4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
137 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
146 sg
->__cpu_power
+= val
;
147 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
151 static inline int rt_policy(int policy
)
153 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
158 static inline int task_has_rt_policy(struct task_struct
*p
)
160 return rt_policy(p
->policy
);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array
{
167 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
168 struct list_head queue
[MAX_RT_PRIO
];
171 struct rt_bandwidth
{
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock
;
176 struct hrtimer rt_period_timer
;
179 static struct rt_bandwidth def_rt_bandwidth
;
181 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
183 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
185 struct rt_bandwidth
*rt_b
=
186 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
192 now
= hrtimer_cb_get_time(timer
);
193 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
198 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
201 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
205 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
207 rt_b
->rt_period
= ns_to_ktime(period
);
208 rt_b
->rt_runtime
= runtime
;
210 spin_lock_init(&rt_b
->rt_runtime_lock
);
212 hrtimer_init(&rt_b
->rt_period_timer
,
213 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
214 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime
>= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 if (rt_bandwidth_enabled() && rt_b
->rt_runtime
== RUNTIME_INF
)
229 if (hrtimer_active(&rt_b
->rt_period_timer
))
232 spin_lock(&rt_b
->rt_runtime_lock
);
234 if (hrtimer_active(&rt_b
->rt_period_timer
))
237 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
238 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
239 hrtimer_start_expires(&rt_b
->rt_period_timer
,
242 spin_unlock(&rt_b
->rt_runtime_lock
);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
248 hrtimer_cancel(&rt_b
->rt_period_timer
);
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex
);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
264 static LIST_HEAD(task_groups
);
266 /* task group related information */
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css
;
272 #ifdef CONFIG_USER_SCHED
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity
**se
;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq
**cfs_rq
;
281 unsigned long shares
;
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity
**rt_se
;
286 struct rt_rq
**rt_rq
;
288 struct rt_bandwidth rt_bandwidth
;
292 struct list_head list
;
294 struct task_group
*parent
;
295 struct list_head siblings
;
296 struct list_head children
;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct
*user
)
304 user
->tg
->uid
= user
->uid
;
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group
;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
323 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock
);
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
350 #define MAX_SHARES (1UL << 18)
352 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
358 struct task_group init_task_group
;
360 /* return group to which a task belongs */
361 static inline struct task_group
*task_group(struct task_struct
*p
)
363 struct task_group
*tg
;
365 #ifdef CONFIG_USER_SCHED
367 tg
= __task_cred(p
)->user
->tg
;
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
371 struct task_group
, css
);
373 tg
= &init_task_group
;
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
383 p
->se
.parent
= task_group(p
)->se
[cpu
];
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
388 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
394 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
395 static inline struct task_group
*task_group(struct task_struct
*p
)
400 #endif /* CONFIG_GROUP_SCHED */
402 /* CFS-related fields in a runqueue */
404 struct load_weight load
;
405 unsigned long nr_running
;
410 struct rb_root tasks_timeline
;
411 struct rb_node
*rb_leftmost
;
413 struct list_head tasks
;
414 struct list_head
*balance_iterator
;
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
420 struct sched_entity
*curr
, *next
, *last
;
422 unsigned int nr_spread_over
;
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
435 struct list_head leaf_cfs_rq_list
;
436 struct task_group
*tg
; /* group that "owns" this runqueue */
440 * the part of load.weight contributed by tasks
442 unsigned long task_weight
;
445 * h_load = weight * f(tg)
447 * Where f(tg) is the recursive weight fraction assigned to
450 unsigned long h_load
;
453 * this cpu's part of tg->shares
455 unsigned long shares
;
458 * load.weight at the time we set shares
460 unsigned long rq_weight
;
465 /* Real-Time classes' related field in a runqueue: */
467 struct rt_prio_array active
;
468 unsigned long rt_nr_running
;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio
; /* highest queued rt task prio */
473 unsigned long rt_nr_migratory
;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock
;
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted
;
486 struct list_head leaf_rt_rq_list
;
487 struct task_group
*tg
;
488 struct sched_rt_entity
*rt_se
;
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
505 cpumask_var_t online
;
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
511 cpumask_var_t rto_mask
;
514 struct cpupri cpupri
;
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 unsigned int sched_mc_preferred_wakeup_cpu
;
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
530 static struct root_domain def_root_domain
;
535 * This is the main, per-CPU runqueue data structure.
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
549 unsigned long nr_running
;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
552 unsigned char idle_at_tick
;
554 unsigned long last_tick_seen
;
555 unsigned char in_nohz_recently
;
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load
;
559 unsigned long nr_load_updates
;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list
;
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list
;
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
579 unsigned long nr_uninterruptible
;
581 struct task_struct
*curr
, *idle
;
582 unsigned long next_balance
;
583 struct mm_struct
*prev_mm
;
590 struct root_domain
*rd
;
591 struct sched_domain
*sd
;
593 /* For active balancing */
596 /* cpu of this runqueue: */
600 unsigned long avg_load_per_task
;
602 struct task_struct
*migration_thread
;
603 struct list_head migration_queue
;
606 #ifdef CONFIG_SCHED_HRTICK
608 int hrtick_csd_pending
;
609 struct call_single_data hrtick_csd
;
611 struct hrtimer hrtick_timer
;
614 #ifdef CONFIG_SCHEDSTATS
616 struct sched_info rq_sched_info
;
617 unsigned long long rq_cpu_time
;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty
;
622 unsigned int yld_act_empty
;
623 unsigned int yld_both_empty
;
624 unsigned int yld_count
;
626 /* schedule() stats */
627 unsigned int sched_switch
;
628 unsigned int sched_count
;
629 unsigned int sched_goidle
;
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count
;
633 unsigned int ttwu_local
;
636 unsigned int bkl_count
;
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
642 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
644 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
647 static inline int cpu_of(struct rq
*rq
)
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671 static inline void update_rq_clock(struct rq
*rq
)
673 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
682 # define const_debug static const
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
692 int runqueue_is_locked(void)
695 struct rq
*rq
= cpu_rq(cpu
);
698 ret
= spin_is_locked(&rq
->lock
);
704 * Debugging: various feature bits
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
711 #include "sched_features.h"
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
719 const_debug
unsigned int sysctl_sched_features
=
720 #include "sched_features.h"
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
729 static __read_mostly
char *sched_feat_names
[] = {
730 #include "sched_features.h"
736 static int sched_feat_show(struct seq_file
*m
, void *v
)
740 for (i
= 0; sched_feat_names
[i
]; i
++) {
741 if (!(sysctl_sched_features
& (1UL << i
)))
743 seq_printf(m
, "%s ", sched_feat_names
[i
]);
751 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
752 size_t cnt
, loff_t
*ppos
)
762 if (copy_from_user(&buf
, ubuf
, cnt
))
767 if (strncmp(buf
, "NO_", 3) == 0) {
772 for (i
= 0; sched_feat_names
[i
]; i
++) {
773 int len
= strlen(sched_feat_names
[i
]);
775 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
777 sysctl_sched_features
&= ~(1UL << i
);
779 sysctl_sched_features
|= (1UL << i
);
784 if (!sched_feat_names
[i
])
792 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
794 return single_open(filp
, sched_feat_show
, NULL
);
797 static struct file_operations sched_feat_fops
= {
798 .open
= sched_feat_open
,
799 .write
= sched_feat_write
,
802 .release
= single_release
,
805 static __init
int sched_init_debug(void)
807 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
812 late_initcall(sched_init_debug
);
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
822 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
825 * ratelimit for updating the group shares.
828 unsigned int sysctl_sched_shares_ratelimit
= 250000;
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
835 unsigned int sysctl_sched_shares_thresh
= 4;
838 * period over which we measure -rt task cpu usage in us.
841 unsigned int sysctl_sched_rt_period
= 1000000;
843 static __read_mostly
int scheduler_running
;
846 * part of the period that we allow rt tasks to run in us.
849 int sysctl_sched_rt_runtime
= 950000;
851 static inline u64
global_rt_period(void)
853 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
856 static inline u64
global_rt_runtime(void)
858 if (sysctl_sched_rt_runtime
< 0)
861 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
871 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
873 return rq
->curr
== p
;
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
879 return task_current(rq
, p
);
882 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
886 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq
->lock
.owner
= current
;
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
897 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
899 spin_unlock_irq(&rq
->lock
);
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
908 return task_current(rq
, p
);
912 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq
->lock
);
925 spin_unlock(&rq
->lock
);
929 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
950 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
954 struct rq
*rq
= task_rq(p
);
955 spin_lock(&rq
->lock
);
956 if (likely(rq
== task_rq(p
)))
958 spin_unlock(&rq
->lock
);
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
967 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
973 local_irq_save(*flags
);
975 spin_lock(&rq
->lock
);
976 if (likely(rq
== task_rq(p
)))
978 spin_unlock_irqrestore(&rq
->lock
, *flags
);
982 void task_rq_unlock_wait(struct task_struct
*p
)
984 struct rq
*rq
= task_rq(p
);
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq
->lock
);
990 static void __task_rq_unlock(struct rq
*rq
)
993 spin_unlock(&rq
->lock
);
996 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
999 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1005 static struct rq
*this_rq_lock(void)
1006 __acquires(rq
->lock
)
1010 local_irq_disable();
1012 spin_lock(&rq
->lock
);
1017 #ifdef CONFIG_SCHED_HRTICK
1019 * Use HR-timers to deliver accurate preemption points.
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1031 * - enabled by features
1032 * - hrtimer is actually high res
1034 static inline int hrtick_enabled(struct rq
*rq
)
1036 if (!sched_feat(HRTICK
))
1038 if (!cpu_active(cpu_of(rq
)))
1040 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1043 static void hrtick_clear(struct rq
*rq
)
1045 if (hrtimer_active(&rq
->hrtick_timer
))
1046 hrtimer_cancel(&rq
->hrtick_timer
);
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1053 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1055 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1057 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1059 spin_lock(&rq
->lock
);
1060 update_rq_clock(rq
);
1061 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1062 spin_unlock(&rq
->lock
);
1064 return HRTIMER_NORESTART
;
1069 * called from hardirq (IPI) context
1071 static void __hrtick_start(void *arg
)
1073 struct rq
*rq
= arg
;
1075 spin_lock(&rq
->lock
);
1076 hrtimer_restart(&rq
->hrtick_timer
);
1077 rq
->hrtick_csd_pending
= 0;
1078 spin_unlock(&rq
->lock
);
1082 * Called to set the hrtick timer state.
1084 * called with rq->lock held and irqs disabled
1086 static void hrtick_start(struct rq
*rq
, u64 delay
)
1088 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1089 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1091 hrtimer_set_expires(timer
, time
);
1093 if (rq
== this_rq()) {
1094 hrtimer_restart(timer
);
1095 } else if (!rq
->hrtick_csd_pending
) {
1096 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1097 rq
->hrtick_csd_pending
= 1;
1102 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1104 int cpu
= (int)(long)hcpu
;
1107 case CPU_UP_CANCELED
:
1108 case CPU_UP_CANCELED_FROZEN
:
1109 case CPU_DOWN_PREPARE
:
1110 case CPU_DOWN_PREPARE_FROZEN
:
1112 case CPU_DEAD_FROZEN
:
1113 hrtick_clear(cpu_rq(cpu
));
1120 static __init
void init_hrtick(void)
1122 hotcpu_notifier(hotplug_hrtick
, 0);
1126 * Called to set the hrtick timer state.
1128 * called with rq->lock held and irqs disabled
1130 static void hrtick_start(struct rq
*rq
, u64 delay
)
1132 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq
*rq
)
1143 rq
->hrtick_csd_pending
= 0;
1145 rq
->hrtick_csd
.flags
= 0;
1146 rq
->hrtick_csd
.func
= __hrtick_start
;
1147 rq
->hrtick_csd
.info
= rq
;
1150 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1151 rq
->hrtick_timer
.function
= hrtick
;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq
*rq
)
1158 static inline void init_rq_hrtick(struct rq
*rq
)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1180 static void resched_task(struct task_struct
*p
)
1184 assert_spin_locked(&task_rq(p
)->lock
);
1186 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1189 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1192 if (cpu
== smp_processor_id())
1195 /* NEED_RESCHED must be visible before we test polling */
1197 if (!tsk_is_polling(p
))
1198 smp_send_reschedule(cpu
);
1201 static void resched_cpu(int cpu
)
1203 struct rq
*rq
= cpu_rq(cpu
);
1204 unsigned long flags
;
1206 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1208 resched_task(cpu_curr(cpu
));
1209 spin_unlock_irqrestore(&rq
->lock
, flags
);
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu
)
1225 struct rq
*rq
= cpu_rq(cpu
);
1227 if (cpu
== smp_processor_id())
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq
->curr
!= rq
->idle
)
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1247 /* NEED_RESCHED must be visible before we test polling */
1249 if (!tsk_is_polling(rq
->idle
))
1250 smp_send_reschedule(cpu
);
1252 #endif /* CONFIG_NO_HZ */
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct
*p
)
1257 assert_spin_locked(&task_rq(p
)->lock
);
1258 set_tsk_need_resched(p
);
1260 #endif /* CONFIG_SMP */
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1265 # define WMULT_CONST (1UL << 32)
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1276 * delta *= weight / lw
1278 static unsigned long
1279 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1280 struct load_weight
*lw
)
1284 if (!lw
->inv_weight
) {
1285 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1288 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1292 tmp
= (u64
)delta_exec
* weight
;
1294 * Check whether we'd overflow the 64-bit multiplication:
1296 if (unlikely(tmp
> WMULT_CONST
))
1297 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1300 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1302 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1305 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1311 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 * scaled version of the new time slice allocation that they receive on time
1326 #define WEIGHT_IDLEPRIO 3
1327 #define WMULT_IDLEPRIO 1431655765
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
1341 static const int prio_to_weight
[40] = {
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1359 static const u32 prio_to_wmult
[40] = {
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1370 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1377 struct rq_iterator
{
1379 struct task_struct
*(*start
)(void *);
1380 struct task_struct
*(*next
)(void *);
1384 static unsigned long
1385 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1386 unsigned long max_load_move
, struct sched_domain
*sd
,
1387 enum cpu_idle_type idle
, int *all_pinned
,
1388 int *this_best_prio
, struct rq_iterator
*iterator
);
1391 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1392 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1393 struct rq_iterator
*iterator
);
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1399 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1402 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1404 update_load_add(&rq
->load
, load
);
1407 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1409 update_load_sub(&rq
->load
, load
);
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor
)(struct task_group
*, void *);
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1419 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1421 struct task_group
*parent
, *child
;
1425 parent
= &root_task_group
;
1427 ret
= (*down
)(parent
, data
);
1430 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1437 ret
= (*up
)(parent
, data
);
1442 parent
= parent
->parent
;
1451 static int tg_nop(struct task_group
*tg
, void *data
)
1458 static unsigned long source_load(int cpu
, int type
);
1459 static unsigned long target_load(int cpu
, int type
);
1460 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1462 static unsigned long cpu_avg_load_per_task(int cpu
)
1464 struct rq
*rq
= cpu_rq(cpu
);
1465 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1468 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1470 rq
->avg_load_per_task
= 0;
1472 return rq
->avg_load_per_task
;
1475 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1480 * Calculate and set the cpu's group shares.
1483 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1484 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1486 unsigned long shares
;
1487 unsigned long rq_weight
;
1492 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1500 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1501 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1503 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1504 sysctl_sched_shares_thresh
) {
1505 struct rq
*rq
= cpu_rq(cpu
);
1506 unsigned long flags
;
1508 spin_lock_irqsave(&rq
->lock
, flags
);
1509 tg
->cfs_rq
[cpu
]->shares
= shares
;
1511 __set_se_shares(tg
->se
[cpu
], shares
);
1512 spin_unlock_irqrestore(&rq
->lock
, flags
);
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
1521 static int tg_shares_up(struct task_group
*tg
, void *data
)
1523 unsigned long weight
, rq_weight
= 0;
1524 unsigned long shares
= 0;
1525 struct sched_domain
*sd
= data
;
1528 for_each_cpu(i
, sched_domain_span(sd
)) {
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1534 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1536 weight
= NICE_0_LOAD
;
1538 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1539 rq_weight
+= weight
;
1540 shares
+= tg
->cfs_rq
[i
]->shares
;
1543 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1544 shares
= tg
->shares
;
1546 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1547 shares
= tg
->shares
;
1549 for_each_cpu(i
, sched_domain_span(sd
))
1550 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
1560 static int tg_load_down(struct task_group
*tg
, void *data
)
1563 long cpu
= (long)data
;
1566 load
= cpu_rq(cpu
)->load
.weight
;
1568 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1569 load
*= tg
->cfs_rq
[cpu
]->shares
;
1570 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1573 tg
->cfs_rq
[cpu
]->h_load
= load
;
1578 static void update_shares(struct sched_domain
*sd
)
1580 u64 now
= cpu_clock(raw_smp_processor_id());
1581 s64 elapsed
= now
- sd
->last_update
;
1583 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1584 sd
->last_update
= now
;
1585 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1589 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1591 spin_unlock(&rq
->lock
);
1593 spin_lock(&rq
->lock
);
1596 static void update_h_load(long cpu
)
1598 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1603 static inline void update_shares(struct sched_domain
*sd
)
1607 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1616 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1617 __releases(this_rq
->lock
)
1618 __acquires(busiest
->lock
)
1619 __acquires(this_rq
->lock
)
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq
->lock
);
1628 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1629 if (busiest
< this_rq
) {
1630 spin_unlock(&this_rq
->lock
);
1631 spin_lock(&busiest
->lock
);
1632 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1635 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1640 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1641 __releases(busiest
->lock
)
1643 spin_unlock(&busiest
->lock
);
1644 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1648 #ifdef CONFIG_FAIR_GROUP_SCHED
1649 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1652 cfs_rq
->shares
= shares
;
1657 #include "sched_stats.h"
1658 #include "sched_idletask.c"
1659 #include "sched_fair.c"
1660 #include "sched_rt.c"
1661 #ifdef CONFIG_SCHED_DEBUG
1662 # include "sched_debug.c"
1665 #define sched_class_highest (&rt_sched_class)
1666 #define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
1669 static void inc_nr_running(struct rq
*rq
)
1674 static void dec_nr_running(struct rq
*rq
)
1679 static void set_load_weight(struct task_struct
*p
)
1681 if (task_has_rt_policy(p
)) {
1682 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1683 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1688 * SCHED_IDLE tasks get minimal weight:
1690 if (p
->policy
== SCHED_IDLE
) {
1691 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1692 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1696 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1697 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1700 static void update_avg(u64
*avg
, u64 sample
)
1702 s64 diff
= sample
- *avg
;
1706 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1708 sched_info_queued(p
);
1709 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1713 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1715 if (sleep
&& p
->se
.last_wakeup
) {
1716 update_avg(&p
->se
.avg_overlap
,
1717 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1718 p
->se
.last_wakeup
= 0;
1721 sched_info_dequeued(p
);
1722 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1727 * __normal_prio - return the priority that is based on the static prio
1729 static inline int __normal_prio(struct task_struct
*p
)
1731 return p
->static_prio
;
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1741 static inline int normal_prio(struct task_struct
*p
)
1745 if (task_has_rt_policy(p
))
1746 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1748 prio
= __normal_prio(p
);
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1759 static int effective_prio(struct task_struct
*p
)
1761 p
->normal_prio
= normal_prio(p
);
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1767 if (!rt_prio(p
->prio
))
1768 return p
->normal_prio
;
1773 * activate_task - move a task to the runqueue.
1775 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1777 if (task_contributes_to_load(p
))
1778 rq
->nr_uninterruptible
--;
1780 enqueue_task(rq
, p
, wakeup
);
1785 * deactivate_task - remove a task from the runqueue.
1787 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1789 if (task_contributes_to_load(p
))
1790 rq
->nr_uninterruptible
++;
1792 dequeue_task(rq
, p
, sleep
);
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1800 inline int task_curr(const struct task_struct
*p
)
1802 return cpu_curr(task_cpu(p
)) == p
;
1805 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1807 set_task_rq(p
, cpu
);
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1815 task_thread_info(p
)->cpu
= cpu
;
1819 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1820 const struct sched_class
*prev_class
,
1821 int oldprio
, int running
)
1823 if (prev_class
!= p
->sched_class
) {
1824 if (prev_class
->switched_from
)
1825 prev_class
->switched_from(rq
, p
, running
);
1826 p
->sched_class
->switched_to(rq
, p
, running
);
1828 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1833 /* Used instead of source_load when we know the type == 0 */
1834 static unsigned long weighted_cpuload(const int cpu
)
1836 return cpu_rq(cpu
)->load
.weight
;
1840 * Is this task likely cache-hot:
1843 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1848 * Buddy candidates are cache hot:
1850 if (sched_feat(CACHE_HOT_BUDDY
) &&
1851 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1852 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1855 if (p
->sched_class
!= &fair_sched_class
)
1858 if (sysctl_sched_migration_cost
== -1)
1860 if (sysctl_sched_migration_cost
== 0)
1863 delta
= now
- p
->se
.exec_start
;
1865 return delta
< (s64
)sysctl_sched_migration_cost
;
1869 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1871 int old_cpu
= task_cpu(p
);
1872 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1873 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1874 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1877 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1879 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1881 #ifdef CONFIG_SCHEDSTATS
1882 if (p
->se
.wait_start
)
1883 p
->se
.wait_start
-= clock_offset
;
1884 if (p
->se
.sleep_start
)
1885 p
->se
.sleep_start
-= clock_offset
;
1886 if (p
->se
.block_start
)
1887 p
->se
.block_start
-= clock_offset
;
1888 if (old_cpu
!= new_cpu
) {
1889 schedstat_inc(p
, se
.nr_migrations
);
1890 if (task_hot(p
, old_rq
->clock
, NULL
))
1891 schedstat_inc(p
, se
.nr_forced2_migrations
);
1894 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1895 new_cfsrq
->min_vruntime
;
1897 __set_task_cpu(p
, new_cpu
);
1900 struct migration_req
{
1901 struct list_head list
;
1903 struct task_struct
*task
;
1906 struct completion done
;
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1914 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1916 struct rq
*rq
= task_rq(p
);
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1922 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1923 set_task_cpu(p
, dest_cpu
);
1927 init_completion(&req
->done
);
1929 req
->dest_cpu
= dest_cpu
;
1930 list_add(&req
->list
, &rq
->migration_queue
);
1936 * wait_task_inactive - wait for a thread to unschedule.
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1951 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1953 unsigned long flags
;
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1978 while (task_running(rq
, p
)) {
1979 if (match_state
&& unlikely(p
->state
!= match_state
))
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1989 rq
= task_rq_lock(p
, &flags
);
1990 trace_sched_wait_task(rq
, p
);
1991 running
= task_running(rq
, p
);
1992 on_rq
= p
->se
.on_rq
;
1994 if (!match_state
|| p
->state
== match_state
)
1995 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1996 task_rq_unlock(rq
, &flags
);
1999 * If it changed from the expected state, bail out now.
2001 if (unlikely(!ncsw
))
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2008 * Oops. Go back and try again..
2010 if (unlikely(running
)) {
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2024 if (unlikely(on_rq
)) {
2025 schedule_timeout_uninterruptible(1);
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2053 void kick_process(struct task_struct
*p
)
2059 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2060 smp_send_reschedule(cpu
);
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2071 static unsigned long source_load(int cpu
, int type
)
2073 struct rq
*rq
= cpu_rq(cpu
);
2074 unsigned long total
= weighted_cpuload(cpu
);
2076 if (type
== 0 || !sched_feat(LB_BIAS
))
2079 return min(rq
->cpu_load
[type
-1], total
);
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
2086 static unsigned long target_load(int cpu
, int type
)
2088 struct rq
*rq
= cpu_rq(cpu
);
2089 unsigned long total
= weighted_cpuload(cpu
);
2091 if (type
== 0 || !sched_feat(LB_BIAS
))
2094 return max(rq
->cpu_load
[type
-1], total
);
2098 * find_idlest_group finds and returns the least busy CPU group within the
2101 static struct sched_group
*
2102 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2104 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2105 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2106 int load_idx
= sd
->forkexec_idx
;
2107 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2110 unsigned long load
, avg_load
;
2114 /* Skip over this group if it has no CPUs allowed */
2115 if (!cpumask_intersects(sched_group_cpus(group
),
2119 local_group
= cpumask_test_cpu(this_cpu
,
2120 sched_group_cpus(group
));
2122 /* Tally up the load of all CPUs in the group */
2125 for_each_cpu(i
, sched_group_cpus(group
)) {
2126 /* Bias balancing toward cpus of our domain */
2128 load
= source_load(i
, load_idx
);
2130 load
= target_load(i
, load_idx
);
2135 /* Adjust by relative CPU power of the group */
2136 avg_load
= sg_div_cpu_power(group
,
2137 avg_load
* SCHED_LOAD_SCALE
);
2140 this_load
= avg_load
;
2142 } else if (avg_load
< min_load
) {
2143 min_load
= avg_load
;
2146 } while (group
= group
->next
, group
!= sd
->groups
);
2148 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2157 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2159 unsigned long load
, min_load
= ULONG_MAX
;
2163 /* Traverse only the allowed CPUs */
2164 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2165 load
= weighted_cpuload(i
);
2167 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2181 * Balance, ie. select the least loaded group.
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2185 * preempt must be disabled.
2187 static int sched_balance_self(int cpu
, int flag
)
2189 struct task_struct
*t
= current
;
2190 struct sched_domain
*tmp
, *sd
= NULL
;
2192 for_each_domain(cpu
, tmp
) {
2194 * If power savings logic is enabled for a domain, stop there.
2196 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2198 if (tmp
->flags
& flag
)
2206 struct sched_group
*group
;
2207 int new_cpu
, weight
;
2209 if (!(sd
->flags
& flag
)) {
2214 group
= find_idlest_group(sd
, t
, cpu
);
2220 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2221 if (new_cpu
== -1 || new_cpu
== cpu
) {
2222 /* Now try balancing at a lower domain level of cpu */
2227 /* Now try balancing at a lower domain level of new_cpu */
2229 weight
= cpumask_weight(sched_domain_span(sd
));
2231 for_each_domain(cpu
, tmp
) {
2232 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2234 if (tmp
->flags
& flag
)
2237 /* while loop will break here if sd == NULL */
2243 #endif /* CONFIG_SMP */
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2257 * returns failure only if the task is already active.
2259 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2261 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2262 unsigned long flags
;
2266 if (!sched_feat(SYNC_WAKEUPS
))
2270 if (current
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
2271 p
->se
.avg_overlap
< sysctl_sched_migration_cost
)
2274 if (current
->se
.avg_overlap
>= sysctl_sched_migration_cost
||
2275 p
->se
.avg_overlap
>= sysctl_sched_migration_cost
)
2280 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2281 struct sched_domain
*sd
;
2283 this_cpu
= raw_smp_processor_id();
2286 for_each_domain(this_cpu
, sd
) {
2287 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2296 rq
= task_rq_lock(p
, &flags
);
2297 update_rq_clock(rq
);
2298 old_state
= p
->state
;
2299 if (!(old_state
& state
))
2307 this_cpu
= smp_processor_id();
2310 if (unlikely(task_running(rq
, p
)))
2313 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2314 if (cpu
!= orig_cpu
) {
2315 set_task_cpu(p
, cpu
);
2316 task_rq_unlock(rq
, &flags
);
2317 /* might preempt at this point */
2318 rq
= task_rq_lock(p
, &flags
);
2319 old_state
= p
->state
;
2320 if (!(old_state
& state
))
2325 this_cpu
= smp_processor_id();
2329 #ifdef CONFIG_SCHEDSTATS
2330 schedstat_inc(rq
, ttwu_count
);
2331 if (cpu
== this_cpu
)
2332 schedstat_inc(rq
, ttwu_local
);
2334 struct sched_domain
*sd
;
2335 for_each_domain(this_cpu
, sd
) {
2336 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2337 schedstat_inc(sd
, ttwu_wake_remote
);
2342 #endif /* CONFIG_SCHEDSTATS */
2345 #endif /* CONFIG_SMP */
2346 schedstat_inc(p
, se
.nr_wakeups
);
2348 schedstat_inc(p
, se
.nr_wakeups_sync
);
2349 if (orig_cpu
!= cpu
)
2350 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2351 if (cpu
== this_cpu
)
2352 schedstat_inc(p
, se
.nr_wakeups_local
);
2354 schedstat_inc(p
, se
.nr_wakeups_remote
);
2355 activate_task(rq
, p
, 1);
2359 trace_sched_wakeup(rq
, p
, success
);
2360 check_preempt_curr(rq
, p
, sync
);
2362 p
->state
= TASK_RUNNING
;
2364 if (p
->sched_class
->task_wake_up
)
2365 p
->sched_class
->task_wake_up(rq
, p
);
2368 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2370 task_rq_unlock(rq
, &flags
);
2375 int wake_up_process(struct task_struct
*p
)
2377 return try_to_wake_up(p
, TASK_ALL
, 0);
2379 EXPORT_SYMBOL(wake_up_process
);
2381 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2383 return try_to_wake_up(p
, state
, 0);
2387 * Perform scheduler related setup for a newly forked process p.
2388 * p is forked by current.
2390 * __sched_fork() is basic setup used by init_idle() too:
2392 static void __sched_fork(struct task_struct
*p
)
2394 p
->se
.exec_start
= 0;
2395 p
->se
.sum_exec_runtime
= 0;
2396 p
->se
.prev_sum_exec_runtime
= 0;
2397 p
->se
.last_wakeup
= 0;
2398 p
->se
.avg_overlap
= 0;
2400 #ifdef CONFIG_SCHEDSTATS
2401 p
->se
.wait_start
= 0;
2402 p
->se
.sum_sleep_runtime
= 0;
2403 p
->se
.sleep_start
= 0;
2404 p
->se
.block_start
= 0;
2405 p
->se
.sleep_max
= 0;
2406 p
->se
.block_max
= 0;
2408 p
->se
.slice_max
= 0;
2412 INIT_LIST_HEAD(&p
->rt
.run_list
);
2414 INIT_LIST_HEAD(&p
->se
.group_node
);
2416 #ifdef CONFIG_PREEMPT_NOTIFIERS
2417 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2421 * We mark the process as running here, but have not actually
2422 * inserted it onto the runqueue yet. This guarantees that
2423 * nobody will actually run it, and a signal or other external
2424 * event cannot wake it up and insert it on the runqueue either.
2426 p
->state
= TASK_RUNNING
;
2430 * fork()/clone()-time setup:
2432 void sched_fork(struct task_struct
*p
, int clone_flags
)
2434 int cpu
= get_cpu();
2439 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2441 set_task_cpu(p
, cpu
);
2444 * Make sure we do not leak PI boosting priority to the child:
2446 p
->prio
= current
->normal_prio
;
2447 if (!rt_prio(p
->prio
))
2448 p
->sched_class
= &fair_sched_class
;
2450 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2451 if (likely(sched_info_on()))
2452 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2454 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2457 #ifdef CONFIG_PREEMPT
2458 /* Want to start with kernel preemption disabled. */
2459 task_thread_info(p
)->preempt_count
= 1;
2465 * wake_up_new_task - wake up a newly created task for the first time.
2467 * This function will do some initial scheduler statistics housekeeping
2468 * that must be done for every newly created context, then puts the task
2469 * on the runqueue and wakes it.
2471 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2473 unsigned long flags
;
2476 rq
= task_rq_lock(p
, &flags
);
2477 BUG_ON(p
->state
!= TASK_RUNNING
);
2478 update_rq_clock(rq
);
2480 p
->prio
= effective_prio(p
);
2482 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2483 activate_task(rq
, p
, 0);
2486 * Let the scheduling class do new task startup
2487 * management (if any):
2489 p
->sched_class
->task_new(rq
, p
);
2492 trace_sched_wakeup_new(rq
, p
, 1);
2493 check_preempt_curr(rq
, p
, 0);
2495 if (p
->sched_class
->task_wake_up
)
2496 p
->sched_class
->task_wake_up(rq
, p
);
2498 task_rq_unlock(rq
, &flags
);
2501 #ifdef CONFIG_PREEMPT_NOTIFIERS
2504 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2505 * @notifier: notifier struct to register
2507 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2509 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2511 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2514 * preempt_notifier_unregister - no longer interested in preemption notifications
2515 * @notifier: notifier struct to unregister
2517 * This is safe to call from within a preemption notifier.
2519 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2521 hlist_del(¬ifier
->link
);
2523 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2525 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2527 struct preempt_notifier
*notifier
;
2528 struct hlist_node
*node
;
2530 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2531 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2535 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2536 struct task_struct
*next
)
2538 struct preempt_notifier
*notifier
;
2539 struct hlist_node
*node
;
2541 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2542 notifier
->ops
->sched_out(notifier
, next
);
2545 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2547 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2552 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2553 struct task_struct
*next
)
2557 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2560 * prepare_task_switch - prepare to switch tasks
2561 * @rq: the runqueue preparing to switch
2562 * @prev: the current task that is being switched out
2563 * @next: the task we are going to switch to.
2565 * This is called with the rq lock held and interrupts off. It must
2566 * be paired with a subsequent finish_task_switch after the context
2569 * prepare_task_switch sets up locking and calls architecture specific
2573 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2574 struct task_struct
*next
)
2576 fire_sched_out_preempt_notifiers(prev
, next
);
2577 prepare_lock_switch(rq
, next
);
2578 prepare_arch_switch(next
);
2582 * finish_task_switch - clean up after a task-switch
2583 * @rq: runqueue associated with task-switch
2584 * @prev: the thread we just switched away from.
2586 * finish_task_switch must be called after the context switch, paired
2587 * with a prepare_task_switch call before the context switch.
2588 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2589 * and do any other architecture-specific cleanup actions.
2591 * Note that we may have delayed dropping an mm in context_switch(). If
2592 * so, we finish that here outside of the runqueue lock. (Doing it
2593 * with the lock held can cause deadlocks; see schedule() for
2596 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2597 __releases(rq
->lock
)
2599 struct mm_struct
*mm
= rq
->prev_mm
;
2605 * A task struct has one reference for the use as "current".
2606 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2607 * schedule one last time. The schedule call will never return, and
2608 * the scheduled task must drop that reference.
2609 * The test for TASK_DEAD must occur while the runqueue locks are
2610 * still held, otherwise prev could be scheduled on another cpu, die
2611 * there before we look at prev->state, and then the reference would
2613 * Manfred Spraul <manfred@colorfullife.com>
2615 prev_state
= prev
->state
;
2616 finish_arch_switch(prev
);
2617 finish_lock_switch(rq
, prev
);
2619 if (current
->sched_class
->post_schedule
)
2620 current
->sched_class
->post_schedule(rq
);
2623 fire_sched_in_preempt_notifiers(current
);
2626 if (unlikely(prev_state
== TASK_DEAD
)) {
2628 * Remove function-return probe instances associated with this
2629 * task and put them back on the free list.
2631 kprobe_flush_task(prev
);
2632 put_task_struct(prev
);
2637 * schedule_tail - first thing a freshly forked thread must call.
2638 * @prev: the thread we just switched away from.
2640 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2641 __releases(rq
->lock
)
2643 struct rq
*rq
= this_rq();
2645 finish_task_switch(rq
, prev
);
2646 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2647 /* In this case, finish_task_switch does not reenable preemption */
2650 if (current
->set_child_tid
)
2651 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2655 * context_switch - switch to the new MM and the new
2656 * thread's register state.
2659 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2660 struct task_struct
*next
)
2662 struct mm_struct
*mm
, *oldmm
;
2664 prepare_task_switch(rq
, prev
, next
);
2665 trace_sched_switch(rq
, prev
, next
);
2667 oldmm
= prev
->active_mm
;
2669 * For paravirt, this is coupled with an exit in switch_to to
2670 * combine the page table reload and the switch backend into
2673 arch_enter_lazy_cpu_mode();
2675 if (unlikely(!mm
)) {
2676 next
->active_mm
= oldmm
;
2677 atomic_inc(&oldmm
->mm_count
);
2678 enter_lazy_tlb(oldmm
, next
);
2680 switch_mm(oldmm
, mm
, next
);
2682 if (unlikely(!prev
->mm
)) {
2683 prev
->active_mm
= NULL
;
2684 rq
->prev_mm
= oldmm
;
2687 * Since the runqueue lock will be released by the next
2688 * task (which is an invalid locking op but in the case
2689 * of the scheduler it's an obvious special-case), so we
2690 * do an early lockdep release here:
2692 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2693 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2696 /* Here we just switch the register state and the stack. */
2697 switch_to(prev
, next
, prev
);
2701 * this_rq must be evaluated again because prev may have moved
2702 * CPUs since it called schedule(), thus the 'rq' on its stack
2703 * frame will be invalid.
2705 finish_task_switch(this_rq(), prev
);
2709 * nr_running, nr_uninterruptible and nr_context_switches:
2711 * externally visible scheduler statistics: current number of runnable
2712 * threads, current number of uninterruptible-sleeping threads, total
2713 * number of context switches performed since bootup.
2715 unsigned long nr_running(void)
2717 unsigned long i
, sum
= 0;
2719 for_each_online_cpu(i
)
2720 sum
+= cpu_rq(i
)->nr_running
;
2725 unsigned long nr_uninterruptible(void)
2727 unsigned long i
, sum
= 0;
2729 for_each_possible_cpu(i
)
2730 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2733 * Since we read the counters lockless, it might be slightly
2734 * inaccurate. Do not allow it to go below zero though:
2736 if (unlikely((long)sum
< 0))
2742 unsigned long long nr_context_switches(void)
2745 unsigned long long sum
= 0;
2747 for_each_possible_cpu(i
)
2748 sum
+= cpu_rq(i
)->nr_switches
;
2753 unsigned long nr_iowait(void)
2755 unsigned long i
, sum
= 0;
2757 for_each_possible_cpu(i
)
2758 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2763 unsigned long nr_active(void)
2765 unsigned long i
, running
= 0, uninterruptible
= 0;
2767 for_each_online_cpu(i
) {
2768 running
+= cpu_rq(i
)->nr_running
;
2769 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2772 if (unlikely((long)uninterruptible
< 0))
2773 uninterruptible
= 0;
2775 return running
+ uninterruptible
;
2779 * Update rq->cpu_load[] statistics. This function is usually called every
2780 * scheduler tick (TICK_NSEC).
2782 static void update_cpu_load(struct rq
*this_rq
)
2784 unsigned long this_load
= this_rq
->load
.weight
;
2787 this_rq
->nr_load_updates
++;
2789 /* Update our load: */
2790 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2791 unsigned long old_load
, new_load
;
2793 /* scale is effectively 1 << i now, and >> i divides by scale */
2795 old_load
= this_rq
->cpu_load
[i
];
2796 new_load
= this_load
;
2798 * Round up the averaging division if load is increasing. This
2799 * prevents us from getting stuck on 9 if the load is 10, for
2802 if (new_load
> old_load
)
2803 new_load
+= scale
-1;
2804 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2811 * double_rq_lock - safely lock two runqueues
2813 * Note this does not disable interrupts like task_rq_lock,
2814 * you need to do so manually before calling.
2816 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2817 __acquires(rq1
->lock
)
2818 __acquires(rq2
->lock
)
2820 BUG_ON(!irqs_disabled());
2822 spin_lock(&rq1
->lock
);
2823 __acquire(rq2
->lock
); /* Fake it out ;) */
2826 spin_lock(&rq1
->lock
);
2827 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2829 spin_lock(&rq2
->lock
);
2830 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2833 update_rq_clock(rq1
);
2834 update_rq_clock(rq2
);
2838 * double_rq_unlock - safely unlock two runqueues
2840 * Note this does not restore interrupts like task_rq_unlock,
2841 * you need to do so manually after calling.
2843 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2844 __releases(rq1
->lock
)
2845 __releases(rq2
->lock
)
2847 spin_unlock(&rq1
->lock
);
2849 spin_unlock(&rq2
->lock
);
2851 __release(rq2
->lock
);
2855 * If dest_cpu is allowed for this process, migrate the task to it.
2856 * This is accomplished by forcing the cpu_allowed mask to only
2857 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2858 * the cpu_allowed mask is restored.
2860 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2862 struct migration_req req
;
2863 unsigned long flags
;
2866 rq
= task_rq_lock(p
, &flags
);
2867 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
2868 || unlikely(!cpu_active(dest_cpu
)))
2871 /* force the process onto the specified CPU */
2872 if (migrate_task(p
, dest_cpu
, &req
)) {
2873 /* Need to wait for migration thread (might exit: take ref). */
2874 struct task_struct
*mt
= rq
->migration_thread
;
2876 get_task_struct(mt
);
2877 task_rq_unlock(rq
, &flags
);
2878 wake_up_process(mt
);
2879 put_task_struct(mt
);
2880 wait_for_completion(&req
.done
);
2885 task_rq_unlock(rq
, &flags
);
2889 * sched_exec - execve() is a valuable balancing opportunity, because at
2890 * this point the task has the smallest effective memory and cache footprint.
2892 void sched_exec(void)
2894 int new_cpu
, this_cpu
= get_cpu();
2895 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2897 if (new_cpu
!= this_cpu
)
2898 sched_migrate_task(current
, new_cpu
);
2902 * pull_task - move a task from a remote runqueue to the local runqueue.
2903 * Both runqueues must be locked.
2905 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2906 struct rq
*this_rq
, int this_cpu
)
2908 deactivate_task(src_rq
, p
, 0);
2909 set_task_cpu(p
, this_cpu
);
2910 activate_task(this_rq
, p
, 0);
2912 * Note that idle threads have a prio of MAX_PRIO, for this test
2913 * to be always true for them.
2915 check_preempt_curr(this_rq
, p
, 0);
2919 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2922 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2923 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2927 * We do not migrate tasks that are:
2928 * 1) running (obviously), or
2929 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2930 * 3) are cache-hot on their current CPU.
2932 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2933 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2938 if (task_running(rq
, p
)) {
2939 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2944 * Aggressive migration if:
2945 * 1) task is cache cold, or
2946 * 2) too many balance attempts have failed.
2949 if (!task_hot(p
, rq
->clock
, sd
) ||
2950 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2951 #ifdef CONFIG_SCHEDSTATS
2952 if (task_hot(p
, rq
->clock
, sd
)) {
2953 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2954 schedstat_inc(p
, se
.nr_forced_migrations
);
2960 if (task_hot(p
, rq
->clock
, sd
)) {
2961 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2967 static unsigned long
2968 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2969 unsigned long max_load_move
, struct sched_domain
*sd
,
2970 enum cpu_idle_type idle
, int *all_pinned
,
2971 int *this_best_prio
, struct rq_iterator
*iterator
)
2973 int loops
= 0, pulled
= 0, pinned
= 0;
2974 struct task_struct
*p
;
2975 long rem_load_move
= max_load_move
;
2977 if (max_load_move
== 0)
2983 * Start the load-balancing iterator:
2985 p
= iterator
->start(iterator
->arg
);
2987 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2990 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2991 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2992 p
= iterator
->next(iterator
->arg
);
2996 pull_task(busiest
, p
, this_rq
, this_cpu
);
2998 rem_load_move
-= p
->se
.load
.weight
;
3001 * We only want to steal up to the prescribed amount of weighted load.
3003 if (rem_load_move
> 0) {
3004 if (p
->prio
< *this_best_prio
)
3005 *this_best_prio
= p
->prio
;
3006 p
= iterator
->next(iterator
->arg
);
3011 * Right now, this is one of only two places pull_task() is called,
3012 * so we can safely collect pull_task() stats here rather than
3013 * inside pull_task().
3015 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3018 *all_pinned
= pinned
;
3020 return max_load_move
- rem_load_move
;
3024 * move_tasks tries to move up to max_load_move weighted load from busiest to
3025 * this_rq, as part of a balancing operation within domain "sd".
3026 * Returns 1 if successful and 0 otherwise.
3028 * Called with both runqueues locked.
3030 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3031 unsigned long max_load_move
,
3032 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3035 const struct sched_class
*class = sched_class_highest
;
3036 unsigned long total_load_moved
= 0;
3037 int this_best_prio
= this_rq
->curr
->prio
;
3041 class->load_balance(this_rq
, this_cpu
, busiest
,
3042 max_load_move
- total_load_moved
,
3043 sd
, idle
, all_pinned
, &this_best_prio
);
3044 class = class->next
;
3046 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3049 } while (class && max_load_move
> total_load_moved
);
3051 return total_load_moved
> 0;
3055 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3056 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3057 struct rq_iterator
*iterator
)
3059 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3063 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3064 pull_task(busiest
, p
, this_rq
, this_cpu
);
3066 * Right now, this is only the second place pull_task()
3067 * is called, so we can safely collect pull_task()
3068 * stats here rather than inside pull_task().
3070 schedstat_inc(sd
, lb_gained
[idle
]);
3074 p
= iterator
->next(iterator
->arg
);
3081 * move_one_task tries to move exactly one task from busiest to this_rq, as
3082 * part of active balancing operations within "domain".
3083 * Returns 1 if successful and 0 otherwise.
3085 * Called with both runqueues locked.
3087 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3088 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3090 const struct sched_class
*class;
3092 for (class = sched_class_highest
; class; class = class->next
)
3093 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3100 * find_busiest_group finds and returns the busiest CPU group within the
3101 * domain. It calculates and returns the amount of weighted load which
3102 * should be moved to restore balance via the imbalance parameter.
3104 static struct sched_group
*
3105 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3106 unsigned long *imbalance
, enum cpu_idle_type idle
,
3107 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3109 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3110 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3111 unsigned long max_pull
;
3112 unsigned long busiest_load_per_task
, busiest_nr_running
;
3113 unsigned long this_load_per_task
, this_nr_running
;
3114 int load_idx
, group_imb
= 0;
3115 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3116 int power_savings_balance
= 1;
3117 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3118 unsigned long min_nr_running
= ULONG_MAX
;
3119 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3122 max_load
= this_load
= total_load
= total_pwr
= 0;
3123 busiest_load_per_task
= busiest_nr_running
= 0;
3124 this_load_per_task
= this_nr_running
= 0;
3126 if (idle
== CPU_NOT_IDLE
)
3127 load_idx
= sd
->busy_idx
;
3128 else if (idle
== CPU_NEWLY_IDLE
)
3129 load_idx
= sd
->newidle_idx
;
3131 load_idx
= sd
->idle_idx
;
3134 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3137 int __group_imb
= 0;
3138 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3139 unsigned long sum_nr_running
, sum_weighted_load
;
3140 unsigned long sum_avg_load_per_task
;
3141 unsigned long avg_load_per_task
;
3143 local_group
= cpumask_test_cpu(this_cpu
,
3144 sched_group_cpus(group
));
3147 balance_cpu
= cpumask_first(sched_group_cpus(group
));
3149 /* Tally up the load of all CPUs in the group */
3150 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3151 sum_avg_load_per_task
= avg_load_per_task
= 0;
3154 min_cpu_load
= ~0UL;
3156 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3157 struct rq
*rq
= cpu_rq(i
);
3159 if (*sd_idle
&& rq
->nr_running
)
3162 /* Bias balancing toward cpus of our domain */
3164 if (idle_cpu(i
) && !first_idle_cpu
) {
3169 load
= target_load(i
, load_idx
);
3171 load
= source_load(i
, load_idx
);
3172 if (load
> max_cpu_load
)
3173 max_cpu_load
= load
;
3174 if (min_cpu_load
> load
)
3175 min_cpu_load
= load
;
3179 sum_nr_running
+= rq
->nr_running
;
3180 sum_weighted_load
+= weighted_cpuload(i
);
3182 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3186 * First idle cpu or the first cpu(busiest) in this sched group
3187 * is eligible for doing load balancing at this and above
3188 * domains. In the newly idle case, we will allow all the cpu's
3189 * to do the newly idle load balance.
3191 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3192 balance_cpu
!= this_cpu
&& balance
) {
3197 total_load
+= avg_load
;
3198 total_pwr
+= group
->__cpu_power
;
3200 /* Adjust by relative CPU power of the group */
3201 avg_load
= sg_div_cpu_power(group
,
3202 avg_load
* SCHED_LOAD_SCALE
);
3206 * Consider the group unbalanced when the imbalance is larger
3207 * than the average weight of two tasks.
3209 * APZ: with cgroup the avg task weight can vary wildly and
3210 * might not be a suitable number - should we keep a
3211 * normalized nr_running number somewhere that negates
3214 avg_load_per_task
= sg_div_cpu_power(group
,
3215 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3217 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3220 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3223 this_load
= avg_load
;
3225 this_nr_running
= sum_nr_running
;
3226 this_load_per_task
= sum_weighted_load
;
3227 } else if (avg_load
> max_load
&&
3228 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3229 max_load
= avg_load
;
3231 busiest_nr_running
= sum_nr_running
;
3232 busiest_load_per_task
= sum_weighted_load
;
3233 group_imb
= __group_imb
;
3236 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3238 * Busy processors will not participate in power savings
3241 if (idle
== CPU_NOT_IDLE
||
3242 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3246 * If the local group is idle or completely loaded
3247 * no need to do power savings balance at this domain
3249 if (local_group
&& (this_nr_running
>= group_capacity
||
3251 power_savings_balance
= 0;
3254 * If a group is already running at full capacity or idle,
3255 * don't include that group in power savings calculations
3257 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3262 * Calculate the group which has the least non-idle load.
3263 * This is the group from where we need to pick up the load
3266 if ((sum_nr_running
< min_nr_running
) ||
3267 (sum_nr_running
== min_nr_running
&&
3268 cpumask_first(sched_group_cpus(group
)) >
3269 cpumask_first(sched_group_cpus(group_min
)))) {
3271 min_nr_running
= sum_nr_running
;
3272 min_load_per_task
= sum_weighted_load
/
3277 * Calculate the group which is almost near its
3278 * capacity but still has some space to pick up some load
3279 * from other group and save more power
3281 if (sum_nr_running
<= group_capacity
- 1) {
3282 if (sum_nr_running
> leader_nr_running
||
3283 (sum_nr_running
== leader_nr_running
&&
3284 cpumask_first(sched_group_cpus(group
)) <
3285 cpumask_first(sched_group_cpus(group_leader
)))) {
3286 group_leader
= group
;
3287 leader_nr_running
= sum_nr_running
;
3292 group
= group
->next
;
3293 } while (group
!= sd
->groups
);
3295 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3298 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3300 if (this_load
>= avg_load
||
3301 100*max_load
<= sd
->imbalance_pct
*this_load
)
3304 busiest_load_per_task
/= busiest_nr_running
;
3306 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3309 * We're trying to get all the cpus to the average_load, so we don't
3310 * want to push ourselves above the average load, nor do we wish to
3311 * reduce the max loaded cpu below the average load, as either of these
3312 * actions would just result in more rebalancing later, and ping-pong
3313 * tasks around. Thus we look for the minimum possible imbalance.
3314 * Negative imbalances (*we* are more loaded than anyone else) will
3315 * be counted as no imbalance for these purposes -- we can't fix that
3316 * by pulling tasks to us. Be careful of negative numbers as they'll
3317 * appear as very large values with unsigned longs.
3319 if (max_load
<= busiest_load_per_task
)
3323 * In the presence of smp nice balancing, certain scenarios can have
3324 * max load less than avg load(as we skip the groups at or below
3325 * its cpu_power, while calculating max_load..)
3327 if (max_load
< avg_load
) {
3329 goto small_imbalance
;
3332 /* Don't want to pull so many tasks that a group would go idle */
3333 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3335 /* How much load to actually move to equalise the imbalance */
3336 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3337 (avg_load
- this_load
) * this->__cpu_power
)
3341 * if *imbalance is less than the average load per runnable task
3342 * there is no gaurantee that any tasks will be moved so we'll have
3343 * a think about bumping its value to force at least one task to be
3346 if (*imbalance
< busiest_load_per_task
) {
3347 unsigned long tmp
, pwr_now
, pwr_move
;
3351 pwr_move
= pwr_now
= 0;
3353 if (this_nr_running
) {
3354 this_load_per_task
/= this_nr_running
;
3355 if (busiest_load_per_task
> this_load_per_task
)
3358 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3360 if (max_load
- this_load
+ busiest_load_per_task
>=
3361 busiest_load_per_task
* imbn
) {
3362 *imbalance
= busiest_load_per_task
;
3367 * OK, we don't have enough imbalance to justify moving tasks,
3368 * however we may be able to increase total CPU power used by
3372 pwr_now
+= busiest
->__cpu_power
*
3373 min(busiest_load_per_task
, max_load
);
3374 pwr_now
+= this->__cpu_power
*
3375 min(this_load_per_task
, this_load
);
3376 pwr_now
/= SCHED_LOAD_SCALE
;
3378 /* Amount of load we'd subtract */
3379 tmp
= sg_div_cpu_power(busiest
,
3380 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3382 pwr_move
+= busiest
->__cpu_power
*
3383 min(busiest_load_per_task
, max_load
- tmp
);
3385 /* Amount of load we'd add */
3386 if (max_load
* busiest
->__cpu_power
<
3387 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3388 tmp
= sg_div_cpu_power(this,
3389 max_load
* busiest
->__cpu_power
);
3391 tmp
= sg_div_cpu_power(this,
3392 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3393 pwr_move
+= this->__cpu_power
*
3394 min(this_load_per_task
, this_load
+ tmp
);
3395 pwr_move
/= SCHED_LOAD_SCALE
;
3397 /* Move if we gain throughput */
3398 if (pwr_move
> pwr_now
)
3399 *imbalance
= busiest_load_per_task
;
3405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3406 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3409 if (this == group_leader
&& group_leader
!= group_min
) {
3410 *imbalance
= min_load_per_task
;
3411 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3412 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3413 cpumask_first(sched_group_cpus(group_leader
));
3424 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3427 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3428 unsigned long imbalance
, const struct cpumask
*cpus
)
3430 struct rq
*busiest
= NULL
, *rq
;
3431 unsigned long max_load
= 0;
3434 for_each_cpu(i
, sched_group_cpus(group
)) {
3437 if (!cpumask_test_cpu(i
, cpus
))
3441 wl
= weighted_cpuload(i
);
3443 if (rq
->nr_running
== 1 && wl
> imbalance
)
3446 if (wl
> max_load
) {
3456 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3457 * so long as it is large enough.
3459 #define MAX_PINNED_INTERVAL 512
3462 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3463 * tasks if there is an imbalance.
3465 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3466 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3467 int *balance
, struct cpumask
*cpus
)
3469 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3470 struct sched_group
*group
;
3471 unsigned long imbalance
;
3473 unsigned long flags
;
3475 cpumask_setall(cpus
);
3478 * When power savings policy is enabled for the parent domain, idle
3479 * sibling can pick up load irrespective of busy siblings. In this case,
3480 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3481 * portraying it as CPU_NOT_IDLE.
3483 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3484 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3487 schedstat_inc(sd
, lb_count
[idle
]);
3491 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3498 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3502 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3504 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3508 BUG_ON(busiest
== this_rq
);
3510 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3513 if (busiest
->nr_running
> 1) {
3515 * Attempt to move tasks. If find_busiest_group has found
3516 * an imbalance but busiest->nr_running <= 1, the group is
3517 * still unbalanced. ld_moved simply stays zero, so it is
3518 * correctly treated as an imbalance.
3520 local_irq_save(flags
);
3521 double_rq_lock(this_rq
, busiest
);
3522 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3523 imbalance
, sd
, idle
, &all_pinned
);
3524 double_rq_unlock(this_rq
, busiest
);
3525 local_irq_restore(flags
);
3528 * some other cpu did the load balance for us.
3530 if (ld_moved
&& this_cpu
!= smp_processor_id())
3531 resched_cpu(this_cpu
);
3533 /* All tasks on this runqueue were pinned by CPU affinity */
3534 if (unlikely(all_pinned
)) {
3535 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3536 if (!cpumask_empty(cpus
))
3543 schedstat_inc(sd
, lb_failed
[idle
]);
3544 sd
->nr_balance_failed
++;
3546 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3548 spin_lock_irqsave(&busiest
->lock
, flags
);
3550 /* don't kick the migration_thread, if the curr
3551 * task on busiest cpu can't be moved to this_cpu
3553 if (!cpumask_test_cpu(this_cpu
,
3554 &busiest
->curr
->cpus_allowed
)) {
3555 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3557 goto out_one_pinned
;
3560 if (!busiest
->active_balance
) {
3561 busiest
->active_balance
= 1;
3562 busiest
->push_cpu
= this_cpu
;
3565 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3567 wake_up_process(busiest
->migration_thread
);
3570 * We've kicked active balancing, reset the failure
3573 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3576 sd
->nr_balance_failed
= 0;
3578 if (likely(!active_balance
)) {
3579 /* We were unbalanced, so reset the balancing interval */
3580 sd
->balance_interval
= sd
->min_interval
;
3583 * If we've begun active balancing, start to back off. This
3584 * case may not be covered by the all_pinned logic if there
3585 * is only 1 task on the busy runqueue (because we don't call
3588 if (sd
->balance_interval
< sd
->max_interval
)
3589 sd
->balance_interval
*= 2;
3592 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3593 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3599 schedstat_inc(sd
, lb_balanced
[idle
]);
3601 sd
->nr_balance_failed
= 0;
3604 /* tune up the balancing interval */
3605 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3606 (sd
->balance_interval
< sd
->max_interval
))
3607 sd
->balance_interval
*= 2;
3609 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3610 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3622 * tasks if there is an imbalance.
3624 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3625 * this_rq is locked.
3628 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3629 struct cpumask
*cpus
)
3631 struct sched_group
*group
;
3632 struct rq
*busiest
= NULL
;
3633 unsigned long imbalance
;
3638 cpumask_setall(cpus
);
3641 * When power savings policy is enabled for the parent domain, idle
3642 * sibling can pick up load irrespective of busy siblings. In this case,
3643 * let the state of idle sibling percolate up as IDLE, instead of
3644 * portraying it as CPU_NOT_IDLE.
3646 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3647 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3650 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3652 update_shares_locked(this_rq
, sd
);
3653 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3654 &sd_idle
, cpus
, NULL
);
3656 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3660 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3662 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3666 BUG_ON(busiest
== this_rq
);
3668 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3671 if (busiest
->nr_running
> 1) {
3672 /* Attempt to move tasks */
3673 double_lock_balance(this_rq
, busiest
);
3674 /* this_rq->clock is already updated */
3675 update_rq_clock(busiest
);
3676 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3677 imbalance
, sd
, CPU_NEWLY_IDLE
,
3679 double_unlock_balance(this_rq
, busiest
);
3681 if (unlikely(all_pinned
)) {
3682 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3683 if (!cpumask_empty(cpus
))
3689 int active_balance
= 0;
3691 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3692 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3693 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3696 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3699 if (sd
->nr_balance_failed
++ < 2)
3703 * The only task running in a non-idle cpu can be moved to this
3704 * cpu in an attempt to completely freeup the other CPU
3705 * package. The same method used to move task in load_balance()
3706 * have been extended for load_balance_newidle() to speedup
3707 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3709 * The package power saving logic comes from
3710 * find_busiest_group(). If there are no imbalance, then
3711 * f_b_g() will return NULL. However when sched_mc={1,2} then
3712 * f_b_g() will select a group from which a running task may be
3713 * pulled to this cpu in order to make the other package idle.
3714 * If there is no opportunity to make a package idle and if
3715 * there are no imbalance, then f_b_g() will return NULL and no
3716 * action will be taken in load_balance_newidle().
3718 * Under normal task pull operation due to imbalance, there
3719 * will be more than one task in the source run queue and
3720 * move_tasks() will succeed. ld_moved will be true and this
3721 * active balance code will not be triggered.
3724 /* Lock busiest in correct order while this_rq is held */
3725 double_lock_balance(this_rq
, busiest
);
3728 * don't kick the migration_thread, if the curr
3729 * task on busiest cpu can't be moved to this_cpu
3731 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
3732 double_unlock_balance(this_rq
, busiest
);
3737 if (!busiest
->active_balance
) {
3738 busiest
->active_balance
= 1;
3739 busiest
->push_cpu
= this_cpu
;
3743 double_unlock_balance(this_rq
, busiest
);
3745 * Should not call ttwu while holding a rq->lock
3747 spin_unlock(&this_rq
->lock
);
3749 wake_up_process(busiest
->migration_thread
);
3750 spin_lock(&this_rq
->lock
);
3753 sd
->nr_balance_failed
= 0;
3755 update_shares_locked(this_rq
, sd
);
3759 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3760 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3761 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3763 sd
->nr_balance_failed
= 0;
3769 * idle_balance is called by schedule() if this_cpu is about to become
3770 * idle. Attempts to pull tasks from other CPUs.
3772 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3774 struct sched_domain
*sd
;
3775 int pulled_task
= 0;
3776 unsigned long next_balance
= jiffies
+ HZ
;
3777 cpumask_var_t tmpmask
;
3779 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
3782 for_each_domain(this_cpu
, sd
) {
3783 unsigned long interval
;
3785 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3788 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3789 /* If we've pulled tasks over stop searching: */
3790 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3793 interval
= msecs_to_jiffies(sd
->balance_interval
);
3794 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3795 next_balance
= sd
->last_balance
+ interval
;
3799 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3801 * We are going idle. next_balance may be set based on
3802 * a busy processor. So reset next_balance.
3804 this_rq
->next_balance
= next_balance
;
3806 free_cpumask_var(tmpmask
);
3810 * active_load_balance is run by migration threads. It pushes running tasks
3811 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3812 * running on each physical CPU where possible, and avoids physical /
3813 * logical imbalances.
3815 * Called with busiest_rq locked.
3817 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3819 int target_cpu
= busiest_rq
->push_cpu
;
3820 struct sched_domain
*sd
;
3821 struct rq
*target_rq
;
3823 /* Is there any task to move? */
3824 if (busiest_rq
->nr_running
<= 1)
3827 target_rq
= cpu_rq(target_cpu
);
3830 * This condition is "impossible", if it occurs
3831 * we need to fix it. Originally reported by
3832 * Bjorn Helgaas on a 128-cpu setup.
3834 BUG_ON(busiest_rq
== target_rq
);
3836 /* move a task from busiest_rq to target_rq */
3837 double_lock_balance(busiest_rq
, target_rq
);
3838 update_rq_clock(busiest_rq
);
3839 update_rq_clock(target_rq
);
3841 /* Search for an sd spanning us and the target CPU. */
3842 for_each_domain(target_cpu
, sd
) {
3843 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3844 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3849 schedstat_inc(sd
, alb_count
);
3851 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3853 schedstat_inc(sd
, alb_pushed
);
3855 schedstat_inc(sd
, alb_failed
);
3857 double_unlock_balance(busiest_rq
, target_rq
);
3862 atomic_t load_balancer
;
3863 cpumask_var_t cpu_mask
;
3864 } nohz ____cacheline_aligned
= {
3865 .load_balancer
= ATOMIC_INIT(-1),
3869 * This routine will try to nominate the ilb (idle load balancing)
3870 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3871 * load balancing on behalf of all those cpus. If all the cpus in the system
3872 * go into this tickless mode, then there will be no ilb owner (as there is
3873 * no need for one) and all the cpus will sleep till the next wakeup event
3876 * For the ilb owner, tick is not stopped. And this tick will be used
3877 * for idle load balancing. ilb owner will still be part of
3880 * While stopping the tick, this cpu will become the ilb owner if there
3881 * is no other owner. And will be the owner till that cpu becomes busy
3882 * or if all cpus in the system stop their ticks at which point
3883 * there is no need for ilb owner.
3885 * When the ilb owner becomes busy, it nominates another owner, during the
3886 * next busy scheduler_tick()
3888 int select_nohz_load_balancer(int stop_tick
)
3890 int cpu
= smp_processor_id();
3893 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
3894 cpu_rq(cpu
)->in_nohz_recently
= 1;
3897 * If we are going offline and still the leader, give up!
3899 if (!cpu_active(cpu
) &&
3900 atomic_read(&nohz
.load_balancer
) == cpu
) {
3901 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3906 /* time for ilb owner also to sleep */
3907 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3908 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3909 atomic_set(&nohz
.load_balancer
, -1);
3913 if (atomic_read(&nohz
.load_balancer
) == -1) {
3914 /* make me the ilb owner */
3915 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3917 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3920 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
3923 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
3925 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3926 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3933 static DEFINE_SPINLOCK(balancing
);
3936 * It checks each scheduling domain to see if it is due to be balanced,
3937 * and initiates a balancing operation if so.
3939 * Balancing parameters are set up in arch_init_sched_domains.
3941 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3944 struct rq
*rq
= cpu_rq(cpu
);
3945 unsigned long interval
;
3946 struct sched_domain
*sd
;
3947 /* Earliest time when we have to do rebalance again */
3948 unsigned long next_balance
= jiffies
+ 60*HZ
;
3949 int update_next_balance
= 0;
3953 /* Fails alloc? Rebalancing probably not a priority right now. */
3954 if (!alloc_cpumask_var(&tmp
, GFP_ATOMIC
))
3957 for_each_domain(cpu
, sd
) {
3958 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3961 interval
= sd
->balance_interval
;
3962 if (idle
!= CPU_IDLE
)
3963 interval
*= sd
->busy_factor
;
3965 /* scale ms to jiffies */
3966 interval
= msecs_to_jiffies(interval
);
3967 if (unlikely(!interval
))
3969 if (interval
> HZ
*NR_CPUS
/10)
3970 interval
= HZ
*NR_CPUS
/10;
3972 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3974 if (need_serialize
) {
3975 if (!spin_trylock(&balancing
))
3979 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3980 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, tmp
)) {
3982 * We've pulled tasks over so either we're no
3983 * longer idle, or one of our SMT siblings is
3986 idle
= CPU_NOT_IDLE
;
3988 sd
->last_balance
= jiffies
;
3991 spin_unlock(&balancing
);
3993 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3994 next_balance
= sd
->last_balance
+ interval
;
3995 update_next_balance
= 1;
3999 * Stop the load balance at this level. There is another
4000 * CPU in our sched group which is doing load balancing more
4008 * next_balance will be updated only when there is a need.
4009 * When the cpu is attached to null domain for ex, it will not be
4012 if (likely(update_next_balance
))
4013 rq
->next_balance
= next_balance
;
4015 free_cpumask_var(tmp
);
4019 * run_rebalance_domains is triggered when needed from the scheduler tick.
4020 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4021 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4023 static void run_rebalance_domains(struct softirq_action
*h
)
4025 int this_cpu
= smp_processor_id();
4026 struct rq
*this_rq
= cpu_rq(this_cpu
);
4027 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4028 CPU_IDLE
: CPU_NOT_IDLE
;
4030 rebalance_domains(this_cpu
, idle
);
4034 * If this cpu is the owner for idle load balancing, then do the
4035 * balancing on behalf of the other idle cpus whose ticks are
4038 if (this_rq
->idle_at_tick
&&
4039 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4043 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4044 if (balance_cpu
== this_cpu
)
4048 * If this cpu gets work to do, stop the load balancing
4049 * work being done for other cpus. Next load
4050 * balancing owner will pick it up.
4055 rebalance_domains(balance_cpu
, CPU_IDLE
);
4057 rq
= cpu_rq(balance_cpu
);
4058 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4059 this_rq
->next_balance
= rq
->next_balance
;
4066 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4068 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4069 * idle load balancing owner or decide to stop the periodic load balancing,
4070 * if the whole system is idle.
4072 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4076 * If we were in the nohz mode recently and busy at the current
4077 * scheduler tick, then check if we need to nominate new idle
4080 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4081 rq
->in_nohz_recently
= 0;
4083 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4084 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4085 atomic_set(&nohz
.load_balancer
, -1);
4088 if (atomic_read(&nohz
.load_balancer
) == -1) {
4090 * simple selection for now: Nominate the
4091 * first cpu in the nohz list to be the next
4094 * TBD: Traverse the sched domains and nominate
4095 * the nearest cpu in the nohz.cpu_mask.
4097 int ilb
= cpumask_first(nohz
.cpu_mask
);
4099 if (ilb
< nr_cpu_ids
)
4105 * If this cpu is idle and doing idle load balancing for all the
4106 * cpus with ticks stopped, is it time for that to stop?
4108 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4109 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4115 * If this cpu is idle and the idle load balancing is done by
4116 * someone else, then no need raise the SCHED_SOFTIRQ
4118 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4119 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4122 if (time_after_eq(jiffies
, rq
->next_balance
))
4123 raise_softirq(SCHED_SOFTIRQ
);
4126 #else /* CONFIG_SMP */
4129 * on UP we do not need to balance between CPUs:
4131 static inline void idle_balance(int cpu
, struct rq
*rq
)
4137 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4139 EXPORT_PER_CPU_SYMBOL(kstat
);
4142 * Return any ns on the sched_clock that have not yet been banked in
4143 * @p in case that task is currently running.
4145 unsigned long long task_delta_exec(struct task_struct
*p
)
4147 unsigned long flags
;
4151 rq
= task_rq_lock(p
, &flags
);
4153 if (task_current(rq
, p
)) {
4156 update_rq_clock(rq
);
4157 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4158 if ((s64
)delta_exec
> 0)
4162 task_rq_unlock(rq
, &flags
);
4168 * Account user cpu time to a process.
4169 * @p: the process that the cpu time gets accounted to
4170 * @cputime: the cpu time spent in user space since the last update
4171 * @cputime_scaled: cputime scaled by cpu frequency
4173 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4174 cputime_t cputime_scaled
)
4176 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4179 /* Add user time to process. */
4180 p
->utime
= cputime_add(p
->utime
, cputime
);
4181 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4182 account_group_user_time(p
, cputime
);
4184 /* Add user time to cpustat. */
4185 tmp
= cputime_to_cputime64(cputime
);
4186 if (TASK_NICE(p
) > 0)
4187 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4189 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4190 /* Account for user time used */
4191 acct_update_integrals(p
);
4195 * Account guest cpu time to a process.
4196 * @p: the process that the cpu time gets accounted to
4197 * @cputime: the cpu time spent in virtual machine since the last update
4198 * @cputime_scaled: cputime scaled by cpu frequency
4200 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4201 cputime_t cputime_scaled
)
4204 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4206 tmp
= cputime_to_cputime64(cputime
);
4208 /* Add guest time to process. */
4209 p
->utime
= cputime_add(p
->utime
, cputime
);
4210 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4211 account_group_user_time(p
, cputime
);
4212 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4214 /* Add guest time to cpustat. */
4215 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4216 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4220 * Account system cpu time to a process.
4221 * @p: the process that the cpu time gets accounted to
4222 * @hardirq_offset: the offset to subtract from hardirq_count()
4223 * @cputime: the cpu time spent in kernel space since the last update
4224 * @cputime_scaled: cputime scaled by cpu frequency
4226 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4227 cputime_t cputime
, cputime_t cputime_scaled
)
4229 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4232 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4233 account_guest_time(p
, cputime
, cputime_scaled
);
4237 /* Add system time to process. */
4238 p
->stime
= cputime_add(p
->stime
, cputime
);
4239 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4240 account_group_system_time(p
, cputime
);
4242 /* Add system time to cpustat. */
4243 tmp
= cputime_to_cputime64(cputime
);
4244 if (hardirq_count() - hardirq_offset
)
4245 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4246 else if (softirq_count())
4247 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4249 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4251 /* Account for system time used */
4252 acct_update_integrals(p
);
4256 * Account for involuntary wait time.
4257 * @steal: the cpu time spent in involuntary wait
4259 void account_steal_time(cputime_t cputime
)
4261 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4262 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4264 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4268 * Account for idle time.
4269 * @cputime: the cpu time spent in idle wait
4271 void account_idle_time(cputime_t cputime
)
4273 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4274 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4275 struct rq
*rq
= this_rq();
4277 if (atomic_read(&rq
->nr_iowait
) > 0)
4278 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4280 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4283 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4286 * Account a single tick of cpu time.
4287 * @p: the process that the cpu time gets accounted to
4288 * @user_tick: indicates if the tick is a user or a system tick
4290 void account_process_tick(struct task_struct
*p
, int user_tick
)
4292 cputime_t one_jiffy
= jiffies_to_cputime(1);
4293 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
4294 struct rq
*rq
= this_rq();
4297 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
4298 else if (p
!= rq
->idle
)
4299 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
4302 account_idle_time(one_jiffy
);
4306 * Account multiple ticks of steal time.
4307 * @p: the process from which the cpu time has been stolen
4308 * @ticks: number of stolen ticks
4310 void account_steal_ticks(unsigned long ticks
)
4312 account_steal_time(jiffies_to_cputime(ticks
));
4316 * Account multiple ticks of idle time.
4317 * @ticks: number of stolen ticks
4319 void account_idle_ticks(unsigned long ticks
)
4321 account_idle_time(jiffies_to_cputime(ticks
));
4327 * Use precise platform statistics if available:
4329 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4330 cputime_t
task_utime(struct task_struct
*p
)
4335 cputime_t
task_stime(struct task_struct
*p
)
4340 cputime_t
task_utime(struct task_struct
*p
)
4342 clock_t utime
= cputime_to_clock_t(p
->utime
),
4343 total
= utime
+ cputime_to_clock_t(p
->stime
);
4347 * Use CFS's precise accounting:
4349 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4353 do_div(temp
, total
);
4355 utime
= (clock_t)temp
;
4357 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4358 return p
->prev_utime
;
4361 cputime_t
task_stime(struct task_struct
*p
)
4366 * Use CFS's precise accounting. (we subtract utime from
4367 * the total, to make sure the total observed by userspace
4368 * grows monotonically - apps rely on that):
4370 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4371 cputime_to_clock_t(task_utime(p
));
4374 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4376 return p
->prev_stime
;
4380 inline cputime_t
task_gtime(struct task_struct
*p
)
4386 * This function gets called by the timer code, with HZ frequency.
4387 * We call it with interrupts disabled.
4389 * It also gets called by the fork code, when changing the parent's
4392 void scheduler_tick(void)
4394 int cpu
= smp_processor_id();
4395 struct rq
*rq
= cpu_rq(cpu
);
4396 struct task_struct
*curr
= rq
->curr
;
4400 spin_lock(&rq
->lock
);
4401 update_rq_clock(rq
);
4402 update_cpu_load(rq
);
4403 curr
->sched_class
->task_tick(rq
, curr
, 0);
4404 spin_unlock(&rq
->lock
);
4407 rq
->idle_at_tick
= idle_cpu(cpu
);
4408 trigger_load_balance(rq
, cpu
);
4412 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4413 defined(CONFIG_PREEMPT_TRACER))
4415 static inline unsigned long get_parent_ip(unsigned long addr
)
4417 if (in_lock_functions(addr
)) {
4418 addr
= CALLER_ADDR2
;
4419 if (in_lock_functions(addr
))
4420 addr
= CALLER_ADDR3
;
4425 void __kprobes
add_preempt_count(int val
)
4427 #ifdef CONFIG_DEBUG_PREEMPT
4431 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4434 preempt_count() += val
;
4435 #ifdef CONFIG_DEBUG_PREEMPT
4437 * Spinlock count overflowing soon?
4439 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4442 if (preempt_count() == val
)
4443 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4445 EXPORT_SYMBOL(add_preempt_count
);
4447 void __kprobes
sub_preempt_count(int val
)
4449 #ifdef CONFIG_DEBUG_PREEMPT
4453 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4456 * Is the spinlock portion underflowing?
4458 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4459 !(preempt_count() & PREEMPT_MASK
)))
4463 if (preempt_count() == val
)
4464 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4465 preempt_count() -= val
;
4467 EXPORT_SYMBOL(sub_preempt_count
);
4472 * Print scheduling while atomic bug:
4474 static noinline
void __schedule_bug(struct task_struct
*prev
)
4476 struct pt_regs
*regs
= get_irq_regs();
4478 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4479 prev
->comm
, prev
->pid
, preempt_count());
4481 debug_show_held_locks(prev
);
4483 if (irqs_disabled())
4484 print_irqtrace_events(prev
);
4493 * Various schedule()-time debugging checks and statistics:
4495 static inline void schedule_debug(struct task_struct
*prev
)
4498 * Test if we are atomic. Since do_exit() needs to call into
4499 * schedule() atomically, we ignore that path for now.
4500 * Otherwise, whine if we are scheduling when we should not be.
4502 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4503 __schedule_bug(prev
);
4505 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4507 schedstat_inc(this_rq(), sched_count
);
4508 #ifdef CONFIG_SCHEDSTATS
4509 if (unlikely(prev
->lock_depth
>= 0)) {
4510 schedstat_inc(this_rq(), bkl_count
);
4511 schedstat_inc(prev
, sched_info
.bkl_count
);
4517 * Pick up the highest-prio task:
4519 static inline struct task_struct
*
4520 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4522 const struct sched_class
*class;
4523 struct task_struct
*p
;
4526 * Optimization: we know that if all tasks are in
4527 * the fair class we can call that function directly:
4529 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4530 p
= fair_sched_class
.pick_next_task(rq
);
4535 class = sched_class_highest
;
4537 p
= class->pick_next_task(rq
);
4541 * Will never be NULL as the idle class always
4542 * returns a non-NULL p:
4544 class = class->next
;
4549 * schedule() is the main scheduler function.
4551 asmlinkage
void __sched
schedule(void)
4553 struct task_struct
*prev
, *next
;
4554 unsigned long *switch_count
;
4560 cpu
= smp_processor_id();
4564 switch_count
= &prev
->nivcsw
;
4566 release_kernel_lock(prev
);
4567 need_resched_nonpreemptible
:
4569 schedule_debug(prev
);
4571 if (sched_feat(HRTICK
))
4574 spin_lock_irq(&rq
->lock
);
4575 update_rq_clock(rq
);
4576 clear_tsk_need_resched(prev
);
4578 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4579 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4580 prev
->state
= TASK_RUNNING
;
4582 deactivate_task(rq
, prev
, 1);
4583 switch_count
= &prev
->nvcsw
;
4587 if (prev
->sched_class
->pre_schedule
)
4588 prev
->sched_class
->pre_schedule(rq
, prev
);
4591 if (unlikely(!rq
->nr_running
))
4592 idle_balance(cpu
, rq
);
4594 prev
->sched_class
->put_prev_task(rq
, prev
);
4595 next
= pick_next_task(rq
, prev
);
4597 if (likely(prev
!= next
)) {
4598 sched_info_switch(prev
, next
);
4604 context_switch(rq
, prev
, next
); /* unlocks the rq */
4606 * the context switch might have flipped the stack from under
4607 * us, hence refresh the local variables.
4609 cpu
= smp_processor_id();
4612 spin_unlock_irq(&rq
->lock
);
4614 if (unlikely(reacquire_kernel_lock(current
) < 0))
4615 goto need_resched_nonpreemptible
;
4617 preempt_enable_no_resched();
4618 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4621 EXPORT_SYMBOL(schedule
);
4623 #ifdef CONFIG_PREEMPT
4625 * this is the entry point to schedule() from in-kernel preemption
4626 * off of preempt_enable. Kernel preemptions off return from interrupt
4627 * occur there and call schedule directly.
4629 asmlinkage
void __sched
preempt_schedule(void)
4631 struct thread_info
*ti
= current_thread_info();
4634 * If there is a non-zero preempt_count or interrupts are disabled,
4635 * we do not want to preempt the current task. Just return..
4637 if (likely(ti
->preempt_count
|| irqs_disabled()))
4641 add_preempt_count(PREEMPT_ACTIVE
);
4643 sub_preempt_count(PREEMPT_ACTIVE
);
4646 * Check again in case we missed a preemption opportunity
4647 * between schedule and now.
4650 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4652 EXPORT_SYMBOL(preempt_schedule
);
4655 * this is the entry point to schedule() from kernel preemption
4656 * off of irq context.
4657 * Note, that this is called and return with irqs disabled. This will
4658 * protect us against recursive calling from irq.
4660 asmlinkage
void __sched
preempt_schedule_irq(void)
4662 struct thread_info
*ti
= current_thread_info();
4664 /* Catch callers which need to be fixed */
4665 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4668 add_preempt_count(PREEMPT_ACTIVE
);
4671 local_irq_disable();
4672 sub_preempt_count(PREEMPT_ACTIVE
);
4675 * Check again in case we missed a preemption opportunity
4676 * between schedule and now.
4679 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4682 #endif /* CONFIG_PREEMPT */
4684 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4687 return try_to_wake_up(curr
->private, mode
, sync
);
4689 EXPORT_SYMBOL(default_wake_function
);
4692 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4693 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4694 * number) then we wake all the non-exclusive tasks and one exclusive task.
4696 * There are circumstances in which we can try to wake a task which has already
4697 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4698 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4700 void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4701 int nr_exclusive
, int sync
, void *key
)
4703 wait_queue_t
*curr
, *next
;
4705 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4706 unsigned flags
= curr
->flags
;
4708 if (curr
->func(curr
, mode
, sync
, key
) &&
4709 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4715 * __wake_up - wake up threads blocked on a waitqueue.
4717 * @mode: which threads
4718 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4719 * @key: is directly passed to the wakeup function
4721 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4722 int nr_exclusive
, void *key
)
4724 unsigned long flags
;
4726 spin_lock_irqsave(&q
->lock
, flags
);
4727 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4728 spin_unlock_irqrestore(&q
->lock
, flags
);
4730 EXPORT_SYMBOL(__wake_up
);
4733 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4735 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4737 __wake_up_common(q
, mode
, 1, 0, NULL
);
4741 * __wake_up_sync - wake up threads blocked on a waitqueue.
4743 * @mode: which threads
4744 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4746 * The sync wakeup differs that the waker knows that it will schedule
4747 * away soon, so while the target thread will be woken up, it will not
4748 * be migrated to another CPU - ie. the two threads are 'synchronized'
4749 * with each other. This can prevent needless bouncing between CPUs.
4751 * On UP it can prevent extra preemption.
4754 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4756 unsigned long flags
;
4762 if (unlikely(!nr_exclusive
))
4765 spin_lock_irqsave(&q
->lock
, flags
);
4766 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4767 spin_unlock_irqrestore(&q
->lock
, flags
);
4769 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4772 * complete: - signals a single thread waiting on this completion
4773 * @x: holds the state of this particular completion
4775 * This will wake up a single thread waiting on this completion. Threads will be
4776 * awakened in the same order in which they were queued.
4778 * See also complete_all(), wait_for_completion() and related routines.
4780 void complete(struct completion
*x
)
4782 unsigned long flags
;
4784 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4786 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4787 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4789 EXPORT_SYMBOL(complete
);
4792 * complete_all: - signals all threads waiting on this completion
4793 * @x: holds the state of this particular completion
4795 * This will wake up all threads waiting on this particular completion event.
4797 void complete_all(struct completion
*x
)
4799 unsigned long flags
;
4801 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4802 x
->done
+= UINT_MAX
/2;
4803 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4804 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4806 EXPORT_SYMBOL(complete_all
);
4808 static inline long __sched
4809 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4812 DECLARE_WAITQUEUE(wait
, current
);
4814 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4815 __add_wait_queue_tail(&x
->wait
, &wait
);
4817 if (signal_pending_state(state
, current
)) {
4818 timeout
= -ERESTARTSYS
;
4821 __set_current_state(state
);
4822 spin_unlock_irq(&x
->wait
.lock
);
4823 timeout
= schedule_timeout(timeout
);
4824 spin_lock_irq(&x
->wait
.lock
);
4825 } while (!x
->done
&& timeout
);
4826 __remove_wait_queue(&x
->wait
, &wait
);
4831 return timeout
?: 1;
4835 wait_for_common(struct completion
*x
, long timeout
, int state
)
4839 spin_lock_irq(&x
->wait
.lock
);
4840 timeout
= do_wait_for_common(x
, timeout
, state
);
4841 spin_unlock_irq(&x
->wait
.lock
);
4846 * wait_for_completion: - waits for completion of a task
4847 * @x: holds the state of this particular completion
4849 * This waits to be signaled for completion of a specific task. It is NOT
4850 * interruptible and there is no timeout.
4852 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4853 * and interrupt capability. Also see complete().
4855 void __sched
wait_for_completion(struct completion
*x
)
4857 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4859 EXPORT_SYMBOL(wait_for_completion
);
4862 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4863 * @x: holds the state of this particular completion
4864 * @timeout: timeout value in jiffies
4866 * This waits for either a completion of a specific task to be signaled or for a
4867 * specified timeout to expire. The timeout is in jiffies. It is not
4870 unsigned long __sched
4871 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4873 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4875 EXPORT_SYMBOL(wait_for_completion_timeout
);
4878 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4879 * @x: holds the state of this particular completion
4881 * This waits for completion of a specific task to be signaled. It is
4884 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4886 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4887 if (t
== -ERESTARTSYS
)
4891 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4894 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4895 * @x: holds the state of this particular completion
4896 * @timeout: timeout value in jiffies
4898 * This waits for either a completion of a specific task to be signaled or for a
4899 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4901 unsigned long __sched
4902 wait_for_completion_interruptible_timeout(struct completion
*x
,
4903 unsigned long timeout
)
4905 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4907 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4910 * wait_for_completion_killable: - waits for completion of a task (killable)
4911 * @x: holds the state of this particular completion
4913 * This waits to be signaled for completion of a specific task. It can be
4914 * interrupted by a kill signal.
4916 int __sched
wait_for_completion_killable(struct completion
*x
)
4918 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4919 if (t
== -ERESTARTSYS
)
4923 EXPORT_SYMBOL(wait_for_completion_killable
);
4926 * try_wait_for_completion - try to decrement a completion without blocking
4927 * @x: completion structure
4929 * Returns: 0 if a decrement cannot be done without blocking
4930 * 1 if a decrement succeeded.
4932 * If a completion is being used as a counting completion,
4933 * attempt to decrement the counter without blocking. This
4934 * enables us to avoid waiting if the resource the completion
4935 * is protecting is not available.
4937 bool try_wait_for_completion(struct completion
*x
)
4941 spin_lock_irq(&x
->wait
.lock
);
4946 spin_unlock_irq(&x
->wait
.lock
);
4949 EXPORT_SYMBOL(try_wait_for_completion
);
4952 * completion_done - Test to see if a completion has any waiters
4953 * @x: completion structure
4955 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4956 * 1 if there are no waiters.
4959 bool completion_done(struct completion
*x
)
4963 spin_lock_irq(&x
->wait
.lock
);
4966 spin_unlock_irq(&x
->wait
.lock
);
4969 EXPORT_SYMBOL(completion_done
);
4972 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4974 unsigned long flags
;
4977 init_waitqueue_entry(&wait
, current
);
4979 __set_current_state(state
);
4981 spin_lock_irqsave(&q
->lock
, flags
);
4982 __add_wait_queue(q
, &wait
);
4983 spin_unlock(&q
->lock
);
4984 timeout
= schedule_timeout(timeout
);
4985 spin_lock_irq(&q
->lock
);
4986 __remove_wait_queue(q
, &wait
);
4987 spin_unlock_irqrestore(&q
->lock
, flags
);
4992 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4994 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4996 EXPORT_SYMBOL(interruptible_sleep_on
);
4999 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5001 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5003 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5005 void __sched
sleep_on(wait_queue_head_t
*q
)
5007 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5009 EXPORT_SYMBOL(sleep_on
);
5011 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5013 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5015 EXPORT_SYMBOL(sleep_on_timeout
);
5017 #ifdef CONFIG_RT_MUTEXES
5020 * rt_mutex_setprio - set the current priority of a task
5022 * @prio: prio value (kernel-internal form)
5024 * This function changes the 'effective' priority of a task. It does
5025 * not touch ->normal_prio like __setscheduler().
5027 * Used by the rt_mutex code to implement priority inheritance logic.
5029 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5031 unsigned long flags
;
5032 int oldprio
, on_rq
, running
;
5034 const struct sched_class
*prev_class
= p
->sched_class
;
5036 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5038 rq
= task_rq_lock(p
, &flags
);
5039 update_rq_clock(rq
);
5042 on_rq
= p
->se
.on_rq
;
5043 running
= task_current(rq
, p
);
5045 dequeue_task(rq
, p
, 0);
5047 p
->sched_class
->put_prev_task(rq
, p
);
5050 p
->sched_class
= &rt_sched_class
;
5052 p
->sched_class
= &fair_sched_class
;
5057 p
->sched_class
->set_curr_task(rq
);
5059 enqueue_task(rq
, p
, 0);
5061 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5063 task_rq_unlock(rq
, &flags
);
5068 void set_user_nice(struct task_struct
*p
, long nice
)
5070 int old_prio
, delta
, on_rq
;
5071 unsigned long flags
;
5074 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5077 * We have to be careful, if called from sys_setpriority(),
5078 * the task might be in the middle of scheduling on another CPU.
5080 rq
= task_rq_lock(p
, &flags
);
5081 update_rq_clock(rq
);
5083 * The RT priorities are set via sched_setscheduler(), but we still
5084 * allow the 'normal' nice value to be set - but as expected
5085 * it wont have any effect on scheduling until the task is
5086 * SCHED_FIFO/SCHED_RR:
5088 if (task_has_rt_policy(p
)) {
5089 p
->static_prio
= NICE_TO_PRIO(nice
);
5092 on_rq
= p
->se
.on_rq
;
5094 dequeue_task(rq
, p
, 0);
5096 p
->static_prio
= NICE_TO_PRIO(nice
);
5099 p
->prio
= effective_prio(p
);
5100 delta
= p
->prio
- old_prio
;
5103 enqueue_task(rq
, p
, 0);
5105 * If the task increased its priority or is running and
5106 * lowered its priority, then reschedule its CPU:
5108 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5109 resched_task(rq
->curr
);
5112 task_rq_unlock(rq
, &flags
);
5114 EXPORT_SYMBOL(set_user_nice
);
5117 * can_nice - check if a task can reduce its nice value
5121 int can_nice(const struct task_struct
*p
, const int nice
)
5123 /* convert nice value [19,-20] to rlimit style value [1,40] */
5124 int nice_rlim
= 20 - nice
;
5126 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5127 capable(CAP_SYS_NICE
));
5130 #ifdef __ARCH_WANT_SYS_NICE
5133 * sys_nice - change the priority of the current process.
5134 * @increment: priority increment
5136 * sys_setpriority is a more generic, but much slower function that
5137 * does similar things.
5139 SYSCALL_DEFINE1(nice
, int, increment
)
5144 * Setpriority might change our priority at the same moment.
5145 * We don't have to worry. Conceptually one call occurs first
5146 * and we have a single winner.
5148 if (increment
< -40)
5153 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5159 if (increment
< 0 && !can_nice(current
, nice
))
5162 retval
= security_task_setnice(current
, nice
);
5166 set_user_nice(current
, nice
);
5173 * task_prio - return the priority value of a given task.
5174 * @p: the task in question.
5176 * This is the priority value as seen by users in /proc.
5177 * RT tasks are offset by -200. Normal tasks are centered
5178 * around 0, value goes from -16 to +15.
5180 int task_prio(const struct task_struct
*p
)
5182 return p
->prio
- MAX_RT_PRIO
;
5186 * task_nice - return the nice value of a given task.
5187 * @p: the task in question.
5189 int task_nice(const struct task_struct
*p
)
5191 return TASK_NICE(p
);
5193 EXPORT_SYMBOL(task_nice
);
5196 * idle_cpu - is a given cpu idle currently?
5197 * @cpu: the processor in question.
5199 int idle_cpu(int cpu
)
5201 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5205 * idle_task - return the idle task for a given cpu.
5206 * @cpu: the processor in question.
5208 struct task_struct
*idle_task(int cpu
)
5210 return cpu_rq(cpu
)->idle
;
5214 * find_process_by_pid - find a process with a matching PID value.
5215 * @pid: the pid in question.
5217 static struct task_struct
*find_process_by_pid(pid_t pid
)
5219 return pid
? find_task_by_vpid(pid
) : current
;
5222 /* Actually do priority change: must hold rq lock. */
5224 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5226 BUG_ON(p
->se
.on_rq
);
5229 switch (p
->policy
) {
5233 p
->sched_class
= &fair_sched_class
;
5237 p
->sched_class
= &rt_sched_class
;
5241 p
->rt_priority
= prio
;
5242 p
->normal_prio
= normal_prio(p
);
5243 /* we are holding p->pi_lock already */
5244 p
->prio
= rt_mutex_getprio(p
);
5249 * check the target process has a UID that matches the current process's
5251 static bool check_same_owner(struct task_struct
*p
)
5253 const struct cred
*cred
= current_cred(), *pcred
;
5257 pcred
= __task_cred(p
);
5258 match
= (cred
->euid
== pcred
->euid
||
5259 cred
->euid
== pcred
->uid
);
5264 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5265 struct sched_param
*param
, bool user
)
5267 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5268 unsigned long flags
;
5269 const struct sched_class
*prev_class
= p
->sched_class
;
5272 /* may grab non-irq protected spin_locks */
5273 BUG_ON(in_interrupt());
5275 /* double check policy once rq lock held */
5277 policy
= oldpolicy
= p
->policy
;
5278 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5279 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5280 policy
!= SCHED_IDLE
)
5283 * Valid priorities for SCHED_FIFO and SCHED_RR are
5284 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5285 * SCHED_BATCH and SCHED_IDLE is 0.
5287 if (param
->sched_priority
< 0 ||
5288 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5289 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5291 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5295 * Allow unprivileged RT tasks to decrease priority:
5297 if (user
&& !capable(CAP_SYS_NICE
)) {
5298 if (rt_policy(policy
)) {
5299 unsigned long rlim_rtprio
;
5301 if (!lock_task_sighand(p
, &flags
))
5303 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5304 unlock_task_sighand(p
, &flags
);
5306 /* can't set/change the rt policy */
5307 if (policy
!= p
->policy
&& !rlim_rtprio
)
5310 /* can't increase priority */
5311 if (param
->sched_priority
> p
->rt_priority
&&
5312 param
->sched_priority
> rlim_rtprio
)
5316 * Like positive nice levels, dont allow tasks to
5317 * move out of SCHED_IDLE either:
5319 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5322 /* can't change other user's priorities */
5323 if (!check_same_owner(p
))
5328 #ifdef CONFIG_RT_GROUP_SCHED
5330 * Do not allow realtime tasks into groups that have no runtime
5333 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5334 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5338 retval
= security_task_setscheduler(p
, policy
, param
);
5344 * make sure no PI-waiters arrive (or leave) while we are
5345 * changing the priority of the task:
5347 spin_lock_irqsave(&p
->pi_lock
, flags
);
5349 * To be able to change p->policy safely, the apropriate
5350 * runqueue lock must be held.
5352 rq
= __task_rq_lock(p
);
5353 /* recheck policy now with rq lock held */
5354 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5355 policy
= oldpolicy
= -1;
5356 __task_rq_unlock(rq
);
5357 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5360 update_rq_clock(rq
);
5361 on_rq
= p
->se
.on_rq
;
5362 running
= task_current(rq
, p
);
5364 deactivate_task(rq
, p
, 0);
5366 p
->sched_class
->put_prev_task(rq
, p
);
5369 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5372 p
->sched_class
->set_curr_task(rq
);
5374 activate_task(rq
, p
, 0);
5376 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5378 __task_rq_unlock(rq
);
5379 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5381 rt_mutex_adjust_pi(p
);
5387 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5388 * @p: the task in question.
5389 * @policy: new policy.
5390 * @param: structure containing the new RT priority.
5392 * NOTE that the task may be already dead.
5394 int sched_setscheduler(struct task_struct
*p
, int policy
,
5395 struct sched_param
*param
)
5397 return __sched_setscheduler(p
, policy
, param
, true);
5399 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5402 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5403 * @p: the task in question.
5404 * @policy: new policy.
5405 * @param: structure containing the new RT priority.
5407 * Just like sched_setscheduler, only don't bother checking if the
5408 * current context has permission. For example, this is needed in
5409 * stop_machine(): we create temporary high priority worker threads,
5410 * but our caller might not have that capability.
5412 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5413 struct sched_param
*param
)
5415 return __sched_setscheduler(p
, policy
, param
, false);
5419 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5421 struct sched_param lparam
;
5422 struct task_struct
*p
;
5425 if (!param
|| pid
< 0)
5427 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5432 p
= find_process_by_pid(pid
);
5434 retval
= sched_setscheduler(p
, policy
, &lparam
);
5441 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5442 * @pid: the pid in question.
5443 * @policy: new policy.
5444 * @param: structure containing the new RT priority.
5446 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5447 struct sched_param __user
*, param
)
5449 /* negative values for policy are not valid */
5453 return do_sched_setscheduler(pid
, policy
, param
);
5457 * sys_sched_setparam - set/change the RT priority of a thread
5458 * @pid: the pid in question.
5459 * @param: structure containing the new RT priority.
5461 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5463 return do_sched_setscheduler(pid
, -1, param
);
5467 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5468 * @pid: the pid in question.
5470 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5472 struct task_struct
*p
;
5479 read_lock(&tasklist_lock
);
5480 p
= find_process_by_pid(pid
);
5482 retval
= security_task_getscheduler(p
);
5486 read_unlock(&tasklist_lock
);
5491 * sys_sched_getscheduler - get the RT priority of a thread
5492 * @pid: the pid in question.
5493 * @param: structure containing the RT priority.
5495 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5497 struct sched_param lp
;
5498 struct task_struct
*p
;
5501 if (!param
|| pid
< 0)
5504 read_lock(&tasklist_lock
);
5505 p
= find_process_by_pid(pid
);
5510 retval
= security_task_getscheduler(p
);
5514 lp
.sched_priority
= p
->rt_priority
;
5515 read_unlock(&tasklist_lock
);
5518 * This one might sleep, we cannot do it with a spinlock held ...
5520 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5525 read_unlock(&tasklist_lock
);
5529 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5531 cpumask_var_t cpus_allowed
, new_mask
;
5532 struct task_struct
*p
;
5536 read_lock(&tasklist_lock
);
5538 p
= find_process_by_pid(pid
);
5540 read_unlock(&tasklist_lock
);
5546 * It is not safe to call set_cpus_allowed with the
5547 * tasklist_lock held. We will bump the task_struct's
5548 * usage count and then drop tasklist_lock.
5551 read_unlock(&tasklist_lock
);
5553 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5557 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5559 goto out_free_cpus_allowed
;
5562 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5565 retval
= security_task_setscheduler(p
, 0, NULL
);
5569 cpuset_cpus_allowed(p
, cpus_allowed
);
5570 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5572 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5575 cpuset_cpus_allowed(p
, cpus_allowed
);
5576 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5578 * We must have raced with a concurrent cpuset
5579 * update. Just reset the cpus_allowed to the
5580 * cpuset's cpus_allowed
5582 cpumask_copy(new_mask
, cpus_allowed
);
5587 free_cpumask_var(new_mask
);
5588 out_free_cpus_allowed
:
5589 free_cpumask_var(cpus_allowed
);
5596 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5597 struct cpumask
*new_mask
)
5599 if (len
< cpumask_size())
5600 cpumask_clear(new_mask
);
5601 else if (len
> cpumask_size())
5602 len
= cpumask_size();
5604 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5608 * sys_sched_setaffinity - set the cpu affinity of a process
5609 * @pid: pid of the process
5610 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5611 * @user_mask_ptr: user-space pointer to the new cpu mask
5613 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5614 unsigned long __user
*, user_mask_ptr
)
5616 cpumask_var_t new_mask
;
5619 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5622 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5624 retval
= sched_setaffinity(pid
, new_mask
);
5625 free_cpumask_var(new_mask
);
5629 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5631 struct task_struct
*p
;
5635 read_lock(&tasklist_lock
);
5638 p
= find_process_by_pid(pid
);
5642 retval
= security_task_getscheduler(p
);
5646 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5649 read_unlock(&tasklist_lock
);
5656 * sys_sched_getaffinity - get the cpu affinity of a process
5657 * @pid: pid of the process
5658 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5659 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5661 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5662 unsigned long __user
*, user_mask_ptr
)
5667 if (len
< cpumask_size())
5670 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5673 ret
= sched_getaffinity(pid
, mask
);
5675 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
5678 ret
= cpumask_size();
5680 free_cpumask_var(mask
);
5686 * sys_sched_yield - yield the current processor to other threads.
5688 * This function yields the current CPU to other tasks. If there are no
5689 * other threads running on this CPU then this function will return.
5691 SYSCALL_DEFINE0(sched_yield
)
5693 struct rq
*rq
= this_rq_lock();
5695 schedstat_inc(rq
, yld_count
);
5696 current
->sched_class
->yield_task(rq
);
5699 * Since we are going to call schedule() anyway, there's
5700 * no need to preempt or enable interrupts:
5702 __release(rq
->lock
);
5703 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5704 _raw_spin_unlock(&rq
->lock
);
5705 preempt_enable_no_resched();
5712 static void __cond_resched(void)
5714 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5715 __might_sleep(__FILE__
, __LINE__
);
5718 * The BKS might be reacquired before we have dropped
5719 * PREEMPT_ACTIVE, which could trigger a second
5720 * cond_resched() call.
5723 add_preempt_count(PREEMPT_ACTIVE
);
5725 sub_preempt_count(PREEMPT_ACTIVE
);
5726 } while (need_resched());
5729 int __sched
_cond_resched(void)
5731 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5732 system_state
== SYSTEM_RUNNING
) {
5738 EXPORT_SYMBOL(_cond_resched
);
5741 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5742 * call schedule, and on return reacquire the lock.
5744 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5745 * operations here to prevent schedule() from being called twice (once via
5746 * spin_unlock(), once by hand).
5748 int cond_resched_lock(spinlock_t
*lock
)
5750 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5753 if (spin_needbreak(lock
) || resched
) {
5755 if (resched
&& need_resched())
5764 EXPORT_SYMBOL(cond_resched_lock
);
5766 int __sched
cond_resched_softirq(void)
5768 BUG_ON(!in_softirq());
5770 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5778 EXPORT_SYMBOL(cond_resched_softirq
);
5781 * yield - yield the current processor to other threads.
5783 * This is a shortcut for kernel-space yielding - it marks the
5784 * thread runnable and calls sys_sched_yield().
5786 void __sched
yield(void)
5788 set_current_state(TASK_RUNNING
);
5791 EXPORT_SYMBOL(yield
);
5794 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5795 * that process accounting knows that this is a task in IO wait state.
5797 * But don't do that if it is a deliberate, throttling IO wait (this task
5798 * has set its backing_dev_info: the queue against which it should throttle)
5800 void __sched
io_schedule(void)
5802 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5804 delayacct_blkio_start();
5805 atomic_inc(&rq
->nr_iowait
);
5807 atomic_dec(&rq
->nr_iowait
);
5808 delayacct_blkio_end();
5810 EXPORT_SYMBOL(io_schedule
);
5812 long __sched
io_schedule_timeout(long timeout
)
5814 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5817 delayacct_blkio_start();
5818 atomic_inc(&rq
->nr_iowait
);
5819 ret
= schedule_timeout(timeout
);
5820 atomic_dec(&rq
->nr_iowait
);
5821 delayacct_blkio_end();
5826 * sys_sched_get_priority_max - return maximum RT priority.
5827 * @policy: scheduling class.
5829 * this syscall returns the maximum rt_priority that can be used
5830 * by a given scheduling class.
5832 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5839 ret
= MAX_USER_RT_PRIO
-1;
5851 * sys_sched_get_priority_min - return minimum RT priority.
5852 * @policy: scheduling class.
5854 * this syscall returns the minimum rt_priority that can be used
5855 * by a given scheduling class.
5857 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5875 * sys_sched_rr_get_interval - return the default timeslice of a process.
5876 * @pid: pid of the process.
5877 * @interval: userspace pointer to the timeslice value.
5879 * this syscall writes the default timeslice value of a given process
5880 * into the user-space timespec buffer. A value of '0' means infinity.
5882 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5883 struct timespec __user
*, interval
)
5885 struct task_struct
*p
;
5886 unsigned int time_slice
;
5894 read_lock(&tasklist_lock
);
5895 p
= find_process_by_pid(pid
);
5899 retval
= security_task_getscheduler(p
);
5904 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5905 * tasks that are on an otherwise idle runqueue:
5908 if (p
->policy
== SCHED_RR
) {
5909 time_slice
= DEF_TIMESLICE
;
5910 } else if (p
->policy
!= SCHED_FIFO
) {
5911 struct sched_entity
*se
= &p
->se
;
5912 unsigned long flags
;
5915 rq
= task_rq_lock(p
, &flags
);
5916 if (rq
->cfs
.load
.weight
)
5917 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5918 task_rq_unlock(rq
, &flags
);
5920 read_unlock(&tasklist_lock
);
5921 jiffies_to_timespec(time_slice
, &t
);
5922 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5926 read_unlock(&tasklist_lock
);
5930 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5932 void sched_show_task(struct task_struct
*p
)
5934 unsigned long free
= 0;
5937 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5938 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5939 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5940 #if BITS_PER_LONG == 32
5941 if (state
== TASK_RUNNING
)
5942 printk(KERN_CONT
" running ");
5944 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5946 if (state
== TASK_RUNNING
)
5947 printk(KERN_CONT
" running task ");
5949 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5951 #ifdef CONFIG_DEBUG_STACK_USAGE
5952 free
= stack_not_used(p
);
5954 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5955 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5957 show_stack(p
, NULL
);
5960 void show_state_filter(unsigned long state_filter
)
5962 struct task_struct
*g
, *p
;
5964 #if BITS_PER_LONG == 32
5966 " task PC stack pid father\n");
5969 " task PC stack pid father\n");
5971 read_lock(&tasklist_lock
);
5972 do_each_thread(g
, p
) {
5974 * reset the NMI-timeout, listing all files on a slow
5975 * console might take alot of time:
5977 touch_nmi_watchdog();
5978 if (!state_filter
|| (p
->state
& state_filter
))
5980 } while_each_thread(g
, p
);
5982 touch_all_softlockup_watchdogs();
5984 #ifdef CONFIG_SCHED_DEBUG
5985 sysrq_sched_debug_show();
5987 read_unlock(&tasklist_lock
);
5989 * Only show locks if all tasks are dumped:
5991 if (state_filter
== -1)
5992 debug_show_all_locks();
5995 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5997 idle
->sched_class
= &idle_sched_class
;
6001 * init_idle - set up an idle thread for a given CPU
6002 * @idle: task in question
6003 * @cpu: cpu the idle task belongs to
6005 * NOTE: this function does not set the idle thread's NEED_RESCHED
6006 * flag, to make booting more robust.
6008 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6010 struct rq
*rq
= cpu_rq(cpu
);
6011 unsigned long flags
;
6013 spin_lock_irqsave(&rq
->lock
, flags
);
6016 idle
->se
.exec_start
= sched_clock();
6018 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6019 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6020 __set_task_cpu(idle
, cpu
);
6022 rq
->curr
= rq
->idle
= idle
;
6023 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6026 spin_unlock_irqrestore(&rq
->lock
, flags
);
6028 /* Set the preempt count _outside_ the spinlocks! */
6029 #if defined(CONFIG_PREEMPT)
6030 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6032 task_thread_info(idle
)->preempt_count
= 0;
6035 * The idle tasks have their own, simple scheduling class:
6037 idle
->sched_class
= &idle_sched_class
;
6038 ftrace_graph_init_task(idle
);
6042 * In a system that switches off the HZ timer nohz_cpu_mask
6043 * indicates which cpus entered this state. This is used
6044 * in the rcu update to wait only for active cpus. For system
6045 * which do not switch off the HZ timer nohz_cpu_mask should
6046 * always be CPU_BITS_NONE.
6048 cpumask_var_t nohz_cpu_mask
;
6051 * Increase the granularity value when there are more CPUs,
6052 * because with more CPUs the 'effective latency' as visible
6053 * to users decreases. But the relationship is not linear,
6054 * so pick a second-best guess by going with the log2 of the
6057 * This idea comes from the SD scheduler of Con Kolivas:
6059 static inline void sched_init_granularity(void)
6061 unsigned int factor
= 1 + ilog2(num_online_cpus());
6062 const unsigned long limit
= 200000000;
6064 sysctl_sched_min_granularity
*= factor
;
6065 if (sysctl_sched_min_granularity
> limit
)
6066 sysctl_sched_min_granularity
= limit
;
6068 sysctl_sched_latency
*= factor
;
6069 if (sysctl_sched_latency
> limit
)
6070 sysctl_sched_latency
= limit
;
6072 sysctl_sched_wakeup_granularity
*= factor
;
6074 sysctl_sched_shares_ratelimit
*= factor
;
6079 * This is how migration works:
6081 * 1) we queue a struct migration_req structure in the source CPU's
6082 * runqueue and wake up that CPU's migration thread.
6083 * 2) we down() the locked semaphore => thread blocks.
6084 * 3) migration thread wakes up (implicitly it forces the migrated
6085 * thread off the CPU)
6086 * 4) it gets the migration request and checks whether the migrated
6087 * task is still in the wrong runqueue.
6088 * 5) if it's in the wrong runqueue then the migration thread removes
6089 * it and puts it into the right queue.
6090 * 6) migration thread up()s the semaphore.
6091 * 7) we wake up and the migration is done.
6095 * Change a given task's CPU affinity. Migrate the thread to a
6096 * proper CPU and schedule it away if the CPU it's executing on
6097 * is removed from the allowed bitmask.
6099 * NOTE: the caller must have a valid reference to the task, the
6100 * task must not exit() & deallocate itself prematurely. The
6101 * call is not atomic; no spinlocks may be held.
6103 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6105 struct migration_req req
;
6106 unsigned long flags
;
6110 rq
= task_rq_lock(p
, &flags
);
6111 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6116 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6117 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6122 if (p
->sched_class
->set_cpus_allowed
)
6123 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6125 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6126 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6129 /* Can the task run on the task's current CPU? If so, we're done */
6130 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6133 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6134 /* Need help from migration thread: drop lock and wait. */
6135 task_rq_unlock(rq
, &flags
);
6136 wake_up_process(rq
->migration_thread
);
6137 wait_for_completion(&req
.done
);
6138 tlb_migrate_finish(p
->mm
);
6142 task_rq_unlock(rq
, &flags
);
6146 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6149 * Move (not current) task off this cpu, onto dest cpu. We're doing
6150 * this because either it can't run here any more (set_cpus_allowed()
6151 * away from this CPU, or CPU going down), or because we're
6152 * attempting to rebalance this task on exec (sched_exec).
6154 * So we race with normal scheduler movements, but that's OK, as long
6155 * as the task is no longer on this CPU.
6157 * Returns non-zero if task was successfully migrated.
6159 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6161 struct rq
*rq_dest
, *rq_src
;
6164 if (unlikely(!cpu_active(dest_cpu
)))
6167 rq_src
= cpu_rq(src_cpu
);
6168 rq_dest
= cpu_rq(dest_cpu
);
6170 double_rq_lock(rq_src
, rq_dest
);
6171 /* Already moved. */
6172 if (task_cpu(p
) != src_cpu
)
6174 /* Affinity changed (again). */
6175 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6178 on_rq
= p
->se
.on_rq
;
6180 deactivate_task(rq_src
, p
, 0);
6182 set_task_cpu(p
, dest_cpu
);
6184 activate_task(rq_dest
, p
, 0);
6185 check_preempt_curr(rq_dest
, p
, 0);
6190 double_rq_unlock(rq_src
, rq_dest
);
6195 * migration_thread - this is a highprio system thread that performs
6196 * thread migration by bumping thread off CPU then 'pushing' onto
6199 static int migration_thread(void *data
)
6201 int cpu
= (long)data
;
6205 BUG_ON(rq
->migration_thread
!= current
);
6207 set_current_state(TASK_INTERRUPTIBLE
);
6208 while (!kthread_should_stop()) {
6209 struct migration_req
*req
;
6210 struct list_head
*head
;
6212 spin_lock_irq(&rq
->lock
);
6214 if (cpu_is_offline(cpu
)) {
6215 spin_unlock_irq(&rq
->lock
);
6219 if (rq
->active_balance
) {
6220 active_load_balance(rq
, cpu
);
6221 rq
->active_balance
= 0;
6224 head
= &rq
->migration_queue
;
6226 if (list_empty(head
)) {
6227 spin_unlock_irq(&rq
->lock
);
6229 set_current_state(TASK_INTERRUPTIBLE
);
6232 req
= list_entry(head
->next
, struct migration_req
, list
);
6233 list_del_init(head
->next
);
6235 spin_unlock(&rq
->lock
);
6236 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6239 complete(&req
->done
);
6241 __set_current_state(TASK_RUNNING
);
6245 /* Wait for kthread_stop */
6246 set_current_state(TASK_INTERRUPTIBLE
);
6247 while (!kthread_should_stop()) {
6249 set_current_state(TASK_INTERRUPTIBLE
);
6251 __set_current_state(TASK_RUNNING
);
6255 #ifdef CONFIG_HOTPLUG_CPU
6257 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6261 local_irq_disable();
6262 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6268 * Figure out where task on dead CPU should go, use force if necessary.
6270 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6273 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
6276 /* Look for allowed, online CPU in same node. */
6277 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
6278 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6281 /* Any allowed, online CPU? */
6282 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
6283 if (dest_cpu
< nr_cpu_ids
)
6286 /* No more Mr. Nice Guy. */
6287 if (dest_cpu
>= nr_cpu_ids
) {
6288 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
6289 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
6292 * Don't tell them about moving exiting tasks or
6293 * kernel threads (both mm NULL), since they never
6296 if (p
->mm
&& printk_ratelimit()) {
6297 printk(KERN_INFO
"process %d (%s) no "
6298 "longer affine to cpu%d\n",
6299 task_pid_nr(p
), p
->comm
, dead_cpu
);
6304 /* It can have affinity changed while we were choosing. */
6305 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
6310 * While a dead CPU has no uninterruptible tasks queued at this point,
6311 * it might still have a nonzero ->nr_uninterruptible counter, because
6312 * for performance reasons the counter is not stricly tracking tasks to
6313 * their home CPUs. So we just add the counter to another CPU's counter,
6314 * to keep the global sum constant after CPU-down:
6316 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6318 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
6319 unsigned long flags
;
6321 local_irq_save(flags
);
6322 double_rq_lock(rq_src
, rq_dest
);
6323 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6324 rq_src
->nr_uninterruptible
= 0;
6325 double_rq_unlock(rq_src
, rq_dest
);
6326 local_irq_restore(flags
);
6329 /* Run through task list and migrate tasks from the dead cpu. */
6330 static void migrate_live_tasks(int src_cpu
)
6332 struct task_struct
*p
, *t
;
6334 read_lock(&tasklist_lock
);
6336 do_each_thread(t
, p
) {
6340 if (task_cpu(p
) == src_cpu
)
6341 move_task_off_dead_cpu(src_cpu
, p
);
6342 } while_each_thread(t
, p
);
6344 read_unlock(&tasklist_lock
);
6348 * Schedules idle task to be the next runnable task on current CPU.
6349 * It does so by boosting its priority to highest possible.
6350 * Used by CPU offline code.
6352 void sched_idle_next(void)
6354 int this_cpu
= smp_processor_id();
6355 struct rq
*rq
= cpu_rq(this_cpu
);
6356 struct task_struct
*p
= rq
->idle
;
6357 unsigned long flags
;
6359 /* cpu has to be offline */
6360 BUG_ON(cpu_online(this_cpu
));
6363 * Strictly not necessary since rest of the CPUs are stopped by now
6364 * and interrupts disabled on the current cpu.
6366 spin_lock_irqsave(&rq
->lock
, flags
);
6368 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6370 update_rq_clock(rq
);
6371 activate_task(rq
, p
, 0);
6373 spin_unlock_irqrestore(&rq
->lock
, flags
);
6377 * Ensures that the idle task is using init_mm right before its cpu goes
6380 void idle_task_exit(void)
6382 struct mm_struct
*mm
= current
->active_mm
;
6384 BUG_ON(cpu_online(smp_processor_id()));
6387 switch_mm(mm
, &init_mm
, current
);
6391 /* called under rq->lock with disabled interrupts */
6392 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6394 struct rq
*rq
= cpu_rq(dead_cpu
);
6396 /* Must be exiting, otherwise would be on tasklist. */
6397 BUG_ON(!p
->exit_state
);
6399 /* Cannot have done final schedule yet: would have vanished. */
6400 BUG_ON(p
->state
== TASK_DEAD
);
6405 * Drop lock around migration; if someone else moves it,
6406 * that's OK. No task can be added to this CPU, so iteration is
6409 spin_unlock_irq(&rq
->lock
);
6410 move_task_off_dead_cpu(dead_cpu
, p
);
6411 spin_lock_irq(&rq
->lock
);
6416 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6417 static void migrate_dead_tasks(unsigned int dead_cpu
)
6419 struct rq
*rq
= cpu_rq(dead_cpu
);
6420 struct task_struct
*next
;
6423 if (!rq
->nr_running
)
6425 update_rq_clock(rq
);
6426 next
= pick_next_task(rq
, rq
->curr
);
6429 next
->sched_class
->put_prev_task(rq
, next
);
6430 migrate_dead(dead_cpu
, next
);
6434 #endif /* CONFIG_HOTPLUG_CPU */
6436 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6438 static struct ctl_table sd_ctl_dir
[] = {
6440 .procname
= "sched_domain",
6446 static struct ctl_table sd_ctl_root
[] = {
6448 .ctl_name
= CTL_KERN
,
6449 .procname
= "kernel",
6451 .child
= sd_ctl_dir
,
6456 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6458 struct ctl_table
*entry
=
6459 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6464 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6466 struct ctl_table
*entry
;
6469 * In the intermediate directories, both the child directory and
6470 * procname are dynamically allocated and could fail but the mode
6471 * will always be set. In the lowest directory the names are
6472 * static strings and all have proc handlers.
6474 for (entry
= *tablep
; entry
->mode
; entry
++) {
6476 sd_free_ctl_entry(&entry
->child
);
6477 if (entry
->proc_handler
== NULL
)
6478 kfree(entry
->procname
);
6486 set_table_entry(struct ctl_table
*entry
,
6487 const char *procname
, void *data
, int maxlen
,
6488 mode_t mode
, proc_handler
*proc_handler
)
6490 entry
->procname
= procname
;
6492 entry
->maxlen
= maxlen
;
6494 entry
->proc_handler
= proc_handler
;
6497 static struct ctl_table
*
6498 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6500 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6505 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6506 sizeof(long), 0644, proc_doulongvec_minmax
);
6507 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6508 sizeof(long), 0644, proc_doulongvec_minmax
);
6509 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6510 sizeof(int), 0644, proc_dointvec_minmax
);
6511 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6512 sizeof(int), 0644, proc_dointvec_minmax
);
6513 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6514 sizeof(int), 0644, proc_dointvec_minmax
);
6515 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6516 sizeof(int), 0644, proc_dointvec_minmax
);
6517 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6518 sizeof(int), 0644, proc_dointvec_minmax
);
6519 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6520 sizeof(int), 0644, proc_dointvec_minmax
);
6521 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6522 sizeof(int), 0644, proc_dointvec_minmax
);
6523 set_table_entry(&table
[9], "cache_nice_tries",
6524 &sd
->cache_nice_tries
,
6525 sizeof(int), 0644, proc_dointvec_minmax
);
6526 set_table_entry(&table
[10], "flags", &sd
->flags
,
6527 sizeof(int), 0644, proc_dointvec_minmax
);
6528 set_table_entry(&table
[11], "name", sd
->name
,
6529 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6530 /* &table[12] is terminator */
6535 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6537 struct ctl_table
*entry
, *table
;
6538 struct sched_domain
*sd
;
6539 int domain_num
= 0, i
;
6542 for_each_domain(cpu
, sd
)
6544 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6549 for_each_domain(cpu
, sd
) {
6550 snprintf(buf
, 32, "domain%d", i
);
6551 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6553 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6560 static struct ctl_table_header
*sd_sysctl_header
;
6561 static void register_sched_domain_sysctl(void)
6563 int i
, cpu_num
= num_online_cpus();
6564 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6567 WARN_ON(sd_ctl_dir
[0].child
);
6568 sd_ctl_dir
[0].child
= entry
;
6573 for_each_online_cpu(i
) {
6574 snprintf(buf
, 32, "cpu%d", i
);
6575 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6577 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6581 WARN_ON(sd_sysctl_header
);
6582 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6585 /* may be called multiple times per register */
6586 static void unregister_sched_domain_sysctl(void)
6588 if (sd_sysctl_header
)
6589 unregister_sysctl_table(sd_sysctl_header
);
6590 sd_sysctl_header
= NULL
;
6591 if (sd_ctl_dir
[0].child
)
6592 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6595 static void register_sched_domain_sysctl(void)
6598 static void unregister_sched_domain_sysctl(void)
6603 static void set_rq_online(struct rq
*rq
)
6606 const struct sched_class
*class;
6608 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6611 for_each_class(class) {
6612 if (class->rq_online
)
6613 class->rq_online(rq
);
6618 static void set_rq_offline(struct rq
*rq
)
6621 const struct sched_class
*class;
6623 for_each_class(class) {
6624 if (class->rq_offline
)
6625 class->rq_offline(rq
);
6628 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6634 * migration_call - callback that gets triggered when a CPU is added.
6635 * Here we can start up the necessary migration thread for the new CPU.
6637 static int __cpuinit
6638 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6640 struct task_struct
*p
;
6641 int cpu
= (long)hcpu
;
6642 unsigned long flags
;
6647 case CPU_UP_PREPARE
:
6648 case CPU_UP_PREPARE_FROZEN
:
6649 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6652 kthread_bind(p
, cpu
);
6653 /* Must be high prio: stop_machine expects to yield to it. */
6654 rq
= task_rq_lock(p
, &flags
);
6655 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6656 task_rq_unlock(rq
, &flags
);
6657 cpu_rq(cpu
)->migration_thread
= p
;
6661 case CPU_ONLINE_FROZEN
:
6662 /* Strictly unnecessary, as first user will wake it. */
6663 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6665 /* Update our root-domain */
6667 spin_lock_irqsave(&rq
->lock
, flags
);
6669 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6673 spin_unlock_irqrestore(&rq
->lock
, flags
);
6676 #ifdef CONFIG_HOTPLUG_CPU
6677 case CPU_UP_CANCELED
:
6678 case CPU_UP_CANCELED_FROZEN
:
6679 if (!cpu_rq(cpu
)->migration_thread
)
6681 /* Unbind it from offline cpu so it can run. Fall thru. */
6682 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6683 cpumask_any(cpu_online_mask
));
6684 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6685 cpu_rq(cpu
)->migration_thread
= NULL
;
6689 case CPU_DEAD_FROZEN
:
6690 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6691 migrate_live_tasks(cpu
);
6693 kthread_stop(rq
->migration_thread
);
6694 rq
->migration_thread
= NULL
;
6695 /* Idle task back to normal (off runqueue, low prio) */
6696 spin_lock_irq(&rq
->lock
);
6697 update_rq_clock(rq
);
6698 deactivate_task(rq
, rq
->idle
, 0);
6699 rq
->idle
->static_prio
= MAX_PRIO
;
6700 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6701 rq
->idle
->sched_class
= &idle_sched_class
;
6702 migrate_dead_tasks(cpu
);
6703 spin_unlock_irq(&rq
->lock
);
6705 migrate_nr_uninterruptible(rq
);
6706 BUG_ON(rq
->nr_running
!= 0);
6709 * No need to migrate the tasks: it was best-effort if
6710 * they didn't take sched_hotcpu_mutex. Just wake up
6713 spin_lock_irq(&rq
->lock
);
6714 while (!list_empty(&rq
->migration_queue
)) {
6715 struct migration_req
*req
;
6717 req
= list_entry(rq
->migration_queue
.next
,
6718 struct migration_req
, list
);
6719 list_del_init(&req
->list
);
6720 spin_unlock_irq(&rq
->lock
);
6721 complete(&req
->done
);
6722 spin_lock_irq(&rq
->lock
);
6724 spin_unlock_irq(&rq
->lock
);
6728 case CPU_DYING_FROZEN
:
6729 /* Update our root-domain */
6731 spin_lock_irqsave(&rq
->lock
, flags
);
6733 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6736 spin_unlock_irqrestore(&rq
->lock
, flags
);
6743 /* Register at highest priority so that task migration (migrate_all_tasks)
6744 * happens before everything else.
6746 static struct notifier_block __cpuinitdata migration_notifier
= {
6747 .notifier_call
= migration_call
,
6751 static int __init
migration_init(void)
6753 void *cpu
= (void *)(long)smp_processor_id();
6756 /* Start one for the boot CPU: */
6757 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6758 BUG_ON(err
== NOTIFY_BAD
);
6759 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6760 register_cpu_notifier(&migration_notifier
);
6764 early_initcall(migration_init
);
6769 #ifdef CONFIG_SCHED_DEBUG
6771 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6772 struct cpumask
*groupmask
)
6774 struct sched_group
*group
= sd
->groups
;
6777 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6778 cpumask_clear(groupmask
);
6780 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6782 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6783 printk("does not load-balance\n");
6785 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6790 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6792 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6793 printk(KERN_ERR
"ERROR: domain->span does not contain "
6796 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6797 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6801 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6805 printk(KERN_ERR
"ERROR: group is NULL\n");
6809 if (!group
->__cpu_power
) {
6810 printk(KERN_CONT
"\n");
6811 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6816 if (!cpumask_weight(sched_group_cpus(group
))) {
6817 printk(KERN_CONT
"\n");
6818 printk(KERN_ERR
"ERROR: empty group\n");
6822 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6823 printk(KERN_CONT
"\n");
6824 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6828 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6830 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6831 printk(KERN_CONT
" %s", str
);
6833 group
= group
->next
;
6834 } while (group
!= sd
->groups
);
6835 printk(KERN_CONT
"\n");
6837 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6838 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6841 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6842 printk(KERN_ERR
"ERROR: parent span is not a superset "
6843 "of domain->span\n");
6847 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6849 cpumask_var_t groupmask
;
6853 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6857 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6859 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6860 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6865 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6872 free_cpumask_var(groupmask
);
6874 #else /* !CONFIG_SCHED_DEBUG */
6875 # define sched_domain_debug(sd, cpu) do { } while (0)
6876 #endif /* CONFIG_SCHED_DEBUG */
6878 static int sd_degenerate(struct sched_domain
*sd
)
6880 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6883 /* Following flags need at least 2 groups */
6884 if (sd
->flags
& (SD_LOAD_BALANCE
|
6885 SD_BALANCE_NEWIDLE
|
6889 SD_SHARE_PKG_RESOURCES
)) {
6890 if (sd
->groups
!= sd
->groups
->next
)
6894 /* Following flags don't use groups */
6895 if (sd
->flags
& (SD_WAKE_IDLE
|
6904 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6906 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6908 if (sd_degenerate(parent
))
6911 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6914 /* Does parent contain flags not in child? */
6915 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6916 if (cflags
& SD_WAKE_AFFINE
)
6917 pflags
&= ~SD_WAKE_BALANCE
;
6918 /* Flags needing groups don't count if only 1 group in parent */
6919 if (parent
->groups
== parent
->groups
->next
) {
6920 pflags
&= ~(SD_LOAD_BALANCE
|
6921 SD_BALANCE_NEWIDLE
|
6925 SD_SHARE_PKG_RESOURCES
);
6926 if (nr_node_ids
== 1)
6927 pflags
&= ~SD_SERIALIZE
;
6929 if (~cflags
& pflags
)
6935 static void free_rootdomain(struct root_domain
*rd
)
6937 cpupri_cleanup(&rd
->cpupri
);
6939 free_cpumask_var(rd
->rto_mask
);
6940 free_cpumask_var(rd
->online
);
6941 free_cpumask_var(rd
->span
);
6945 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6947 unsigned long flags
;
6949 spin_lock_irqsave(&rq
->lock
, flags
);
6952 struct root_domain
*old_rd
= rq
->rd
;
6954 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6957 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6959 if (atomic_dec_and_test(&old_rd
->refcount
))
6960 free_rootdomain(old_rd
);
6963 atomic_inc(&rd
->refcount
);
6966 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6967 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
6970 spin_unlock_irqrestore(&rq
->lock
, flags
);
6973 static int __init_refok
init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6975 memset(rd
, 0, sizeof(*rd
));
6978 alloc_bootmem_cpumask_var(&def_root_domain
.span
);
6979 alloc_bootmem_cpumask_var(&def_root_domain
.online
);
6980 alloc_bootmem_cpumask_var(&def_root_domain
.rto_mask
);
6981 cpupri_init(&rd
->cpupri
, true);
6985 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6987 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6989 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6992 if (cpupri_init(&rd
->cpupri
, false) != 0)
6997 free_cpumask_var(rd
->rto_mask
);
6999 free_cpumask_var(rd
->online
);
7001 free_cpumask_var(rd
->span
);
7006 static void init_defrootdomain(void)
7008 init_rootdomain(&def_root_domain
, true);
7010 atomic_set(&def_root_domain
.refcount
, 1);
7013 static struct root_domain
*alloc_rootdomain(void)
7015 struct root_domain
*rd
;
7017 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7021 if (init_rootdomain(rd
, false) != 0) {
7030 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7031 * hold the hotplug lock.
7034 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7036 struct rq
*rq
= cpu_rq(cpu
);
7037 struct sched_domain
*tmp
;
7039 /* Remove the sched domains which do not contribute to scheduling. */
7040 for (tmp
= sd
; tmp
; ) {
7041 struct sched_domain
*parent
= tmp
->parent
;
7045 if (sd_parent_degenerate(tmp
, parent
)) {
7046 tmp
->parent
= parent
->parent
;
7048 parent
->parent
->child
= tmp
;
7053 if (sd
&& sd_degenerate(sd
)) {
7059 sched_domain_debug(sd
, cpu
);
7061 rq_attach_root(rq
, rd
);
7062 rcu_assign_pointer(rq
->sd
, sd
);
7065 /* cpus with isolated domains */
7066 static cpumask_var_t cpu_isolated_map
;
7068 /* Setup the mask of cpus configured for isolated domains */
7069 static int __init
isolated_cpu_setup(char *str
)
7071 cpulist_parse(str
, cpu_isolated_map
);
7075 __setup("isolcpus=", isolated_cpu_setup
);
7078 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7079 * to a function which identifies what group(along with sched group) a CPU
7080 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7081 * (due to the fact that we keep track of groups covered with a struct cpumask).
7083 * init_sched_build_groups will build a circular linked list of the groups
7084 * covered by the given span, and will set each group's ->cpumask correctly,
7085 * and ->cpu_power to 0.
7088 init_sched_build_groups(const struct cpumask
*span
,
7089 const struct cpumask
*cpu_map
,
7090 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7091 struct sched_group
**sg
,
7092 struct cpumask
*tmpmask
),
7093 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7095 struct sched_group
*first
= NULL
, *last
= NULL
;
7098 cpumask_clear(covered
);
7100 for_each_cpu(i
, span
) {
7101 struct sched_group
*sg
;
7102 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7105 if (cpumask_test_cpu(i
, covered
))
7108 cpumask_clear(sched_group_cpus(sg
));
7109 sg
->__cpu_power
= 0;
7111 for_each_cpu(j
, span
) {
7112 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7115 cpumask_set_cpu(j
, covered
);
7116 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7127 #define SD_NODES_PER_DOMAIN 16
7132 * find_next_best_node - find the next node to include in a sched_domain
7133 * @node: node whose sched_domain we're building
7134 * @used_nodes: nodes already in the sched_domain
7136 * Find the next node to include in a given scheduling domain. Simply
7137 * finds the closest node not already in the @used_nodes map.
7139 * Should use nodemask_t.
7141 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7143 int i
, n
, val
, min_val
, best_node
= 0;
7147 for (i
= 0; i
< nr_node_ids
; i
++) {
7148 /* Start at @node */
7149 n
= (node
+ i
) % nr_node_ids
;
7151 if (!nr_cpus_node(n
))
7154 /* Skip already used nodes */
7155 if (node_isset(n
, *used_nodes
))
7158 /* Simple min distance search */
7159 val
= node_distance(node
, n
);
7161 if (val
< min_val
) {
7167 node_set(best_node
, *used_nodes
);
7172 * sched_domain_node_span - get a cpumask for a node's sched_domain
7173 * @node: node whose cpumask we're constructing
7174 * @span: resulting cpumask
7176 * Given a node, construct a good cpumask for its sched_domain to span. It
7177 * should be one that prevents unnecessary balancing, but also spreads tasks
7180 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7182 nodemask_t used_nodes
;
7185 cpumask_clear(span
);
7186 nodes_clear(used_nodes
);
7188 cpumask_or(span
, span
, cpumask_of_node(node
));
7189 node_set(node
, used_nodes
);
7191 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7192 int next_node
= find_next_best_node(node
, &used_nodes
);
7194 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7197 #endif /* CONFIG_NUMA */
7199 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7202 * The cpus mask in sched_group and sched_domain hangs off the end.
7203 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7204 * for nr_cpu_ids < CONFIG_NR_CPUS.
7206 struct static_sched_group
{
7207 struct sched_group sg
;
7208 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
7211 struct static_sched_domain
{
7212 struct sched_domain sd
;
7213 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
7217 * SMT sched-domains:
7219 #ifdef CONFIG_SCHED_SMT
7220 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
7221 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
7224 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
7225 struct sched_group
**sg
, struct cpumask
*unused
)
7228 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
7231 #endif /* CONFIG_SCHED_SMT */
7234 * multi-core sched-domains:
7236 #ifdef CONFIG_SCHED_MC
7237 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
7238 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
7239 #endif /* CONFIG_SCHED_MC */
7241 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7243 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7244 struct sched_group
**sg
, struct cpumask
*mask
)
7248 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7249 group
= cpumask_first(mask
);
7251 *sg
= &per_cpu(sched_group_core
, group
).sg
;
7254 #elif defined(CONFIG_SCHED_MC)
7256 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7257 struct sched_group
**sg
, struct cpumask
*unused
)
7260 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
7265 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
7266 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
7269 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
7270 struct sched_group
**sg
, struct cpumask
*mask
)
7273 #ifdef CONFIG_SCHED_MC
7274 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
7275 group
= cpumask_first(mask
);
7276 #elif defined(CONFIG_SCHED_SMT)
7277 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7278 group
= cpumask_first(mask
);
7283 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
7289 * The init_sched_build_groups can't handle what we want to do with node
7290 * groups, so roll our own. Now each node has its own list of groups which
7291 * gets dynamically allocated.
7293 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
7294 static struct sched_group
***sched_group_nodes_bycpu
;
7296 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
7297 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
7299 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
7300 struct sched_group
**sg
,
7301 struct cpumask
*nodemask
)
7305 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
7306 group
= cpumask_first(nodemask
);
7309 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7313 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7315 struct sched_group
*sg
= group_head
;
7321 for_each_cpu(j
, sched_group_cpus(sg
)) {
7322 struct sched_domain
*sd
;
7324 sd
= &per_cpu(phys_domains
, j
).sd
;
7325 if (j
!= cpumask_first(sched_group_cpus(sd
->groups
))) {
7327 * Only add "power" once for each
7333 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7336 } while (sg
!= group_head
);
7338 #endif /* CONFIG_NUMA */
7341 /* Free memory allocated for various sched_group structures */
7342 static void free_sched_groups(const struct cpumask
*cpu_map
,
7343 struct cpumask
*nodemask
)
7347 for_each_cpu(cpu
, cpu_map
) {
7348 struct sched_group
**sched_group_nodes
7349 = sched_group_nodes_bycpu
[cpu
];
7351 if (!sched_group_nodes
)
7354 for (i
= 0; i
< nr_node_ids
; i
++) {
7355 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7357 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7358 if (cpumask_empty(nodemask
))
7368 if (oldsg
!= sched_group_nodes
[i
])
7371 kfree(sched_group_nodes
);
7372 sched_group_nodes_bycpu
[cpu
] = NULL
;
7375 #else /* !CONFIG_NUMA */
7376 static void free_sched_groups(const struct cpumask
*cpu_map
,
7377 struct cpumask
*nodemask
)
7380 #endif /* CONFIG_NUMA */
7383 * Initialize sched groups cpu_power.
7385 * cpu_power indicates the capacity of sched group, which is used while
7386 * distributing the load between different sched groups in a sched domain.
7387 * Typically cpu_power for all the groups in a sched domain will be same unless
7388 * there are asymmetries in the topology. If there are asymmetries, group
7389 * having more cpu_power will pickup more load compared to the group having
7392 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7393 * the maximum number of tasks a group can handle in the presence of other idle
7394 * or lightly loaded groups in the same sched domain.
7396 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7398 struct sched_domain
*child
;
7399 struct sched_group
*group
;
7401 WARN_ON(!sd
|| !sd
->groups
);
7403 if (cpu
!= cpumask_first(sched_group_cpus(sd
->groups
)))
7408 sd
->groups
->__cpu_power
= 0;
7411 * For perf policy, if the groups in child domain share resources
7412 * (for example cores sharing some portions of the cache hierarchy
7413 * or SMT), then set this domain groups cpu_power such that each group
7414 * can handle only one task, when there are other idle groups in the
7415 * same sched domain.
7417 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7419 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7420 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7425 * add cpu_power of each child group to this groups cpu_power
7427 group
= child
->groups
;
7429 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7430 group
= group
->next
;
7431 } while (group
!= child
->groups
);
7435 * Initializers for schedule domains
7436 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7439 #ifdef CONFIG_SCHED_DEBUG
7440 # define SD_INIT_NAME(sd, type) sd->name = #type
7442 # define SD_INIT_NAME(sd, type) do { } while (0)
7445 #define SD_INIT(sd, type) sd_init_##type(sd)
7447 #define SD_INIT_FUNC(type) \
7448 static noinline void sd_init_##type(struct sched_domain *sd) \
7450 memset(sd, 0, sizeof(*sd)); \
7451 *sd = SD_##type##_INIT; \
7452 sd->level = SD_LV_##type; \
7453 SD_INIT_NAME(sd, type); \
7458 SD_INIT_FUNC(ALLNODES
)
7461 #ifdef CONFIG_SCHED_SMT
7462 SD_INIT_FUNC(SIBLING
)
7464 #ifdef CONFIG_SCHED_MC
7468 static int default_relax_domain_level
= -1;
7470 static int __init
setup_relax_domain_level(char *str
)
7474 val
= simple_strtoul(str
, NULL
, 0);
7475 if (val
< SD_LV_MAX
)
7476 default_relax_domain_level
= val
;
7480 __setup("relax_domain_level=", setup_relax_domain_level
);
7482 static void set_domain_attribute(struct sched_domain
*sd
,
7483 struct sched_domain_attr
*attr
)
7487 if (!attr
|| attr
->relax_domain_level
< 0) {
7488 if (default_relax_domain_level
< 0)
7491 request
= default_relax_domain_level
;
7493 request
= attr
->relax_domain_level
;
7494 if (request
< sd
->level
) {
7495 /* turn off idle balance on this domain */
7496 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7498 /* turn on idle balance on this domain */
7499 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7504 * Build sched domains for a given set of cpus and attach the sched domains
7505 * to the individual cpus
7507 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7508 struct sched_domain_attr
*attr
)
7510 int i
, err
= -ENOMEM
;
7511 struct root_domain
*rd
;
7512 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
7515 cpumask_var_t domainspan
, covered
, notcovered
;
7516 struct sched_group
**sched_group_nodes
= NULL
;
7517 int sd_allnodes
= 0;
7519 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
7521 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
7522 goto free_domainspan
;
7523 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
7527 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
7528 goto free_notcovered
;
7529 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
7531 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
7532 goto free_this_sibling_map
;
7533 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
7534 goto free_this_core_map
;
7535 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
7536 goto free_send_covered
;
7540 * Allocate the per-node list of sched groups
7542 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7544 if (!sched_group_nodes
) {
7545 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7550 rd
= alloc_rootdomain();
7552 printk(KERN_WARNING
"Cannot alloc root domain\n");
7553 goto free_sched_groups
;
7557 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
7561 * Set up domains for cpus specified by the cpu_map.
7563 for_each_cpu(i
, cpu_map
) {
7564 struct sched_domain
*sd
= NULL
, *p
;
7566 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
7569 if (cpumask_weight(cpu_map
) >
7570 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
7571 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7572 SD_INIT(sd
, ALLNODES
);
7573 set_domain_attribute(sd
, attr
);
7574 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7575 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7581 sd
= &per_cpu(node_domains
, i
).sd
;
7583 set_domain_attribute(sd
, attr
);
7584 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7588 cpumask_and(sched_domain_span(sd
),
7589 sched_domain_span(sd
), cpu_map
);
7593 sd
= &per_cpu(phys_domains
, i
).sd
;
7595 set_domain_attribute(sd
, attr
);
7596 cpumask_copy(sched_domain_span(sd
), nodemask
);
7600 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7602 #ifdef CONFIG_SCHED_MC
7604 sd
= &per_cpu(core_domains
, i
).sd
;
7606 set_domain_attribute(sd
, attr
);
7607 cpumask_and(sched_domain_span(sd
), cpu_map
,
7608 cpu_coregroup_mask(i
));
7611 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7614 #ifdef CONFIG_SCHED_SMT
7616 sd
= &per_cpu(cpu_domains
, i
).sd
;
7617 SD_INIT(sd
, SIBLING
);
7618 set_domain_attribute(sd
, attr
);
7619 cpumask_and(sched_domain_span(sd
),
7620 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7623 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7627 #ifdef CONFIG_SCHED_SMT
7628 /* Set up CPU (sibling) groups */
7629 for_each_cpu(i
, cpu_map
) {
7630 cpumask_and(this_sibling_map
,
7631 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7632 if (i
!= cpumask_first(this_sibling_map
))
7635 init_sched_build_groups(this_sibling_map
, cpu_map
,
7637 send_covered
, tmpmask
);
7641 #ifdef CONFIG_SCHED_MC
7642 /* Set up multi-core groups */
7643 for_each_cpu(i
, cpu_map
) {
7644 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
7645 if (i
!= cpumask_first(this_core_map
))
7648 init_sched_build_groups(this_core_map
, cpu_map
,
7650 send_covered
, tmpmask
);
7654 /* Set up physical groups */
7655 for (i
= 0; i
< nr_node_ids
; i
++) {
7656 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7657 if (cpumask_empty(nodemask
))
7660 init_sched_build_groups(nodemask
, cpu_map
,
7662 send_covered
, tmpmask
);
7666 /* Set up node groups */
7668 init_sched_build_groups(cpu_map
, cpu_map
,
7669 &cpu_to_allnodes_group
,
7670 send_covered
, tmpmask
);
7673 for (i
= 0; i
< nr_node_ids
; i
++) {
7674 /* Set up node groups */
7675 struct sched_group
*sg
, *prev
;
7678 cpumask_clear(covered
);
7679 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7680 if (cpumask_empty(nodemask
)) {
7681 sched_group_nodes
[i
] = NULL
;
7685 sched_domain_node_span(i
, domainspan
);
7686 cpumask_and(domainspan
, domainspan
, cpu_map
);
7688 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7691 printk(KERN_WARNING
"Can not alloc domain group for "
7695 sched_group_nodes
[i
] = sg
;
7696 for_each_cpu(j
, nodemask
) {
7697 struct sched_domain
*sd
;
7699 sd
= &per_cpu(node_domains
, j
).sd
;
7702 sg
->__cpu_power
= 0;
7703 cpumask_copy(sched_group_cpus(sg
), nodemask
);
7705 cpumask_or(covered
, covered
, nodemask
);
7708 for (j
= 0; j
< nr_node_ids
; j
++) {
7709 int n
= (i
+ j
) % nr_node_ids
;
7711 cpumask_complement(notcovered
, covered
);
7712 cpumask_and(tmpmask
, notcovered
, cpu_map
);
7713 cpumask_and(tmpmask
, tmpmask
, domainspan
);
7714 if (cpumask_empty(tmpmask
))
7717 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
7718 if (cpumask_empty(tmpmask
))
7721 sg
= kmalloc_node(sizeof(struct sched_group
) +
7726 "Can not alloc domain group for node %d\n", j
);
7729 sg
->__cpu_power
= 0;
7730 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
7731 sg
->next
= prev
->next
;
7732 cpumask_or(covered
, covered
, tmpmask
);
7739 /* Calculate CPU power for physical packages and nodes */
7740 #ifdef CONFIG_SCHED_SMT
7741 for_each_cpu(i
, cpu_map
) {
7742 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
7744 init_sched_groups_power(i
, sd
);
7747 #ifdef CONFIG_SCHED_MC
7748 for_each_cpu(i
, cpu_map
) {
7749 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
7751 init_sched_groups_power(i
, sd
);
7755 for_each_cpu(i
, cpu_map
) {
7756 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
7758 init_sched_groups_power(i
, sd
);
7762 for (i
= 0; i
< nr_node_ids
; i
++)
7763 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7766 struct sched_group
*sg
;
7768 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7770 init_numa_sched_groups_power(sg
);
7774 /* Attach the domains */
7775 for_each_cpu(i
, cpu_map
) {
7776 struct sched_domain
*sd
;
7777 #ifdef CONFIG_SCHED_SMT
7778 sd
= &per_cpu(cpu_domains
, i
).sd
;
7779 #elif defined(CONFIG_SCHED_MC)
7780 sd
= &per_cpu(core_domains
, i
).sd
;
7782 sd
= &per_cpu(phys_domains
, i
).sd
;
7784 cpu_attach_domain(sd
, rd
, i
);
7790 free_cpumask_var(tmpmask
);
7792 free_cpumask_var(send_covered
);
7794 free_cpumask_var(this_core_map
);
7795 free_this_sibling_map
:
7796 free_cpumask_var(this_sibling_map
);
7798 free_cpumask_var(nodemask
);
7801 free_cpumask_var(notcovered
);
7803 free_cpumask_var(covered
);
7805 free_cpumask_var(domainspan
);
7812 kfree(sched_group_nodes
);
7818 free_sched_groups(cpu_map
, tmpmask
);
7819 free_rootdomain(rd
);
7824 static int build_sched_domains(const struct cpumask
*cpu_map
)
7826 return __build_sched_domains(cpu_map
, NULL
);
7829 static struct cpumask
*doms_cur
; /* current sched domains */
7830 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7831 static struct sched_domain_attr
*dattr_cur
;
7832 /* attribues of custom domains in 'doms_cur' */
7835 * Special case: If a kmalloc of a doms_cur partition (array of
7836 * cpumask) fails, then fallback to a single sched domain,
7837 * as determined by the single cpumask fallback_doms.
7839 static cpumask_var_t fallback_doms
;
7842 * arch_update_cpu_topology lets virtualized architectures update the
7843 * cpu core maps. It is supposed to return 1 if the topology changed
7844 * or 0 if it stayed the same.
7846 int __attribute__((weak
)) arch_update_cpu_topology(void)
7852 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7853 * For now this just excludes isolated cpus, but could be used to
7854 * exclude other special cases in the future.
7856 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7860 arch_update_cpu_topology();
7862 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
7864 doms_cur
= fallback_doms
;
7865 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
7867 err
= build_sched_domains(doms_cur
);
7868 register_sched_domain_sysctl();
7873 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7874 struct cpumask
*tmpmask
)
7876 free_sched_groups(cpu_map
, tmpmask
);
7880 * Detach sched domains from a group of cpus specified in cpu_map
7881 * These cpus will now be attached to the NULL domain
7883 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7885 /* Save because hotplug lock held. */
7886 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7889 for_each_cpu(i
, cpu_map
)
7890 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7891 synchronize_sched();
7892 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7895 /* handle null as "default" */
7896 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7897 struct sched_domain_attr
*new, int idx_new
)
7899 struct sched_domain_attr tmp
;
7906 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7907 new ? (new + idx_new
) : &tmp
,
7908 sizeof(struct sched_domain_attr
));
7912 * Partition sched domains as specified by the 'ndoms_new'
7913 * cpumasks in the array doms_new[] of cpumasks. This compares
7914 * doms_new[] to the current sched domain partitioning, doms_cur[].
7915 * It destroys each deleted domain and builds each new domain.
7917 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7918 * The masks don't intersect (don't overlap.) We should setup one
7919 * sched domain for each mask. CPUs not in any of the cpumasks will
7920 * not be load balanced. If the same cpumask appears both in the
7921 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7924 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7925 * ownership of it and will kfree it when done with it. If the caller
7926 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7927 * ndoms_new == 1, and partition_sched_domains() will fallback to
7928 * the single partition 'fallback_doms', it also forces the domains
7931 * If doms_new == NULL it will be replaced with cpu_online_mask.
7932 * ndoms_new == 0 is a special case for destroying existing domains,
7933 * and it will not create the default domain.
7935 * Call with hotplug lock held
7937 /* FIXME: Change to struct cpumask *doms_new[] */
7938 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
7939 struct sched_domain_attr
*dattr_new
)
7944 mutex_lock(&sched_domains_mutex
);
7946 /* always unregister in case we don't destroy any domains */
7947 unregister_sched_domain_sysctl();
7949 /* Let architecture update cpu core mappings. */
7950 new_topology
= arch_update_cpu_topology();
7952 n
= doms_new
? ndoms_new
: 0;
7954 /* Destroy deleted domains */
7955 for (i
= 0; i
< ndoms_cur
; i
++) {
7956 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7957 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
7958 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7961 /* no match - a current sched domain not in new doms_new[] */
7962 detach_destroy_domains(doms_cur
+ i
);
7967 if (doms_new
== NULL
) {
7969 doms_new
= fallback_doms
;
7970 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
7971 WARN_ON_ONCE(dattr_new
);
7974 /* Build new domains */
7975 for (i
= 0; i
< ndoms_new
; i
++) {
7976 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7977 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
7978 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7981 /* no match - add a new doms_new */
7982 __build_sched_domains(doms_new
+ i
,
7983 dattr_new
? dattr_new
+ i
: NULL
);
7988 /* Remember the new sched domains */
7989 if (doms_cur
!= fallback_doms
)
7991 kfree(dattr_cur
); /* kfree(NULL) is safe */
7992 doms_cur
= doms_new
;
7993 dattr_cur
= dattr_new
;
7994 ndoms_cur
= ndoms_new
;
7996 register_sched_domain_sysctl();
7998 mutex_unlock(&sched_domains_mutex
);
8001 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8002 static void arch_reinit_sched_domains(void)
8006 /* Destroy domains first to force the rebuild */
8007 partition_sched_domains(0, NULL
, NULL
);
8009 rebuild_sched_domains();
8013 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8015 unsigned int level
= 0;
8017 if (sscanf(buf
, "%u", &level
) != 1)
8021 * level is always be positive so don't check for
8022 * level < POWERSAVINGS_BALANCE_NONE which is 0
8023 * What happens on 0 or 1 byte write,
8024 * need to check for count as well?
8027 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8031 sched_smt_power_savings
= level
;
8033 sched_mc_power_savings
= level
;
8035 arch_reinit_sched_domains();
8040 #ifdef CONFIG_SCHED_MC
8041 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8044 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8046 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8047 const char *buf
, size_t count
)
8049 return sched_power_savings_store(buf
, count
, 0);
8051 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8052 sched_mc_power_savings_show
,
8053 sched_mc_power_savings_store
);
8056 #ifdef CONFIG_SCHED_SMT
8057 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8060 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8062 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8063 const char *buf
, size_t count
)
8065 return sched_power_savings_store(buf
, count
, 1);
8067 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8068 sched_smt_power_savings_show
,
8069 sched_smt_power_savings_store
);
8072 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8076 #ifdef CONFIG_SCHED_SMT
8078 err
= sysfs_create_file(&cls
->kset
.kobj
,
8079 &attr_sched_smt_power_savings
.attr
);
8081 #ifdef CONFIG_SCHED_MC
8082 if (!err
&& mc_capable())
8083 err
= sysfs_create_file(&cls
->kset
.kobj
,
8084 &attr_sched_mc_power_savings
.attr
);
8088 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8090 #ifndef CONFIG_CPUSETS
8092 * Add online and remove offline CPUs from the scheduler domains.
8093 * When cpusets are enabled they take over this function.
8095 static int update_sched_domains(struct notifier_block
*nfb
,
8096 unsigned long action
, void *hcpu
)
8100 case CPU_ONLINE_FROZEN
:
8102 case CPU_DEAD_FROZEN
:
8103 partition_sched_domains(1, NULL
, NULL
);
8112 static int update_runtime(struct notifier_block
*nfb
,
8113 unsigned long action
, void *hcpu
)
8115 int cpu
= (int)(long)hcpu
;
8118 case CPU_DOWN_PREPARE
:
8119 case CPU_DOWN_PREPARE_FROZEN
:
8120 disable_runtime(cpu_rq(cpu
));
8123 case CPU_DOWN_FAILED
:
8124 case CPU_DOWN_FAILED_FROZEN
:
8126 case CPU_ONLINE_FROZEN
:
8127 enable_runtime(cpu_rq(cpu
));
8135 void __init
sched_init_smp(void)
8137 cpumask_var_t non_isolated_cpus
;
8139 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8141 #if defined(CONFIG_NUMA)
8142 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8144 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8147 mutex_lock(&sched_domains_mutex
);
8148 arch_init_sched_domains(cpu_online_mask
);
8149 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8150 if (cpumask_empty(non_isolated_cpus
))
8151 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8152 mutex_unlock(&sched_domains_mutex
);
8155 #ifndef CONFIG_CPUSETS
8156 /* XXX: Theoretical race here - CPU may be hotplugged now */
8157 hotcpu_notifier(update_sched_domains
, 0);
8160 /* RT runtime code needs to handle some hotplug events */
8161 hotcpu_notifier(update_runtime
, 0);
8165 /* Move init over to a non-isolated CPU */
8166 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8168 sched_init_granularity();
8169 free_cpumask_var(non_isolated_cpus
);
8171 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8172 init_sched_rt_class();
8175 void __init
sched_init_smp(void)
8177 sched_init_granularity();
8179 #endif /* CONFIG_SMP */
8181 int in_sched_functions(unsigned long addr
)
8183 return in_lock_functions(addr
) ||
8184 (addr
>= (unsigned long)__sched_text_start
8185 && addr
< (unsigned long)__sched_text_end
);
8188 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8190 cfs_rq
->tasks_timeline
= RB_ROOT
;
8191 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8192 #ifdef CONFIG_FAIR_GROUP_SCHED
8195 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8198 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8200 struct rt_prio_array
*array
;
8203 array
= &rt_rq
->active
;
8204 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8205 INIT_LIST_HEAD(array
->queue
+ i
);
8206 __clear_bit(i
, array
->bitmap
);
8208 /* delimiter for bitsearch: */
8209 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8211 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8212 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8215 rt_rq
->rt_nr_migratory
= 0;
8216 rt_rq
->overloaded
= 0;
8220 rt_rq
->rt_throttled
= 0;
8221 rt_rq
->rt_runtime
= 0;
8222 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8224 #ifdef CONFIG_RT_GROUP_SCHED
8225 rt_rq
->rt_nr_boosted
= 0;
8230 #ifdef CONFIG_FAIR_GROUP_SCHED
8231 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8232 struct sched_entity
*se
, int cpu
, int add
,
8233 struct sched_entity
*parent
)
8235 struct rq
*rq
= cpu_rq(cpu
);
8236 tg
->cfs_rq
[cpu
] = cfs_rq
;
8237 init_cfs_rq(cfs_rq
, rq
);
8240 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8243 /* se could be NULL for init_task_group */
8248 se
->cfs_rq
= &rq
->cfs
;
8250 se
->cfs_rq
= parent
->my_q
;
8253 se
->load
.weight
= tg
->shares
;
8254 se
->load
.inv_weight
= 0;
8255 se
->parent
= parent
;
8259 #ifdef CONFIG_RT_GROUP_SCHED
8260 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8261 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8262 struct sched_rt_entity
*parent
)
8264 struct rq
*rq
= cpu_rq(cpu
);
8266 tg
->rt_rq
[cpu
] = rt_rq
;
8267 init_rt_rq(rt_rq
, rq
);
8269 rt_rq
->rt_se
= rt_se
;
8270 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8272 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8274 tg
->rt_se
[cpu
] = rt_se
;
8279 rt_se
->rt_rq
= &rq
->rt
;
8281 rt_se
->rt_rq
= parent
->my_q
;
8283 rt_se
->my_q
= rt_rq
;
8284 rt_se
->parent
= parent
;
8285 INIT_LIST_HEAD(&rt_se
->run_list
);
8289 void __init
sched_init(void)
8292 unsigned long alloc_size
= 0, ptr
;
8294 #ifdef CONFIG_FAIR_GROUP_SCHED
8295 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8297 #ifdef CONFIG_RT_GROUP_SCHED
8298 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8300 #ifdef CONFIG_USER_SCHED
8304 * As sched_init() is called before page_alloc is setup,
8305 * we use alloc_bootmem().
8308 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8310 #ifdef CONFIG_FAIR_GROUP_SCHED
8311 init_task_group
.se
= (struct sched_entity
**)ptr
;
8312 ptr
+= nr_cpu_ids
* sizeof(void **);
8314 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8315 ptr
+= nr_cpu_ids
* sizeof(void **);
8317 #ifdef CONFIG_USER_SCHED
8318 root_task_group
.se
= (struct sched_entity
**)ptr
;
8319 ptr
+= nr_cpu_ids
* sizeof(void **);
8321 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8322 ptr
+= nr_cpu_ids
* sizeof(void **);
8323 #endif /* CONFIG_USER_SCHED */
8324 #endif /* CONFIG_FAIR_GROUP_SCHED */
8325 #ifdef CONFIG_RT_GROUP_SCHED
8326 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8327 ptr
+= nr_cpu_ids
* sizeof(void **);
8329 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8330 ptr
+= nr_cpu_ids
* sizeof(void **);
8332 #ifdef CONFIG_USER_SCHED
8333 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8334 ptr
+= nr_cpu_ids
* sizeof(void **);
8336 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8337 ptr
+= nr_cpu_ids
* sizeof(void **);
8338 #endif /* CONFIG_USER_SCHED */
8339 #endif /* CONFIG_RT_GROUP_SCHED */
8343 init_defrootdomain();
8346 init_rt_bandwidth(&def_rt_bandwidth
,
8347 global_rt_period(), global_rt_runtime());
8349 #ifdef CONFIG_RT_GROUP_SCHED
8350 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8351 global_rt_period(), global_rt_runtime());
8352 #ifdef CONFIG_USER_SCHED
8353 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8354 global_rt_period(), RUNTIME_INF
);
8355 #endif /* CONFIG_USER_SCHED */
8356 #endif /* CONFIG_RT_GROUP_SCHED */
8358 #ifdef CONFIG_GROUP_SCHED
8359 list_add(&init_task_group
.list
, &task_groups
);
8360 INIT_LIST_HEAD(&init_task_group
.children
);
8362 #ifdef CONFIG_USER_SCHED
8363 INIT_LIST_HEAD(&root_task_group
.children
);
8364 init_task_group
.parent
= &root_task_group
;
8365 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8366 #endif /* CONFIG_USER_SCHED */
8367 #endif /* CONFIG_GROUP_SCHED */
8369 for_each_possible_cpu(i
) {
8373 spin_lock_init(&rq
->lock
);
8375 init_cfs_rq(&rq
->cfs
, rq
);
8376 init_rt_rq(&rq
->rt
, rq
);
8377 #ifdef CONFIG_FAIR_GROUP_SCHED
8378 init_task_group
.shares
= init_task_group_load
;
8379 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8380 #ifdef CONFIG_CGROUP_SCHED
8382 * How much cpu bandwidth does init_task_group get?
8384 * In case of task-groups formed thr' the cgroup filesystem, it
8385 * gets 100% of the cpu resources in the system. This overall
8386 * system cpu resource is divided among the tasks of
8387 * init_task_group and its child task-groups in a fair manner,
8388 * based on each entity's (task or task-group's) weight
8389 * (se->load.weight).
8391 * In other words, if init_task_group has 10 tasks of weight
8392 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8393 * then A0's share of the cpu resource is:
8395 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8397 * We achieve this by letting init_task_group's tasks sit
8398 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8400 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8401 #elif defined CONFIG_USER_SCHED
8402 root_task_group
.shares
= NICE_0_LOAD
;
8403 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8405 * In case of task-groups formed thr' the user id of tasks,
8406 * init_task_group represents tasks belonging to root user.
8407 * Hence it forms a sibling of all subsequent groups formed.
8408 * In this case, init_task_group gets only a fraction of overall
8409 * system cpu resource, based on the weight assigned to root
8410 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8411 * by letting tasks of init_task_group sit in a separate cfs_rq
8412 * (init_cfs_rq) and having one entity represent this group of
8413 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8415 init_tg_cfs_entry(&init_task_group
,
8416 &per_cpu(init_cfs_rq
, i
),
8417 &per_cpu(init_sched_entity
, i
), i
, 1,
8418 root_task_group
.se
[i
]);
8421 #endif /* CONFIG_FAIR_GROUP_SCHED */
8423 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8424 #ifdef CONFIG_RT_GROUP_SCHED
8425 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8426 #ifdef CONFIG_CGROUP_SCHED
8427 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8428 #elif defined CONFIG_USER_SCHED
8429 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8430 init_tg_rt_entry(&init_task_group
,
8431 &per_cpu(init_rt_rq
, i
),
8432 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8433 root_task_group
.rt_se
[i
]);
8437 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8438 rq
->cpu_load
[j
] = 0;
8442 rq
->active_balance
= 0;
8443 rq
->next_balance
= jiffies
;
8447 rq
->migration_thread
= NULL
;
8448 INIT_LIST_HEAD(&rq
->migration_queue
);
8449 rq_attach_root(rq
, &def_root_domain
);
8452 atomic_set(&rq
->nr_iowait
, 0);
8455 set_load_weight(&init_task
);
8457 #ifdef CONFIG_PREEMPT_NOTIFIERS
8458 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8462 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8465 #ifdef CONFIG_RT_MUTEXES
8466 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8470 * The boot idle thread does lazy MMU switching as well:
8472 atomic_inc(&init_mm
.mm_count
);
8473 enter_lazy_tlb(&init_mm
, current
);
8476 * Make us the idle thread. Technically, schedule() should not be
8477 * called from this thread, however somewhere below it might be,
8478 * but because we are the idle thread, we just pick up running again
8479 * when this runqueue becomes "idle".
8481 init_idle(current
, smp_processor_id());
8483 * During early bootup we pretend to be a normal task:
8485 current
->sched_class
= &fair_sched_class
;
8487 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8488 alloc_bootmem_cpumask_var(&nohz_cpu_mask
);
8491 alloc_bootmem_cpumask_var(&nohz
.cpu_mask
);
8493 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8496 scheduler_running
= 1;
8499 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8500 void __might_sleep(char *file
, int line
)
8503 static unsigned long prev_jiffy
; /* ratelimiting */
8505 if ((!in_atomic() && !irqs_disabled()) ||
8506 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8508 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8510 prev_jiffy
= jiffies
;
8513 "BUG: sleeping function called from invalid context at %s:%d\n",
8516 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8517 in_atomic(), irqs_disabled(),
8518 current
->pid
, current
->comm
);
8520 debug_show_held_locks(current
);
8521 if (irqs_disabled())
8522 print_irqtrace_events(current
);
8526 EXPORT_SYMBOL(__might_sleep
);
8529 #ifdef CONFIG_MAGIC_SYSRQ
8530 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8534 update_rq_clock(rq
);
8535 on_rq
= p
->se
.on_rq
;
8537 deactivate_task(rq
, p
, 0);
8538 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8540 activate_task(rq
, p
, 0);
8541 resched_task(rq
->curr
);
8545 void normalize_rt_tasks(void)
8547 struct task_struct
*g
, *p
;
8548 unsigned long flags
;
8551 read_lock_irqsave(&tasklist_lock
, flags
);
8552 do_each_thread(g
, p
) {
8554 * Only normalize user tasks:
8559 p
->se
.exec_start
= 0;
8560 #ifdef CONFIG_SCHEDSTATS
8561 p
->se
.wait_start
= 0;
8562 p
->se
.sleep_start
= 0;
8563 p
->se
.block_start
= 0;
8568 * Renice negative nice level userspace
8571 if (TASK_NICE(p
) < 0 && p
->mm
)
8572 set_user_nice(p
, 0);
8576 spin_lock(&p
->pi_lock
);
8577 rq
= __task_rq_lock(p
);
8579 normalize_task(rq
, p
);
8581 __task_rq_unlock(rq
);
8582 spin_unlock(&p
->pi_lock
);
8583 } while_each_thread(g
, p
);
8585 read_unlock_irqrestore(&tasklist_lock
, flags
);
8588 #endif /* CONFIG_MAGIC_SYSRQ */
8592 * These functions are only useful for the IA64 MCA handling.
8594 * They can only be called when the whole system has been
8595 * stopped - every CPU needs to be quiescent, and no scheduling
8596 * activity can take place. Using them for anything else would
8597 * be a serious bug, and as a result, they aren't even visible
8598 * under any other configuration.
8602 * curr_task - return the current task for a given cpu.
8603 * @cpu: the processor in question.
8605 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8607 struct task_struct
*curr_task(int cpu
)
8609 return cpu_curr(cpu
);
8613 * set_curr_task - set the current task for a given cpu.
8614 * @cpu: the processor in question.
8615 * @p: the task pointer to set.
8617 * Description: This function must only be used when non-maskable interrupts
8618 * are serviced on a separate stack. It allows the architecture to switch the
8619 * notion of the current task on a cpu in a non-blocking manner. This function
8620 * must be called with all CPU's synchronized, and interrupts disabled, the
8621 * and caller must save the original value of the current task (see
8622 * curr_task() above) and restore that value before reenabling interrupts and
8623 * re-starting the system.
8625 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8627 void set_curr_task(int cpu
, struct task_struct
*p
)
8634 #ifdef CONFIG_FAIR_GROUP_SCHED
8635 static void free_fair_sched_group(struct task_group
*tg
)
8639 for_each_possible_cpu(i
) {
8641 kfree(tg
->cfs_rq
[i
]);
8651 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8653 struct cfs_rq
*cfs_rq
;
8654 struct sched_entity
*se
;
8658 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8661 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8665 tg
->shares
= NICE_0_LOAD
;
8667 for_each_possible_cpu(i
) {
8670 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8671 GFP_KERNEL
, cpu_to_node(i
));
8675 se
= kzalloc_node(sizeof(struct sched_entity
),
8676 GFP_KERNEL
, cpu_to_node(i
));
8680 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8689 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8691 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8692 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8695 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8697 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8699 #else /* !CONFG_FAIR_GROUP_SCHED */
8700 static inline void free_fair_sched_group(struct task_group
*tg
)
8705 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8710 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8714 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8717 #endif /* CONFIG_FAIR_GROUP_SCHED */
8719 #ifdef CONFIG_RT_GROUP_SCHED
8720 static void free_rt_sched_group(struct task_group
*tg
)
8724 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8726 for_each_possible_cpu(i
) {
8728 kfree(tg
->rt_rq
[i
]);
8730 kfree(tg
->rt_se
[i
]);
8738 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8740 struct rt_rq
*rt_rq
;
8741 struct sched_rt_entity
*rt_se
;
8745 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8748 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8752 init_rt_bandwidth(&tg
->rt_bandwidth
,
8753 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8755 for_each_possible_cpu(i
) {
8758 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8759 GFP_KERNEL
, cpu_to_node(i
));
8763 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8764 GFP_KERNEL
, cpu_to_node(i
));
8768 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8777 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8779 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8780 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8783 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8785 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8787 #else /* !CONFIG_RT_GROUP_SCHED */
8788 static inline void free_rt_sched_group(struct task_group
*tg
)
8793 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8798 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8802 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8805 #endif /* CONFIG_RT_GROUP_SCHED */
8807 #ifdef CONFIG_GROUP_SCHED
8808 static void free_sched_group(struct task_group
*tg
)
8810 free_fair_sched_group(tg
);
8811 free_rt_sched_group(tg
);
8815 /* allocate runqueue etc for a new task group */
8816 struct task_group
*sched_create_group(struct task_group
*parent
)
8818 struct task_group
*tg
;
8819 unsigned long flags
;
8822 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8824 return ERR_PTR(-ENOMEM
);
8826 if (!alloc_fair_sched_group(tg
, parent
))
8829 if (!alloc_rt_sched_group(tg
, parent
))
8832 spin_lock_irqsave(&task_group_lock
, flags
);
8833 for_each_possible_cpu(i
) {
8834 register_fair_sched_group(tg
, i
);
8835 register_rt_sched_group(tg
, i
);
8837 list_add_rcu(&tg
->list
, &task_groups
);
8839 WARN_ON(!parent
); /* root should already exist */
8841 tg
->parent
= parent
;
8842 INIT_LIST_HEAD(&tg
->children
);
8843 list_add_rcu(&tg
->siblings
, &parent
->children
);
8844 spin_unlock_irqrestore(&task_group_lock
, flags
);
8849 free_sched_group(tg
);
8850 return ERR_PTR(-ENOMEM
);
8853 /* rcu callback to free various structures associated with a task group */
8854 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8856 /* now it should be safe to free those cfs_rqs */
8857 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8860 /* Destroy runqueue etc associated with a task group */
8861 void sched_destroy_group(struct task_group
*tg
)
8863 unsigned long flags
;
8866 spin_lock_irqsave(&task_group_lock
, flags
);
8867 for_each_possible_cpu(i
) {
8868 unregister_fair_sched_group(tg
, i
);
8869 unregister_rt_sched_group(tg
, i
);
8871 list_del_rcu(&tg
->list
);
8872 list_del_rcu(&tg
->siblings
);
8873 spin_unlock_irqrestore(&task_group_lock
, flags
);
8875 /* wait for possible concurrent references to cfs_rqs complete */
8876 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8879 /* change task's runqueue when it moves between groups.
8880 * The caller of this function should have put the task in its new group
8881 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8882 * reflect its new group.
8884 void sched_move_task(struct task_struct
*tsk
)
8887 unsigned long flags
;
8890 rq
= task_rq_lock(tsk
, &flags
);
8892 update_rq_clock(rq
);
8894 running
= task_current(rq
, tsk
);
8895 on_rq
= tsk
->se
.on_rq
;
8898 dequeue_task(rq
, tsk
, 0);
8899 if (unlikely(running
))
8900 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8902 set_task_rq(tsk
, task_cpu(tsk
));
8904 #ifdef CONFIG_FAIR_GROUP_SCHED
8905 if (tsk
->sched_class
->moved_group
)
8906 tsk
->sched_class
->moved_group(tsk
);
8909 if (unlikely(running
))
8910 tsk
->sched_class
->set_curr_task(rq
);
8912 enqueue_task(rq
, tsk
, 0);
8914 task_rq_unlock(rq
, &flags
);
8916 #endif /* CONFIG_GROUP_SCHED */
8918 #ifdef CONFIG_FAIR_GROUP_SCHED
8919 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8921 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8926 dequeue_entity(cfs_rq
, se
, 0);
8928 se
->load
.weight
= shares
;
8929 se
->load
.inv_weight
= 0;
8932 enqueue_entity(cfs_rq
, se
, 0);
8935 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8937 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8938 struct rq
*rq
= cfs_rq
->rq
;
8939 unsigned long flags
;
8941 spin_lock_irqsave(&rq
->lock
, flags
);
8942 __set_se_shares(se
, shares
);
8943 spin_unlock_irqrestore(&rq
->lock
, flags
);
8946 static DEFINE_MUTEX(shares_mutex
);
8948 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8951 unsigned long flags
;
8954 * We can't change the weight of the root cgroup.
8959 if (shares
< MIN_SHARES
)
8960 shares
= MIN_SHARES
;
8961 else if (shares
> MAX_SHARES
)
8962 shares
= MAX_SHARES
;
8964 mutex_lock(&shares_mutex
);
8965 if (tg
->shares
== shares
)
8968 spin_lock_irqsave(&task_group_lock
, flags
);
8969 for_each_possible_cpu(i
)
8970 unregister_fair_sched_group(tg
, i
);
8971 list_del_rcu(&tg
->siblings
);
8972 spin_unlock_irqrestore(&task_group_lock
, flags
);
8974 /* wait for any ongoing reference to this group to finish */
8975 synchronize_sched();
8978 * Now we are free to modify the group's share on each cpu
8979 * w/o tripping rebalance_share or load_balance_fair.
8981 tg
->shares
= shares
;
8982 for_each_possible_cpu(i
) {
8986 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8987 set_se_shares(tg
->se
[i
], shares
);
8991 * Enable load balance activity on this group, by inserting it back on
8992 * each cpu's rq->leaf_cfs_rq_list.
8994 spin_lock_irqsave(&task_group_lock
, flags
);
8995 for_each_possible_cpu(i
)
8996 register_fair_sched_group(tg
, i
);
8997 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8998 spin_unlock_irqrestore(&task_group_lock
, flags
);
9000 mutex_unlock(&shares_mutex
);
9004 unsigned long sched_group_shares(struct task_group
*tg
)
9010 #ifdef CONFIG_RT_GROUP_SCHED
9012 * Ensure that the real time constraints are schedulable.
9014 static DEFINE_MUTEX(rt_constraints_mutex
);
9016 static unsigned long to_ratio(u64 period
, u64 runtime
)
9018 if (runtime
== RUNTIME_INF
)
9021 return div64_u64(runtime
<< 20, period
);
9024 /* Must be called with tasklist_lock held */
9025 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9027 struct task_struct
*g
, *p
;
9029 do_each_thread(g
, p
) {
9030 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9032 } while_each_thread(g
, p
);
9037 struct rt_schedulable_data
{
9038 struct task_group
*tg
;
9043 static int tg_schedulable(struct task_group
*tg
, void *data
)
9045 struct rt_schedulable_data
*d
= data
;
9046 struct task_group
*child
;
9047 unsigned long total
, sum
= 0;
9048 u64 period
, runtime
;
9050 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9051 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9054 period
= d
->rt_period
;
9055 runtime
= d
->rt_runtime
;
9058 #ifdef CONFIG_USER_SCHED
9059 if (tg
== &root_task_group
) {
9060 period
= global_rt_period();
9061 runtime
= global_rt_runtime();
9066 * Cannot have more runtime than the period.
9068 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9072 * Ensure we don't starve existing RT tasks.
9074 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9077 total
= to_ratio(period
, runtime
);
9080 * Nobody can have more than the global setting allows.
9082 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9086 * The sum of our children's runtime should not exceed our own.
9088 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9089 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9090 runtime
= child
->rt_bandwidth
.rt_runtime
;
9092 if (child
== d
->tg
) {
9093 period
= d
->rt_period
;
9094 runtime
= d
->rt_runtime
;
9097 sum
+= to_ratio(period
, runtime
);
9106 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9108 struct rt_schedulable_data data
= {
9110 .rt_period
= period
,
9111 .rt_runtime
= runtime
,
9114 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9117 static int tg_set_bandwidth(struct task_group
*tg
,
9118 u64 rt_period
, u64 rt_runtime
)
9122 mutex_lock(&rt_constraints_mutex
);
9123 read_lock(&tasklist_lock
);
9124 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9128 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9129 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9130 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9132 for_each_possible_cpu(i
) {
9133 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9135 spin_lock(&rt_rq
->rt_runtime_lock
);
9136 rt_rq
->rt_runtime
= rt_runtime
;
9137 spin_unlock(&rt_rq
->rt_runtime_lock
);
9139 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9141 read_unlock(&tasklist_lock
);
9142 mutex_unlock(&rt_constraints_mutex
);
9147 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9149 u64 rt_runtime
, rt_period
;
9151 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9152 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9153 if (rt_runtime_us
< 0)
9154 rt_runtime
= RUNTIME_INF
;
9156 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9159 long sched_group_rt_runtime(struct task_group
*tg
)
9163 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9166 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9167 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9168 return rt_runtime_us
;
9171 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9173 u64 rt_runtime
, rt_period
;
9175 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9176 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9181 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9184 long sched_group_rt_period(struct task_group
*tg
)
9188 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9189 do_div(rt_period_us
, NSEC_PER_USEC
);
9190 return rt_period_us
;
9193 static int sched_rt_global_constraints(void)
9195 u64 runtime
, period
;
9198 if (sysctl_sched_rt_period
<= 0)
9201 runtime
= global_rt_runtime();
9202 period
= global_rt_period();
9205 * Sanity check on the sysctl variables.
9207 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9210 mutex_lock(&rt_constraints_mutex
);
9211 read_lock(&tasklist_lock
);
9212 ret
= __rt_schedulable(NULL
, 0, 0);
9213 read_unlock(&tasklist_lock
);
9214 mutex_unlock(&rt_constraints_mutex
);
9218 #else /* !CONFIG_RT_GROUP_SCHED */
9219 static int sched_rt_global_constraints(void)
9221 unsigned long flags
;
9224 if (sysctl_sched_rt_period
<= 0)
9227 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9228 for_each_possible_cpu(i
) {
9229 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9231 spin_lock(&rt_rq
->rt_runtime_lock
);
9232 rt_rq
->rt_runtime
= global_rt_runtime();
9233 spin_unlock(&rt_rq
->rt_runtime_lock
);
9235 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9239 #endif /* CONFIG_RT_GROUP_SCHED */
9241 int sched_rt_handler(struct ctl_table
*table
, int write
,
9242 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9246 int old_period
, old_runtime
;
9247 static DEFINE_MUTEX(mutex
);
9250 old_period
= sysctl_sched_rt_period
;
9251 old_runtime
= sysctl_sched_rt_runtime
;
9253 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9255 if (!ret
&& write
) {
9256 ret
= sched_rt_global_constraints();
9258 sysctl_sched_rt_period
= old_period
;
9259 sysctl_sched_rt_runtime
= old_runtime
;
9261 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9262 def_rt_bandwidth
.rt_period
=
9263 ns_to_ktime(global_rt_period());
9266 mutex_unlock(&mutex
);
9271 #ifdef CONFIG_CGROUP_SCHED
9273 /* return corresponding task_group object of a cgroup */
9274 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9276 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9277 struct task_group
, css
);
9280 static struct cgroup_subsys_state
*
9281 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9283 struct task_group
*tg
, *parent
;
9285 if (!cgrp
->parent
) {
9286 /* This is early initialization for the top cgroup */
9287 return &init_task_group
.css
;
9290 parent
= cgroup_tg(cgrp
->parent
);
9291 tg
= sched_create_group(parent
);
9293 return ERR_PTR(-ENOMEM
);
9299 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9301 struct task_group
*tg
= cgroup_tg(cgrp
);
9303 sched_destroy_group(tg
);
9307 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9308 struct task_struct
*tsk
)
9310 #ifdef CONFIG_RT_GROUP_SCHED
9311 /* Don't accept realtime tasks when there is no way for them to run */
9312 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9315 /* We don't support RT-tasks being in separate groups */
9316 if (tsk
->sched_class
!= &fair_sched_class
)
9324 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9325 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9327 sched_move_task(tsk
);
9330 #ifdef CONFIG_FAIR_GROUP_SCHED
9331 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9334 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9337 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9339 struct task_group
*tg
= cgroup_tg(cgrp
);
9341 return (u64
) tg
->shares
;
9343 #endif /* CONFIG_FAIR_GROUP_SCHED */
9345 #ifdef CONFIG_RT_GROUP_SCHED
9346 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9349 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9352 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9354 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9357 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9360 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9363 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9365 return sched_group_rt_period(cgroup_tg(cgrp
));
9367 #endif /* CONFIG_RT_GROUP_SCHED */
9369 static struct cftype cpu_files
[] = {
9370 #ifdef CONFIG_FAIR_GROUP_SCHED
9373 .read_u64
= cpu_shares_read_u64
,
9374 .write_u64
= cpu_shares_write_u64
,
9377 #ifdef CONFIG_RT_GROUP_SCHED
9379 .name
= "rt_runtime_us",
9380 .read_s64
= cpu_rt_runtime_read
,
9381 .write_s64
= cpu_rt_runtime_write
,
9384 .name
= "rt_period_us",
9385 .read_u64
= cpu_rt_period_read_uint
,
9386 .write_u64
= cpu_rt_period_write_uint
,
9391 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9393 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9396 struct cgroup_subsys cpu_cgroup_subsys
= {
9398 .create
= cpu_cgroup_create
,
9399 .destroy
= cpu_cgroup_destroy
,
9400 .can_attach
= cpu_cgroup_can_attach
,
9401 .attach
= cpu_cgroup_attach
,
9402 .populate
= cpu_cgroup_populate
,
9403 .subsys_id
= cpu_cgroup_subsys_id
,
9407 #endif /* CONFIG_CGROUP_SCHED */
9409 #ifdef CONFIG_CGROUP_CPUACCT
9412 * CPU accounting code for task groups.
9414 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9415 * (balbir@in.ibm.com).
9418 /* track cpu usage of a group of tasks and its child groups */
9420 struct cgroup_subsys_state css
;
9421 /* cpuusage holds pointer to a u64-type object on every cpu */
9423 struct cpuacct
*parent
;
9426 struct cgroup_subsys cpuacct_subsys
;
9428 /* return cpu accounting group corresponding to this container */
9429 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9431 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9432 struct cpuacct
, css
);
9435 /* return cpu accounting group to which this task belongs */
9436 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9438 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9439 struct cpuacct
, css
);
9442 /* create a new cpu accounting group */
9443 static struct cgroup_subsys_state
*cpuacct_create(
9444 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9446 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9449 return ERR_PTR(-ENOMEM
);
9451 ca
->cpuusage
= alloc_percpu(u64
);
9452 if (!ca
->cpuusage
) {
9454 return ERR_PTR(-ENOMEM
);
9458 ca
->parent
= cgroup_ca(cgrp
->parent
);
9463 /* destroy an existing cpu accounting group */
9465 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9467 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9469 free_percpu(ca
->cpuusage
);
9473 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9475 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9478 #ifndef CONFIG_64BIT
9480 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9482 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9484 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9492 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9494 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9496 #ifndef CONFIG_64BIT
9498 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9500 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9502 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9508 /* return total cpu usage (in nanoseconds) of a group */
9509 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9511 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9512 u64 totalcpuusage
= 0;
9515 for_each_present_cpu(i
)
9516 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9518 return totalcpuusage
;
9521 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9524 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9533 for_each_present_cpu(i
)
9534 cpuacct_cpuusage_write(ca
, i
, 0);
9540 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9543 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9547 for_each_present_cpu(i
) {
9548 percpu
= cpuacct_cpuusage_read(ca
, i
);
9549 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9551 seq_printf(m
, "\n");
9555 static struct cftype files
[] = {
9558 .read_u64
= cpuusage_read
,
9559 .write_u64
= cpuusage_write
,
9562 .name
= "usage_percpu",
9563 .read_seq_string
= cpuacct_percpu_seq_read
,
9568 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9570 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9574 * charge this task's execution time to its accounting group.
9576 * called with rq->lock held.
9578 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9583 if (!cpuacct_subsys
.active
)
9586 cpu
= task_cpu(tsk
);
9589 for (; ca
; ca
= ca
->parent
) {
9590 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9591 *cpuusage
+= cputime
;
9595 struct cgroup_subsys cpuacct_subsys
= {
9597 .create
= cpuacct_create
,
9598 .destroy
= cpuacct_destroy
,
9599 .populate
= cpuacct_populate
,
9600 .subsys_id
= cpuacct_subsys_id
,
9602 #endif /* CONFIG_CGROUP_CPUACCT */