIG_RT_GROUP_SCHED
9311 /* Don't accept realtime tasks when there is no way for them to run */
9312 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9313 return -EINVAL;
9314 #else
9315 /* We don't support RT-tasks being in separate groups */
9316 if (tsk->sched_class != &fair_sched_class)
9317 return -EINVAL;
9318 #endif
9320 return 0;
9323 static void
9324 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9325 struct cgroup *old_cont, struct task_struct *tsk)
9327 sched_move_task(tsk);
9330 #ifdef CONFIG_FAIR_GROUP_SCHED
9331 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9332 u64 shareval)
9334 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9337 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9339 struct task_group *tg = cgroup_tg(cgrp);
9341 return (u64) tg->shares;
9343 #endif /* CONFIG_FAIR_GROUP_SCHED */
9345 #ifdef CONFIG_RT_GROUP_SCHED
9346 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9347 s64 val)
9349 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9352 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9354 return sched_group_rt_runtime(cgroup_tg(cgrp));
9357 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9358 u64 rt_period_us)
9360 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9363 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9365 return sched_group_rt_period(cgroup_tg(cgrp));
9367 #endif /* CONFIG_RT_GROUP_SCHED */
9369 static struct cftype cpu_files[] = {
9370 #ifdef CONFIG_FAIR_GROUP_SCHED
9372 .name = "shares",
9373 .read_u64 = cpu_shares_read_u64,
9374 .write_u64 = cpu_shares_write_u64,
9376 #endif
9377 #ifdef CONFIG_RT_GROUP_SCHED
9379 .name = "rt_runtime_us",
9380 .read_s64 = cpu_rt_runtime_read,
9381 .write_s64 = cpu_rt_runtime_write,
9384 .name = "rt_period_us",
9385 .read_u64 = cpu_rt_period_read_uint,
9386 .write_u64 = cpu_rt_period_write_uint,
9388 #endif
9391 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9393 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9396 struct cgroup_subsys cpu_cgroup_subsys = {
9397 .name = "cpu",
9398 .create = cpu_cgroup_create,
9399 .destroy = cpu_cgroup_destroy,
9400 .can_attach = cpu_cgroup_can_attach,
9401 .attach = cpu_cgroup_attach,
9402 .populate = cpu_cgroup_populate,
9403 .subsys_id = cpu_cgroup_subsys_id,
9404 .early_init = 1,
9407 #endif /* CONFIG_CGROUP_SCHED */
9409 #ifdef CONFIG_CGROUP_CPUACCT
9412 * CPU accounting code for task groups.
9414 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9415 * (balbir@in.ibm.com).
9418 /* track cpu usage of a group of tasks and its child groups */
9419 struct cpuacct {
9420 struct cgroup_subsys_state css;
9421 /* cpuusage holds pointer to a u64-type object on every cpu */
9422 u64 *cpuusage;
9423 struct cpuacct *parent;
9426 struct cgroup_subsys cpuacct_subsys;
9428 /* return cpu accounting group corresponding to this container */
9429 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9431 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9432 struct cpuacct, css);
9435 /* return cpu accounting group to which this task belongs */
9436 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9438 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9439 struct cpuacct, css);
9442 /* create a new cpu accounting group */
9443 static struct cgroup_subsys_state *cpuacct_create(
9444 struct cgroup_subsys *ss, struct cgroup *cgrp)
9446 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9448 if (!ca)
9449 return ERR_PTR(-ENOMEM);
9451 ca->cpuusage = alloc_percpu(u64);
9452 if (!ca->cpuusage) {
9453 kfree(ca);
9454 return ERR_PTR(-ENOMEM);
9457 if (cgrp->parent)
9458 ca->parent = cgroup_ca(cgrp->parent);
9460 return &ca->css;
9463 /* destroy an existing cpu accounting group */
9464 static void
9465 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9467 struct cpuacct *ca = cgroup_ca(cgrp);
9469 free_percpu(ca->cpuusage);
9470 kfree(ca);
9473 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9475 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9476 u64 data;
9478 #ifndef CONFIG_64BIT
9480 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9482 spin_lock_irq(&cpu_rq(cpu)->lock);
9483 data = *cpuusage;
9484 spin_unlock_irq(&cpu_rq(cpu)->lock);
9485 #else
9486 data = *cpuusage;
9487 #endif
9489 return data;
9492 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9494 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9496 #ifndef CONFIG_64BIT
9498 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9500 spin_lock_irq(&cpu_rq(cpu)->lock);
9501 *cpuusage = val;
9502 spin_unlock_irq(&cpu_rq(cpu)->lock);
9503 #else
9504 *cpuusage = val;
9505 #endif
9508 /* return total cpu usage (in nanoseconds) of a group */
9509 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9511 struct cpuacct *ca = cgroup_ca(cgrp);
9512 u64 totalcpuusage = 0;
9513 int i;
9515 for_each_present_cpu(i)
9516 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9518 return totalcpuusage;
9521 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9522 u64 reset)
9524 struct cpuacct *ca = cgroup_ca(cgrp);
9525 int err = 0;
9526 int i;
9528 if (reset) {
9529 err = -EINVAL;
9530 goto out;
9533 for_each_present_cpu(i)
9534 cpuacct_cpuusage_write(ca, i, 0);
9536 out:
9537 return err;
9540 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9541 struct seq_file *m)
9543 struct cpuacct *ca = cgroup_ca(cgroup);
9544 u64 percpu;
9545 int i;
9547 for_each_present_cpu(i) {
9548 percpu = cpuacct_cpuusage_read(ca, i);
9549 seq_printf(m, "%llu ", (unsigned long long) percpu);
9551 seq_printf(m, "\n");
9552 return 0;
9555 static struct cftype files[] = {
9557 .name = "usage",
9558 .read_u64 = cpuusage_read,
9559 .write_u64 = cpuusage_write,
9562 .name = "usage_percpu",
9563 .read_seq_string = cpuacct_percpu_seq_read,
9568 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9570 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9574 * charge this task's execution time to its accounting group.
9576 * called with rq->lock held.
9578 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9580 struct cpuacct *ca;
9581 int cpu;
9583 if (!cpuacct_subsys.active)
9584 return;
9586 cpu = task_cpu(tsk);
9587 ca = task_ca(tsk);
9589 for (; ca; ca = ca->parent) {
9590 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9591 *cpuusage += cputime;
9595 struct cgroup_subsys cpuacct_subsys = {
9596 .name = "cpuacct",
9597 .create = cpuacct_create,
9598 .destroy = cpuacct_destroy,
9599 .populate = cpuacct_populate,
9600 .subsys_id = cpuacct_subsys_id,
9602 #endif /* CONFIG_CGROUP_CPUACCT */