rt2x00: Replace DRV_NAME with KBUILD_MODNAME
[linux-2.6/verdex.git] / drivers / net / s2io.c
blob5defb0b1725883969c5834d79e85c3cdb265b45d
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.17"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
98 int ret;
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
103 return ret;
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
219 {"rmac_pause_cnt"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
241 {"rxf_wr_cnt"}
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
260 {"link_fault_cnt"}
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
299 {"mem_allocated"},
300 {"mem_freed"},
301 {"link_up_cnt"},
302 {"link_down_cnt"},
303 {"link_up_time"},
304 {"link_down_time"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
338 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
352 init_timer(&timer); \
353 timer.function = handle; \
354 timer.data = (unsigned long) arg; \
355 mod_timer(&timer, (jiffies + exp)) \
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
361 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
362 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
363 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
364 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
365 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
367 /* Add the vlan */
368 static void s2io_vlan_rx_register(struct net_device *dev,
369 struct vlan_group *grp)
371 struct s2io_nic *nic = dev->priv;
372 unsigned long flags;
374 spin_lock_irqsave(&nic->tx_lock, flags);
375 nic->vlgrp = grp;
376 spin_unlock_irqrestore(&nic->tx_lock, flags);
379 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
380 static int vlan_strip_flag;
383 * Constants to be programmed into the Xena's registers, to configure
384 * the XAUI.
387 #define END_SIGN 0x0
388 static const u64 herc_act_dtx_cfg[] = {
389 /* Set address */
390 0x8000051536750000ULL, 0x80000515367500E0ULL,
391 /* Write data */
392 0x8000051536750004ULL, 0x80000515367500E4ULL,
393 /* Set address */
394 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
395 /* Write data */
396 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
397 /* Set address */
398 0x801205150D440000ULL, 0x801205150D4400E0ULL,
399 /* Write data */
400 0x801205150D440004ULL, 0x801205150D4400E4ULL,
401 /* Set address */
402 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
403 /* Write data */
404 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
405 /* Done */
406 END_SIGN
409 static const u64 xena_dtx_cfg[] = {
410 /* Set address */
411 0x8000051500000000ULL, 0x80000515000000E0ULL,
412 /* Write data */
413 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
414 /* Set address */
415 0x8001051500000000ULL, 0x80010515000000E0ULL,
416 /* Write data */
417 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
418 /* Set address */
419 0x8002051500000000ULL, 0x80020515000000E0ULL,
420 /* Write data */
421 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
422 END_SIGN
426 * Constants for Fixing the MacAddress problem seen mostly on
427 * Alpha machines.
429 static const u64 fix_mac[] = {
430 0x0060000000000000ULL, 0x0060600000000000ULL,
431 0x0040600000000000ULL, 0x0000600000000000ULL,
432 0x0020600000000000ULL, 0x0060600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0000600000000000ULL,
443 0x0040600000000000ULL, 0x0060600000000000ULL,
444 END_SIGN
447 MODULE_LICENSE("GPL");
448 MODULE_VERSION(DRV_VERSION);
451 /* Module Loadable parameters. */
452 S2IO_PARM_INT(tx_fifo_num, 1);
453 S2IO_PARM_INT(rx_ring_num, 1);
456 S2IO_PARM_INT(rx_ring_mode, 1);
457 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
458 S2IO_PARM_INT(rmac_pause_time, 0x100);
459 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
460 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
461 S2IO_PARM_INT(shared_splits, 0);
462 S2IO_PARM_INT(tmac_util_period, 5);
463 S2IO_PARM_INT(rmac_util_period, 5);
464 S2IO_PARM_INT(l3l4hdr_size, 128);
465 /* Frequency of Rx desc syncs expressed as power of 2 */
466 S2IO_PARM_INT(rxsync_frequency, 3);
467 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
468 S2IO_PARM_INT(intr_type, 2);
469 /* Large receive offload feature */
470 static unsigned int lro_enable;
471 module_param_named(lro, lro_enable, uint, 0);
473 /* Max pkts to be aggregated by LRO at one time. If not specified,
474 * aggregation happens until we hit max IP pkt size(64K)
476 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
477 S2IO_PARM_INT(indicate_max_pkts, 0);
479 S2IO_PARM_INT(napi, 1);
480 S2IO_PARM_INT(ufo, 0);
481 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
483 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
484 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
485 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
486 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
487 static unsigned int rts_frm_len[MAX_RX_RINGS] =
488 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
490 module_param_array(tx_fifo_len, uint, NULL, 0);
491 module_param_array(rx_ring_sz, uint, NULL, 0);
492 module_param_array(rts_frm_len, uint, NULL, 0);
495 * S2IO device table.
496 * This table lists all the devices that this driver supports.
498 static struct pci_device_id s2io_tbl[] __devinitdata = {
499 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
500 PCI_ANY_ID, PCI_ANY_ID},
501 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
502 PCI_ANY_ID, PCI_ANY_ID},
503 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
504 PCI_ANY_ID, PCI_ANY_ID},
505 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
506 PCI_ANY_ID, PCI_ANY_ID},
507 {0,}
510 MODULE_DEVICE_TABLE(pci, s2io_tbl);
512 static struct pci_error_handlers s2io_err_handler = {
513 .error_detected = s2io_io_error_detected,
514 .slot_reset = s2io_io_slot_reset,
515 .resume = s2io_io_resume,
518 static struct pci_driver s2io_driver = {
519 .name = "S2IO",
520 .id_table = s2io_tbl,
521 .probe = s2io_init_nic,
522 .remove = __devexit_p(s2io_rem_nic),
523 .err_handler = &s2io_err_handler,
526 /* A simplifier macro used both by init and free shared_mem Fns(). */
527 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
530 * init_shared_mem - Allocation and Initialization of Memory
531 * @nic: Device private variable.
532 * Description: The function allocates all the memory areas shared
533 * between the NIC and the driver. This includes Tx descriptors,
534 * Rx descriptors and the statistics block.
537 static int init_shared_mem(struct s2io_nic *nic)
539 u32 size;
540 void *tmp_v_addr, *tmp_v_addr_next;
541 dma_addr_t tmp_p_addr, tmp_p_addr_next;
542 struct RxD_block *pre_rxd_blk = NULL;
543 int i, j, blk_cnt;
544 int lst_size, lst_per_page;
545 struct net_device *dev = nic->dev;
546 unsigned long tmp;
547 struct buffAdd *ba;
549 struct mac_info *mac_control;
550 struct config_param *config;
551 unsigned long long mem_allocated = 0;
553 mac_control = &nic->mac_control;
554 config = &nic->config;
557 /* Allocation and initialization of TXDLs in FIOFs */
558 size = 0;
559 for (i = 0; i < config->tx_fifo_num; i++) {
560 size += config->tx_cfg[i].fifo_len;
562 if (size > MAX_AVAILABLE_TXDS) {
563 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
564 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
565 return -EINVAL;
568 lst_size = (sizeof(struct TxD) * config->max_txds);
569 lst_per_page = PAGE_SIZE / lst_size;
571 for (i = 0; i < config->tx_fifo_num; i++) {
572 int fifo_len = config->tx_cfg[i].fifo_len;
573 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
574 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
575 GFP_KERNEL);
576 if (!mac_control->fifos[i].list_info) {
577 DBG_PRINT(INFO_DBG,
578 "Malloc failed for list_info\n");
579 return -ENOMEM;
581 mem_allocated += list_holder_size;
583 for (i = 0; i < config->tx_fifo_num; i++) {
584 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
585 lst_per_page);
586 mac_control->fifos[i].tx_curr_put_info.offset = 0;
587 mac_control->fifos[i].tx_curr_put_info.fifo_len =
588 config->tx_cfg[i].fifo_len - 1;
589 mac_control->fifos[i].tx_curr_get_info.offset = 0;
590 mac_control->fifos[i].tx_curr_get_info.fifo_len =
591 config->tx_cfg[i].fifo_len - 1;
592 mac_control->fifos[i].fifo_no = i;
593 mac_control->fifos[i].nic = nic;
594 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
596 for (j = 0; j < page_num; j++) {
597 int k = 0;
598 dma_addr_t tmp_p;
599 void *tmp_v;
600 tmp_v = pci_alloc_consistent(nic->pdev,
601 PAGE_SIZE, &tmp_p);
602 if (!tmp_v) {
603 DBG_PRINT(INFO_DBG,
604 "pci_alloc_consistent ");
605 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
606 return -ENOMEM;
608 /* If we got a zero DMA address(can happen on
609 * certain platforms like PPC), reallocate.
610 * Store virtual address of page we don't want,
611 * to be freed later.
613 if (!tmp_p) {
614 mac_control->zerodma_virt_addr = tmp_v;
615 DBG_PRINT(INIT_DBG,
616 "%s: Zero DMA address for TxDL. ", dev->name);
617 DBG_PRINT(INIT_DBG,
618 "Virtual address %p\n", tmp_v);
619 tmp_v = pci_alloc_consistent(nic->pdev,
620 PAGE_SIZE, &tmp_p);
621 if (!tmp_v) {
622 DBG_PRINT(INFO_DBG,
623 "pci_alloc_consistent ");
624 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
625 return -ENOMEM;
627 mem_allocated += PAGE_SIZE;
629 while (k < lst_per_page) {
630 int l = (j * lst_per_page) + k;
631 if (l == config->tx_cfg[i].fifo_len)
632 break;
633 mac_control->fifos[i].list_info[l].list_virt_addr =
634 tmp_v + (k * lst_size);
635 mac_control->fifos[i].list_info[l].list_phy_addr =
636 tmp_p + (k * lst_size);
637 k++;
642 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
643 if (!nic->ufo_in_band_v)
644 return -ENOMEM;
645 mem_allocated += (size * sizeof(u64));
647 /* Allocation and initialization of RXDs in Rings */
648 size = 0;
649 for (i = 0; i < config->rx_ring_num; i++) {
650 if (config->rx_cfg[i].num_rxd %
651 (rxd_count[nic->rxd_mode] + 1)) {
652 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
653 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
655 DBG_PRINT(ERR_DBG, "RxDs per Block");
656 return FAILURE;
658 size += config->rx_cfg[i].num_rxd;
659 mac_control->rings[i].block_count =
660 config->rx_cfg[i].num_rxd /
661 (rxd_count[nic->rxd_mode] + 1 );
662 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
663 mac_control->rings[i].block_count;
665 if (nic->rxd_mode == RXD_MODE_1)
666 size = (size * (sizeof(struct RxD1)));
667 else
668 size = (size * (sizeof(struct RxD3)));
670 for (i = 0; i < config->rx_ring_num; i++) {
671 mac_control->rings[i].rx_curr_get_info.block_index = 0;
672 mac_control->rings[i].rx_curr_get_info.offset = 0;
673 mac_control->rings[i].rx_curr_get_info.ring_len =
674 config->rx_cfg[i].num_rxd - 1;
675 mac_control->rings[i].rx_curr_put_info.block_index = 0;
676 mac_control->rings[i].rx_curr_put_info.offset = 0;
677 mac_control->rings[i].rx_curr_put_info.ring_len =
678 config->rx_cfg[i].num_rxd - 1;
679 mac_control->rings[i].nic = nic;
680 mac_control->rings[i].ring_no = i;
682 blk_cnt = config->rx_cfg[i].num_rxd /
683 (rxd_count[nic->rxd_mode] + 1);
684 /* Allocating all the Rx blocks */
685 for (j = 0; j < blk_cnt; j++) {
686 struct rx_block_info *rx_blocks;
687 int l;
689 rx_blocks = &mac_control->rings[i].rx_blocks[j];
690 size = SIZE_OF_BLOCK; //size is always page size
691 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
692 &tmp_p_addr);
693 if (tmp_v_addr == NULL) {
695 * In case of failure, free_shared_mem()
696 * is called, which should free any
697 * memory that was alloced till the
698 * failure happened.
700 rx_blocks->block_virt_addr = tmp_v_addr;
701 return -ENOMEM;
703 mem_allocated += size;
704 memset(tmp_v_addr, 0, size);
705 rx_blocks->block_virt_addr = tmp_v_addr;
706 rx_blocks->block_dma_addr = tmp_p_addr;
707 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
708 rxd_count[nic->rxd_mode],
709 GFP_KERNEL);
710 if (!rx_blocks->rxds)
711 return -ENOMEM;
712 mem_allocated +=
713 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
714 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
715 rx_blocks->rxds[l].virt_addr =
716 rx_blocks->block_virt_addr +
717 (rxd_size[nic->rxd_mode] * l);
718 rx_blocks->rxds[l].dma_addr =
719 rx_blocks->block_dma_addr +
720 (rxd_size[nic->rxd_mode] * l);
723 /* Interlinking all Rx Blocks */
724 for (j = 0; j < blk_cnt; j++) {
725 tmp_v_addr =
726 mac_control->rings[i].rx_blocks[j].block_virt_addr;
727 tmp_v_addr_next =
728 mac_control->rings[i].rx_blocks[(j + 1) %
729 blk_cnt].block_virt_addr;
730 tmp_p_addr =
731 mac_control->rings[i].rx_blocks[j].block_dma_addr;
732 tmp_p_addr_next =
733 mac_control->rings[i].rx_blocks[(j + 1) %
734 blk_cnt].block_dma_addr;
736 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
737 pre_rxd_blk->reserved_2_pNext_RxD_block =
738 (unsigned long) tmp_v_addr_next;
739 pre_rxd_blk->pNext_RxD_Blk_physical =
740 (u64) tmp_p_addr_next;
743 if (nic->rxd_mode == RXD_MODE_3B) {
745 * Allocation of Storages for buffer addresses in 2BUFF mode
746 * and the buffers as well.
748 for (i = 0; i < config->rx_ring_num; i++) {
749 blk_cnt = config->rx_cfg[i].num_rxd /
750 (rxd_count[nic->rxd_mode]+ 1);
751 mac_control->rings[i].ba =
752 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
753 GFP_KERNEL);
754 if (!mac_control->rings[i].ba)
755 return -ENOMEM;
756 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
757 for (j = 0; j < blk_cnt; j++) {
758 int k = 0;
759 mac_control->rings[i].ba[j] =
760 kmalloc((sizeof(struct buffAdd) *
761 (rxd_count[nic->rxd_mode] + 1)),
762 GFP_KERNEL);
763 if (!mac_control->rings[i].ba[j])
764 return -ENOMEM;
765 mem_allocated += (sizeof(struct buffAdd) * \
766 (rxd_count[nic->rxd_mode] + 1));
767 while (k != rxd_count[nic->rxd_mode]) {
768 ba = &mac_control->rings[i].ba[j][k];
770 ba->ba_0_org = (void *) kmalloc
771 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
772 if (!ba->ba_0_org)
773 return -ENOMEM;
774 mem_allocated +=
775 (BUF0_LEN + ALIGN_SIZE);
776 tmp = (unsigned long)ba->ba_0_org;
777 tmp += ALIGN_SIZE;
778 tmp &= ~((unsigned long) ALIGN_SIZE);
779 ba->ba_0 = (void *) tmp;
781 ba->ba_1_org = (void *) kmalloc
782 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
783 if (!ba->ba_1_org)
784 return -ENOMEM;
785 mem_allocated
786 += (BUF1_LEN + ALIGN_SIZE);
787 tmp = (unsigned long) ba->ba_1_org;
788 tmp += ALIGN_SIZE;
789 tmp &= ~((unsigned long) ALIGN_SIZE);
790 ba->ba_1 = (void *) tmp;
791 k++;
797 /* Allocation and initialization of Statistics block */
798 size = sizeof(struct stat_block);
799 mac_control->stats_mem = pci_alloc_consistent
800 (nic->pdev, size, &mac_control->stats_mem_phy);
802 if (!mac_control->stats_mem) {
804 * In case of failure, free_shared_mem() is called, which
805 * should free any memory that was alloced till the
806 * failure happened.
808 return -ENOMEM;
810 mem_allocated += size;
811 mac_control->stats_mem_sz = size;
813 tmp_v_addr = mac_control->stats_mem;
814 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
815 memset(tmp_v_addr, 0, size);
816 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
817 (unsigned long long) tmp_p_addr);
818 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
819 return SUCCESS;
823 * free_shared_mem - Free the allocated Memory
824 * @nic: Device private variable.
825 * Description: This function is to free all memory locations allocated by
826 * the init_shared_mem() function and return it to the kernel.
829 static void free_shared_mem(struct s2io_nic *nic)
831 int i, j, blk_cnt, size;
832 u32 ufo_size = 0;
833 void *tmp_v_addr;
834 dma_addr_t tmp_p_addr;
835 struct mac_info *mac_control;
836 struct config_param *config;
837 int lst_size, lst_per_page;
838 struct net_device *dev;
839 int page_num = 0;
841 if (!nic)
842 return;
844 dev = nic->dev;
846 mac_control = &nic->mac_control;
847 config = &nic->config;
849 lst_size = (sizeof(struct TxD) * config->max_txds);
850 lst_per_page = PAGE_SIZE / lst_size;
852 for (i = 0; i < config->tx_fifo_num; i++) {
853 ufo_size += config->tx_cfg[i].fifo_len;
854 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
855 lst_per_page);
856 for (j = 0; j < page_num; j++) {
857 int mem_blks = (j * lst_per_page);
858 if (!mac_control->fifos[i].list_info)
859 return;
860 if (!mac_control->fifos[i].list_info[mem_blks].
861 list_virt_addr)
862 break;
863 pci_free_consistent(nic->pdev, PAGE_SIZE,
864 mac_control->fifos[i].
865 list_info[mem_blks].
866 list_virt_addr,
867 mac_control->fifos[i].
868 list_info[mem_blks].
869 list_phy_addr);
870 nic->mac_control.stats_info->sw_stat.mem_freed
871 += PAGE_SIZE;
873 /* If we got a zero DMA address during allocation,
874 * free the page now
876 if (mac_control->zerodma_virt_addr) {
877 pci_free_consistent(nic->pdev, PAGE_SIZE,
878 mac_control->zerodma_virt_addr,
879 (dma_addr_t)0);
880 DBG_PRINT(INIT_DBG,
881 "%s: Freeing TxDL with zero DMA addr. ",
882 dev->name);
883 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
884 mac_control->zerodma_virt_addr);
885 nic->mac_control.stats_info->sw_stat.mem_freed
886 += PAGE_SIZE;
888 kfree(mac_control->fifos[i].list_info);
889 nic->mac_control.stats_info->sw_stat.mem_freed +=
890 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
893 size = SIZE_OF_BLOCK;
894 for (i = 0; i < config->rx_ring_num; i++) {
895 blk_cnt = mac_control->rings[i].block_count;
896 for (j = 0; j < blk_cnt; j++) {
897 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
898 block_virt_addr;
899 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
900 block_dma_addr;
901 if (tmp_v_addr == NULL)
902 break;
903 pci_free_consistent(nic->pdev, size,
904 tmp_v_addr, tmp_p_addr);
905 nic->mac_control.stats_info->sw_stat.mem_freed += size;
906 kfree(mac_control->rings[i].rx_blocks[j].rxds);
907 nic->mac_control.stats_info->sw_stat.mem_freed +=
908 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
912 if (nic->rxd_mode == RXD_MODE_3B) {
913 /* Freeing buffer storage addresses in 2BUFF mode. */
914 for (i = 0; i < config->rx_ring_num; i++) {
915 blk_cnt = config->rx_cfg[i].num_rxd /
916 (rxd_count[nic->rxd_mode] + 1);
917 for (j = 0; j < blk_cnt; j++) {
918 int k = 0;
919 if (!mac_control->rings[i].ba[j])
920 continue;
921 while (k != rxd_count[nic->rxd_mode]) {
922 struct buffAdd *ba =
923 &mac_control->rings[i].ba[j][k];
924 kfree(ba->ba_0_org);
925 nic->mac_control.stats_info->sw_stat.\
926 mem_freed += (BUF0_LEN + ALIGN_SIZE);
927 kfree(ba->ba_1_org);
928 nic->mac_control.stats_info->sw_stat.\
929 mem_freed += (BUF1_LEN + ALIGN_SIZE);
930 k++;
932 kfree(mac_control->rings[i].ba[j]);
933 nic->mac_control.stats_info->sw_stat.mem_freed +=
934 (sizeof(struct buffAdd) *
935 (rxd_count[nic->rxd_mode] + 1));
937 kfree(mac_control->rings[i].ba);
938 nic->mac_control.stats_info->sw_stat.mem_freed +=
939 (sizeof(struct buffAdd *) * blk_cnt);
943 if (mac_control->stats_mem) {
944 pci_free_consistent(nic->pdev,
945 mac_control->stats_mem_sz,
946 mac_control->stats_mem,
947 mac_control->stats_mem_phy);
948 nic->mac_control.stats_info->sw_stat.mem_freed +=
949 mac_control->stats_mem_sz;
951 if (nic->ufo_in_band_v) {
952 kfree(nic->ufo_in_band_v);
953 nic->mac_control.stats_info->sw_stat.mem_freed
954 += (ufo_size * sizeof(u64));
959 * s2io_verify_pci_mode -
962 static int s2io_verify_pci_mode(struct s2io_nic *nic)
964 struct XENA_dev_config __iomem *bar0 = nic->bar0;
965 register u64 val64 = 0;
966 int mode;
968 val64 = readq(&bar0->pci_mode);
969 mode = (u8)GET_PCI_MODE(val64);
971 if ( val64 & PCI_MODE_UNKNOWN_MODE)
972 return -1; /* Unknown PCI mode */
973 return mode;
976 #define NEC_VENID 0x1033
977 #define NEC_DEVID 0x0125
978 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
980 struct pci_dev *tdev = NULL;
981 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
982 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
983 if (tdev->bus == s2io_pdev->bus->parent)
984 pci_dev_put(tdev);
985 return 1;
988 return 0;
991 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
993 * s2io_print_pci_mode -
995 static int s2io_print_pci_mode(struct s2io_nic *nic)
997 struct XENA_dev_config __iomem *bar0 = nic->bar0;
998 register u64 val64 = 0;
999 int mode;
1000 struct config_param *config = &nic->config;
1002 val64 = readq(&bar0->pci_mode);
1003 mode = (u8)GET_PCI_MODE(val64);
1005 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1006 return -1; /* Unknown PCI mode */
1008 config->bus_speed = bus_speed[mode];
1010 if (s2io_on_nec_bridge(nic->pdev)) {
1011 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1012 nic->dev->name);
1013 return mode;
1016 if (val64 & PCI_MODE_32_BITS) {
1017 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1018 } else {
1019 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1022 switch(mode) {
1023 case PCI_MODE_PCI_33:
1024 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1025 break;
1026 case PCI_MODE_PCI_66:
1027 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1028 break;
1029 case PCI_MODE_PCIX_M1_66:
1030 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1031 break;
1032 case PCI_MODE_PCIX_M1_100:
1033 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1034 break;
1035 case PCI_MODE_PCIX_M1_133:
1036 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1037 break;
1038 case PCI_MODE_PCIX_M2_66:
1039 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1040 break;
1041 case PCI_MODE_PCIX_M2_100:
1042 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1043 break;
1044 case PCI_MODE_PCIX_M2_133:
1045 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1046 break;
1047 default:
1048 return -1; /* Unsupported bus speed */
1051 return mode;
1055 * init_nic - Initialization of hardware
1056 * @nic: device peivate variable
1057 * Description: The function sequentially configures every block
1058 * of the H/W from their reset values.
1059 * Return Value: SUCCESS on success and
1060 * '-1' on failure (endian settings incorrect).
1063 static int init_nic(struct s2io_nic *nic)
1065 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1066 struct net_device *dev = nic->dev;
1067 register u64 val64 = 0;
1068 void __iomem *add;
1069 u32 time;
1070 int i, j;
1071 struct mac_info *mac_control;
1072 struct config_param *config;
1073 int dtx_cnt = 0;
1074 unsigned long long mem_share;
1075 int mem_size;
1077 mac_control = &nic->mac_control;
1078 config = &nic->config;
1080 /* to set the swapper controle on the card */
1081 if(s2io_set_swapper(nic)) {
1082 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1083 return -EIO;
1087 * Herc requires EOI to be removed from reset before XGXS, so..
1089 if (nic->device_type & XFRAME_II_DEVICE) {
1090 val64 = 0xA500000000ULL;
1091 writeq(val64, &bar0->sw_reset);
1092 msleep(500);
1093 val64 = readq(&bar0->sw_reset);
1096 /* Remove XGXS from reset state */
1097 val64 = 0;
1098 writeq(val64, &bar0->sw_reset);
1099 msleep(500);
1100 val64 = readq(&bar0->sw_reset);
1102 /* Ensure that it's safe to access registers by checking
1103 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1105 if (nic->device_type == XFRAME_II_DEVICE) {
1106 for (i = 0; i < 50; i++) {
1107 val64 = readq(&bar0->adapter_status);
1108 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1109 break;
1110 msleep(10);
1112 if (i == 50)
1113 return -ENODEV;
1116 /* Enable Receiving broadcasts */
1117 add = &bar0->mac_cfg;
1118 val64 = readq(&bar0->mac_cfg);
1119 val64 |= MAC_RMAC_BCAST_ENABLE;
1120 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1121 writel((u32) val64, add);
1122 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1123 writel((u32) (val64 >> 32), (add + 4));
1125 /* Read registers in all blocks */
1126 val64 = readq(&bar0->mac_int_mask);
1127 val64 = readq(&bar0->mc_int_mask);
1128 val64 = readq(&bar0->xgxs_int_mask);
1130 /* Set MTU */
1131 val64 = dev->mtu;
1132 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1134 if (nic->device_type & XFRAME_II_DEVICE) {
1135 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1136 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1137 &bar0->dtx_control, UF);
1138 if (dtx_cnt & 0x1)
1139 msleep(1); /* Necessary!! */
1140 dtx_cnt++;
1142 } else {
1143 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1144 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1145 &bar0->dtx_control, UF);
1146 val64 = readq(&bar0->dtx_control);
1147 dtx_cnt++;
1151 /* Tx DMA Initialization */
1152 val64 = 0;
1153 writeq(val64, &bar0->tx_fifo_partition_0);
1154 writeq(val64, &bar0->tx_fifo_partition_1);
1155 writeq(val64, &bar0->tx_fifo_partition_2);
1156 writeq(val64, &bar0->tx_fifo_partition_3);
1159 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1160 val64 |=
1161 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1162 13) | vBIT(config->tx_cfg[i].fifo_priority,
1163 ((i * 32) + 5), 3);
1165 if (i == (config->tx_fifo_num - 1)) {
1166 if (i % 2 == 0)
1167 i++;
1170 switch (i) {
1171 case 1:
1172 writeq(val64, &bar0->tx_fifo_partition_0);
1173 val64 = 0;
1174 break;
1175 case 3:
1176 writeq(val64, &bar0->tx_fifo_partition_1);
1177 val64 = 0;
1178 break;
1179 case 5:
1180 writeq(val64, &bar0->tx_fifo_partition_2);
1181 val64 = 0;
1182 break;
1183 case 7:
1184 writeq(val64, &bar0->tx_fifo_partition_3);
1185 break;
1190 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1191 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1193 if ((nic->device_type == XFRAME_I_DEVICE) &&
1194 (nic->pdev->revision < 4))
1195 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1197 val64 = readq(&bar0->tx_fifo_partition_0);
1198 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1199 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1202 * Initialization of Tx_PA_CONFIG register to ignore packet
1203 * integrity checking.
1205 val64 = readq(&bar0->tx_pa_cfg);
1206 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1207 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1208 writeq(val64, &bar0->tx_pa_cfg);
1210 /* Rx DMA intialization. */
1211 val64 = 0;
1212 for (i = 0; i < config->rx_ring_num; i++) {
1213 val64 |=
1214 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1217 writeq(val64, &bar0->rx_queue_priority);
1220 * Allocating equal share of memory to all the
1221 * configured Rings.
1223 val64 = 0;
1224 if (nic->device_type & XFRAME_II_DEVICE)
1225 mem_size = 32;
1226 else
1227 mem_size = 64;
1229 for (i = 0; i < config->rx_ring_num; i++) {
1230 switch (i) {
1231 case 0:
1232 mem_share = (mem_size / config->rx_ring_num +
1233 mem_size % config->rx_ring_num);
1234 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1235 continue;
1236 case 1:
1237 mem_share = (mem_size / config->rx_ring_num);
1238 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1239 continue;
1240 case 2:
1241 mem_share = (mem_size / config->rx_ring_num);
1242 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1243 continue;
1244 case 3:
1245 mem_share = (mem_size / config->rx_ring_num);
1246 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1247 continue;
1248 case 4:
1249 mem_share = (mem_size / config->rx_ring_num);
1250 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1251 continue;
1252 case 5:
1253 mem_share = (mem_size / config->rx_ring_num);
1254 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1255 continue;
1256 case 6:
1257 mem_share = (mem_size / config->rx_ring_num);
1258 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1259 continue;
1260 case 7:
1261 mem_share = (mem_size / config->rx_ring_num);
1262 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1263 continue;
1266 writeq(val64, &bar0->rx_queue_cfg);
1269 * Filling Tx round robin registers
1270 * as per the number of FIFOs
1272 switch (config->tx_fifo_num) {
1273 case 1:
1274 val64 = 0x0000000000000000ULL;
1275 writeq(val64, &bar0->tx_w_round_robin_0);
1276 writeq(val64, &bar0->tx_w_round_robin_1);
1277 writeq(val64, &bar0->tx_w_round_robin_2);
1278 writeq(val64, &bar0->tx_w_round_robin_3);
1279 writeq(val64, &bar0->tx_w_round_robin_4);
1280 break;
1281 case 2:
1282 val64 = 0x0000010000010000ULL;
1283 writeq(val64, &bar0->tx_w_round_robin_0);
1284 val64 = 0x0100000100000100ULL;
1285 writeq(val64, &bar0->tx_w_round_robin_1);
1286 val64 = 0x0001000001000001ULL;
1287 writeq(val64, &bar0->tx_w_round_robin_2);
1288 val64 = 0x0000010000010000ULL;
1289 writeq(val64, &bar0->tx_w_round_robin_3);
1290 val64 = 0x0100000000000000ULL;
1291 writeq(val64, &bar0->tx_w_round_robin_4);
1292 break;
1293 case 3:
1294 val64 = 0x0001000102000001ULL;
1295 writeq(val64, &bar0->tx_w_round_robin_0);
1296 val64 = 0x0001020000010001ULL;
1297 writeq(val64, &bar0->tx_w_round_robin_1);
1298 val64 = 0x0200000100010200ULL;
1299 writeq(val64, &bar0->tx_w_round_robin_2);
1300 val64 = 0x0001000102000001ULL;
1301 writeq(val64, &bar0->tx_w_round_robin_3);
1302 val64 = 0x0001020000000000ULL;
1303 writeq(val64, &bar0->tx_w_round_robin_4);
1304 break;
1305 case 4:
1306 val64 = 0x0001020300010200ULL;
1307 writeq(val64, &bar0->tx_w_round_robin_0);
1308 val64 = 0x0100000102030001ULL;
1309 writeq(val64, &bar0->tx_w_round_robin_1);
1310 val64 = 0x0200010000010203ULL;
1311 writeq(val64, &bar0->tx_w_round_robin_2);
1312 val64 = 0x0001020001000001ULL;
1313 writeq(val64, &bar0->tx_w_round_robin_3);
1314 val64 = 0x0203000100000000ULL;
1315 writeq(val64, &bar0->tx_w_round_robin_4);
1316 break;
1317 case 5:
1318 val64 = 0x0001000203000102ULL;
1319 writeq(val64, &bar0->tx_w_round_robin_0);
1320 val64 = 0x0001020001030004ULL;
1321 writeq(val64, &bar0->tx_w_round_robin_1);
1322 val64 = 0x0001000203000102ULL;
1323 writeq(val64, &bar0->tx_w_round_robin_2);
1324 val64 = 0x0001020001030004ULL;
1325 writeq(val64, &bar0->tx_w_round_robin_3);
1326 val64 = 0x0001000000000000ULL;
1327 writeq(val64, &bar0->tx_w_round_robin_4);
1328 break;
1329 case 6:
1330 val64 = 0x0001020304000102ULL;
1331 writeq(val64, &bar0->tx_w_round_robin_0);
1332 val64 = 0x0304050001020001ULL;
1333 writeq(val64, &bar0->tx_w_round_robin_1);
1334 val64 = 0x0203000100000102ULL;
1335 writeq(val64, &bar0->tx_w_round_robin_2);
1336 val64 = 0x0304000102030405ULL;
1337 writeq(val64, &bar0->tx_w_round_robin_3);
1338 val64 = 0x0001000200000000ULL;
1339 writeq(val64, &bar0->tx_w_round_robin_4);
1340 break;
1341 case 7:
1342 val64 = 0x0001020001020300ULL;
1343 writeq(val64, &bar0->tx_w_round_robin_0);
1344 val64 = 0x0102030400010203ULL;
1345 writeq(val64, &bar0->tx_w_round_robin_1);
1346 val64 = 0x0405060001020001ULL;
1347 writeq(val64, &bar0->tx_w_round_robin_2);
1348 val64 = 0x0304050000010200ULL;
1349 writeq(val64, &bar0->tx_w_round_robin_3);
1350 val64 = 0x0102030000000000ULL;
1351 writeq(val64, &bar0->tx_w_round_robin_4);
1352 break;
1353 case 8:
1354 val64 = 0x0001020300040105ULL;
1355 writeq(val64, &bar0->tx_w_round_robin_0);
1356 val64 = 0x0200030106000204ULL;
1357 writeq(val64, &bar0->tx_w_round_robin_1);
1358 val64 = 0x0103000502010007ULL;
1359 writeq(val64, &bar0->tx_w_round_robin_2);
1360 val64 = 0x0304010002060500ULL;
1361 writeq(val64, &bar0->tx_w_round_robin_3);
1362 val64 = 0x0103020400000000ULL;
1363 writeq(val64, &bar0->tx_w_round_robin_4);
1364 break;
1367 /* Enable all configured Tx FIFO partitions */
1368 val64 = readq(&bar0->tx_fifo_partition_0);
1369 val64 |= (TX_FIFO_PARTITION_EN);
1370 writeq(val64, &bar0->tx_fifo_partition_0);
1372 /* Filling the Rx round robin registers as per the
1373 * number of Rings and steering based on QoS.
1375 switch (config->rx_ring_num) {
1376 case 1:
1377 val64 = 0x8080808080808080ULL;
1378 writeq(val64, &bar0->rts_qos_steering);
1379 break;
1380 case 2:
1381 val64 = 0x0000010000010000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_0);
1383 val64 = 0x0100000100000100ULL;
1384 writeq(val64, &bar0->rx_w_round_robin_1);
1385 val64 = 0x0001000001000001ULL;
1386 writeq(val64, &bar0->rx_w_round_robin_2);
1387 val64 = 0x0000010000010000ULL;
1388 writeq(val64, &bar0->rx_w_round_robin_3);
1389 val64 = 0x0100000000000000ULL;
1390 writeq(val64, &bar0->rx_w_round_robin_4);
1392 val64 = 0x8080808040404040ULL;
1393 writeq(val64, &bar0->rts_qos_steering);
1394 break;
1395 case 3:
1396 val64 = 0x0001000102000001ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_0);
1398 val64 = 0x0001020000010001ULL;
1399 writeq(val64, &bar0->rx_w_round_robin_1);
1400 val64 = 0x0200000100010200ULL;
1401 writeq(val64, &bar0->rx_w_round_robin_2);
1402 val64 = 0x0001000102000001ULL;
1403 writeq(val64, &bar0->rx_w_round_robin_3);
1404 val64 = 0x0001020000000000ULL;
1405 writeq(val64, &bar0->rx_w_round_robin_4);
1407 val64 = 0x8080804040402020ULL;
1408 writeq(val64, &bar0->rts_qos_steering);
1409 break;
1410 case 4:
1411 val64 = 0x0001020300010200ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_0);
1413 val64 = 0x0100000102030001ULL;
1414 writeq(val64, &bar0->rx_w_round_robin_1);
1415 val64 = 0x0200010000010203ULL;
1416 writeq(val64, &bar0->rx_w_round_robin_2);
1417 val64 = 0x0001020001000001ULL;
1418 writeq(val64, &bar0->rx_w_round_robin_3);
1419 val64 = 0x0203000100000000ULL;
1420 writeq(val64, &bar0->rx_w_round_robin_4);
1422 val64 = 0x8080404020201010ULL;
1423 writeq(val64, &bar0->rts_qos_steering);
1424 break;
1425 case 5:
1426 val64 = 0x0001000203000102ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_0);
1428 val64 = 0x0001020001030004ULL;
1429 writeq(val64, &bar0->rx_w_round_robin_1);
1430 val64 = 0x0001000203000102ULL;
1431 writeq(val64, &bar0->rx_w_round_robin_2);
1432 val64 = 0x0001020001030004ULL;
1433 writeq(val64, &bar0->rx_w_round_robin_3);
1434 val64 = 0x0001000000000000ULL;
1435 writeq(val64, &bar0->rx_w_round_robin_4);
1437 val64 = 0x8080404020201008ULL;
1438 writeq(val64, &bar0->rts_qos_steering);
1439 break;
1440 case 6:
1441 val64 = 0x0001020304000102ULL;
1442 writeq(val64, &bar0->rx_w_round_robin_0);
1443 val64 = 0x0304050001020001ULL;
1444 writeq(val64, &bar0->rx_w_round_robin_1);
1445 val64 = 0x0203000100000102ULL;
1446 writeq(val64, &bar0->rx_w_round_robin_2);
1447 val64 = 0x0304000102030405ULL;
1448 writeq(val64, &bar0->rx_w_round_robin_3);
1449 val64 = 0x0001000200000000ULL;
1450 writeq(val64, &bar0->rx_w_round_robin_4);
1452 val64 = 0x8080404020100804ULL;
1453 writeq(val64, &bar0->rts_qos_steering);
1454 break;
1455 case 7:
1456 val64 = 0x0001020001020300ULL;
1457 writeq(val64, &bar0->rx_w_round_robin_0);
1458 val64 = 0x0102030400010203ULL;
1459 writeq(val64, &bar0->rx_w_round_robin_1);
1460 val64 = 0x0405060001020001ULL;
1461 writeq(val64, &bar0->rx_w_round_robin_2);
1462 val64 = 0x0304050000010200ULL;
1463 writeq(val64, &bar0->rx_w_round_robin_3);
1464 val64 = 0x0102030000000000ULL;
1465 writeq(val64, &bar0->rx_w_round_robin_4);
1467 val64 = 0x8080402010080402ULL;
1468 writeq(val64, &bar0->rts_qos_steering);
1469 break;
1470 case 8:
1471 val64 = 0x0001020300040105ULL;
1472 writeq(val64, &bar0->rx_w_round_robin_0);
1473 val64 = 0x0200030106000204ULL;
1474 writeq(val64, &bar0->rx_w_round_robin_1);
1475 val64 = 0x0103000502010007ULL;
1476 writeq(val64, &bar0->rx_w_round_robin_2);
1477 val64 = 0x0304010002060500ULL;
1478 writeq(val64, &bar0->rx_w_round_robin_3);
1479 val64 = 0x0103020400000000ULL;
1480 writeq(val64, &bar0->rx_w_round_robin_4);
1482 val64 = 0x8040201008040201ULL;
1483 writeq(val64, &bar0->rts_qos_steering);
1484 break;
1487 /* UDP Fix */
1488 val64 = 0;
1489 for (i = 0; i < 8; i++)
1490 writeq(val64, &bar0->rts_frm_len_n[i]);
1492 /* Set the default rts frame length for the rings configured */
1493 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1494 for (i = 0 ; i < config->rx_ring_num ; i++)
1495 writeq(val64, &bar0->rts_frm_len_n[i]);
1497 /* Set the frame length for the configured rings
1498 * desired by the user
1500 for (i = 0; i < config->rx_ring_num; i++) {
1501 /* If rts_frm_len[i] == 0 then it is assumed that user not
1502 * specified frame length steering.
1503 * If the user provides the frame length then program
1504 * the rts_frm_len register for those values or else
1505 * leave it as it is.
1507 if (rts_frm_len[i] != 0) {
1508 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1509 &bar0->rts_frm_len_n[i]);
1513 /* Disable differentiated services steering logic */
1514 for (i = 0; i < 64; i++) {
1515 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1516 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1517 dev->name);
1518 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1519 return -ENODEV;
1523 /* Program statistics memory */
1524 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1526 if (nic->device_type == XFRAME_II_DEVICE) {
1527 val64 = STAT_BC(0x320);
1528 writeq(val64, &bar0->stat_byte_cnt);
1532 * Initializing the sampling rate for the device to calculate the
1533 * bandwidth utilization.
1535 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1536 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1537 writeq(val64, &bar0->mac_link_util);
1541 * Initializing the Transmit and Receive Traffic Interrupt
1542 * Scheme.
1545 * TTI Initialization. Default Tx timer gets us about
1546 * 250 interrupts per sec. Continuous interrupts are enabled
1547 * by default.
1549 if (nic->device_type == XFRAME_II_DEVICE) {
1550 int count = (nic->config.bus_speed * 125)/2;
1551 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1552 } else {
1554 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1556 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1557 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1558 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1559 if (use_continuous_tx_intrs)
1560 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1561 writeq(val64, &bar0->tti_data1_mem);
1563 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1564 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1565 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1566 writeq(val64, &bar0->tti_data2_mem);
1568 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1569 writeq(val64, &bar0->tti_command_mem);
1572 * Once the operation completes, the Strobe bit of the command
1573 * register will be reset. We poll for this particular condition
1574 * We wait for a maximum of 500ms for the operation to complete,
1575 * if it's not complete by then we return error.
1577 time = 0;
1578 while (TRUE) {
1579 val64 = readq(&bar0->tti_command_mem);
1580 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1581 break;
1583 if (time > 10) {
1584 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1585 dev->name);
1586 return -ENODEV;
1588 msleep(50);
1589 time++;
1592 /* RTI Initialization */
1593 if (nic->device_type == XFRAME_II_DEVICE) {
1595 * Programmed to generate Apprx 500 Intrs per
1596 * second
1598 int count = (nic->config.bus_speed * 125)/4;
1599 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1600 } else
1601 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1602 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1603 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1604 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1606 writeq(val64, &bar0->rti_data1_mem);
1608 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1609 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1610 if (nic->config.intr_type == MSI_X)
1611 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1612 RTI_DATA2_MEM_RX_UFC_D(0x40));
1613 else
1614 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1615 RTI_DATA2_MEM_RX_UFC_D(0x80));
1616 writeq(val64, &bar0->rti_data2_mem);
1618 for (i = 0; i < config->rx_ring_num; i++) {
1619 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1620 | RTI_CMD_MEM_OFFSET(i);
1621 writeq(val64, &bar0->rti_command_mem);
1624 * Once the operation completes, the Strobe bit of the
1625 * command register will be reset. We poll for this
1626 * particular condition. We wait for a maximum of 500ms
1627 * for the operation to complete, if it's not complete
1628 * by then we return error.
1630 time = 0;
1631 while (TRUE) {
1632 val64 = readq(&bar0->rti_command_mem);
1633 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1634 break;
1636 if (time > 10) {
1637 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1638 dev->name);
1639 return -ENODEV;
1641 time++;
1642 msleep(50);
1647 * Initializing proper values as Pause threshold into all
1648 * the 8 Queues on Rx side.
1650 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1651 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1653 /* Disable RMAC PAD STRIPPING */
1654 add = &bar0->mac_cfg;
1655 val64 = readq(&bar0->mac_cfg);
1656 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1657 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658 writel((u32) (val64), add);
1659 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1660 writel((u32) (val64 >> 32), (add + 4));
1661 val64 = readq(&bar0->mac_cfg);
1663 /* Enable FCS stripping by adapter */
1664 add = &bar0->mac_cfg;
1665 val64 = readq(&bar0->mac_cfg);
1666 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1667 if (nic->device_type == XFRAME_II_DEVICE)
1668 writeq(val64, &bar0->mac_cfg);
1669 else {
1670 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1671 writel((u32) (val64), add);
1672 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1673 writel((u32) (val64 >> 32), (add + 4));
1677 * Set the time value to be inserted in the pause frame
1678 * generated by xena.
1680 val64 = readq(&bar0->rmac_pause_cfg);
1681 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1682 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1683 writeq(val64, &bar0->rmac_pause_cfg);
1686 * Set the Threshold Limit for Generating the pause frame
1687 * If the amount of data in any Queue exceeds ratio of
1688 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1689 * pause frame is generated
1691 val64 = 0;
1692 for (i = 0; i < 4; i++) {
1693 val64 |=
1694 (((u64) 0xFF00 | nic->mac_control.
1695 mc_pause_threshold_q0q3)
1696 << (i * 2 * 8));
1698 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1700 val64 = 0;
1701 for (i = 0; i < 4; i++) {
1702 val64 |=
1703 (((u64) 0xFF00 | nic->mac_control.
1704 mc_pause_threshold_q4q7)
1705 << (i * 2 * 8));
1707 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1710 * TxDMA will stop Read request if the number of read split has
1711 * exceeded the limit pointed by shared_splits
1713 val64 = readq(&bar0->pic_control);
1714 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1715 writeq(val64, &bar0->pic_control);
1717 if (nic->config.bus_speed == 266) {
1718 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1719 writeq(0x0, &bar0->read_retry_delay);
1720 writeq(0x0, &bar0->write_retry_delay);
1724 * Programming the Herc to split every write transaction
1725 * that does not start on an ADB to reduce disconnects.
1727 if (nic->device_type == XFRAME_II_DEVICE) {
1728 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1729 MISC_LINK_STABILITY_PRD(3);
1730 writeq(val64, &bar0->misc_control);
1731 val64 = readq(&bar0->pic_control2);
1732 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1733 writeq(val64, &bar0->pic_control2);
1735 if (strstr(nic->product_name, "CX4")) {
1736 val64 = TMAC_AVG_IPG(0x17);
1737 writeq(val64, &bar0->tmac_avg_ipg);
1740 return SUCCESS;
1742 #define LINK_UP_DOWN_INTERRUPT 1
1743 #define MAC_RMAC_ERR_TIMER 2
1745 static int s2io_link_fault_indication(struct s2io_nic *nic)
1747 if (nic->config.intr_type != INTA)
1748 return MAC_RMAC_ERR_TIMER;
1749 if (nic->device_type == XFRAME_II_DEVICE)
1750 return LINK_UP_DOWN_INTERRUPT;
1751 else
1752 return MAC_RMAC_ERR_TIMER;
1756 * do_s2io_write_bits - update alarm bits in alarm register
1757 * @value: alarm bits
1758 * @flag: interrupt status
1759 * @addr: address value
1760 * Description: update alarm bits in alarm register
1761 * Return Value:
1762 * NONE.
1764 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1766 u64 temp64;
1768 temp64 = readq(addr);
1770 if(flag == ENABLE_INTRS)
1771 temp64 &= ~((u64) value);
1772 else
1773 temp64 |= ((u64) value);
1774 writeq(temp64, addr);
1777 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1779 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1780 register u64 gen_int_mask = 0;
1782 if (mask & TX_DMA_INTR) {
1784 gen_int_mask |= TXDMA_INT_M;
1786 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1787 TXDMA_PCC_INT | TXDMA_TTI_INT |
1788 TXDMA_LSO_INT | TXDMA_TPA_INT |
1789 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1791 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1792 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1793 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1794 &bar0->pfc_err_mask);
1796 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1797 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1798 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1800 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1801 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1802 PCC_N_SERR | PCC_6_COF_OV_ERR |
1803 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1804 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1805 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1807 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1808 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1810 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1811 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1812 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1813 flag, &bar0->lso_err_mask);
1815 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1816 flag, &bar0->tpa_err_mask);
1818 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1822 if (mask & TX_MAC_INTR) {
1823 gen_int_mask |= TXMAC_INT_M;
1824 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1825 &bar0->mac_int_mask);
1826 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1827 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1828 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1829 flag, &bar0->mac_tmac_err_mask);
1832 if (mask & TX_XGXS_INTR) {
1833 gen_int_mask |= TXXGXS_INT_M;
1834 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1835 &bar0->xgxs_int_mask);
1836 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1837 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1838 flag, &bar0->xgxs_txgxs_err_mask);
1841 if (mask & RX_DMA_INTR) {
1842 gen_int_mask |= RXDMA_INT_M;
1843 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1844 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1845 flag, &bar0->rxdma_int_mask);
1846 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1847 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1848 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1849 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1850 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1851 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1852 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1853 &bar0->prc_pcix_err_mask);
1854 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1855 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1856 &bar0->rpa_err_mask);
1857 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1858 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1859 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1860 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1861 flag, &bar0->rda_err_mask);
1862 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1863 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1864 flag, &bar0->rti_err_mask);
1867 if (mask & RX_MAC_INTR) {
1868 gen_int_mask |= RXMAC_INT_M;
1869 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1870 &bar0->mac_int_mask);
1871 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1872 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1873 RMAC_DOUBLE_ECC_ERR |
1874 RMAC_LINK_STATE_CHANGE_INT,
1875 flag, &bar0->mac_rmac_err_mask);
1878 if (mask & RX_XGXS_INTR)
1880 gen_int_mask |= RXXGXS_INT_M;
1881 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1882 &bar0->xgxs_int_mask);
1883 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1884 &bar0->xgxs_rxgxs_err_mask);
1887 if (mask & MC_INTR) {
1888 gen_int_mask |= MC_INT_M;
1889 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1890 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1891 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1892 &bar0->mc_err_mask);
1894 nic->general_int_mask = gen_int_mask;
1896 /* Remove this line when alarm interrupts are enabled */
1897 nic->general_int_mask = 0;
1900 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1901 * @nic: device private variable,
1902 * @mask: A mask indicating which Intr block must be modified and,
1903 * @flag: A flag indicating whether to enable or disable the Intrs.
1904 * Description: This function will either disable or enable the interrupts
1905 * depending on the flag argument. The mask argument can be used to
1906 * enable/disable any Intr block.
1907 * Return Value: NONE.
1910 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1912 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1913 register u64 temp64 = 0, intr_mask = 0;
1915 intr_mask = nic->general_int_mask;
1917 /* Top level interrupt classification */
1918 /* PIC Interrupts */
1919 if (mask & TX_PIC_INTR) {
1920 /* Enable PIC Intrs in the general intr mask register */
1921 intr_mask |= TXPIC_INT_M;
1922 if (flag == ENABLE_INTRS) {
1924 * If Hercules adapter enable GPIO otherwise
1925 * disable all PCIX, Flash, MDIO, IIC and GPIO
1926 * interrupts for now.
1927 * TODO
1929 if (s2io_link_fault_indication(nic) ==
1930 LINK_UP_DOWN_INTERRUPT ) {
1931 do_s2io_write_bits(PIC_INT_GPIO, flag,
1932 &bar0->pic_int_mask);
1933 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1934 &bar0->gpio_int_mask);
1935 } else
1936 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1937 } else if (flag == DISABLE_INTRS) {
1939 * Disable PIC Intrs in the general
1940 * intr mask register
1942 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1946 /* Tx traffic interrupts */
1947 if (mask & TX_TRAFFIC_INTR) {
1948 intr_mask |= TXTRAFFIC_INT_M;
1949 if (flag == ENABLE_INTRS) {
1951 * Enable all the Tx side interrupts
1952 * writing 0 Enables all 64 TX interrupt levels
1954 writeq(0x0, &bar0->tx_traffic_mask);
1955 } else if (flag == DISABLE_INTRS) {
1957 * Disable Tx Traffic Intrs in the general intr mask
1958 * register.
1960 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1964 /* Rx traffic interrupts */
1965 if (mask & RX_TRAFFIC_INTR) {
1966 intr_mask |= RXTRAFFIC_INT_M;
1967 if (flag == ENABLE_INTRS) {
1968 /* writing 0 Enables all 8 RX interrupt levels */
1969 writeq(0x0, &bar0->rx_traffic_mask);
1970 } else if (flag == DISABLE_INTRS) {
1972 * Disable Rx Traffic Intrs in the general intr mask
1973 * register.
1975 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1979 temp64 = readq(&bar0->general_int_mask);
1980 if (flag == ENABLE_INTRS)
1981 temp64 &= ~((u64) intr_mask);
1982 else
1983 temp64 = DISABLE_ALL_INTRS;
1984 writeq(temp64, &bar0->general_int_mask);
1986 nic->general_int_mask = readq(&bar0->general_int_mask);
1990 * verify_pcc_quiescent- Checks for PCC quiescent state
1991 * Return: 1 If PCC is quiescence
1992 * 0 If PCC is not quiescence
1994 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1996 int ret = 0, herc;
1997 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1998 u64 val64 = readq(&bar0->adapter_status);
2000 herc = (sp->device_type == XFRAME_II_DEVICE);
2002 if (flag == FALSE) {
2003 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2004 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2005 ret = 1;
2006 } else {
2007 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2008 ret = 1;
2010 } else {
2011 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2012 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2013 ADAPTER_STATUS_RMAC_PCC_IDLE))
2014 ret = 1;
2015 } else {
2016 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2017 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2018 ret = 1;
2022 return ret;
2025 * verify_xena_quiescence - Checks whether the H/W is ready
2026 * Description: Returns whether the H/W is ready to go or not. Depending
2027 * on whether adapter enable bit was written or not the comparison
2028 * differs and the calling function passes the input argument flag to
2029 * indicate this.
2030 * Return: 1 If xena is quiescence
2031 * 0 If Xena is not quiescence
2034 static int verify_xena_quiescence(struct s2io_nic *sp)
2036 int mode;
2037 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2038 u64 val64 = readq(&bar0->adapter_status);
2039 mode = s2io_verify_pci_mode(sp);
2041 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2042 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2043 return 0;
2045 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2046 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2047 return 0;
2049 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2050 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2051 return 0;
2053 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2054 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2055 return 0;
2057 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2058 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2059 return 0;
2061 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2062 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2063 return 0;
2065 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2066 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2067 return 0;
2069 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2070 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2071 return 0;
2075 * In PCI 33 mode, the P_PLL is not used, and therefore,
2076 * the the P_PLL_LOCK bit in the adapter_status register will
2077 * not be asserted.
2079 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2080 sp->device_type == XFRAME_II_DEVICE && mode !=
2081 PCI_MODE_PCI_33) {
2082 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2083 return 0;
2085 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2086 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2087 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2088 return 0;
2090 return 1;
2094 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2095 * @sp: Pointer to device specifc structure
2096 * Description :
2097 * New procedure to clear mac address reading problems on Alpha platforms
2101 static void fix_mac_address(struct s2io_nic * sp)
2103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2104 u64 val64;
2105 int i = 0;
2107 while (fix_mac[i] != END_SIGN) {
2108 writeq(fix_mac[i++], &bar0->gpio_control);
2109 udelay(10);
2110 val64 = readq(&bar0->gpio_control);
2115 * start_nic - Turns the device on
2116 * @nic : device private variable.
2117 * Description:
2118 * This function actually turns the device on. Before this function is
2119 * called,all Registers are configured from their reset states
2120 * and shared memory is allocated but the NIC is still quiescent. On
2121 * calling this function, the device interrupts are cleared and the NIC is
2122 * literally switched on by writing into the adapter control register.
2123 * Return Value:
2124 * SUCCESS on success and -1 on failure.
2127 static int start_nic(struct s2io_nic *nic)
2129 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2130 struct net_device *dev = nic->dev;
2131 register u64 val64 = 0;
2132 u16 subid, i;
2133 struct mac_info *mac_control;
2134 struct config_param *config;
2136 mac_control = &nic->mac_control;
2137 config = &nic->config;
2139 /* PRC Initialization and configuration */
2140 for (i = 0; i < config->rx_ring_num; i++) {
2141 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2142 &bar0->prc_rxd0_n[i]);
2144 val64 = readq(&bar0->prc_ctrl_n[i]);
2145 if (nic->rxd_mode == RXD_MODE_1)
2146 val64 |= PRC_CTRL_RC_ENABLED;
2147 else
2148 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2149 if (nic->device_type == XFRAME_II_DEVICE)
2150 val64 |= PRC_CTRL_GROUP_READS;
2151 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2152 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2153 writeq(val64, &bar0->prc_ctrl_n[i]);
2156 if (nic->rxd_mode == RXD_MODE_3B) {
2157 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2158 val64 = readq(&bar0->rx_pa_cfg);
2159 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2160 writeq(val64, &bar0->rx_pa_cfg);
2163 if (vlan_tag_strip == 0) {
2164 val64 = readq(&bar0->rx_pa_cfg);
2165 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2166 writeq(val64, &bar0->rx_pa_cfg);
2167 vlan_strip_flag = 0;
2171 * Enabling MC-RLDRAM. After enabling the device, we timeout
2172 * for around 100ms, which is approximately the time required
2173 * for the device to be ready for operation.
2175 val64 = readq(&bar0->mc_rldram_mrs);
2176 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2177 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2178 val64 = readq(&bar0->mc_rldram_mrs);
2180 msleep(100); /* Delay by around 100 ms. */
2182 /* Enabling ECC Protection. */
2183 val64 = readq(&bar0->adapter_control);
2184 val64 &= ~ADAPTER_ECC_EN;
2185 writeq(val64, &bar0->adapter_control);
2188 * Verify if the device is ready to be enabled, if so enable
2189 * it.
2191 val64 = readq(&bar0->adapter_status);
2192 if (!verify_xena_quiescence(nic)) {
2193 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2194 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2195 (unsigned long long) val64);
2196 return FAILURE;
2200 * With some switches, link might be already up at this point.
2201 * Because of this weird behavior, when we enable laser,
2202 * we may not get link. We need to handle this. We cannot
2203 * figure out which switch is misbehaving. So we are forced to
2204 * make a global change.
2207 /* Enabling Laser. */
2208 val64 = readq(&bar0->adapter_control);
2209 val64 |= ADAPTER_EOI_TX_ON;
2210 writeq(val64, &bar0->adapter_control);
2212 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2214 * Dont see link state interrupts initally on some switches,
2215 * so directly scheduling the link state task here.
2217 schedule_work(&nic->set_link_task);
2219 /* SXE-002: Initialize link and activity LED */
2220 subid = nic->pdev->subsystem_device;
2221 if (((subid & 0xFF) >= 0x07) &&
2222 (nic->device_type == XFRAME_I_DEVICE)) {
2223 val64 = readq(&bar0->gpio_control);
2224 val64 |= 0x0000800000000000ULL;
2225 writeq(val64, &bar0->gpio_control);
2226 val64 = 0x0411040400000000ULL;
2227 writeq(val64, (void __iomem *)bar0 + 0x2700);
2230 return SUCCESS;
2233 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2235 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2236 TxD *txdlp, int get_off)
2238 struct s2io_nic *nic = fifo_data->nic;
2239 struct sk_buff *skb;
2240 struct TxD *txds;
2241 u16 j, frg_cnt;
2243 txds = txdlp;
2244 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2245 pci_unmap_single(nic->pdev, (dma_addr_t)
2246 txds->Buffer_Pointer, sizeof(u64),
2247 PCI_DMA_TODEVICE);
2248 txds++;
2251 skb = (struct sk_buff *) ((unsigned long)
2252 txds->Host_Control);
2253 if (!skb) {
2254 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2255 return NULL;
2257 pci_unmap_single(nic->pdev, (dma_addr_t)
2258 txds->Buffer_Pointer,
2259 skb->len - skb->data_len,
2260 PCI_DMA_TODEVICE);
2261 frg_cnt = skb_shinfo(skb)->nr_frags;
2262 if (frg_cnt) {
2263 txds++;
2264 for (j = 0; j < frg_cnt; j++, txds++) {
2265 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2266 if (!txds->Buffer_Pointer)
2267 break;
2268 pci_unmap_page(nic->pdev, (dma_addr_t)
2269 txds->Buffer_Pointer,
2270 frag->size, PCI_DMA_TODEVICE);
2273 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2274 return(skb);
2278 * free_tx_buffers - Free all queued Tx buffers
2279 * @nic : device private variable.
2280 * Description:
2281 * Free all queued Tx buffers.
2282 * Return Value: void
2285 static void free_tx_buffers(struct s2io_nic *nic)
2287 struct net_device *dev = nic->dev;
2288 struct sk_buff *skb;
2289 struct TxD *txdp;
2290 int i, j;
2291 struct mac_info *mac_control;
2292 struct config_param *config;
2293 int cnt = 0;
2295 mac_control = &nic->mac_control;
2296 config = &nic->config;
2298 for (i = 0; i < config->tx_fifo_num; i++) {
2299 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2300 txdp = (struct TxD *) \
2301 mac_control->fifos[i].list_info[j].list_virt_addr;
2302 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2303 if (skb) {
2304 nic->mac_control.stats_info->sw_stat.mem_freed
2305 += skb->truesize;
2306 dev_kfree_skb(skb);
2307 cnt++;
2310 DBG_PRINT(INTR_DBG,
2311 "%s:forcibly freeing %d skbs on FIFO%d\n",
2312 dev->name, cnt, i);
2313 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2314 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2319 * stop_nic - To stop the nic
2320 * @nic ; device private variable.
2321 * Description:
2322 * This function does exactly the opposite of what the start_nic()
2323 * function does. This function is called to stop the device.
2324 * Return Value:
2325 * void.
2328 static void stop_nic(struct s2io_nic *nic)
2330 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2331 register u64 val64 = 0;
2332 u16 interruptible;
2333 struct mac_info *mac_control;
2334 struct config_param *config;
2336 mac_control = &nic->mac_control;
2337 config = &nic->config;
2339 /* Disable all interrupts */
2340 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2341 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2342 interruptible |= TX_PIC_INTR;
2343 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2345 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2346 val64 = readq(&bar0->adapter_control);
2347 val64 &= ~(ADAPTER_CNTL_EN);
2348 writeq(val64, &bar0->adapter_control);
2352 * fill_rx_buffers - Allocates the Rx side skbs
2353 * @nic: device private variable
2354 * @ring_no: ring number
2355 * Description:
2356 * The function allocates Rx side skbs and puts the physical
2357 * address of these buffers into the RxD buffer pointers, so that the NIC
2358 * can DMA the received frame into these locations.
2359 * The NIC supports 3 receive modes, viz
2360 * 1. single buffer,
2361 * 2. three buffer and
2362 * 3. Five buffer modes.
2363 * Each mode defines how many fragments the received frame will be split
2364 * up into by the NIC. The frame is split into L3 header, L4 Header,
2365 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2366 * is split into 3 fragments. As of now only single buffer mode is
2367 * supported.
2368 * Return Value:
2369 * SUCCESS on success or an appropriate -ve value on failure.
2372 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2374 struct net_device *dev = nic->dev;
2375 struct sk_buff *skb;
2376 struct RxD_t *rxdp;
2377 int off, off1, size, block_no, block_no1;
2378 u32 alloc_tab = 0;
2379 u32 alloc_cnt;
2380 struct mac_info *mac_control;
2381 struct config_param *config;
2382 u64 tmp;
2383 struct buffAdd *ba;
2384 unsigned long flags;
2385 struct RxD_t *first_rxdp = NULL;
2386 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2387 struct RxD1 *rxdp1;
2388 struct RxD3 *rxdp3;
2389 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2391 mac_control = &nic->mac_control;
2392 config = &nic->config;
2393 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2394 atomic_read(&nic->rx_bufs_left[ring_no]);
2396 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2397 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2398 while (alloc_tab < alloc_cnt) {
2399 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2400 block_index;
2401 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2403 rxdp = mac_control->rings[ring_no].
2404 rx_blocks[block_no].rxds[off].virt_addr;
2406 if ((block_no == block_no1) && (off == off1) &&
2407 (rxdp->Host_Control)) {
2408 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2409 dev->name);
2410 DBG_PRINT(INTR_DBG, " info equated\n");
2411 goto end;
2413 if (off && (off == rxd_count[nic->rxd_mode])) {
2414 mac_control->rings[ring_no].rx_curr_put_info.
2415 block_index++;
2416 if (mac_control->rings[ring_no].rx_curr_put_info.
2417 block_index == mac_control->rings[ring_no].
2418 block_count)
2419 mac_control->rings[ring_no].rx_curr_put_info.
2420 block_index = 0;
2421 block_no = mac_control->rings[ring_no].
2422 rx_curr_put_info.block_index;
2423 if (off == rxd_count[nic->rxd_mode])
2424 off = 0;
2425 mac_control->rings[ring_no].rx_curr_put_info.
2426 offset = off;
2427 rxdp = mac_control->rings[ring_no].
2428 rx_blocks[block_no].block_virt_addr;
2429 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2430 dev->name, rxdp);
2432 if(!napi) {
2433 spin_lock_irqsave(&nic->put_lock, flags);
2434 mac_control->rings[ring_no].put_pos =
2435 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2436 spin_unlock_irqrestore(&nic->put_lock, flags);
2437 } else {
2438 mac_control->rings[ring_no].put_pos =
2439 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2441 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2442 ((nic->rxd_mode == RXD_MODE_3B) &&
2443 (rxdp->Control_2 & s2BIT(0)))) {
2444 mac_control->rings[ring_no].rx_curr_put_info.
2445 offset = off;
2446 goto end;
2448 /* calculate size of skb based on ring mode */
2449 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2450 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2451 if (nic->rxd_mode == RXD_MODE_1)
2452 size += NET_IP_ALIGN;
2453 else
2454 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2456 /* allocate skb */
2457 skb = dev_alloc_skb(size);
2458 if(!skb) {
2459 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2460 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2461 if (first_rxdp) {
2462 wmb();
2463 first_rxdp->Control_1 |= RXD_OWN_XENA;
2465 nic->mac_control.stats_info->sw_stat. \
2466 mem_alloc_fail_cnt++;
2467 return -ENOMEM ;
2469 nic->mac_control.stats_info->sw_stat.mem_allocated
2470 += skb->truesize;
2471 if (nic->rxd_mode == RXD_MODE_1) {
2472 /* 1 buffer mode - normal operation mode */
2473 rxdp1 = (struct RxD1*)rxdp;
2474 memset(rxdp, 0, sizeof(struct RxD1));
2475 skb_reserve(skb, NET_IP_ALIGN);
2476 rxdp1->Buffer0_ptr = pci_map_single
2477 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2478 PCI_DMA_FROMDEVICE);
2479 if( (rxdp1->Buffer0_ptr == 0) ||
2480 (rxdp1->Buffer0_ptr ==
2481 DMA_ERROR_CODE))
2482 goto pci_map_failed;
2484 rxdp->Control_2 =
2485 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2487 } else if (nic->rxd_mode == RXD_MODE_3B) {
2489 * 2 buffer mode -
2490 * 2 buffer mode provides 128
2491 * byte aligned receive buffers.
2494 rxdp3 = (struct RxD3*)rxdp;
2495 /* save buffer pointers to avoid frequent dma mapping */
2496 Buffer0_ptr = rxdp3->Buffer0_ptr;
2497 Buffer1_ptr = rxdp3->Buffer1_ptr;
2498 memset(rxdp, 0, sizeof(struct RxD3));
2499 /* restore the buffer pointers for dma sync*/
2500 rxdp3->Buffer0_ptr = Buffer0_ptr;
2501 rxdp3->Buffer1_ptr = Buffer1_ptr;
2503 ba = &mac_control->rings[ring_no].ba[block_no][off];
2504 skb_reserve(skb, BUF0_LEN);
2505 tmp = (u64)(unsigned long) skb->data;
2506 tmp += ALIGN_SIZE;
2507 tmp &= ~ALIGN_SIZE;
2508 skb->data = (void *) (unsigned long)tmp;
2509 skb_reset_tail_pointer(skb);
2511 if (!(rxdp3->Buffer0_ptr))
2512 rxdp3->Buffer0_ptr =
2513 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2514 PCI_DMA_FROMDEVICE);
2515 else
2516 pci_dma_sync_single_for_device(nic->pdev,
2517 (dma_addr_t) rxdp3->Buffer0_ptr,
2518 BUF0_LEN, PCI_DMA_FROMDEVICE);
2519 if( (rxdp3->Buffer0_ptr == 0) ||
2520 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2521 goto pci_map_failed;
2523 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2524 if (nic->rxd_mode == RXD_MODE_3B) {
2525 /* Two buffer mode */
2528 * Buffer2 will have L3/L4 header plus
2529 * L4 payload
2531 rxdp3->Buffer2_ptr = pci_map_single
2532 (nic->pdev, skb->data, dev->mtu + 4,
2533 PCI_DMA_FROMDEVICE);
2535 if( (rxdp3->Buffer2_ptr == 0) ||
2536 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2537 goto pci_map_failed;
2539 rxdp3->Buffer1_ptr =
2540 pci_map_single(nic->pdev,
2541 ba->ba_1, BUF1_LEN,
2542 PCI_DMA_FROMDEVICE);
2543 if( (rxdp3->Buffer1_ptr == 0) ||
2544 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2545 pci_unmap_single
2546 (nic->pdev,
2547 (dma_addr_t)rxdp3->Buffer2_ptr,
2548 dev->mtu + 4,
2549 PCI_DMA_FROMDEVICE);
2550 goto pci_map_failed;
2552 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2553 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2554 (dev->mtu + 4);
2556 rxdp->Control_2 |= s2BIT(0);
2558 rxdp->Host_Control = (unsigned long) (skb);
2559 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2560 rxdp->Control_1 |= RXD_OWN_XENA;
2561 off++;
2562 if (off == (rxd_count[nic->rxd_mode] + 1))
2563 off = 0;
2564 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2566 rxdp->Control_2 |= SET_RXD_MARKER;
2567 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2568 if (first_rxdp) {
2569 wmb();
2570 first_rxdp->Control_1 |= RXD_OWN_XENA;
2572 first_rxdp = rxdp;
2574 atomic_inc(&nic->rx_bufs_left[ring_no]);
2575 alloc_tab++;
2578 end:
2579 /* Transfer ownership of first descriptor to adapter just before
2580 * exiting. Before that, use memory barrier so that ownership
2581 * and other fields are seen by adapter correctly.
2583 if (first_rxdp) {
2584 wmb();
2585 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 return SUCCESS;
2589 pci_map_failed:
2590 stats->pci_map_fail_cnt++;
2591 stats->mem_freed += skb->truesize;
2592 dev_kfree_skb_irq(skb);
2593 return -ENOMEM;
2596 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2598 struct net_device *dev = sp->dev;
2599 int j;
2600 struct sk_buff *skb;
2601 struct RxD_t *rxdp;
2602 struct mac_info *mac_control;
2603 struct buffAdd *ba;
2604 struct RxD1 *rxdp1;
2605 struct RxD3 *rxdp3;
2607 mac_control = &sp->mac_control;
2608 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2609 rxdp = mac_control->rings[ring_no].
2610 rx_blocks[blk].rxds[j].virt_addr;
2611 skb = (struct sk_buff *)
2612 ((unsigned long) rxdp->Host_Control);
2613 if (!skb) {
2614 continue;
2616 if (sp->rxd_mode == RXD_MODE_1) {
2617 rxdp1 = (struct RxD1*)rxdp;
2618 pci_unmap_single(sp->pdev, (dma_addr_t)
2619 rxdp1->Buffer0_ptr,
2620 dev->mtu +
2621 HEADER_ETHERNET_II_802_3_SIZE
2622 + HEADER_802_2_SIZE +
2623 HEADER_SNAP_SIZE,
2624 PCI_DMA_FROMDEVICE);
2625 memset(rxdp, 0, sizeof(struct RxD1));
2626 } else if(sp->rxd_mode == RXD_MODE_3B) {
2627 rxdp3 = (struct RxD3*)rxdp;
2628 ba = &mac_control->rings[ring_no].
2629 ba[blk][j];
2630 pci_unmap_single(sp->pdev, (dma_addr_t)
2631 rxdp3->Buffer0_ptr,
2632 BUF0_LEN,
2633 PCI_DMA_FROMDEVICE);
2634 pci_unmap_single(sp->pdev, (dma_addr_t)
2635 rxdp3->Buffer1_ptr,
2636 BUF1_LEN,
2637 PCI_DMA_FROMDEVICE);
2638 pci_unmap_single(sp->pdev, (dma_addr_t)
2639 rxdp3->Buffer2_ptr,
2640 dev->mtu + 4,
2641 PCI_DMA_FROMDEVICE);
2642 memset(rxdp, 0, sizeof(struct RxD3));
2644 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2645 dev_kfree_skb(skb);
2646 atomic_dec(&sp->rx_bufs_left[ring_no]);
2651 * free_rx_buffers - Frees all Rx buffers
2652 * @sp: device private variable.
2653 * Description:
2654 * This function will free all Rx buffers allocated by host.
2655 * Return Value:
2656 * NONE.
2659 static void free_rx_buffers(struct s2io_nic *sp)
2661 struct net_device *dev = sp->dev;
2662 int i, blk = 0, buf_cnt = 0;
2663 struct mac_info *mac_control;
2664 struct config_param *config;
2666 mac_control = &sp->mac_control;
2667 config = &sp->config;
2669 for (i = 0; i < config->rx_ring_num; i++) {
2670 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2671 free_rxd_blk(sp,i,blk);
2673 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2674 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2675 mac_control->rings[i].rx_curr_put_info.offset = 0;
2676 mac_control->rings[i].rx_curr_get_info.offset = 0;
2677 atomic_set(&sp->rx_bufs_left[i], 0);
2678 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2679 dev->name, buf_cnt, i);
2684 * s2io_poll - Rx interrupt handler for NAPI support
2685 * @napi : pointer to the napi structure.
2686 * @budget : The number of packets that were budgeted to be processed
2687 * during one pass through the 'Poll" function.
2688 * Description:
2689 * Comes into picture only if NAPI support has been incorporated. It does
2690 * the same thing that rx_intr_handler does, but not in a interrupt context
2691 * also It will process only a given number of packets.
2692 * Return value:
2693 * 0 on success and 1 if there are No Rx packets to be processed.
2696 static int s2io_poll(struct napi_struct *napi, int budget)
2698 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2699 struct net_device *dev = nic->dev;
2700 int pkt_cnt = 0, org_pkts_to_process;
2701 struct mac_info *mac_control;
2702 struct config_param *config;
2703 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2704 int i;
2706 mac_control = &nic->mac_control;
2707 config = &nic->config;
2709 nic->pkts_to_process = budget;
2710 org_pkts_to_process = nic->pkts_to_process;
2712 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2713 readl(&bar0->rx_traffic_int);
2715 for (i = 0; i < config->rx_ring_num; i++) {
2716 rx_intr_handler(&mac_control->rings[i]);
2717 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2718 if (!nic->pkts_to_process) {
2719 /* Quota for the current iteration has been met */
2720 goto no_rx;
2724 netif_rx_complete(dev, napi);
2726 for (i = 0; i < config->rx_ring_num; i++) {
2727 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2728 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2729 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2730 break;
2733 /* Re enable the Rx interrupts. */
2734 writeq(0x0, &bar0->rx_traffic_mask);
2735 readl(&bar0->rx_traffic_mask);
2736 return pkt_cnt;
2738 no_rx:
2739 for (i = 0; i < config->rx_ring_num; i++) {
2740 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2741 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2742 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2743 break;
2746 return pkt_cnt;
2749 #ifdef CONFIG_NET_POLL_CONTROLLER
2751 * s2io_netpoll - netpoll event handler entry point
2752 * @dev : pointer to the device structure.
2753 * Description:
2754 * This function will be called by upper layer to check for events on the
2755 * interface in situations where interrupts are disabled. It is used for
2756 * specific in-kernel networking tasks, such as remote consoles and kernel
2757 * debugging over the network (example netdump in RedHat).
2759 static void s2io_netpoll(struct net_device *dev)
2761 struct s2io_nic *nic = dev->priv;
2762 struct mac_info *mac_control;
2763 struct config_param *config;
2764 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2765 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2766 int i;
2768 if (pci_channel_offline(nic->pdev))
2769 return;
2771 disable_irq(dev->irq);
2773 mac_control = &nic->mac_control;
2774 config = &nic->config;
2776 writeq(val64, &bar0->rx_traffic_int);
2777 writeq(val64, &bar0->tx_traffic_int);
2779 /* we need to free up the transmitted skbufs or else netpoll will
2780 * run out of skbs and will fail and eventually netpoll application such
2781 * as netdump will fail.
2783 for (i = 0; i < config->tx_fifo_num; i++)
2784 tx_intr_handler(&mac_control->fifos[i]);
2786 /* check for received packet and indicate up to network */
2787 for (i = 0; i < config->rx_ring_num; i++)
2788 rx_intr_handler(&mac_control->rings[i]);
2790 for (i = 0; i < config->rx_ring_num; i++) {
2791 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2792 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2793 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2794 break;
2797 enable_irq(dev->irq);
2798 return;
2800 #endif
2803 * rx_intr_handler - Rx interrupt handler
2804 * @nic: device private variable.
2805 * Description:
2806 * If the interrupt is because of a received frame or if the
2807 * receive ring contains fresh as yet un-processed frames,this function is
2808 * called. It picks out the RxD at which place the last Rx processing had
2809 * stopped and sends the skb to the OSM's Rx handler and then increments
2810 * the offset.
2811 * Return Value:
2812 * NONE.
2814 static void rx_intr_handler(struct ring_info *ring_data)
2816 struct s2io_nic *nic = ring_data->nic;
2817 struct net_device *dev = (struct net_device *) nic->dev;
2818 int get_block, put_block, put_offset;
2819 struct rx_curr_get_info get_info, put_info;
2820 struct RxD_t *rxdp;
2821 struct sk_buff *skb;
2822 int pkt_cnt = 0;
2823 int i;
2824 struct RxD1* rxdp1;
2825 struct RxD3* rxdp3;
2827 spin_lock(&nic->rx_lock);
2829 get_info = ring_data->rx_curr_get_info;
2830 get_block = get_info.block_index;
2831 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2832 put_block = put_info.block_index;
2833 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2834 if (!napi) {
2835 spin_lock(&nic->put_lock);
2836 put_offset = ring_data->put_pos;
2837 spin_unlock(&nic->put_lock);
2838 } else
2839 put_offset = ring_data->put_pos;
2841 while (RXD_IS_UP2DT(rxdp)) {
2843 * If your are next to put index then it's
2844 * FIFO full condition
2846 if ((get_block == put_block) &&
2847 (get_info.offset + 1) == put_info.offset) {
2848 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2849 break;
2851 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2852 if (skb == NULL) {
2853 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2854 dev->name);
2855 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2856 spin_unlock(&nic->rx_lock);
2857 return;
2859 if (nic->rxd_mode == RXD_MODE_1) {
2860 rxdp1 = (struct RxD1*)rxdp;
2861 pci_unmap_single(nic->pdev, (dma_addr_t)
2862 rxdp1->Buffer0_ptr,
2863 dev->mtu +
2864 HEADER_ETHERNET_II_802_3_SIZE +
2865 HEADER_802_2_SIZE +
2866 HEADER_SNAP_SIZE,
2867 PCI_DMA_FROMDEVICE);
2868 } else if (nic->rxd_mode == RXD_MODE_3B) {
2869 rxdp3 = (struct RxD3*)rxdp;
2870 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2871 rxdp3->Buffer0_ptr,
2872 BUF0_LEN, PCI_DMA_FROMDEVICE);
2873 pci_unmap_single(nic->pdev, (dma_addr_t)
2874 rxdp3->Buffer2_ptr,
2875 dev->mtu + 4,
2876 PCI_DMA_FROMDEVICE);
2878 prefetch(skb->data);
2879 rx_osm_handler(ring_data, rxdp);
2880 get_info.offset++;
2881 ring_data->rx_curr_get_info.offset = get_info.offset;
2882 rxdp = ring_data->rx_blocks[get_block].
2883 rxds[get_info.offset].virt_addr;
2884 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2885 get_info.offset = 0;
2886 ring_data->rx_curr_get_info.offset = get_info.offset;
2887 get_block++;
2888 if (get_block == ring_data->block_count)
2889 get_block = 0;
2890 ring_data->rx_curr_get_info.block_index = get_block;
2891 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2894 nic->pkts_to_process -= 1;
2895 if ((napi) && (!nic->pkts_to_process))
2896 break;
2897 pkt_cnt++;
2898 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2899 break;
2901 if (nic->lro) {
2902 /* Clear all LRO sessions before exiting */
2903 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2904 struct lro *lro = &nic->lro0_n[i];
2905 if (lro->in_use) {
2906 update_L3L4_header(nic, lro);
2907 queue_rx_frame(lro->parent);
2908 clear_lro_session(lro);
2913 spin_unlock(&nic->rx_lock);
2917 * tx_intr_handler - Transmit interrupt handler
2918 * @nic : device private variable
2919 * Description:
2920 * If an interrupt was raised to indicate DMA complete of the
2921 * Tx packet, this function is called. It identifies the last TxD
2922 * whose buffer was freed and frees all skbs whose data have already
2923 * DMA'ed into the NICs internal memory.
2924 * Return Value:
2925 * NONE
2928 static void tx_intr_handler(struct fifo_info *fifo_data)
2930 struct s2io_nic *nic = fifo_data->nic;
2931 struct net_device *dev = (struct net_device *) nic->dev;
2932 struct tx_curr_get_info get_info, put_info;
2933 struct sk_buff *skb;
2934 struct TxD *txdlp;
2935 u8 err_mask;
2937 get_info = fifo_data->tx_curr_get_info;
2938 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2939 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2940 list_virt_addr;
2941 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2942 (get_info.offset != put_info.offset) &&
2943 (txdlp->Host_Control)) {
2944 /* Check for TxD errors */
2945 if (txdlp->Control_1 & TXD_T_CODE) {
2946 unsigned long long err;
2947 err = txdlp->Control_1 & TXD_T_CODE;
2948 if (err & 0x1) {
2949 nic->mac_control.stats_info->sw_stat.
2950 parity_err_cnt++;
2953 /* update t_code statistics */
2954 err_mask = err >> 48;
2955 switch(err_mask) {
2956 case 2:
2957 nic->mac_control.stats_info->sw_stat.
2958 tx_buf_abort_cnt++;
2959 break;
2961 case 3:
2962 nic->mac_control.stats_info->sw_stat.
2963 tx_desc_abort_cnt++;
2964 break;
2966 case 7:
2967 nic->mac_control.stats_info->sw_stat.
2968 tx_parity_err_cnt++;
2969 break;
2971 case 10:
2972 nic->mac_control.stats_info->sw_stat.
2973 tx_link_loss_cnt++;
2974 break;
2976 case 15:
2977 nic->mac_control.stats_info->sw_stat.
2978 tx_list_proc_err_cnt++;
2979 break;
2983 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2984 if (skb == NULL) {
2985 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2986 __FUNCTION__);
2987 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2988 return;
2991 /* Updating the statistics block */
2992 nic->stats.tx_bytes += skb->len;
2993 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2994 dev_kfree_skb_irq(skb);
2996 get_info.offset++;
2997 if (get_info.offset == get_info.fifo_len + 1)
2998 get_info.offset = 0;
2999 txdlp = (struct TxD *) fifo_data->list_info
3000 [get_info.offset].list_virt_addr;
3001 fifo_data->tx_curr_get_info.offset =
3002 get_info.offset;
3005 spin_lock(&nic->tx_lock);
3006 if (netif_queue_stopped(dev))
3007 netif_wake_queue(dev);
3008 spin_unlock(&nic->tx_lock);
3012 * s2io_mdio_write - Function to write in to MDIO registers
3013 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3014 * @addr : address value
3015 * @value : data value
3016 * @dev : pointer to net_device structure
3017 * Description:
3018 * This function is used to write values to the MDIO registers
3019 * NONE
3021 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3023 u64 val64 = 0x0;
3024 struct s2io_nic *sp = dev->priv;
3025 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3027 //address transaction
3028 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3029 | MDIO_MMD_DEV_ADDR(mmd_type)
3030 | MDIO_MMS_PRT_ADDR(0x0);
3031 writeq(val64, &bar0->mdio_control);
3032 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3033 writeq(val64, &bar0->mdio_control);
3034 udelay(100);
3036 //Data transaction
3037 val64 = 0x0;
3038 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3039 | MDIO_MMD_DEV_ADDR(mmd_type)
3040 | MDIO_MMS_PRT_ADDR(0x0)
3041 | MDIO_MDIO_DATA(value)
3042 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3043 writeq(val64, &bar0->mdio_control);
3044 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3045 writeq(val64, &bar0->mdio_control);
3046 udelay(100);
3048 val64 = 0x0;
3049 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3050 | MDIO_MMD_DEV_ADDR(mmd_type)
3051 | MDIO_MMS_PRT_ADDR(0x0)
3052 | MDIO_OP(MDIO_OP_READ_TRANS);
3053 writeq(val64, &bar0->mdio_control);
3054 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3055 writeq(val64, &bar0->mdio_control);
3056 udelay(100);
3061 * s2io_mdio_read - Function to write in to MDIO registers
3062 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3063 * @addr : address value
3064 * @dev : pointer to net_device structure
3065 * Description:
3066 * This function is used to read values to the MDIO registers
3067 * NONE
3069 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3071 u64 val64 = 0x0;
3072 u64 rval64 = 0x0;
3073 struct s2io_nic *sp = dev->priv;
3074 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3076 /* address transaction */
3077 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078 | MDIO_MMD_DEV_ADDR(mmd_type)
3079 | MDIO_MMS_PRT_ADDR(0x0);
3080 writeq(val64, &bar0->mdio_control);
3081 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3082 writeq(val64, &bar0->mdio_control);
3083 udelay(100);
3085 /* Data transaction */
3086 val64 = 0x0;
3087 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3088 | MDIO_MMD_DEV_ADDR(mmd_type)
3089 | MDIO_MMS_PRT_ADDR(0x0)
3090 | MDIO_OP(MDIO_OP_READ_TRANS);
3091 writeq(val64, &bar0->mdio_control);
3092 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3093 writeq(val64, &bar0->mdio_control);
3094 udelay(100);
3096 /* Read the value from regs */
3097 rval64 = readq(&bar0->mdio_control);
3098 rval64 = rval64 & 0xFFFF0000;
3099 rval64 = rval64 >> 16;
3100 return rval64;
3103 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3104 * @counter : couter value to be updated
3105 * @flag : flag to indicate the status
3106 * @type : counter type
3107 * Description:
3108 * This function is to check the status of the xpak counters value
3109 * NONE
3112 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3114 u64 mask = 0x3;
3115 u64 val64;
3116 int i;
3117 for(i = 0; i <index; i++)
3118 mask = mask << 0x2;
3120 if(flag > 0)
3122 *counter = *counter + 1;
3123 val64 = *regs_stat & mask;
3124 val64 = val64 >> (index * 0x2);
3125 val64 = val64 + 1;
3126 if(val64 == 3)
3128 switch(type)
3130 case 1:
3131 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3132 "service. Excessive temperatures may "
3133 "result in premature transceiver "
3134 "failure \n");
3135 break;
3136 case 2:
3137 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3138 "service Excessive bias currents may "
3139 "indicate imminent laser diode "
3140 "failure \n");
3141 break;
3142 case 3:
3143 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3144 "service Excessive laser output "
3145 "power may saturate far-end "
3146 "receiver\n");
3147 break;
3148 default:
3149 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3150 "type \n");
3152 val64 = 0x0;
3154 val64 = val64 << (index * 0x2);
3155 *regs_stat = (*regs_stat & (~mask)) | (val64);
3157 } else {
3158 *regs_stat = *regs_stat & (~mask);
3163 * s2io_updt_xpak_counter - Function to update the xpak counters
3164 * @dev : pointer to net_device struct
3165 * Description:
3166 * This function is to upate the status of the xpak counters value
3167 * NONE
3169 static void s2io_updt_xpak_counter(struct net_device *dev)
3171 u16 flag = 0x0;
3172 u16 type = 0x0;
3173 u16 val16 = 0x0;
3174 u64 val64 = 0x0;
3175 u64 addr = 0x0;
3177 struct s2io_nic *sp = dev->priv;
3178 struct stat_block *stat_info = sp->mac_control.stats_info;
3180 /* Check the communication with the MDIO slave */
3181 addr = 0x0000;
3182 val64 = 0x0;
3183 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3184 if((val64 == 0xFFFF) || (val64 == 0x0000))
3186 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3187 "Returned %llx\n", (unsigned long long)val64);
3188 return;
3191 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3192 if(val64 != 0x2040)
3194 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3195 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3196 (unsigned long long)val64);
3197 return;
3200 /* Loading the DOM register to MDIO register */
3201 addr = 0xA100;
3202 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3203 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3205 /* Reading the Alarm flags */
3206 addr = 0xA070;
3207 val64 = 0x0;
3208 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3210 flag = CHECKBIT(val64, 0x7);
3211 type = 1;
3212 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3213 &stat_info->xpak_stat.xpak_regs_stat,
3214 0x0, flag, type);
3216 if(CHECKBIT(val64, 0x6))
3217 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3219 flag = CHECKBIT(val64, 0x3);
3220 type = 2;
3221 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3222 &stat_info->xpak_stat.xpak_regs_stat,
3223 0x2, flag, type);
3225 if(CHECKBIT(val64, 0x2))
3226 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3228 flag = CHECKBIT(val64, 0x1);
3229 type = 3;
3230 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3231 &stat_info->xpak_stat.xpak_regs_stat,
3232 0x4, flag, type);
3234 if(CHECKBIT(val64, 0x0))
3235 stat_info->xpak_stat.alarm_laser_output_power_low++;
3237 /* Reading the Warning flags */
3238 addr = 0xA074;
3239 val64 = 0x0;
3240 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3242 if(CHECKBIT(val64, 0x7))
3243 stat_info->xpak_stat.warn_transceiver_temp_high++;
3245 if(CHECKBIT(val64, 0x6))
3246 stat_info->xpak_stat.warn_transceiver_temp_low++;
3248 if(CHECKBIT(val64, 0x3))
3249 stat_info->xpak_stat.warn_laser_bias_current_high++;
3251 if(CHECKBIT(val64, 0x2))
3252 stat_info->xpak_stat.warn_laser_bias_current_low++;
3254 if(CHECKBIT(val64, 0x1))
3255 stat_info->xpak_stat.warn_laser_output_power_high++;
3257 if(CHECKBIT(val64, 0x0))
3258 stat_info->xpak_stat.warn_laser_output_power_low++;
3262 * wait_for_cmd_complete - waits for a command to complete.
3263 * @sp : private member of the device structure, which is a pointer to the
3264 * s2io_nic structure.
3265 * Description: Function that waits for a command to Write into RMAC
3266 * ADDR DATA registers to be completed and returns either success or
3267 * error depending on whether the command was complete or not.
3268 * Return value:
3269 * SUCCESS on success and FAILURE on failure.
3272 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3273 int bit_state)
3275 int ret = FAILURE, cnt = 0, delay = 1;
3276 u64 val64;
3278 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3279 return FAILURE;
3281 do {
3282 val64 = readq(addr);
3283 if (bit_state == S2IO_BIT_RESET) {
3284 if (!(val64 & busy_bit)) {
3285 ret = SUCCESS;
3286 break;
3288 } else {
3289 if (!(val64 & busy_bit)) {
3290 ret = SUCCESS;
3291 break;
3295 if(in_interrupt())
3296 mdelay(delay);
3297 else
3298 msleep(delay);
3300 if (++cnt >= 10)
3301 delay = 50;
3302 } while (cnt < 20);
3303 return ret;
3306 * check_pci_device_id - Checks if the device id is supported
3307 * @id : device id
3308 * Description: Function to check if the pci device id is supported by driver.
3309 * Return value: Actual device id if supported else PCI_ANY_ID
3311 static u16 check_pci_device_id(u16 id)
3313 switch (id) {
3314 case PCI_DEVICE_ID_HERC_WIN:
3315 case PCI_DEVICE_ID_HERC_UNI:
3316 return XFRAME_II_DEVICE;
3317 case PCI_DEVICE_ID_S2IO_UNI:
3318 case PCI_DEVICE_ID_S2IO_WIN:
3319 return XFRAME_I_DEVICE;
3320 default:
3321 return PCI_ANY_ID;
3326 * s2io_reset - Resets the card.
3327 * @sp : private member of the device structure.
3328 * Description: Function to Reset the card. This function then also
3329 * restores the previously saved PCI configuration space registers as
3330 * the card reset also resets the configuration space.
3331 * Return value:
3332 * void.
3335 static void s2io_reset(struct s2io_nic * sp)
3337 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3338 u64 val64;
3339 u16 subid, pci_cmd;
3340 int i;
3341 u16 val16;
3342 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3343 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3345 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3346 __FUNCTION__, sp->dev->name);
3348 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3349 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3351 val64 = SW_RESET_ALL;
3352 writeq(val64, &bar0->sw_reset);
3353 if (strstr(sp->product_name, "CX4")) {
3354 msleep(750);
3356 msleep(250);
3357 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3359 /* Restore the PCI state saved during initialization. */
3360 pci_restore_state(sp->pdev);
3361 pci_read_config_word(sp->pdev, 0x2, &val16);
3362 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3363 break;
3364 msleep(200);
3367 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3368 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3371 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3373 s2io_init_pci(sp);
3375 /* Set swapper to enable I/O register access */
3376 s2io_set_swapper(sp);
3378 /* restore mac_addr entries */
3379 do_s2io_restore_unicast_mc(sp);
3381 /* Restore the MSIX table entries from local variables */
3382 restore_xmsi_data(sp);
3384 /* Clear certain PCI/PCI-X fields after reset */
3385 if (sp->device_type == XFRAME_II_DEVICE) {
3386 /* Clear "detected parity error" bit */
3387 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3389 /* Clearing PCIX Ecc status register */
3390 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3392 /* Clearing PCI_STATUS error reflected here */
3393 writeq(s2BIT(62), &bar0->txpic_int_reg);
3396 /* Reset device statistics maintained by OS */
3397 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3399 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3400 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3401 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3402 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3403 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3404 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3405 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3406 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3407 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3408 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3409 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3410 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3411 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3412 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3413 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3414 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3415 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3416 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3417 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3419 /* SXE-002: Configure link and activity LED to turn it off */
3420 subid = sp->pdev->subsystem_device;
3421 if (((subid & 0xFF) >= 0x07) &&
3422 (sp->device_type == XFRAME_I_DEVICE)) {
3423 val64 = readq(&bar0->gpio_control);
3424 val64 |= 0x0000800000000000ULL;
3425 writeq(val64, &bar0->gpio_control);
3426 val64 = 0x0411040400000000ULL;
3427 writeq(val64, (void __iomem *)bar0 + 0x2700);
3431 * Clear spurious ECC interrupts that would have occured on
3432 * XFRAME II cards after reset.
3434 if (sp->device_type == XFRAME_II_DEVICE) {
3435 val64 = readq(&bar0->pcc_err_reg);
3436 writeq(val64, &bar0->pcc_err_reg);
3439 sp->device_enabled_once = FALSE;
3443 * s2io_set_swapper - to set the swapper controle on the card
3444 * @sp : private member of the device structure,
3445 * pointer to the s2io_nic structure.
3446 * Description: Function to set the swapper control on the card
3447 * correctly depending on the 'endianness' of the system.
3448 * Return value:
3449 * SUCCESS on success and FAILURE on failure.
3452 static int s2io_set_swapper(struct s2io_nic * sp)
3454 struct net_device *dev = sp->dev;
3455 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3456 u64 val64, valt, valr;
3459 * Set proper endian settings and verify the same by reading
3460 * the PIF Feed-back register.
3463 val64 = readq(&bar0->pif_rd_swapper_fb);
3464 if (val64 != 0x0123456789ABCDEFULL) {
3465 int i = 0;
3466 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3467 0x8100008181000081ULL, /* FE=1, SE=0 */
3468 0x4200004242000042ULL, /* FE=0, SE=1 */
3469 0}; /* FE=0, SE=0 */
3471 while(i<4) {
3472 writeq(value[i], &bar0->swapper_ctrl);
3473 val64 = readq(&bar0->pif_rd_swapper_fb);
3474 if (val64 == 0x0123456789ABCDEFULL)
3475 break;
3476 i++;
3478 if (i == 4) {
3479 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3480 dev->name);
3481 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3482 (unsigned long long) val64);
3483 return FAILURE;
3485 valr = value[i];
3486 } else {
3487 valr = readq(&bar0->swapper_ctrl);
3490 valt = 0x0123456789ABCDEFULL;
3491 writeq(valt, &bar0->xmsi_address);
3492 val64 = readq(&bar0->xmsi_address);
3494 if(val64 != valt) {
3495 int i = 0;
3496 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3497 0x0081810000818100ULL, /* FE=1, SE=0 */
3498 0x0042420000424200ULL, /* FE=0, SE=1 */
3499 0}; /* FE=0, SE=0 */
3501 while(i<4) {
3502 writeq((value[i] | valr), &bar0->swapper_ctrl);
3503 writeq(valt, &bar0->xmsi_address);
3504 val64 = readq(&bar0->xmsi_address);
3505 if(val64 == valt)
3506 break;
3507 i++;
3509 if(i == 4) {
3510 unsigned long long x = val64;
3511 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3512 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3513 return FAILURE;
3516 val64 = readq(&bar0->swapper_ctrl);
3517 val64 &= 0xFFFF000000000000ULL;
3519 #ifdef __BIG_ENDIAN
3521 * The device by default set to a big endian format, so a
3522 * big endian driver need not set anything.
3524 val64 |= (SWAPPER_CTRL_TXP_FE |
3525 SWAPPER_CTRL_TXP_SE |
3526 SWAPPER_CTRL_TXD_R_FE |
3527 SWAPPER_CTRL_TXD_W_FE |
3528 SWAPPER_CTRL_TXF_R_FE |
3529 SWAPPER_CTRL_RXD_R_FE |
3530 SWAPPER_CTRL_RXD_W_FE |
3531 SWAPPER_CTRL_RXF_W_FE |
3532 SWAPPER_CTRL_XMSI_FE |
3533 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3534 if (sp->config.intr_type == INTA)
3535 val64 |= SWAPPER_CTRL_XMSI_SE;
3536 writeq(val64, &bar0->swapper_ctrl);
3537 #else
3539 * Initially we enable all bits to make it accessible by the
3540 * driver, then we selectively enable only those bits that
3541 * we want to set.
3543 val64 |= (SWAPPER_CTRL_TXP_FE |
3544 SWAPPER_CTRL_TXP_SE |
3545 SWAPPER_CTRL_TXD_R_FE |
3546 SWAPPER_CTRL_TXD_R_SE |
3547 SWAPPER_CTRL_TXD_W_FE |
3548 SWAPPER_CTRL_TXD_W_SE |
3549 SWAPPER_CTRL_TXF_R_FE |
3550 SWAPPER_CTRL_RXD_R_FE |
3551 SWAPPER_CTRL_RXD_R_SE |
3552 SWAPPER_CTRL_RXD_W_FE |
3553 SWAPPER_CTRL_RXD_W_SE |
3554 SWAPPER_CTRL_RXF_W_FE |
3555 SWAPPER_CTRL_XMSI_FE |
3556 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3557 if (sp->config.intr_type == INTA)
3558 val64 |= SWAPPER_CTRL_XMSI_SE;
3559 writeq(val64, &bar0->swapper_ctrl);
3560 #endif
3561 val64 = readq(&bar0->swapper_ctrl);
3564 * Verifying if endian settings are accurate by reading a
3565 * feedback register.
3567 val64 = readq(&bar0->pif_rd_swapper_fb);
3568 if (val64 != 0x0123456789ABCDEFULL) {
3569 /* Endian settings are incorrect, calls for another dekko. */
3570 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3571 dev->name);
3572 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3573 (unsigned long long) val64);
3574 return FAILURE;
3577 return SUCCESS;
3580 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3582 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3583 u64 val64;
3584 int ret = 0, cnt = 0;
3586 do {
3587 val64 = readq(&bar0->xmsi_access);
3588 if (!(val64 & s2BIT(15)))
3589 break;
3590 mdelay(1);
3591 cnt++;
3592 } while(cnt < 5);
3593 if (cnt == 5) {
3594 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3595 ret = 1;
3598 return ret;
3601 static void restore_xmsi_data(struct s2io_nic *nic)
3603 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3604 u64 val64;
3605 int i;
3607 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3608 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3609 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3610 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3611 writeq(val64, &bar0->xmsi_access);
3612 if (wait_for_msix_trans(nic, i)) {
3613 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3614 continue;
3619 static void store_xmsi_data(struct s2io_nic *nic)
3621 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3622 u64 val64, addr, data;
3623 int i;
3625 /* Store and display */
3626 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3627 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3628 writeq(val64, &bar0->xmsi_access);
3629 if (wait_for_msix_trans(nic, i)) {
3630 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3631 continue;
3633 addr = readq(&bar0->xmsi_address);
3634 data = readq(&bar0->xmsi_data);
3635 if (addr && data) {
3636 nic->msix_info[i].addr = addr;
3637 nic->msix_info[i].data = data;
3642 static int s2io_enable_msi_x(struct s2io_nic *nic)
3644 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3645 u64 tx_mat, rx_mat;
3646 u16 msi_control; /* Temp variable */
3647 int ret, i, j, msix_indx = 1;
3649 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3650 GFP_KERNEL);
3651 if (!nic->entries) {
3652 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3653 __FUNCTION__);
3654 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3655 return -ENOMEM;
3657 nic->mac_control.stats_info->sw_stat.mem_allocated
3658 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3660 nic->s2io_entries =
3661 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3662 GFP_KERNEL);
3663 if (!nic->s2io_entries) {
3664 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3665 __FUNCTION__);
3666 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3667 kfree(nic->entries);
3668 nic->mac_control.stats_info->sw_stat.mem_freed
3669 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3670 return -ENOMEM;
3672 nic->mac_control.stats_info->sw_stat.mem_allocated
3673 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3675 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3676 nic->entries[i].entry = i;
3677 nic->s2io_entries[i].entry = i;
3678 nic->s2io_entries[i].arg = NULL;
3679 nic->s2io_entries[i].in_use = 0;
3682 tx_mat = readq(&bar0->tx_mat0_n[0]);
3683 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3684 tx_mat |= TX_MAT_SET(i, msix_indx);
3685 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3686 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3687 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3689 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3691 rx_mat = readq(&bar0->rx_mat);
3692 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3693 rx_mat |= RX_MAT_SET(j, msix_indx);
3694 nic->s2io_entries[msix_indx].arg
3695 = &nic->mac_control.rings[j];
3696 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3697 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3699 writeq(rx_mat, &bar0->rx_mat);
3701 nic->avail_msix_vectors = 0;
3702 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3703 /* We fail init if error or we get less vectors than min required */
3704 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3705 nic->avail_msix_vectors = ret;
3706 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3708 if (ret) {
3709 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3710 kfree(nic->entries);
3711 nic->mac_control.stats_info->sw_stat.mem_freed
3712 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3713 kfree(nic->s2io_entries);
3714 nic->mac_control.stats_info->sw_stat.mem_freed
3715 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3716 nic->entries = NULL;
3717 nic->s2io_entries = NULL;
3718 nic->avail_msix_vectors = 0;
3719 return -ENOMEM;
3721 if (!nic->avail_msix_vectors)
3722 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3725 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3726 * in the herc NIC. (Temp change, needs to be removed later)
3728 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3729 msi_control |= 0x1; /* Enable MSI */
3730 pci_write_config_word(nic->pdev, 0x42, msi_control);
3732 return 0;
3735 /* Handle software interrupt used during MSI(X) test */
3736 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3738 struct s2io_nic *sp = dev_id;
3740 sp->msi_detected = 1;
3741 wake_up(&sp->msi_wait);
3743 return IRQ_HANDLED;
3746 /* Test interrupt path by forcing a a software IRQ */
3747 static int s2io_test_msi(struct s2io_nic *sp)
3749 struct pci_dev *pdev = sp->pdev;
3750 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3751 int err;
3752 u64 val64, saved64;
3754 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3755 sp->name, sp);
3756 if (err) {
3757 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3758 sp->dev->name, pci_name(pdev), pdev->irq);
3759 return err;
3762 init_waitqueue_head (&sp->msi_wait);
3763 sp->msi_detected = 0;
3765 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3766 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3767 val64 |= SCHED_INT_CTRL_TIMER_EN;
3768 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3769 writeq(val64, &bar0->scheduled_int_ctrl);
3771 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3773 if (!sp->msi_detected) {
3774 /* MSI(X) test failed, go back to INTx mode */
3775 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3776 "using MSI(X) during test\n", sp->dev->name,
3777 pci_name(pdev));
3779 err = -EOPNOTSUPP;
3782 free_irq(sp->entries[1].vector, sp);
3784 writeq(saved64, &bar0->scheduled_int_ctrl);
3786 return err;
3789 static void remove_msix_isr(struct s2io_nic *sp)
3791 int i;
3792 u16 msi_control;
3794 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3795 if (sp->s2io_entries[i].in_use ==
3796 MSIX_REGISTERED_SUCCESS) {
3797 int vector = sp->entries[i].vector;
3798 void *arg = sp->s2io_entries[i].arg;
3799 free_irq(vector, arg);
3803 kfree(sp->entries);
3804 kfree(sp->s2io_entries);
3805 sp->entries = NULL;
3806 sp->s2io_entries = NULL;
3808 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3809 msi_control &= 0xFFFE; /* Disable MSI */
3810 pci_write_config_word(sp->pdev, 0x42, msi_control);
3812 pci_disable_msix(sp->pdev);
3815 static void remove_inta_isr(struct s2io_nic *sp)
3817 struct net_device *dev = sp->dev;
3819 free_irq(sp->pdev->irq, dev);
3822 /* ********************************************************* *
3823 * Functions defined below concern the OS part of the driver *
3824 * ********************************************************* */
3827 * s2io_open - open entry point of the driver
3828 * @dev : pointer to the device structure.
3829 * Description:
3830 * This function is the open entry point of the driver. It mainly calls a
3831 * function to allocate Rx buffers and inserts them into the buffer
3832 * descriptors and then enables the Rx part of the NIC.
3833 * Return value:
3834 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3835 * file on failure.
3838 static int s2io_open(struct net_device *dev)
3840 struct s2io_nic *sp = dev->priv;
3841 int err = 0;
3844 * Make sure you have link off by default every time
3845 * Nic is initialized
3847 netif_carrier_off(dev);
3848 sp->last_link_state = 0;
3850 if (sp->config.intr_type == MSI_X) {
3851 int ret = s2io_enable_msi_x(sp);
3853 if (!ret) {
3854 ret = s2io_test_msi(sp);
3855 /* rollback MSI-X, will re-enable during add_isr() */
3856 remove_msix_isr(sp);
3858 if (ret) {
3860 DBG_PRINT(ERR_DBG,
3861 "%s: MSI-X requested but failed to enable\n",
3862 dev->name);
3863 sp->config.intr_type = INTA;
3867 /* NAPI doesn't work well with MSI(X) */
3868 if (sp->config.intr_type != INTA) {
3869 if(sp->config.napi)
3870 sp->config.napi = 0;
3873 /* Initialize H/W and enable interrupts */
3874 err = s2io_card_up(sp);
3875 if (err) {
3876 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3877 dev->name);
3878 goto hw_init_failed;
3881 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3882 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3883 s2io_card_down(sp);
3884 err = -ENODEV;
3885 goto hw_init_failed;
3888 netif_start_queue(dev);
3889 return 0;
3891 hw_init_failed:
3892 if (sp->config.intr_type == MSI_X) {
3893 if (sp->entries) {
3894 kfree(sp->entries);
3895 sp->mac_control.stats_info->sw_stat.mem_freed
3896 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3898 if (sp->s2io_entries) {
3899 kfree(sp->s2io_entries);
3900 sp->mac_control.stats_info->sw_stat.mem_freed
3901 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3904 return err;
3908 * s2io_close -close entry point of the driver
3909 * @dev : device pointer.
3910 * Description:
3911 * This is the stop entry point of the driver. It needs to undo exactly
3912 * whatever was done by the open entry point,thus it's usually referred to
3913 * as the close function.Among other things this function mainly stops the
3914 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3915 * Return value:
3916 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3917 * file on failure.
3920 static int s2io_close(struct net_device *dev)
3922 struct s2io_nic *sp = dev->priv;
3923 struct config_param *config = &sp->config;
3924 u64 tmp64;
3925 int offset;
3927 /* Return if the device is already closed *
3928 * Can happen when s2io_card_up failed in change_mtu *
3930 if (!is_s2io_card_up(sp))
3931 return 0;
3933 netif_stop_queue(dev);
3935 /* delete all populated mac entries */
3936 for (offset = 1; offset < config->max_mc_addr; offset++) {
3937 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3938 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3939 do_s2io_delete_unicast_mc(sp, tmp64);
3942 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3943 s2io_card_down(sp);
3945 return 0;
3949 * s2io_xmit - Tx entry point of te driver
3950 * @skb : the socket buffer containing the Tx data.
3951 * @dev : device pointer.
3952 * Description :
3953 * This function is the Tx entry point of the driver. S2IO NIC supports
3954 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3955 * NOTE: when device cant queue the pkt,just the trans_start variable will
3956 * not be upadted.
3957 * Return value:
3958 * 0 on success & 1 on failure.
3961 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3963 struct s2io_nic *sp = dev->priv;
3964 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3965 register u64 val64;
3966 struct TxD *txdp;
3967 struct TxFIFO_element __iomem *tx_fifo;
3968 unsigned long flags;
3969 u16 vlan_tag = 0;
3970 int vlan_priority = 0;
3971 struct mac_info *mac_control;
3972 struct config_param *config;
3973 int offload_type;
3974 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3976 mac_control = &sp->mac_control;
3977 config = &sp->config;
3979 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3981 if (unlikely(skb->len <= 0)) {
3982 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3983 dev_kfree_skb_any(skb);
3984 return 0;
3987 spin_lock_irqsave(&sp->tx_lock, flags);
3988 if (!is_s2io_card_up(sp)) {
3989 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3990 dev->name);
3991 spin_unlock_irqrestore(&sp->tx_lock, flags);
3992 dev_kfree_skb(skb);
3993 return 0;
3996 queue = 0;
3997 /* Get Fifo number to Transmit based on vlan priority */
3998 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3999 vlan_tag = vlan_tx_tag_get(skb);
4000 vlan_priority = vlan_tag >> 13;
4001 queue = config->fifo_mapping[vlan_priority];
4004 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4005 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4006 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4007 list_virt_addr;
4009 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4010 /* Avoid "put" pointer going beyond "get" pointer */
4011 if (txdp->Host_Control ||
4012 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4013 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4014 netif_stop_queue(dev);
4015 dev_kfree_skb(skb);
4016 spin_unlock_irqrestore(&sp->tx_lock, flags);
4017 return 0;
4020 offload_type = s2io_offload_type(skb);
4021 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4022 txdp->Control_1 |= TXD_TCP_LSO_EN;
4023 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4025 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4026 txdp->Control_2 |=
4027 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4028 TXD_TX_CKO_UDP_EN);
4030 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4031 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4032 txdp->Control_2 |= config->tx_intr_type;
4034 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4035 txdp->Control_2 |= TXD_VLAN_ENABLE;
4036 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4039 frg_len = skb->len - skb->data_len;
4040 if (offload_type == SKB_GSO_UDP) {
4041 int ufo_size;
4043 ufo_size = s2io_udp_mss(skb);
4044 ufo_size &= ~7;
4045 txdp->Control_1 |= TXD_UFO_EN;
4046 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4047 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4048 #ifdef __BIG_ENDIAN
4049 sp->ufo_in_band_v[put_off] =
4050 (u64)skb_shinfo(skb)->ip6_frag_id;
4051 #else
4052 sp->ufo_in_band_v[put_off] =
4053 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4054 #endif
4055 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4056 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4057 sp->ufo_in_band_v,
4058 sizeof(u64), PCI_DMA_TODEVICE);
4059 if((txdp->Buffer_Pointer == 0) ||
4060 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4061 goto pci_map_failed;
4062 txdp++;
4065 txdp->Buffer_Pointer = pci_map_single
4066 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4067 if((txdp->Buffer_Pointer == 0) ||
4068 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4069 goto pci_map_failed;
4071 txdp->Host_Control = (unsigned long) skb;
4072 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4073 if (offload_type == SKB_GSO_UDP)
4074 txdp->Control_1 |= TXD_UFO_EN;
4076 frg_cnt = skb_shinfo(skb)->nr_frags;
4077 /* For fragmented SKB. */
4078 for (i = 0; i < frg_cnt; i++) {
4079 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4080 /* A '0' length fragment will be ignored */
4081 if (!frag->size)
4082 continue;
4083 txdp++;
4084 txdp->Buffer_Pointer = (u64) pci_map_page
4085 (sp->pdev, frag->page, frag->page_offset,
4086 frag->size, PCI_DMA_TODEVICE);
4087 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4088 if (offload_type == SKB_GSO_UDP)
4089 txdp->Control_1 |= TXD_UFO_EN;
4091 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4093 if (offload_type == SKB_GSO_UDP)
4094 frg_cnt++; /* as Txd0 was used for inband header */
4096 tx_fifo = mac_control->tx_FIFO_start[queue];
4097 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4098 writeq(val64, &tx_fifo->TxDL_Pointer);
4100 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4101 TX_FIFO_LAST_LIST);
4102 if (offload_type)
4103 val64 |= TX_FIFO_SPECIAL_FUNC;
4105 writeq(val64, &tx_fifo->List_Control);
4107 mmiowb();
4109 put_off++;
4110 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4111 put_off = 0;
4112 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4114 /* Avoid "put" pointer going beyond "get" pointer */
4115 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4116 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4117 DBG_PRINT(TX_DBG,
4118 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4119 put_off, get_off);
4120 netif_stop_queue(dev);
4122 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4123 dev->trans_start = jiffies;
4124 spin_unlock_irqrestore(&sp->tx_lock, flags);
4126 return 0;
4127 pci_map_failed:
4128 stats->pci_map_fail_cnt++;
4129 netif_stop_queue(dev);
4130 stats->mem_freed += skb->truesize;
4131 dev_kfree_skb(skb);
4132 spin_unlock_irqrestore(&sp->tx_lock, flags);
4133 return 0;
4136 static void
4137 s2io_alarm_handle(unsigned long data)
4139 struct s2io_nic *sp = (struct s2io_nic *)data;
4140 struct net_device *dev = sp->dev;
4142 s2io_handle_errors(dev);
4143 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4146 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4148 int rxb_size, level;
4150 if (!sp->lro) {
4151 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4152 level = rx_buffer_level(sp, rxb_size, rng_n);
4154 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4155 int ret;
4156 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4157 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4158 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4159 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4160 __FUNCTION__);
4161 clear_bit(0, (&sp->tasklet_status));
4162 return -1;
4164 clear_bit(0, (&sp->tasklet_status));
4165 } else if (level == LOW)
4166 tasklet_schedule(&sp->task);
4168 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4169 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4170 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4172 return 0;
4175 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4177 struct ring_info *ring = (struct ring_info *)dev_id;
4178 struct s2io_nic *sp = ring->nic;
4180 if (!is_s2io_card_up(sp))
4181 return IRQ_HANDLED;
4183 rx_intr_handler(ring);
4184 s2io_chk_rx_buffers(sp, ring->ring_no);
4186 return IRQ_HANDLED;
4189 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4191 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4192 struct s2io_nic *sp = fifo->nic;
4194 if (!is_s2io_card_up(sp))
4195 return IRQ_HANDLED;
4197 tx_intr_handler(fifo);
4198 return IRQ_HANDLED;
4200 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4203 u64 val64;
4205 val64 = readq(&bar0->pic_int_status);
4206 if (val64 & PIC_INT_GPIO) {
4207 val64 = readq(&bar0->gpio_int_reg);
4208 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4209 (val64 & GPIO_INT_REG_LINK_UP)) {
4211 * This is unstable state so clear both up/down
4212 * interrupt and adapter to re-evaluate the link state.
4214 val64 |= GPIO_INT_REG_LINK_DOWN;
4215 val64 |= GPIO_INT_REG_LINK_UP;
4216 writeq(val64, &bar0->gpio_int_reg);
4217 val64 = readq(&bar0->gpio_int_mask);
4218 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4219 GPIO_INT_MASK_LINK_DOWN);
4220 writeq(val64, &bar0->gpio_int_mask);
4222 else if (val64 & GPIO_INT_REG_LINK_UP) {
4223 val64 = readq(&bar0->adapter_status);
4224 /* Enable Adapter */
4225 val64 = readq(&bar0->adapter_control);
4226 val64 |= ADAPTER_CNTL_EN;
4227 writeq(val64, &bar0->adapter_control);
4228 val64 |= ADAPTER_LED_ON;
4229 writeq(val64, &bar0->adapter_control);
4230 if (!sp->device_enabled_once)
4231 sp->device_enabled_once = 1;
4233 s2io_link(sp, LINK_UP);
4235 * unmask link down interrupt and mask link-up
4236 * intr
4238 val64 = readq(&bar0->gpio_int_mask);
4239 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4240 val64 |= GPIO_INT_MASK_LINK_UP;
4241 writeq(val64, &bar0->gpio_int_mask);
4243 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4244 val64 = readq(&bar0->adapter_status);
4245 s2io_link(sp, LINK_DOWN);
4246 /* Link is down so unmaks link up interrupt */
4247 val64 = readq(&bar0->gpio_int_mask);
4248 val64 &= ~GPIO_INT_MASK_LINK_UP;
4249 val64 |= GPIO_INT_MASK_LINK_DOWN;
4250 writeq(val64, &bar0->gpio_int_mask);
4252 /* turn off LED */
4253 val64 = readq(&bar0->adapter_control);
4254 val64 = val64 &(~ADAPTER_LED_ON);
4255 writeq(val64, &bar0->adapter_control);
4258 val64 = readq(&bar0->gpio_int_mask);
4262 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4263 * @value: alarm bits
4264 * @addr: address value
4265 * @cnt: counter variable
4266 * Description: Check for alarm and increment the counter
4267 * Return Value:
4268 * 1 - if alarm bit set
4269 * 0 - if alarm bit is not set
4271 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4272 unsigned long long *cnt)
4274 u64 val64;
4275 val64 = readq(addr);
4276 if ( val64 & value ) {
4277 writeq(val64, addr);
4278 (*cnt)++;
4279 return 1;
4281 return 0;
4286 * s2io_handle_errors - Xframe error indication handler
4287 * @nic: device private variable
4288 * Description: Handle alarms such as loss of link, single or
4289 * double ECC errors, critical and serious errors.
4290 * Return Value:
4291 * NONE
4293 static void s2io_handle_errors(void * dev_id)
4295 struct net_device *dev = (struct net_device *) dev_id;
4296 struct s2io_nic *sp = dev->priv;
4297 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4298 u64 temp64 = 0,val64=0;
4299 int i = 0;
4301 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4302 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4304 if (!is_s2io_card_up(sp))
4305 return;
4307 if (pci_channel_offline(sp->pdev))
4308 return;
4310 memset(&sw_stat->ring_full_cnt, 0,
4311 sizeof(sw_stat->ring_full_cnt));
4313 /* Handling the XPAK counters update */
4314 if(stats->xpak_timer_count < 72000) {
4315 /* waiting for an hour */
4316 stats->xpak_timer_count++;
4317 } else {
4318 s2io_updt_xpak_counter(dev);
4319 /* reset the count to zero */
4320 stats->xpak_timer_count = 0;
4323 /* Handling link status change error Intr */
4324 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4325 val64 = readq(&bar0->mac_rmac_err_reg);
4326 writeq(val64, &bar0->mac_rmac_err_reg);
4327 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4328 schedule_work(&sp->set_link_task);
4331 /* In case of a serious error, the device will be Reset. */
4332 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4333 &sw_stat->serious_err_cnt))
4334 goto reset;
4336 /* Check for data parity error */
4337 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4338 &sw_stat->parity_err_cnt))
4339 goto reset;
4341 /* Check for ring full counter */
4342 if (sp->device_type == XFRAME_II_DEVICE) {
4343 val64 = readq(&bar0->ring_bump_counter1);
4344 for (i=0; i<4; i++) {
4345 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4346 temp64 >>= 64 - ((i+1)*16);
4347 sw_stat->ring_full_cnt[i] += temp64;
4350 val64 = readq(&bar0->ring_bump_counter2);
4351 for (i=0; i<4; i++) {
4352 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4353 temp64 >>= 64 - ((i+1)*16);
4354 sw_stat->ring_full_cnt[i+4] += temp64;
4358 val64 = readq(&bar0->txdma_int_status);
4359 /*check for pfc_err*/
4360 if (val64 & TXDMA_PFC_INT) {
4361 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4362 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4363 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4364 &sw_stat->pfc_err_cnt))
4365 goto reset;
4366 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4367 &sw_stat->pfc_err_cnt);
4370 /*check for tda_err*/
4371 if (val64 & TXDMA_TDA_INT) {
4372 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4373 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4374 &sw_stat->tda_err_cnt))
4375 goto reset;
4376 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4377 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4379 /*check for pcc_err*/
4380 if (val64 & TXDMA_PCC_INT) {
4381 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4382 | PCC_N_SERR | PCC_6_COF_OV_ERR
4383 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4384 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4385 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4386 &sw_stat->pcc_err_cnt))
4387 goto reset;
4388 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4389 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4392 /*check for tti_err*/
4393 if (val64 & TXDMA_TTI_INT) {
4394 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4395 &sw_stat->tti_err_cnt))
4396 goto reset;
4397 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4398 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4401 /*check for lso_err*/
4402 if (val64 & TXDMA_LSO_INT) {
4403 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4404 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4405 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4406 goto reset;
4407 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4408 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4411 /*check for tpa_err*/
4412 if (val64 & TXDMA_TPA_INT) {
4413 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4414 &sw_stat->tpa_err_cnt))
4415 goto reset;
4416 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4417 &sw_stat->tpa_err_cnt);
4420 /*check for sm_err*/
4421 if (val64 & TXDMA_SM_INT) {
4422 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4423 &sw_stat->sm_err_cnt))
4424 goto reset;
4427 val64 = readq(&bar0->mac_int_status);
4428 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4429 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4430 &bar0->mac_tmac_err_reg,
4431 &sw_stat->mac_tmac_err_cnt))
4432 goto reset;
4433 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4434 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4435 &bar0->mac_tmac_err_reg,
4436 &sw_stat->mac_tmac_err_cnt);
4439 val64 = readq(&bar0->xgxs_int_status);
4440 if (val64 & XGXS_INT_STATUS_TXGXS) {
4441 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4442 &bar0->xgxs_txgxs_err_reg,
4443 &sw_stat->xgxs_txgxs_err_cnt))
4444 goto reset;
4445 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4446 &bar0->xgxs_txgxs_err_reg,
4447 &sw_stat->xgxs_txgxs_err_cnt);
4450 val64 = readq(&bar0->rxdma_int_status);
4451 if (val64 & RXDMA_INT_RC_INT_M) {
4452 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4453 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4454 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4455 goto reset;
4456 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4457 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4458 &sw_stat->rc_err_cnt);
4459 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4460 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4461 &sw_stat->prc_pcix_err_cnt))
4462 goto reset;
4463 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4464 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4465 &sw_stat->prc_pcix_err_cnt);
4468 if (val64 & RXDMA_INT_RPA_INT_M) {
4469 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4470 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4471 goto reset;
4472 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4473 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4476 if (val64 & RXDMA_INT_RDA_INT_M) {
4477 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4478 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4479 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4480 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4481 goto reset;
4482 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4483 | RDA_MISC_ERR | RDA_PCIX_ERR,
4484 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4487 if (val64 & RXDMA_INT_RTI_INT_M) {
4488 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4489 &sw_stat->rti_err_cnt))
4490 goto reset;
4491 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4492 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4495 val64 = readq(&bar0->mac_int_status);
4496 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4497 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4498 &bar0->mac_rmac_err_reg,
4499 &sw_stat->mac_rmac_err_cnt))
4500 goto reset;
4501 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4502 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4503 &sw_stat->mac_rmac_err_cnt);
4506 val64 = readq(&bar0->xgxs_int_status);
4507 if (val64 & XGXS_INT_STATUS_RXGXS) {
4508 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4509 &bar0->xgxs_rxgxs_err_reg,
4510 &sw_stat->xgxs_rxgxs_err_cnt))
4511 goto reset;
4514 val64 = readq(&bar0->mc_int_status);
4515 if(val64 & MC_INT_STATUS_MC_INT) {
4516 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4517 &sw_stat->mc_err_cnt))
4518 goto reset;
4520 /* Handling Ecc errors */
4521 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4522 writeq(val64, &bar0->mc_err_reg);
4523 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4524 sw_stat->double_ecc_errs++;
4525 if (sp->device_type != XFRAME_II_DEVICE) {
4527 * Reset XframeI only if critical error
4529 if (val64 &
4530 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4531 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4532 goto reset;
4534 } else
4535 sw_stat->single_ecc_errs++;
4538 return;
4540 reset:
4541 netif_stop_queue(dev);
4542 schedule_work(&sp->rst_timer_task);
4543 sw_stat->soft_reset_cnt++;
4544 return;
4548 * s2io_isr - ISR handler of the device .
4549 * @irq: the irq of the device.
4550 * @dev_id: a void pointer to the dev structure of the NIC.
4551 * Description: This function is the ISR handler of the device. It
4552 * identifies the reason for the interrupt and calls the relevant
4553 * service routines. As a contongency measure, this ISR allocates the
4554 * recv buffers, if their numbers are below the panic value which is
4555 * presently set to 25% of the original number of rcv buffers allocated.
4556 * Return value:
4557 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4558 * IRQ_NONE: will be returned if interrupt is not from our device
4560 static irqreturn_t s2io_isr(int irq, void *dev_id)
4562 struct net_device *dev = (struct net_device *) dev_id;
4563 struct s2io_nic *sp = dev->priv;
4564 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4565 int i;
4566 u64 reason = 0;
4567 struct mac_info *mac_control;
4568 struct config_param *config;
4570 /* Pretend we handled any irq's from a disconnected card */
4571 if (pci_channel_offline(sp->pdev))
4572 return IRQ_NONE;
4574 if (!is_s2io_card_up(sp))
4575 return IRQ_NONE;
4577 mac_control = &sp->mac_control;
4578 config = &sp->config;
4581 * Identify the cause for interrupt and call the appropriate
4582 * interrupt handler. Causes for the interrupt could be;
4583 * 1. Rx of packet.
4584 * 2. Tx complete.
4585 * 3. Link down.
4587 reason = readq(&bar0->general_int_status);
4589 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4590 /* Nothing much can be done. Get out */
4591 return IRQ_HANDLED;
4594 if (reason & (GEN_INTR_RXTRAFFIC |
4595 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4597 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4599 if (config->napi) {
4600 if (reason & GEN_INTR_RXTRAFFIC) {
4601 if (likely(netif_rx_schedule_prep(dev,
4602 &sp->napi))) {
4603 __netif_rx_schedule(dev, &sp->napi);
4604 writeq(S2IO_MINUS_ONE,
4605 &bar0->rx_traffic_mask);
4606 } else
4607 writeq(S2IO_MINUS_ONE,
4608 &bar0->rx_traffic_int);
4610 } else {
4612 * rx_traffic_int reg is an R1 register, writing all 1's
4613 * will ensure that the actual interrupt causing bit
4614 * get's cleared and hence a read can be avoided.
4616 if (reason & GEN_INTR_RXTRAFFIC)
4617 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4619 for (i = 0; i < config->rx_ring_num; i++)
4620 rx_intr_handler(&mac_control->rings[i]);
4624 * tx_traffic_int reg is an R1 register, writing all 1's
4625 * will ensure that the actual interrupt causing bit get's
4626 * cleared and hence a read can be avoided.
4628 if (reason & GEN_INTR_TXTRAFFIC)
4629 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4631 for (i = 0; i < config->tx_fifo_num; i++)
4632 tx_intr_handler(&mac_control->fifos[i]);
4634 if (reason & GEN_INTR_TXPIC)
4635 s2io_txpic_intr_handle(sp);
4638 * Reallocate the buffers from the interrupt handler itself.
4640 if (!config->napi) {
4641 for (i = 0; i < config->rx_ring_num; i++)
4642 s2io_chk_rx_buffers(sp, i);
4644 writeq(sp->general_int_mask, &bar0->general_int_mask);
4645 readl(&bar0->general_int_status);
4647 return IRQ_HANDLED;
4650 else if (!reason) {
4651 /* The interrupt was not raised by us */
4652 return IRQ_NONE;
4655 return IRQ_HANDLED;
4659 * s2io_updt_stats -
4661 static void s2io_updt_stats(struct s2io_nic *sp)
4663 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4664 u64 val64;
4665 int cnt = 0;
4667 if (is_s2io_card_up(sp)) {
4668 /* Apprx 30us on a 133 MHz bus */
4669 val64 = SET_UPDT_CLICKS(10) |
4670 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4671 writeq(val64, &bar0->stat_cfg);
4672 do {
4673 udelay(100);
4674 val64 = readq(&bar0->stat_cfg);
4675 if (!(val64 & s2BIT(0)))
4676 break;
4677 cnt++;
4678 if (cnt == 5)
4679 break; /* Updt failed */
4680 } while(1);
4685 * s2io_get_stats - Updates the device statistics structure.
4686 * @dev : pointer to the device structure.
4687 * Description:
4688 * This function updates the device statistics structure in the s2io_nic
4689 * structure and returns a pointer to the same.
4690 * Return value:
4691 * pointer to the updated net_device_stats structure.
4694 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4696 struct s2io_nic *sp = dev->priv;
4697 struct mac_info *mac_control;
4698 struct config_param *config;
4701 mac_control = &sp->mac_control;
4702 config = &sp->config;
4704 /* Configure Stats for immediate updt */
4705 s2io_updt_stats(sp);
4707 sp->stats.tx_packets =
4708 le32_to_cpu(mac_control->stats_info->tmac_frms);
4709 sp->stats.tx_errors =
4710 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4711 sp->stats.rx_errors =
4712 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4713 sp->stats.multicast =
4714 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4715 sp->stats.rx_length_errors =
4716 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4718 return (&sp->stats);
4722 * s2io_set_multicast - entry point for multicast address enable/disable.
4723 * @dev : pointer to the device structure
4724 * Description:
4725 * This function is a driver entry point which gets called by the kernel
4726 * whenever multicast addresses must be enabled/disabled. This also gets
4727 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4728 * determine, if multicast address must be enabled or if promiscuous mode
4729 * is to be disabled etc.
4730 * Return value:
4731 * void.
4734 static void s2io_set_multicast(struct net_device *dev)
4736 int i, j, prev_cnt;
4737 struct dev_mc_list *mclist;
4738 struct s2io_nic *sp = dev->priv;
4739 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4740 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4741 0xfeffffffffffULL;
4742 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4743 void __iomem *add;
4744 struct config_param *config = &sp->config;
4746 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4747 /* Enable all Multicast addresses */
4748 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4749 &bar0->rmac_addr_data0_mem);
4750 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4751 &bar0->rmac_addr_data1_mem);
4752 val64 = RMAC_ADDR_CMD_MEM_WE |
4753 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4754 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4755 writeq(val64, &bar0->rmac_addr_cmd_mem);
4756 /* Wait till command completes */
4757 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4758 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4759 S2IO_BIT_RESET);
4761 sp->m_cast_flg = 1;
4762 sp->all_multi_pos = config->max_mc_addr - 1;
4763 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4764 /* Disable all Multicast addresses */
4765 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4766 &bar0->rmac_addr_data0_mem);
4767 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4768 &bar0->rmac_addr_data1_mem);
4769 val64 = RMAC_ADDR_CMD_MEM_WE |
4770 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4771 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4772 writeq(val64, &bar0->rmac_addr_cmd_mem);
4773 /* Wait till command completes */
4774 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4775 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4776 S2IO_BIT_RESET);
4778 sp->m_cast_flg = 0;
4779 sp->all_multi_pos = 0;
4782 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4783 /* Put the NIC into promiscuous mode */
4784 add = &bar0->mac_cfg;
4785 val64 = readq(&bar0->mac_cfg);
4786 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4788 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4789 writel((u32) val64, add);
4790 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4791 writel((u32) (val64 >> 32), (add + 4));
4793 if (vlan_tag_strip != 1) {
4794 val64 = readq(&bar0->rx_pa_cfg);
4795 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4796 writeq(val64, &bar0->rx_pa_cfg);
4797 vlan_strip_flag = 0;
4800 val64 = readq(&bar0->mac_cfg);
4801 sp->promisc_flg = 1;
4802 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4803 dev->name);
4804 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4805 /* Remove the NIC from promiscuous mode */
4806 add = &bar0->mac_cfg;
4807 val64 = readq(&bar0->mac_cfg);
4808 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4810 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4811 writel((u32) val64, add);
4812 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4813 writel((u32) (val64 >> 32), (add + 4));
4815 if (vlan_tag_strip != 0) {
4816 val64 = readq(&bar0->rx_pa_cfg);
4817 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4818 writeq(val64, &bar0->rx_pa_cfg);
4819 vlan_strip_flag = 1;
4822 val64 = readq(&bar0->mac_cfg);
4823 sp->promisc_flg = 0;
4824 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4825 dev->name);
4828 /* Update individual M_CAST address list */
4829 if ((!sp->m_cast_flg) && dev->mc_count) {
4830 if (dev->mc_count >
4831 (config->max_mc_addr - config->max_mac_addr)) {
4832 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4833 dev->name);
4834 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4835 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4836 return;
4839 prev_cnt = sp->mc_addr_count;
4840 sp->mc_addr_count = dev->mc_count;
4842 /* Clear out the previous list of Mc in the H/W. */
4843 for (i = 0; i < prev_cnt; i++) {
4844 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4845 &bar0->rmac_addr_data0_mem);
4846 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4847 &bar0->rmac_addr_data1_mem);
4848 val64 = RMAC_ADDR_CMD_MEM_WE |
4849 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4850 RMAC_ADDR_CMD_MEM_OFFSET
4851 (config->mc_start_offset + i);
4852 writeq(val64, &bar0->rmac_addr_cmd_mem);
4854 /* Wait for command completes */
4855 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4856 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4857 S2IO_BIT_RESET)) {
4858 DBG_PRINT(ERR_DBG, "%s: Adding ",
4859 dev->name);
4860 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4861 return;
4865 /* Create the new Rx filter list and update the same in H/W. */
4866 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4867 i++, mclist = mclist->next) {
4868 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4869 ETH_ALEN);
4870 mac_addr = 0;
4871 for (j = 0; j < ETH_ALEN; j++) {
4872 mac_addr |= mclist->dmi_addr[j];
4873 mac_addr <<= 8;
4875 mac_addr >>= 8;
4876 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4877 &bar0->rmac_addr_data0_mem);
4878 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4879 &bar0->rmac_addr_data1_mem);
4880 val64 = RMAC_ADDR_CMD_MEM_WE |
4881 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4882 RMAC_ADDR_CMD_MEM_OFFSET
4883 (i + config->mc_start_offset);
4884 writeq(val64, &bar0->rmac_addr_cmd_mem);
4886 /* Wait for command completes */
4887 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4888 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4889 S2IO_BIT_RESET)) {
4890 DBG_PRINT(ERR_DBG, "%s: Adding ",
4891 dev->name);
4892 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4893 return;
4899 /* read from CAM unicast & multicast addresses and store it in
4900 * def_mac_addr structure
4902 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
4904 int offset;
4905 u64 mac_addr = 0x0;
4906 struct config_param *config = &sp->config;
4908 /* store unicast & multicast mac addresses */
4909 for (offset = 0; offset < config->max_mc_addr; offset++) {
4910 mac_addr = do_s2io_read_unicast_mc(sp, offset);
4911 /* if read fails disable the entry */
4912 if (mac_addr == FAILURE)
4913 mac_addr = S2IO_DISABLE_MAC_ENTRY;
4914 do_s2io_copy_mac_addr(sp, offset, mac_addr);
4918 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
4919 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
4921 int offset;
4922 struct config_param *config = &sp->config;
4923 /* restore unicast mac address */
4924 for (offset = 0; offset < config->max_mac_addr; offset++)
4925 do_s2io_prog_unicast(sp->dev,
4926 sp->def_mac_addr[offset].mac_addr);
4928 /* restore multicast mac address */
4929 for (offset = config->mc_start_offset;
4930 offset < config->max_mc_addr; offset++)
4931 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
4934 /* add a multicast MAC address to CAM */
4935 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
4937 int i;
4938 u64 mac_addr = 0;
4939 struct config_param *config = &sp->config;
4941 for (i = 0; i < ETH_ALEN; i++) {
4942 mac_addr <<= 8;
4943 mac_addr |= addr[i];
4945 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
4946 return SUCCESS;
4948 /* check if the multicast mac already preset in CAM */
4949 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
4950 u64 tmp64;
4951 tmp64 = do_s2io_read_unicast_mc(sp, i);
4952 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
4953 break;
4955 if (tmp64 == mac_addr)
4956 return SUCCESS;
4958 if (i == config->max_mc_addr) {
4959 DBG_PRINT(ERR_DBG,
4960 "CAM full no space left for multicast MAC\n");
4961 return FAILURE;
4963 /* Update the internal structure with this new mac address */
4964 do_s2io_copy_mac_addr(sp, i, mac_addr);
4966 return (do_s2io_add_mac(sp, mac_addr, i));
4969 /* add MAC address to CAM */
4970 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
4972 u64 val64;
4973 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4975 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4976 &bar0->rmac_addr_data0_mem);
4978 val64 =
4979 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4980 RMAC_ADDR_CMD_MEM_OFFSET(off);
4981 writeq(val64, &bar0->rmac_addr_cmd_mem);
4983 /* Wait till command completes */
4984 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4985 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4986 S2IO_BIT_RESET)) {
4987 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
4988 return FAILURE;
4990 return SUCCESS;
4992 /* deletes a specified unicast/multicast mac entry from CAM */
4993 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
4995 int offset;
4996 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
4997 struct config_param *config = &sp->config;
4999 for (offset = 1;
5000 offset < config->max_mc_addr; offset++) {
5001 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5002 if (tmp64 == addr) {
5003 /* disable the entry by writing 0xffffffffffffULL */
5004 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5005 return FAILURE;
5006 /* store the new mac list from CAM */
5007 do_s2io_store_unicast_mc(sp);
5008 return SUCCESS;
5011 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5012 (unsigned long long)addr);
5013 return FAILURE;
5016 /* read mac entries from CAM */
5017 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5019 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5020 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5022 /* read mac addr */
5023 val64 =
5024 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5025 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5026 writeq(val64, &bar0->rmac_addr_cmd_mem);
5028 /* Wait till command completes */
5029 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5030 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5031 S2IO_BIT_RESET)) {
5032 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5033 return FAILURE;
5035 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5036 return (tmp64 >> 16);
5040 * s2io_set_mac_addr driver entry point
5043 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5045 struct sockaddr *addr = p;
5047 if (!is_valid_ether_addr(addr->sa_data))
5048 return -EINVAL;
5050 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5052 /* store the MAC address in CAM */
5053 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5056 * do_s2io_prog_unicast - Programs the Xframe mac address
5057 * @dev : pointer to the device structure.
5058 * @addr: a uchar pointer to the new mac address which is to be set.
5059 * Description : This procedure will program the Xframe to receive
5060 * frames with new Mac Address
5061 * Return value: SUCCESS on success and an appropriate (-)ve integer
5062 * as defined in errno.h file on failure.
5065 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5067 struct s2io_nic *sp = dev->priv;
5068 register u64 mac_addr = 0, perm_addr = 0;
5069 int i;
5070 u64 tmp64;
5071 struct config_param *config = &sp->config;
5074 * Set the new MAC address as the new unicast filter and reflect this
5075 * change on the device address registered with the OS. It will be
5076 * at offset 0.
5078 for (i = 0; i < ETH_ALEN; i++) {
5079 mac_addr <<= 8;
5080 mac_addr |= addr[i];
5081 perm_addr <<= 8;
5082 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5085 /* check if the dev_addr is different than perm_addr */
5086 if (mac_addr == perm_addr)
5087 return SUCCESS;
5089 /* check if the mac already preset in CAM */
5090 for (i = 1; i < config->max_mac_addr; i++) {
5091 tmp64 = do_s2io_read_unicast_mc(sp, i);
5092 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5093 break;
5095 if (tmp64 == mac_addr) {
5096 DBG_PRINT(INFO_DBG,
5097 "MAC addr:0x%llx already present in CAM\n",
5098 (unsigned long long)mac_addr);
5099 return SUCCESS;
5102 if (i == config->max_mac_addr) {
5103 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5104 return FAILURE;
5106 /* Update the internal structure with this new mac address */
5107 do_s2io_copy_mac_addr(sp, i, mac_addr);
5108 return (do_s2io_add_mac(sp, mac_addr, i));
5112 * s2io_ethtool_sset - Sets different link parameters.
5113 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5114 * @info: pointer to the structure with parameters given by ethtool to set
5115 * link information.
5116 * Description:
5117 * The function sets different link parameters provided by the user onto
5118 * the NIC.
5119 * Return value:
5120 * 0 on success.
5123 static int s2io_ethtool_sset(struct net_device *dev,
5124 struct ethtool_cmd *info)
5126 struct s2io_nic *sp = dev->priv;
5127 if ((info->autoneg == AUTONEG_ENABLE) ||
5128 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5129 return -EINVAL;
5130 else {
5131 s2io_close(sp->dev);
5132 s2io_open(sp->dev);
5135 return 0;
5139 * s2io_ethtol_gset - Return link specific information.
5140 * @sp : private member of the device structure, pointer to the
5141 * s2io_nic structure.
5142 * @info : pointer to the structure with parameters given by ethtool
5143 * to return link information.
5144 * Description:
5145 * Returns link specific information like speed, duplex etc.. to ethtool.
5146 * Return value :
5147 * return 0 on success.
5150 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5152 struct s2io_nic *sp = dev->priv;
5153 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5154 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5155 info->port = PORT_FIBRE;
5157 /* info->transceiver */
5158 info->transceiver = XCVR_EXTERNAL;
5160 if (netif_carrier_ok(sp->dev)) {
5161 info->speed = 10000;
5162 info->duplex = DUPLEX_FULL;
5163 } else {
5164 info->speed = -1;
5165 info->duplex = -1;
5168 info->autoneg = AUTONEG_DISABLE;
5169 return 0;
5173 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5174 * @sp : private member of the device structure, which is a pointer to the
5175 * s2io_nic structure.
5176 * @info : pointer to the structure with parameters given by ethtool to
5177 * return driver information.
5178 * Description:
5179 * Returns driver specefic information like name, version etc.. to ethtool.
5180 * Return value:
5181 * void
5184 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5185 struct ethtool_drvinfo *info)
5187 struct s2io_nic *sp = dev->priv;
5189 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5190 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5191 strncpy(info->fw_version, "", sizeof(info->fw_version));
5192 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5193 info->regdump_len = XENA_REG_SPACE;
5194 info->eedump_len = XENA_EEPROM_SPACE;
5198 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5199 * @sp: private member of the device structure, which is a pointer to the
5200 * s2io_nic structure.
5201 * @regs : pointer to the structure with parameters given by ethtool for
5202 * dumping the registers.
5203 * @reg_space: The input argumnet into which all the registers are dumped.
5204 * Description:
5205 * Dumps the entire register space of xFrame NIC into the user given
5206 * buffer area.
5207 * Return value :
5208 * void .
5211 static void s2io_ethtool_gregs(struct net_device *dev,
5212 struct ethtool_regs *regs, void *space)
5214 int i;
5215 u64 reg;
5216 u8 *reg_space = (u8 *) space;
5217 struct s2io_nic *sp = dev->priv;
5219 regs->len = XENA_REG_SPACE;
5220 regs->version = sp->pdev->subsystem_device;
5222 for (i = 0; i < regs->len; i += 8) {
5223 reg = readq(sp->bar0 + i);
5224 memcpy((reg_space + i), &reg, 8);
5229 * s2io_phy_id - timer function that alternates adapter LED.
5230 * @data : address of the private member of the device structure, which
5231 * is a pointer to the s2io_nic structure, provided as an u32.
5232 * Description: This is actually the timer function that alternates the
5233 * adapter LED bit of the adapter control bit to set/reset every time on
5234 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5235 * once every second.
5237 static void s2io_phy_id(unsigned long data)
5239 struct s2io_nic *sp = (struct s2io_nic *) data;
5240 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5241 u64 val64 = 0;
5242 u16 subid;
5244 subid = sp->pdev->subsystem_device;
5245 if ((sp->device_type == XFRAME_II_DEVICE) ||
5246 ((subid & 0xFF) >= 0x07)) {
5247 val64 = readq(&bar0->gpio_control);
5248 val64 ^= GPIO_CTRL_GPIO_0;
5249 writeq(val64, &bar0->gpio_control);
5250 } else {
5251 val64 = readq(&bar0->adapter_control);
5252 val64 ^= ADAPTER_LED_ON;
5253 writeq(val64, &bar0->adapter_control);
5256 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5260 * s2io_ethtool_idnic - To physically identify the nic on the system.
5261 * @sp : private member of the device structure, which is a pointer to the
5262 * s2io_nic structure.
5263 * @id : pointer to the structure with identification parameters given by
5264 * ethtool.
5265 * Description: Used to physically identify the NIC on the system.
5266 * The Link LED will blink for a time specified by the user for
5267 * identification.
5268 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5269 * identification is possible only if it's link is up.
5270 * Return value:
5271 * int , returns 0 on success
5274 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5276 u64 val64 = 0, last_gpio_ctrl_val;
5277 struct s2io_nic *sp = dev->priv;
5278 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5279 u16 subid;
5281 subid = sp->pdev->subsystem_device;
5282 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5283 if ((sp->device_type == XFRAME_I_DEVICE) &&
5284 ((subid & 0xFF) < 0x07)) {
5285 val64 = readq(&bar0->adapter_control);
5286 if (!(val64 & ADAPTER_CNTL_EN)) {
5287 printk(KERN_ERR
5288 "Adapter Link down, cannot blink LED\n");
5289 return -EFAULT;
5292 if (sp->id_timer.function == NULL) {
5293 init_timer(&sp->id_timer);
5294 sp->id_timer.function = s2io_phy_id;
5295 sp->id_timer.data = (unsigned long) sp;
5297 mod_timer(&sp->id_timer, jiffies);
5298 if (data)
5299 msleep_interruptible(data * HZ);
5300 else
5301 msleep_interruptible(MAX_FLICKER_TIME);
5302 del_timer_sync(&sp->id_timer);
5304 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5305 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5306 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5309 return 0;
5312 static void s2io_ethtool_gringparam(struct net_device *dev,
5313 struct ethtool_ringparam *ering)
5315 struct s2io_nic *sp = dev->priv;
5316 int i,tx_desc_count=0,rx_desc_count=0;
5318 if (sp->rxd_mode == RXD_MODE_1)
5319 ering->rx_max_pending = MAX_RX_DESC_1;
5320 else if (sp->rxd_mode == RXD_MODE_3B)
5321 ering->rx_max_pending = MAX_RX_DESC_2;
5323 ering->tx_max_pending = MAX_TX_DESC;
5324 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5325 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5327 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5328 ering->tx_pending = tx_desc_count;
5329 rx_desc_count = 0;
5330 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5331 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5333 ering->rx_pending = rx_desc_count;
5335 ering->rx_mini_max_pending = 0;
5336 ering->rx_mini_pending = 0;
5337 if(sp->rxd_mode == RXD_MODE_1)
5338 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5339 else if (sp->rxd_mode == RXD_MODE_3B)
5340 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5341 ering->rx_jumbo_pending = rx_desc_count;
5345 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5346 * @sp : private member of the device structure, which is a pointer to the
5347 * s2io_nic structure.
5348 * @ep : pointer to the structure with pause parameters given by ethtool.
5349 * Description:
5350 * Returns the Pause frame generation and reception capability of the NIC.
5351 * Return value:
5352 * void
5354 static void s2io_ethtool_getpause_data(struct net_device *dev,
5355 struct ethtool_pauseparam *ep)
5357 u64 val64;
5358 struct s2io_nic *sp = dev->priv;
5359 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5361 val64 = readq(&bar0->rmac_pause_cfg);
5362 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5363 ep->tx_pause = TRUE;
5364 if (val64 & RMAC_PAUSE_RX_ENABLE)
5365 ep->rx_pause = TRUE;
5366 ep->autoneg = FALSE;
5370 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5371 * @sp : private member of the device structure, which is a pointer to the
5372 * s2io_nic structure.
5373 * @ep : pointer to the structure with pause parameters given by ethtool.
5374 * Description:
5375 * It can be used to set or reset Pause frame generation or reception
5376 * support of the NIC.
5377 * Return value:
5378 * int, returns 0 on Success
5381 static int s2io_ethtool_setpause_data(struct net_device *dev,
5382 struct ethtool_pauseparam *ep)
5384 u64 val64;
5385 struct s2io_nic *sp = dev->priv;
5386 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5388 val64 = readq(&bar0->rmac_pause_cfg);
5389 if (ep->tx_pause)
5390 val64 |= RMAC_PAUSE_GEN_ENABLE;
5391 else
5392 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5393 if (ep->rx_pause)
5394 val64 |= RMAC_PAUSE_RX_ENABLE;
5395 else
5396 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5397 writeq(val64, &bar0->rmac_pause_cfg);
5398 return 0;
5402 * read_eeprom - reads 4 bytes of data from user given offset.
5403 * @sp : private member of the device structure, which is a pointer to the
5404 * s2io_nic structure.
5405 * @off : offset at which the data must be written
5406 * @data : Its an output parameter where the data read at the given
5407 * offset is stored.
5408 * Description:
5409 * Will read 4 bytes of data from the user given offset and return the
5410 * read data.
5411 * NOTE: Will allow to read only part of the EEPROM visible through the
5412 * I2C bus.
5413 * Return value:
5414 * -1 on failure and 0 on success.
5417 #define S2IO_DEV_ID 5
5418 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5420 int ret = -1;
5421 u32 exit_cnt = 0;
5422 u64 val64;
5423 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5425 if (sp->device_type == XFRAME_I_DEVICE) {
5426 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5427 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5428 I2C_CONTROL_CNTL_START;
5429 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5431 while (exit_cnt < 5) {
5432 val64 = readq(&bar0->i2c_control);
5433 if (I2C_CONTROL_CNTL_END(val64)) {
5434 *data = I2C_CONTROL_GET_DATA(val64);
5435 ret = 0;
5436 break;
5438 msleep(50);
5439 exit_cnt++;
5443 if (sp->device_type == XFRAME_II_DEVICE) {
5444 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5445 SPI_CONTROL_BYTECNT(0x3) |
5446 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5447 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5448 val64 |= SPI_CONTROL_REQ;
5449 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5450 while (exit_cnt < 5) {
5451 val64 = readq(&bar0->spi_control);
5452 if (val64 & SPI_CONTROL_NACK) {
5453 ret = 1;
5454 break;
5455 } else if (val64 & SPI_CONTROL_DONE) {
5456 *data = readq(&bar0->spi_data);
5457 *data &= 0xffffff;
5458 ret = 0;
5459 break;
5461 msleep(50);
5462 exit_cnt++;
5465 return ret;
5469 * write_eeprom - actually writes the relevant part of the data value.
5470 * @sp : private member of the device structure, which is a pointer to the
5471 * s2io_nic structure.
5472 * @off : offset at which the data must be written
5473 * @data : The data that is to be written
5474 * @cnt : Number of bytes of the data that are actually to be written into
5475 * the Eeprom. (max of 3)
5476 * Description:
5477 * Actually writes the relevant part of the data value into the Eeprom
5478 * through the I2C bus.
5479 * Return value:
5480 * 0 on success, -1 on failure.
5483 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5485 int exit_cnt = 0, ret = -1;
5486 u64 val64;
5487 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5489 if (sp->device_type == XFRAME_I_DEVICE) {
5490 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5491 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5492 I2C_CONTROL_CNTL_START;
5493 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5495 while (exit_cnt < 5) {
5496 val64 = readq(&bar0->i2c_control);
5497 if (I2C_CONTROL_CNTL_END(val64)) {
5498 if (!(val64 & I2C_CONTROL_NACK))
5499 ret = 0;
5500 break;
5502 msleep(50);
5503 exit_cnt++;
5507 if (sp->device_type == XFRAME_II_DEVICE) {
5508 int write_cnt = (cnt == 8) ? 0 : cnt;
5509 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5511 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5512 SPI_CONTROL_BYTECNT(write_cnt) |
5513 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5514 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5515 val64 |= SPI_CONTROL_REQ;
5516 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5517 while (exit_cnt < 5) {
5518 val64 = readq(&bar0->spi_control);
5519 if (val64 & SPI_CONTROL_NACK) {
5520 ret = 1;
5521 break;
5522 } else if (val64 & SPI_CONTROL_DONE) {
5523 ret = 0;
5524 break;
5526 msleep(50);
5527 exit_cnt++;
5530 return ret;
5532 static void s2io_vpd_read(struct s2io_nic *nic)
5534 u8 *vpd_data;
5535 u8 data;
5536 int i=0, cnt, fail = 0;
5537 int vpd_addr = 0x80;
5539 if (nic->device_type == XFRAME_II_DEVICE) {
5540 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5541 vpd_addr = 0x80;
5543 else {
5544 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5545 vpd_addr = 0x50;
5547 strcpy(nic->serial_num, "NOT AVAILABLE");
5549 vpd_data = kmalloc(256, GFP_KERNEL);
5550 if (!vpd_data) {
5551 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5552 return;
5554 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5556 for (i = 0; i < 256; i +=4 ) {
5557 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5558 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5559 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5560 for (cnt = 0; cnt <5; cnt++) {
5561 msleep(2);
5562 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5563 if (data == 0x80)
5564 break;
5566 if (cnt >= 5) {
5567 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5568 fail = 1;
5569 break;
5571 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5572 (u32 *)&vpd_data[i]);
5575 if(!fail) {
5576 /* read serial number of adapter */
5577 for (cnt = 0; cnt < 256; cnt++) {
5578 if ((vpd_data[cnt] == 'S') &&
5579 (vpd_data[cnt+1] == 'N') &&
5580 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5581 memset(nic->serial_num, 0, VPD_STRING_LEN);
5582 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5583 vpd_data[cnt+2]);
5584 break;
5589 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5590 memset(nic->product_name, 0, vpd_data[1]);
5591 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5593 kfree(vpd_data);
5594 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5598 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5599 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5600 * @eeprom : pointer to the user level structure provided by ethtool,
5601 * containing all relevant information.
5602 * @data_buf : user defined value to be written into Eeprom.
5603 * Description: Reads the values stored in the Eeprom at given offset
5604 * for a given length. Stores these values int the input argument data
5605 * buffer 'data_buf' and returns these to the caller (ethtool.)
5606 * Return value:
5607 * int 0 on success
5610 static int s2io_ethtool_geeprom(struct net_device *dev,
5611 struct ethtool_eeprom *eeprom, u8 * data_buf)
5613 u32 i, valid;
5614 u64 data;
5615 struct s2io_nic *sp = dev->priv;
5617 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5619 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5620 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5622 for (i = 0; i < eeprom->len; i += 4) {
5623 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5624 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5625 return -EFAULT;
5627 valid = INV(data);
5628 memcpy((data_buf + i), &valid, 4);
5630 return 0;
5634 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5635 * @sp : private member of the device structure, which is a pointer to the
5636 * s2io_nic structure.
5637 * @eeprom : pointer to the user level structure provided by ethtool,
5638 * containing all relevant information.
5639 * @data_buf ; user defined value to be written into Eeprom.
5640 * Description:
5641 * Tries to write the user provided value in the Eeprom, at the offset
5642 * given by the user.
5643 * Return value:
5644 * 0 on success, -EFAULT on failure.
5647 static int s2io_ethtool_seeprom(struct net_device *dev,
5648 struct ethtool_eeprom *eeprom,
5649 u8 * data_buf)
5651 int len = eeprom->len, cnt = 0;
5652 u64 valid = 0, data;
5653 struct s2io_nic *sp = dev->priv;
5655 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5656 DBG_PRINT(ERR_DBG,
5657 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5658 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5659 eeprom->magic);
5660 return -EFAULT;
5663 while (len) {
5664 data = (u32) data_buf[cnt] & 0x000000FF;
5665 if (data) {
5666 valid = (u32) (data << 24);
5667 } else
5668 valid = data;
5670 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5671 DBG_PRINT(ERR_DBG,
5672 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5673 DBG_PRINT(ERR_DBG,
5674 "write into the specified offset\n");
5675 return -EFAULT;
5677 cnt++;
5678 len--;
5681 return 0;
5685 * s2io_register_test - reads and writes into all clock domains.
5686 * @sp : private member of the device structure, which is a pointer to the
5687 * s2io_nic structure.
5688 * @data : variable that returns the result of each of the test conducted b
5689 * by the driver.
5690 * Description:
5691 * Read and write into all clock domains. The NIC has 3 clock domains,
5692 * see that registers in all the three regions are accessible.
5693 * Return value:
5694 * 0 on success.
5697 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5699 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5700 u64 val64 = 0, exp_val;
5701 int fail = 0;
5703 val64 = readq(&bar0->pif_rd_swapper_fb);
5704 if (val64 != 0x123456789abcdefULL) {
5705 fail = 1;
5706 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5709 val64 = readq(&bar0->rmac_pause_cfg);
5710 if (val64 != 0xc000ffff00000000ULL) {
5711 fail = 1;
5712 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5715 val64 = readq(&bar0->rx_queue_cfg);
5716 if (sp->device_type == XFRAME_II_DEVICE)
5717 exp_val = 0x0404040404040404ULL;
5718 else
5719 exp_val = 0x0808080808080808ULL;
5720 if (val64 != exp_val) {
5721 fail = 1;
5722 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5725 val64 = readq(&bar0->xgxs_efifo_cfg);
5726 if (val64 != 0x000000001923141EULL) {
5727 fail = 1;
5728 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5731 val64 = 0x5A5A5A5A5A5A5A5AULL;
5732 writeq(val64, &bar0->xmsi_data);
5733 val64 = readq(&bar0->xmsi_data);
5734 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5735 fail = 1;
5736 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5739 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5740 writeq(val64, &bar0->xmsi_data);
5741 val64 = readq(&bar0->xmsi_data);
5742 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5743 fail = 1;
5744 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5747 *data = fail;
5748 return fail;
5752 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5753 * @sp : private member of the device structure, which is a pointer to the
5754 * s2io_nic structure.
5755 * @data:variable that returns the result of each of the test conducted by
5756 * the driver.
5757 * Description:
5758 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5759 * register.
5760 * Return value:
5761 * 0 on success.
5764 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5766 int fail = 0;
5767 u64 ret_data, org_4F0, org_7F0;
5768 u8 saved_4F0 = 0, saved_7F0 = 0;
5769 struct net_device *dev = sp->dev;
5771 /* Test Write Error at offset 0 */
5772 /* Note that SPI interface allows write access to all areas
5773 * of EEPROM. Hence doing all negative testing only for Xframe I.
5775 if (sp->device_type == XFRAME_I_DEVICE)
5776 if (!write_eeprom(sp, 0, 0, 3))
5777 fail = 1;
5779 /* Save current values at offsets 0x4F0 and 0x7F0 */
5780 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5781 saved_4F0 = 1;
5782 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5783 saved_7F0 = 1;
5785 /* Test Write at offset 4f0 */
5786 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5787 fail = 1;
5788 if (read_eeprom(sp, 0x4F0, &ret_data))
5789 fail = 1;
5791 if (ret_data != 0x012345) {
5792 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5793 "Data written %llx Data read %llx\n",
5794 dev->name, (unsigned long long)0x12345,
5795 (unsigned long long)ret_data);
5796 fail = 1;
5799 /* Reset the EEPROM data go FFFF */
5800 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5802 /* Test Write Request Error at offset 0x7c */
5803 if (sp->device_type == XFRAME_I_DEVICE)
5804 if (!write_eeprom(sp, 0x07C, 0, 3))
5805 fail = 1;
5807 /* Test Write Request at offset 0x7f0 */
5808 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5809 fail = 1;
5810 if (read_eeprom(sp, 0x7F0, &ret_data))
5811 fail = 1;
5813 if (ret_data != 0x012345) {
5814 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5815 "Data written %llx Data read %llx\n",
5816 dev->name, (unsigned long long)0x12345,
5817 (unsigned long long)ret_data);
5818 fail = 1;
5821 /* Reset the EEPROM data go FFFF */
5822 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5824 if (sp->device_type == XFRAME_I_DEVICE) {
5825 /* Test Write Error at offset 0x80 */
5826 if (!write_eeprom(sp, 0x080, 0, 3))
5827 fail = 1;
5829 /* Test Write Error at offset 0xfc */
5830 if (!write_eeprom(sp, 0x0FC, 0, 3))
5831 fail = 1;
5833 /* Test Write Error at offset 0x100 */
5834 if (!write_eeprom(sp, 0x100, 0, 3))
5835 fail = 1;
5837 /* Test Write Error at offset 4ec */
5838 if (!write_eeprom(sp, 0x4EC, 0, 3))
5839 fail = 1;
5842 /* Restore values at offsets 0x4F0 and 0x7F0 */
5843 if (saved_4F0)
5844 write_eeprom(sp, 0x4F0, org_4F0, 3);
5845 if (saved_7F0)
5846 write_eeprom(sp, 0x7F0, org_7F0, 3);
5848 *data = fail;
5849 return fail;
5853 * s2io_bist_test - invokes the MemBist test of the card .
5854 * @sp : private member of the device structure, which is a pointer to the
5855 * s2io_nic structure.
5856 * @data:variable that returns the result of each of the test conducted by
5857 * the driver.
5858 * Description:
5859 * This invokes the MemBist test of the card. We give around
5860 * 2 secs time for the Test to complete. If it's still not complete
5861 * within this peiod, we consider that the test failed.
5862 * Return value:
5863 * 0 on success and -1 on failure.
5866 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5868 u8 bist = 0;
5869 int cnt = 0, ret = -1;
5871 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5872 bist |= PCI_BIST_START;
5873 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5875 while (cnt < 20) {
5876 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5877 if (!(bist & PCI_BIST_START)) {
5878 *data = (bist & PCI_BIST_CODE_MASK);
5879 ret = 0;
5880 break;
5882 msleep(100);
5883 cnt++;
5886 return ret;
5890 * s2io-link_test - verifies the link state of the nic
5891 * @sp ; private member of the device structure, which is a pointer to the
5892 * s2io_nic structure.
5893 * @data: variable that returns the result of each of the test conducted by
5894 * the driver.
5895 * Description:
5896 * The function verifies the link state of the NIC and updates the input
5897 * argument 'data' appropriately.
5898 * Return value:
5899 * 0 on success.
5902 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5904 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5905 u64 val64;
5907 val64 = readq(&bar0->adapter_status);
5908 if(!(LINK_IS_UP(val64)))
5909 *data = 1;
5910 else
5911 *data = 0;
5913 return *data;
5917 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5918 * @sp - private member of the device structure, which is a pointer to the
5919 * s2io_nic structure.
5920 * @data - variable that returns the result of each of the test
5921 * conducted by the driver.
5922 * Description:
5923 * This is one of the offline test that tests the read and write
5924 * access to the RldRam chip on the NIC.
5925 * Return value:
5926 * 0 on success.
5929 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5931 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5932 u64 val64;
5933 int cnt, iteration = 0, test_fail = 0;
5935 val64 = readq(&bar0->adapter_control);
5936 val64 &= ~ADAPTER_ECC_EN;
5937 writeq(val64, &bar0->adapter_control);
5939 val64 = readq(&bar0->mc_rldram_test_ctrl);
5940 val64 |= MC_RLDRAM_TEST_MODE;
5941 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5943 val64 = readq(&bar0->mc_rldram_mrs);
5944 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5945 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5947 val64 |= MC_RLDRAM_MRS_ENABLE;
5948 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5950 while (iteration < 2) {
5951 val64 = 0x55555555aaaa0000ULL;
5952 if (iteration == 1) {
5953 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5955 writeq(val64, &bar0->mc_rldram_test_d0);
5957 val64 = 0xaaaa5a5555550000ULL;
5958 if (iteration == 1) {
5959 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5961 writeq(val64, &bar0->mc_rldram_test_d1);
5963 val64 = 0x55aaaaaaaa5a0000ULL;
5964 if (iteration == 1) {
5965 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5967 writeq(val64, &bar0->mc_rldram_test_d2);
5969 val64 = (u64) (0x0000003ffffe0100ULL);
5970 writeq(val64, &bar0->mc_rldram_test_add);
5972 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5973 MC_RLDRAM_TEST_GO;
5974 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5976 for (cnt = 0; cnt < 5; cnt++) {
5977 val64 = readq(&bar0->mc_rldram_test_ctrl);
5978 if (val64 & MC_RLDRAM_TEST_DONE)
5979 break;
5980 msleep(200);
5983 if (cnt == 5)
5984 break;
5986 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5987 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5989 for (cnt = 0; cnt < 5; cnt++) {
5990 val64 = readq(&bar0->mc_rldram_test_ctrl);
5991 if (val64 & MC_RLDRAM_TEST_DONE)
5992 break;
5993 msleep(500);
5996 if (cnt == 5)
5997 break;
5999 val64 = readq(&bar0->mc_rldram_test_ctrl);
6000 if (!(val64 & MC_RLDRAM_TEST_PASS))
6001 test_fail = 1;
6003 iteration++;
6006 *data = test_fail;
6008 /* Bring the adapter out of test mode */
6009 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6011 return test_fail;
6015 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6016 * @sp : private member of the device structure, which is a pointer to the
6017 * s2io_nic structure.
6018 * @ethtest : pointer to a ethtool command specific structure that will be
6019 * returned to the user.
6020 * @data : variable that returns the result of each of the test
6021 * conducted by the driver.
6022 * Description:
6023 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6024 * the health of the card.
6025 * Return value:
6026 * void
6029 static void s2io_ethtool_test(struct net_device *dev,
6030 struct ethtool_test *ethtest,
6031 uint64_t * data)
6033 struct s2io_nic *sp = dev->priv;
6034 int orig_state = netif_running(sp->dev);
6036 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6037 /* Offline Tests. */
6038 if (orig_state)
6039 s2io_close(sp->dev);
6041 if (s2io_register_test(sp, &data[0]))
6042 ethtest->flags |= ETH_TEST_FL_FAILED;
6044 s2io_reset(sp);
6046 if (s2io_rldram_test(sp, &data[3]))
6047 ethtest->flags |= ETH_TEST_FL_FAILED;
6049 s2io_reset(sp);
6051 if (s2io_eeprom_test(sp, &data[1]))
6052 ethtest->flags |= ETH_TEST_FL_FAILED;
6054 if (s2io_bist_test(sp, &data[4]))
6055 ethtest->flags |= ETH_TEST_FL_FAILED;
6057 if (orig_state)
6058 s2io_open(sp->dev);
6060 data[2] = 0;
6061 } else {
6062 /* Online Tests. */
6063 if (!orig_state) {
6064 DBG_PRINT(ERR_DBG,
6065 "%s: is not up, cannot run test\n",
6066 dev->name);
6067 data[0] = -1;
6068 data[1] = -1;
6069 data[2] = -1;
6070 data[3] = -1;
6071 data[4] = -1;
6074 if (s2io_link_test(sp, &data[2]))
6075 ethtest->flags |= ETH_TEST_FL_FAILED;
6077 data[0] = 0;
6078 data[1] = 0;
6079 data[3] = 0;
6080 data[4] = 0;
6084 static void s2io_get_ethtool_stats(struct net_device *dev,
6085 struct ethtool_stats *estats,
6086 u64 * tmp_stats)
6088 int i = 0, k;
6089 struct s2io_nic *sp = dev->priv;
6090 struct stat_block *stat_info = sp->mac_control.stats_info;
6092 s2io_updt_stats(sp);
6093 tmp_stats[i++] =
6094 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6095 le32_to_cpu(stat_info->tmac_frms);
6096 tmp_stats[i++] =
6097 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6098 le32_to_cpu(stat_info->tmac_data_octets);
6099 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6100 tmp_stats[i++] =
6101 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6102 le32_to_cpu(stat_info->tmac_mcst_frms);
6103 tmp_stats[i++] =
6104 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6105 le32_to_cpu(stat_info->tmac_bcst_frms);
6106 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6107 tmp_stats[i++] =
6108 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6109 le32_to_cpu(stat_info->tmac_ttl_octets);
6110 tmp_stats[i++] =
6111 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6112 le32_to_cpu(stat_info->tmac_ucst_frms);
6113 tmp_stats[i++] =
6114 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6115 le32_to_cpu(stat_info->tmac_nucst_frms);
6116 tmp_stats[i++] =
6117 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6118 le32_to_cpu(stat_info->tmac_any_err_frms);
6119 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6120 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6121 tmp_stats[i++] =
6122 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6123 le32_to_cpu(stat_info->tmac_vld_ip);
6124 tmp_stats[i++] =
6125 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6126 le32_to_cpu(stat_info->tmac_drop_ip);
6127 tmp_stats[i++] =
6128 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6129 le32_to_cpu(stat_info->tmac_icmp);
6130 tmp_stats[i++] =
6131 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6132 le32_to_cpu(stat_info->tmac_rst_tcp);
6133 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6134 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6135 le32_to_cpu(stat_info->tmac_udp);
6136 tmp_stats[i++] =
6137 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6138 le32_to_cpu(stat_info->rmac_vld_frms);
6139 tmp_stats[i++] =
6140 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6141 le32_to_cpu(stat_info->rmac_data_octets);
6142 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6143 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6144 tmp_stats[i++] =
6145 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6146 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6147 tmp_stats[i++] =
6148 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6149 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6150 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6151 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6152 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6153 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6154 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6155 tmp_stats[i++] =
6156 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6157 le32_to_cpu(stat_info->rmac_ttl_octets);
6158 tmp_stats[i++] =
6159 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6160 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6161 tmp_stats[i++] =
6162 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6163 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6164 tmp_stats[i++] =
6165 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6166 le32_to_cpu(stat_info->rmac_discarded_frms);
6167 tmp_stats[i++] =
6168 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6169 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6170 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6171 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6172 tmp_stats[i++] =
6173 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6174 le32_to_cpu(stat_info->rmac_usized_frms);
6175 tmp_stats[i++] =
6176 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6177 le32_to_cpu(stat_info->rmac_osized_frms);
6178 tmp_stats[i++] =
6179 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6180 le32_to_cpu(stat_info->rmac_frag_frms);
6181 tmp_stats[i++] =
6182 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6183 le32_to_cpu(stat_info->rmac_jabber_frms);
6184 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6185 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6186 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6187 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6188 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6189 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6190 tmp_stats[i++] =
6191 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6192 le32_to_cpu(stat_info->rmac_ip);
6193 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6194 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6195 tmp_stats[i++] =
6196 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6197 le32_to_cpu(stat_info->rmac_drop_ip);
6198 tmp_stats[i++] =
6199 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6200 le32_to_cpu(stat_info->rmac_icmp);
6201 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6202 tmp_stats[i++] =
6203 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6204 le32_to_cpu(stat_info->rmac_udp);
6205 tmp_stats[i++] =
6206 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6207 le32_to_cpu(stat_info->rmac_err_drp_udp);
6208 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6209 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6210 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6211 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6212 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6213 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6214 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6215 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6216 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6217 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6218 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6219 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6220 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6221 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6222 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6223 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6224 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6225 tmp_stats[i++] =
6226 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6227 le32_to_cpu(stat_info->rmac_pause_cnt);
6228 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6229 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6230 tmp_stats[i++] =
6231 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6232 le32_to_cpu(stat_info->rmac_accepted_ip);
6233 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6234 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6235 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6236 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6237 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6238 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6239 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6240 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6241 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6242 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6243 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6244 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6245 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6246 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6247 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6248 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6249 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6250 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6251 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6253 /* Enhanced statistics exist only for Hercules */
6254 if(sp->device_type == XFRAME_II_DEVICE) {
6255 tmp_stats[i++] =
6256 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6257 tmp_stats[i++] =
6258 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6259 tmp_stats[i++] =
6260 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6261 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6262 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6263 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6264 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6265 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6266 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6267 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6268 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6269 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6270 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6271 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6272 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6273 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6276 tmp_stats[i++] = 0;
6277 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6278 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6279 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6280 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6281 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6282 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6283 for (k = 0; k < MAX_RX_RINGS; k++)
6284 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6285 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6286 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6287 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6288 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6289 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6290 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6291 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6292 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6293 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6294 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6295 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6296 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6297 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6298 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6299 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6300 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6301 if (stat_info->sw_stat.num_aggregations) {
6302 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6303 int count = 0;
6305 * Since 64-bit divide does not work on all platforms,
6306 * do repeated subtraction.
6308 while (tmp >= stat_info->sw_stat.num_aggregations) {
6309 tmp -= stat_info->sw_stat.num_aggregations;
6310 count++;
6312 tmp_stats[i++] = count;
6314 else
6315 tmp_stats[i++] = 0;
6316 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6317 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6318 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6319 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6320 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6321 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6322 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6323 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6324 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6326 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6327 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6328 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6329 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6330 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6332 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6333 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6334 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6335 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6336 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6337 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6338 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6339 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6340 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6341 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6342 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6343 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6344 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6345 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6346 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6347 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6348 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6349 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6350 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6351 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6352 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6353 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6354 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6355 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6356 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6357 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6360 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6362 return (XENA_REG_SPACE);
6366 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6368 struct s2io_nic *sp = dev->priv;
6370 return (sp->rx_csum);
6373 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6375 struct s2io_nic *sp = dev->priv;
6377 if (data)
6378 sp->rx_csum = 1;
6379 else
6380 sp->rx_csum = 0;
6382 return 0;
6385 static int s2io_get_eeprom_len(struct net_device *dev)
6387 return (XENA_EEPROM_SPACE);
6390 static int s2io_get_sset_count(struct net_device *dev, int sset)
6392 struct s2io_nic *sp = dev->priv;
6394 switch (sset) {
6395 case ETH_SS_TEST:
6396 return S2IO_TEST_LEN;
6397 case ETH_SS_STATS:
6398 switch(sp->device_type) {
6399 case XFRAME_I_DEVICE:
6400 return XFRAME_I_STAT_LEN;
6401 case XFRAME_II_DEVICE:
6402 return XFRAME_II_STAT_LEN;
6403 default:
6404 return 0;
6406 default:
6407 return -EOPNOTSUPP;
6411 static void s2io_ethtool_get_strings(struct net_device *dev,
6412 u32 stringset, u8 * data)
6414 int stat_size = 0;
6415 struct s2io_nic *sp = dev->priv;
6417 switch (stringset) {
6418 case ETH_SS_TEST:
6419 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6420 break;
6421 case ETH_SS_STATS:
6422 stat_size = sizeof(ethtool_xena_stats_keys);
6423 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6424 if(sp->device_type == XFRAME_II_DEVICE) {
6425 memcpy(data + stat_size,
6426 &ethtool_enhanced_stats_keys,
6427 sizeof(ethtool_enhanced_stats_keys));
6428 stat_size += sizeof(ethtool_enhanced_stats_keys);
6431 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6432 sizeof(ethtool_driver_stats_keys));
6436 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6438 if (data)
6439 dev->features |= NETIF_F_IP_CSUM;
6440 else
6441 dev->features &= ~NETIF_F_IP_CSUM;
6443 return 0;
6446 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6448 return (dev->features & NETIF_F_TSO) != 0;
6450 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6452 if (data)
6453 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6454 else
6455 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6457 return 0;
6460 static const struct ethtool_ops netdev_ethtool_ops = {
6461 .get_settings = s2io_ethtool_gset,
6462 .set_settings = s2io_ethtool_sset,
6463 .get_drvinfo = s2io_ethtool_gdrvinfo,
6464 .get_regs_len = s2io_ethtool_get_regs_len,
6465 .get_regs = s2io_ethtool_gregs,
6466 .get_link = ethtool_op_get_link,
6467 .get_eeprom_len = s2io_get_eeprom_len,
6468 .get_eeprom = s2io_ethtool_geeprom,
6469 .set_eeprom = s2io_ethtool_seeprom,
6470 .get_ringparam = s2io_ethtool_gringparam,
6471 .get_pauseparam = s2io_ethtool_getpause_data,
6472 .set_pauseparam = s2io_ethtool_setpause_data,
6473 .get_rx_csum = s2io_ethtool_get_rx_csum,
6474 .set_rx_csum = s2io_ethtool_set_rx_csum,
6475 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6476 .set_sg = ethtool_op_set_sg,
6477 .get_tso = s2io_ethtool_op_get_tso,
6478 .set_tso = s2io_ethtool_op_set_tso,
6479 .set_ufo = ethtool_op_set_ufo,
6480 .self_test = s2io_ethtool_test,
6481 .get_strings = s2io_ethtool_get_strings,
6482 .phys_id = s2io_ethtool_idnic,
6483 .get_ethtool_stats = s2io_get_ethtool_stats,
6484 .get_sset_count = s2io_get_sset_count,
6488 * s2io_ioctl - Entry point for the Ioctl
6489 * @dev : Device pointer.
6490 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6491 * a proprietary structure used to pass information to the driver.
6492 * @cmd : This is used to distinguish between the different commands that
6493 * can be passed to the IOCTL functions.
6494 * Description:
6495 * Currently there are no special functionality supported in IOCTL, hence
6496 * function always return EOPNOTSUPPORTED
6499 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6501 return -EOPNOTSUPP;
6505 * s2io_change_mtu - entry point to change MTU size for the device.
6506 * @dev : device pointer.
6507 * @new_mtu : the new MTU size for the device.
6508 * Description: A driver entry point to change MTU size for the device.
6509 * Before changing the MTU the device must be stopped.
6510 * Return value:
6511 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6512 * file on failure.
6515 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6517 struct s2io_nic *sp = dev->priv;
6518 int ret = 0;
6520 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6521 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6522 dev->name);
6523 return -EPERM;
6526 dev->mtu = new_mtu;
6527 if (netif_running(dev)) {
6528 s2io_card_down(sp);
6529 netif_stop_queue(dev);
6530 ret = s2io_card_up(sp);
6531 if (ret) {
6532 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6533 __FUNCTION__);
6534 return ret;
6536 if (netif_queue_stopped(dev))
6537 netif_wake_queue(dev);
6538 } else { /* Device is down */
6539 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6540 u64 val64 = new_mtu;
6542 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6545 return ret;
6549 * s2io_tasklet - Bottom half of the ISR.
6550 * @dev_adr : address of the device structure in dma_addr_t format.
6551 * Description:
6552 * This is the tasklet or the bottom half of the ISR. This is
6553 * an extension of the ISR which is scheduled by the scheduler to be run
6554 * when the load on the CPU is low. All low priority tasks of the ISR can
6555 * be pushed into the tasklet. For now the tasklet is used only to
6556 * replenish the Rx buffers in the Rx buffer descriptors.
6557 * Return value:
6558 * void.
6561 static void s2io_tasklet(unsigned long dev_addr)
6563 struct net_device *dev = (struct net_device *) dev_addr;
6564 struct s2io_nic *sp = dev->priv;
6565 int i, ret;
6566 struct mac_info *mac_control;
6567 struct config_param *config;
6569 mac_control = &sp->mac_control;
6570 config = &sp->config;
6572 if (!TASKLET_IN_USE) {
6573 for (i = 0; i < config->rx_ring_num; i++) {
6574 ret = fill_rx_buffers(sp, i);
6575 if (ret == -ENOMEM) {
6576 DBG_PRINT(INFO_DBG, "%s: Out of ",
6577 dev->name);
6578 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6579 break;
6580 } else if (ret == -EFILL) {
6581 DBG_PRINT(INFO_DBG,
6582 "%s: Rx Ring %d is full\n",
6583 dev->name, i);
6584 break;
6587 clear_bit(0, (&sp->tasklet_status));
6592 * s2io_set_link - Set the LInk status
6593 * @data: long pointer to device private structue
6594 * Description: Sets the link status for the adapter
6597 static void s2io_set_link(struct work_struct *work)
6599 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6600 struct net_device *dev = nic->dev;
6601 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6602 register u64 val64;
6603 u16 subid;
6605 rtnl_lock();
6607 if (!netif_running(dev))
6608 goto out_unlock;
6610 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6611 /* The card is being reset, no point doing anything */
6612 goto out_unlock;
6615 subid = nic->pdev->subsystem_device;
6616 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6618 * Allow a small delay for the NICs self initiated
6619 * cleanup to complete.
6621 msleep(100);
6624 val64 = readq(&bar0->adapter_status);
6625 if (LINK_IS_UP(val64)) {
6626 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6627 if (verify_xena_quiescence(nic)) {
6628 val64 = readq(&bar0->adapter_control);
6629 val64 |= ADAPTER_CNTL_EN;
6630 writeq(val64, &bar0->adapter_control);
6631 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6632 nic->device_type, subid)) {
6633 val64 = readq(&bar0->gpio_control);
6634 val64 |= GPIO_CTRL_GPIO_0;
6635 writeq(val64, &bar0->gpio_control);
6636 val64 = readq(&bar0->gpio_control);
6637 } else {
6638 val64 |= ADAPTER_LED_ON;
6639 writeq(val64, &bar0->adapter_control);
6641 nic->device_enabled_once = TRUE;
6642 } else {
6643 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6644 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6645 netif_stop_queue(dev);
6648 val64 = readq(&bar0->adapter_control);
6649 val64 |= ADAPTER_LED_ON;
6650 writeq(val64, &bar0->adapter_control);
6651 s2io_link(nic, LINK_UP);
6652 } else {
6653 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6654 subid)) {
6655 val64 = readq(&bar0->gpio_control);
6656 val64 &= ~GPIO_CTRL_GPIO_0;
6657 writeq(val64, &bar0->gpio_control);
6658 val64 = readq(&bar0->gpio_control);
6660 /* turn off LED */
6661 val64 = readq(&bar0->adapter_control);
6662 val64 = val64 &(~ADAPTER_LED_ON);
6663 writeq(val64, &bar0->adapter_control);
6664 s2io_link(nic, LINK_DOWN);
6666 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6668 out_unlock:
6669 rtnl_unlock();
6672 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6673 struct buffAdd *ba,
6674 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6675 u64 *temp2, int size)
6677 struct net_device *dev = sp->dev;
6678 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6680 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6681 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6682 /* allocate skb */
6683 if (*skb) {
6684 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6686 * As Rx frame are not going to be processed,
6687 * using same mapped address for the Rxd
6688 * buffer pointer
6690 rxdp1->Buffer0_ptr = *temp0;
6691 } else {
6692 *skb = dev_alloc_skb(size);
6693 if (!(*skb)) {
6694 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6695 DBG_PRINT(INFO_DBG, "memory to allocate ");
6696 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6697 sp->mac_control.stats_info->sw_stat. \
6698 mem_alloc_fail_cnt++;
6699 return -ENOMEM ;
6701 sp->mac_control.stats_info->sw_stat.mem_allocated
6702 += (*skb)->truesize;
6703 /* storing the mapped addr in a temp variable
6704 * such it will be used for next rxd whose
6705 * Host Control is NULL
6707 rxdp1->Buffer0_ptr = *temp0 =
6708 pci_map_single( sp->pdev, (*skb)->data,
6709 size - NET_IP_ALIGN,
6710 PCI_DMA_FROMDEVICE);
6711 if( (rxdp1->Buffer0_ptr == 0) ||
6712 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6713 goto memalloc_failed;
6715 rxdp->Host_Control = (unsigned long) (*skb);
6717 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6718 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6719 /* Two buffer Mode */
6720 if (*skb) {
6721 rxdp3->Buffer2_ptr = *temp2;
6722 rxdp3->Buffer0_ptr = *temp0;
6723 rxdp3->Buffer1_ptr = *temp1;
6724 } else {
6725 *skb = dev_alloc_skb(size);
6726 if (!(*skb)) {
6727 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6728 DBG_PRINT(INFO_DBG, "memory to allocate ");
6729 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6730 sp->mac_control.stats_info->sw_stat. \
6731 mem_alloc_fail_cnt++;
6732 return -ENOMEM;
6734 sp->mac_control.stats_info->sw_stat.mem_allocated
6735 += (*skb)->truesize;
6736 rxdp3->Buffer2_ptr = *temp2 =
6737 pci_map_single(sp->pdev, (*skb)->data,
6738 dev->mtu + 4,
6739 PCI_DMA_FROMDEVICE);
6740 if( (rxdp3->Buffer2_ptr == 0) ||
6741 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6742 goto memalloc_failed;
6744 rxdp3->Buffer0_ptr = *temp0 =
6745 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6746 PCI_DMA_FROMDEVICE);
6747 if( (rxdp3->Buffer0_ptr == 0) ||
6748 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6749 pci_unmap_single (sp->pdev,
6750 (dma_addr_t)rxdp3->Buffer2_ptr,
6751 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6752 goto memalloc_failed;
6754 rxdp->Host_Control = (unsigned long) (*skb);
6756 /* Buffer-1 will be dummy buffer not used */
6757 rxdp3->Buffer1_ptr = *temp1 =
6758 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6759 PCI_DMA_FROMDEVICE);
6760 if( (rxdp3->Buffer1_ptr == 0) ||
6761 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6762 pci_unmap_single (sp->pdev,
6763 (dma_addr_t)rxdp3->Buffer0_ptr,
6764 BUF0_LEN, PCI_DMA_FROMDEVICE);
6765 pci_unmap_single (sp->pdev,
6766 (dma_addr_t)rxdp3->Buffer2_ptr,
6767 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6768 goto memalloc_failed;
6772 return 0;
6773 memalloc_failed:
6774 stats->pci_map_fail_cnt++;
6775 stats->mem_freed += (*skb)->truesize;
6776 dev_kfree_skb(*skb);
6777 return -ENOMEM;
6780 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6781 int size)
6783 struct net_device *dev = sp->dev;
6784 if (sp->rxd_mode == RXD_MODE_1) {
6785 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6786 } else if (sp->rxd_mode == RXD_MODE_3B) {
6787 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6788 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6789 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6793 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6795 int i, j, k, blk_cnt = 0, size;
6796 struct mac_info * mac_control = &sp->mac_control;
6797 struct config_param *config = &sp->config;
6798 struct net_device *dev = sp->dev;
6799 struct RxD_t *rxdp = NULL;
6800 struct sk_buff *skb = NULL;
6801 struct buffAdd *ba = NULL;
6802 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6804 /* Calculate the size based on ring mode */
6805 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6806 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6807 if (sp->rxd_mode == RXD_MODE_1)
6808 size += NET_IP_ALIGN;
6809 else if (sp->rxd_mode == RXD_MODE_3B)
6810 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6812 for (i = 0; i < config->rx_ring_num; i++) {
6813 blk_cnt = config->rx_cfg[i].num_rxd /
6814 (rxd_count[sp->rxd_mode] +1);
6816 for (j = 0; j < blk_cnt; j++) {
6817 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6818 rxdp = mac_control->rings[i].
6819 rx_blocks[j].rxds[k].virt_addr;
6820 if(sp->rxd_mode == RXD_MODE_3B)
6821 ba = &mac_control->rings[i].ba[j][k];
6822 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6823 &skb,(u64 *)&temp0_64,
6824 (u64 *)&temp1_64,
6825 (u64 *)&temp2_64,
6826 size) == ENOMEM) {
6827 return 0;
6830 set_rxd_buffer_size(sp, rxdp, size);
6831 wmb();
6832 /* flip the Ownership bit to Hardware */
6833 rxdp->Control_1 |= RXD_OWN_XENA;
6837 return 0;
6841 static int s2io_add_isr(struct s2io_nic * sp)
6843 int ret = 0;
6844 struct net_device *dev = sp->dev;
6845 int err = 0;
6847 if (sp->config.intr_type == MSI_X)
6848 ret = s2io_enable_msi_x(sp);
6849 if (ret) {
6850 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6851 sp->config.intr_type = INTA;
6854 /* Store the values of the MSIX table in the struct s2io_nic structure */
6855 store_xmsi_data(sp);
6857 /* After proper initialization of H/W, register ISR */
6858 if (sp->config.intr_type == MSI_X) {
6859 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6861 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6862 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6863 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6864 dev->name, i);
6865 err = request_irq(sp->entries[i].vector,
6866 s2io_msix_fifo_handle, 0, sp->desc[i],
6867 sp->s2io_entries[i].arg);
6868 /* If either data or addr is zero print it */
6869 if(!(sp->msix_info[i].addr &&
6870 sp->msix_info[i].data)) {
6871 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6872 "Data:0x%lx\n",sp->desc[i],
6873 (unsigned long long)
6874 sp->msix_info[i].addr,
6875 (unsigned long)
6876 ntohl(sp->msix_info[i].data));
6877 } else {
6878 msix_tx_cnt++;
6880 } else {
6881 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6882 dev->name, i);
6883 err = request_irq(sp->entries[i].vector,
6884 s2io_msix_ring_handle, 0, sp->desc[i],
6885 sp->s2io_entries[i].arg);
6886 /* If either data or addr is zero print it */
6887 if(!(sp->msix_info[i].addr &&
6888 sp->msix_info[i].data)) {
6889 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6890 "Data:0x%lx\n",sp->desc[i],
6891 (unsigned long long)
6892 sp->msix_info[i].addr,
6893 (unsigned long)
6894 ntohl(sp->msix_info[i].data));
6895 } else {
6896 msix_rx_cnt++;
6899 if (err) {
6900 remove_msix_isr(sp);
6901 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6902 "failed\n", dev->name, i);
6903 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6904 dev->name);
6905 sp->config.intr_type = INTA;
6906 break;
6908 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6910 if (!err) {
6911 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6912 msix_tx_cnt);
6913 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6914 msix_rx_cnt);
6917 if (sp->config.intr_type == INTA) {
6918 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6919 sp->name, dev);
6920 if (err) {
6921 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6922 dev->name);
6923 return -1;
6926 return 0;
6928 static void s2io_rem_isr(struct s2io_nic * sp)
6930 if (sp->config.intr_type == MSI_X)
6931 remove_msix_isr(sp);
6932 else
6933 remove_inta_isr(sp);
6936 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6938 int cnt = 0;
6939 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6940 unsigned long flags;
6941 register u64 val64 = 0;
6942 struct config_param *config;
6943 config = &sp->config;
6945 if (!is_s2io_card_up(sp))
6946 return;
6948 del_timer_sync(&sp->alarm_timer);
6949 /* If s2io_set_link task is executing, wait till it completes. */
6950 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6951 msleep(50);
6953 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6955 /* Disable napi */
6956 if (config->napi)
6957 napi_disable(&sp->napi);
6959 /* disable Tx and Rx traffic on the NIC */
6960 if (do_io)
6961 stop_nic(sp);
6963 s2io_rem_isr(sp);
6965 /* Kill tasklet. */
6966 tasklet_kill(&sp->task);
6968 /* Check if the device is Quiescent and then Reset the NIC */
6969 while(do_io) {
6970 /* As per the HW requirement we need to replenish the
6971 * receive buffer to avoid the ring bump. Since there is
6972 * no intention of processing the Rx frame at this pointwe are
6973 * just settting the ownership bit of rxd in Each Rx
6974 * ring to HW and set the appropriate buffer size
6975 * based on the ring mode
6977 rxd_owner_bit_reset(sp);
6979 val64 = readq(&bar0->adapter_status);
6980 if (verify_xena_quiescence(sp)) {
6981 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6982 break;
6985 msleep(50);
6986 cnt++;
6987 if (cnt == 10) {
6988 DBG_PRINT(ERR_DBG,
6989 "s2io_close:Device not Quiescent ");
6990 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6991 (unsigned long long) val64);
6992 break;
6995 if (do_io)
6996 s2io_reset(sp);
6998 spin_lock_irqsave(&sp->tx_lock, flags);
6999 /* Free all Tx buffers */
7000 free_tx_buffers(sp);
7001 spin_unlock_irqrestore(&sp->tx_lock, flags);
7003 /* Free all Rx buffers */
7004 spin_lock_irqsave(&sp->rx_lock, flags);
7005 free_rx_buffers(sp);
7006 spin_unlock_irqrestore(&sp->rx_lock, flags);
7008 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7011 static void s2io_card_down(struct s2io_nic * sp)
7013 do_s2io_card_down(sp, 1);
7016 static int s2io_card_up(struct s2io_nic * sp)
7018 int i, ret = 0;
7019 struct mac_info *mac_control;
7020 struct config_param *config;
7021 struct net_device *dev = (struct net_device *) sp->dev;
7022 u16 interruptible;
7024 /* Initialize the H/W I/O registers */
7025 ret = init_nic(sp);
7026 if (ret != 0) {
7027 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7028 dev->name);
7029 if (ret != -EIO)
7030 s2io_reset(sp);
7031 return ret;
7035 * Initializing the Rx buffers. For now we are considering only 1
7036 * Rx ring and initializing buffers into 30 Rx blocks
7038 mac_control = &sp->mac_control;
7039 config = &sp->config;
7041 for (i = 0; i < config->rx_ring_num; i++) {
7042 if ((ret = fill_rx_buffers(sp, i))) {
7043 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7044 dev->name);
7045 s2io_reset(sp);
7046 free_rx_buffers(sp);
7047 return -ENOMEM;
7049 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7050 atomic_read(&sp->rx_bufs_left[i]));
7053 /* Initialise napi */
7054 if (config->napi)
7055 napi_enable(&sp->napi);
7057 /* Maintain the state prior to the open */
7058 if (sp->promisc_flg)
7059 sp->promisc_flg = 0;
7060 if (sp->m_cast_flg) {
7061 sp->m_cast_flg = 0;
7062 sp->all_multi_pos= 0;
7065 /* Setting its receive mode */
7066 s2io_set_multicast(dev);
7068 if (sp->lro) {
7069 /* Initialize max aggregatable pkts per session based on MTU */
7070 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7071 /* Check if we can use(if specified) user provided value */
7072 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7073 sp->lro_max_aggr_per_sess = lro_max_pkts;
7076 /* Enable Rx Traffic and interrupts on the NIC */
7077 if (start_nic(sp)) {
7078 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7079 s2io_reset(sp);
7080 free_rx_buffers(sp);
7081 return -ENODEV;
7084 /* Add interrupt service routine */
7085 if (s2io_add_isr(sp) != 0) {
7086 if (sp->config.intr_type == MSI_X)
7087 s2io_rem_isr(sp);
7088 s2io_reset(sp);
7089 free_rx_buffers(sp);
7090 return -ENODEV;
7093 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7095 /* Enable tasklet for the device */
7096 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7098 /* Enable select interrupts */
7099 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7100 if (sp->config.intr_type != INTA)
7101 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7102 else {
7103 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7104 interruptible |= TX_PIC_INTR;
7105 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7108 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7109 return 0;
7113 * s2io_restart_nic - Resets the NIC.
7114 * @data : long pointer to the device private structure
7115 * Description:
7116 * This function is scheduled to be run by the s2io_tx_watchdog
7117 * function after 0.5 secs to reset the NIC. The idea is to reduce
7118 * the run time of the watch dog routine which is run holding a
7119 * spin lock.
7122 static void s2io_restart_nic(struct work_struct *work)
7124 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7125 struct net_device *dev = sp->dev;
7127 rtnl_lock();
7129 if (!netif_running(dev))
7130 goto out_unlock;
7132 s2io_card_down(sp);
7133 if (s2io_card_up(sp)) {
7134 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7135 dev->name);
7137 netif_wake_queue(dev);
7138 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7139 dev->name);
7140 out_unlock:
7141 rtnl_unlock();
7145 * s2io_tx_watchdog - Watchdog for transmit side.
7146 * @dev : Pointer to net device structure
7147 * Description:
7148 * This function is triggered if the Tx Queue is stopped
7149 * for a pre-defined amount of time when the Interface is still up.
7150 * If the Interface is jammed in such a situation, the hardware is
7151 * reset (by s2io_close) and restarted again (by s2io_open) to
7152 * overcome any problem that might have been caused in the hardware.
7153 * Return value:
7154 * void
7157 static void s2io_tx_watchdog(struct net_device *dev)
7159 struct s2io_nic *sp = dev->priv;
7161 if (netif_carrier_ok(dev)) {
7162 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7163 schedule_work(&sp->rst_timer_task);
7164 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7169 * rx_osm_handler - To perform some OS related operations on SKB.
7170 * @sp: private member of the device structure,pointer to s2io_nic structure.
7171 * @skb : the socket buffer pointer.
7172 * @len : length of the packet
7173 * @cksum : FCS checksum of the frame.
7174 * @ring_no : the ring from which this RxD was extracted.
7175 * Description:
7176 * This function is called by the Rx interrupt serivce routine to perform
7177 * some OS related operations on the SKB before passing it to the upper
7178 * layers. It mainly checks if the checksum is OK, if so adds it to the
7179 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7180 * to the upper layer. If the checksum is wrong, it increments the Rx
7181 * packet error count, frees the SKB and returns error.
7182 * Return value:
7183 * SUCCESS on success and -1 on failure.
7185 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7187 struct s2io_nic *sp = ring_data->nic;
7188 struct net_device *dev = (struct net_device *) sp->dev;
7189 struct sk_buff *skb = (struct sk_buff *)
7190 ((unsigned long) rxdp->Host_Control);
7191 int ring_no = ring_data->ring_no;
7192 u16 l3_csum, l4_csum;
7193 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7194 struct lro *lro;
7195 u8 err_mask;
7197 skb->dev = dev;
7199 if (err) {
7200 /* Check for parity error */
7201 if (err & 0x1) {
7202 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7204 err_mask = err >> 48;
7205 switch(err_mask) {
7206 case 1:
7207 sp->mac_control.stats_info->sw_stat.
7208 rx_parity_err_cnt++;
7209 break;
7211 case 2:
7212 sp->mac_control.stats_info->sw_stat.
7213 rx_abort_cnt++;
7214 break;
7216 case 3:
7217 sp->mac_control.stats_info->sw_stat.
7218 rx_parity_abort_cnt++;
7219 break;
7221 case 4:
7222 sp->mac_control.stats_info->sw_stat.
7223 rx_rda_fail_cnt++;
7224 break;
7226 case 5:
7227 sp->mac_control.stats_info->sw_stat.
7228 rx_unkn_prot_cnt++;
7229 break;
7231 case 6:
7232 sp->mac_control.stats_info->sw_stat.
7233 rx_fcs_err_cnt++;
7234 break;
7236 case 7:
7237 sp->mac_control.stats_info->sw_stat.
7238 rx_buf_size_err_cnt++;
7239 break;
7241 case 8:
7242 sp->mac_control.stats_info->sw_stat.
7243 rx_rxd_corrupt_cnt++;
7244 break;
7246 case 15:
7247 sp->mac_control.stats_info->sw_stat.
7248 rx_unkn_err_cnt++;
7249 break;
7252 * Drop the packet if bad transfer code. Exception being
7253 * 0x5, which could be due to unsupported IPv6 extension header.
7254 * In this case, we let stack handle the packet.
7255 * Note that in this case, since checksum will be incorrect,
7256 * stack will validate the same.
7258 if (err_mask != 0x5) {
7259 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7260 dev->name, err_mask);
7261 sp->stats.rx_crc_errors++;
7262 sp->mac_control.stats_info->sw_stat.mem_freed
7263 += skb->truesize;
7264 dev_kfree_skb(skb);
7265 atomic_dec(&sp->rx_bufs_left[ring_no]);
7266 rxdp->Host_Control = 0;
7267 return 0;
7271 /* Updating statistics */
7272 sp->stats.rx_packets++;
7273 rxdp->Host_Control = 0;
7274 if (sp->rxd_mode == RXD_MODE_1) {
7275 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7277 sp->stats.rx_bytes += len;
7278 skb_put(skb, len);
7280 } else if (sp->rxd_mode == RXD_MODE_3B) {
7281 int get_block = ring_data->rx_curr_get_info.block_index;
7282 int get_off = ring_data->rx_curr_get_info.offset;
7283 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7284 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7285 unsigned char *buff = skb_push(skb, buf0_len);
7287 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7288 sp->stats.rx_bytes += buf0_len + buf2_len;
7289 memcpy(buff, ba->ba_0, buf0_len);
7290 skb_put(skb, buf2_len);
7293 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7294 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7295 (sp->rx_csum)) {
7296 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7297 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7298 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7300 * NIC verifies if the Checksum of the received
7301 * frame is Ok or not and accordingly returns
7302 * a flag in the RxD.
7304 skb->ip_summed = CHECKSUM_UNNECESSARY;
7305 if (sp->lro) {
7306 u32 tcp_len;
7307 u8 *tcp;
7308 int ret = 0;
7310 ret = s2io_club_tcp_session(skb->data, &tcp,
7311 &tcp_len, &lro,
7312 rxdp, sp);
7313 switch (ret) {
7314 case 3: /* Begin anew */
7315 lro->parent = skb;
7316 goto aggregate;
7317 case 1: /* Aggregate */
7319 lro_append_pkt(sp, lro,
7320 skb, tcp_len);
7321 goto aggregate;
7323 case 4: /* Flush session */
7325 lro_append_pkt(sp, lro,
7326 skb, tcp_len);
7327 queue_rx_frame(lro->parent);
7328 clear_lro_session(lro);
7329 sp->mac_control.stats_info->
7330 sw_stat.flush_max_pkts++;
7331 goto aggregate;
7333 case 2: /* Flush both */
7334 lro->parent->data_len =
7335 lro->frags_len;
7336 sp->mac_control.stats_info->
7337 sw_stat.sending_both++;
7338 queue_rx_frame(lro->parent);
7339 clear_lro_session(lro);
7340 goto send_up;
7341 case 0: /* sessions exceeded */
7342 case -1: /* non-TCP or not
7343 * L2 aggregatable
7345 case 5: /*
7346 * First pkt in session not
7347 * L3/L4 aggregatable
7349 break;
7350 default:
7351 DBG_PRINT(ERR_DBG,
7352 "%s: Samadhana!!\n",
7353 __FUNCTION__);
7354 BUG();
7357 } else {
7359 * Packet with erroneous checksum, let the
7360 * upper layers deal with it.
7362 skb->ip_summed = CHECKSUM_NONE;
7364 } else {
7365 skb->ip_summed = CHECKSUM_NONE;
7367 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7368 if (!sp->lro) {
7369 skb->protocol = eth_type_trans(skb, dev);
7370 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7371 vlan_strip_flag)) {
7372 /* Queueing the vlan frame to the upper layer */
7373 if (napi)
7374 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7375 RXD_GET_VLAN_TAG(rxdp->Control_2));
7376 else
7377 vlan_hwaccel_rx(skb, sp->vlgrp,
7378 RXD_GET_VLAN_TAG(rxdp->Control_2));
7379 } else {
7380 if (napi)
7381 netif_receive_skb(skb);
7382 else
7383 netif_rx(skb);
7385 } else {
7386 send_up:
7387 queue_rx_frame(skb);
7389 dev->last_rx = jiffies;
7390 aggregate:
7391 atomic_dec(&sp->rx_bufs_left[ring_no]);
7392 return SUCCESS;
7396 * s2io_link - stops/starts the Tx queue.
7397 * @sp : private member of the device structure, which is a pointer to the
7398 * s2io_nic structure.
7399 * @link : inidicates whether link is UP/DOWN.
7400 * Description:
7401 * This function stops/starts the Tx queue depending on whether the link
7402 * status of the NIC is is down or up. This is called by the Alarm
7403 * interrupt handler whenever a link change interrupt comes up.
7404 * Return value:
7405 * void.
7408 static void s2io_link(struct s2io_nic * sp, int link)
7410 struct net_device *dev = (struct net_device *) sp->dev;
7412 if (link != sp->last_link_state) {
7413 if (link == LINK_DOWN) {
7414 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7415 netif_carrier_off(dev);
7416 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7417 sp->mac_control.stats_info->sw_stat.link_up_time =
7418 jiffies - sp->start_time;
7419 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7420 } else {
7421 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7422 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7423 sp->mac_control.stats_info->sw_stat.link_down_time =
7424 jiffies - sp->start_time;
7425 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7426 netif_carrier_on(dev);
7429 sp->last_link_state = link;
7430 sp->start_time = jiffies;
7434 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7435 * @sp : private member of the device structure, which is a pointer to the
7436 * s2io_nic structure.
7437 * Description:
7438 * This function initializes a few of the PCI and PCI-X configuration registers
7439 * with recommended values.
7440 * Return value:
7441 * void
7444 static void s2io_init_pci(struct s2io_nic * sp)
7446 u16 pci_cmd = 0, pcix_cmd = 0;
7448 /* Enable Data Parity Error Recovery in PCI-X command register. */
7449 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7450 &(pcix_cmd));
7451 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7452 (pcix_cmd | 1));
7453 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7454 &(pcix_cmd));
7456 /* Set the PErr Response bit in PCI command register. */
7457 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7458 pci_write_config_word(sp->pdev, PCI_COMMAND,
7459 (pci_cmd | PCI_COMMAND_PARITY));
7460 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7463 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7465 if ( tx_fifo_num > 8) {
7466 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7467 "supported\n");
7468 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7469 tx_fifo_num = 8;
7471 if ( rx_ring_num > 8) {
7472 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7473 "supported\n");
7474 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7475 rx_ring_num = 8;
7477 if (*dev_intr_type != INTA)
7478 napi = 0;
7480 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7481 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7482 "Defaulting to INTA\n");
7483 *dev_intr_type = INTA;
7486 if ((*dev_intr_type == MSI_X) &&
7487 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7488 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7489 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7490 "Defaulting to INTA\n");
7491 *dev_intr_type = INTA;
7494 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7495 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7496 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7497 rx_ring_mode = 1;
7499 return SUCCESS;
7503 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7504 * or Traffic class respectively.
7505 * @nic: device peivate variable
7506 * Description: The function configures the receive steering to
7507 * desired receive ring.
7508 * Return Value: SUCCESS on success and
7509 * '-1' on failure (endian settings incorrect).
7511 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7513 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7514 register u64 val64 = 0;
7516 if (ds_codepoint > 63)
7517 return FAILURE;
7519 val64 = RTS_DS_MEM_DATA(ring);
7520 writeq(val64, &bar0->rts_ds_mem_data);
7522 val64 = RTS_DS_MEM_CTRL_WE |
7523 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7524 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7526 writeq(val64, &bar0->rts_ds_mem_ctrl);
7528 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7529 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7530 S2IO_BIT_RESET);
7534 * s2io_init_nic - Initialization of the adapter .
7535 * @pdev : structure containing the PCI related information of the device.
7536 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7537 * Description:
7538 * The function initializes an adapter identified by the pci_dec structure.
7539 * All OS related initialization including memory and device structure and
7540 * initlaization of the device private variable is done. Also the swapper
7541 * control register is initialized to enable read and write into the I/O
7542 * registers of the device.
7543 * Return value:
7544 * returns 0 on success and negative on failure.
7547 static int __devinit
7548 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7550 struct s2io_nic *sp;
7551 struct net_device *dev;
7552 int i, j, ret;
7553 int dma_flag = FALSE;
7554 u32 mac_up, mac_down;
7555 u64 val64 = 0, tmp64 = 0;
7556 struct XENA_dev_config __iomem *bar0 = NULL;
7557 u16 subid;
7558 struct mac_info *mac_control;
7559 struct config_param *config;
7560 int mode;
7561 u8 dev_intr_type = intr_type;
7562 DECLARE_MAC_BUF(mac);
7564 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7565 return ret;
7567 if ((ret = pci_enable_device(pdev))) {
7568 DBG_PRINT(ERR_DBG,
7569 "s2io_init_nic: pci_enable_device failed\n");
7570 return ret;
7573 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7574 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7575 dma_flag = TRUE;
7576 if (pci_set_consistent_dma_mask
7577 (pdev, DMA_64BIT_MASK)) {
7578 DBG_PRINT(ERR_DBG,
7579 "Unable to obtain 64bit DMA for \
7580 consistent allocations\n");
7581 pci_disable_device(pdev);
7582 return -ENOMEM;
7584 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7585 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7586 } else {
7587 pci_disable_device(pdev);
7588 return -ENOMEM;
7590 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7591 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7592 pci_disable_device(pdev);
7593 return -ENODEV;
7596 dev = alloc_etherdev(sizeof(struct s2io_nic));
7597 if (dev == NULL) {
7598 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7599 pci_disable_device(pdev);
7600 pci_release_regions(pdev);
7601 return -ENODEV;
7604 pci_set_master(pdev);
7605 pci_set_drvdata(pdev, dev);
7606 SET_NETDEV_DEV(dev, &pdev->dev);
7608 /* Private member variable initialized to s2io NIC structure */
7609 sp = dev->priv;
7610 memset(sp, 0, sizeof(struct s2io_nic));
7611 sp->dev = dev;
7612 sp->pdev = pdev;
7613 sp->high_dma_flag = dma_flag;
7614 sp->device_enabled_once = FALSE;
7615 if (rx_ring_mode == 1)
7616 sp->rxd_mode = RXD_MODE_1;
7617 if (rx_ring_mode == 2)
7618 sp->rxd_mode = RXD_MODE_3B;
7620 sp->config.intr_type = dev_intr_type;
7622 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7623 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7624 sp->device_type = XFRAME_II_DEVICE;
7625 else
7626 sp->device_type = XFRAME_I_DEVICE;
7628 sp->lro = lro_enable;
7630 /* Initialize some PCI/PCI-X fields of the NIC. */
7631 s2io_init_pci(sp);
7634 * Setting the device configuration parameters.
7635 * Most of these parameters can be specified by the user during
7636 * module insertion as they are module loadable parameters. If
7637 * these parameters are not not specified during load time, they
7638 * are initialized with default values.
7640 mac_control = &sp->mac_control;
7641 config = &sp->config;
7643 config->napi = napi;
7645 /* Tx side parameters. */
7646 config->tx_fifo_num = tx_fifo_num;
7647 for (i = 0; i < MAX_TX_FIFOS; i++) {
7648 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7649 config->tx_cfg[i].fifo_priority = i;
7652 /* mapping the QoS priority to the configured fifos */
7653 for (i = 0; i < MAX_TX_FIFOS; i++)
7654 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7656 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7657 for (i = 0; i < config->tx_fifo_num; i++) {
7658 config->tx_cfg[i].f_no_snoop =
7659 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7660 if (config->tx_cfg[i].fifo_len < 65) {
7661 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7662 break;
7665 /* + 2 because one Txd for skb->data and one Txd for UFO */
7666 config->max_txds = MAX_SKB_FRAGS + 2;
7668 /* Rx side parameters. */
7669 config->rx_ring_num = rx_ring_num;
7670 for (i = 0; i < MAX_RX_RINGS; i++) {
7671 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7672 (rxd_count[sp->rxd_mode] + 1);
7673 config->rx_cfg[i].ring_priority = i;
7676 for (i = 0; i < rx_ring_num; i++) {
7677 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7678 config->rx_cfg[i].f_no_snoop =
7679 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7682 /* Setting Mac Control parameters */
7683 mac_control->rmac_pause_time = rmac_pause_time;
7684 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7685 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7688 /* Initialize Ring buffer parameters. */
7689 for (i = 0; i < config->rx_ring_num; i++)
7690 atomic_set(&sp->rx_bufs_left[i], 0);
7692 /* initialize the shared memory used by the NIC and the host */
7693 if (init_shared_mem(sp)) {
7694 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7695 dev->name);
7696 ret = -ENOMEM;
7697 goto mem_alloc_failed;
7700 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7701 pci_resource_len(pdev, 0));
7702 if (!sp->bar0) {
7703 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7704 dev->name);
7705 ret = -ENOMEM;
7706 goto bar0_remap_failed;
7709 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7710 pci_resource_len(pdev, 2));
7711 if (!sp->bar1) {
7712 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7713 dev->name);
7714 ret = -ENOMEM;
7715 goto bar1_remap_failed;
7718 dev->irq = pdev->irq;
7719 dev->base_addr = (unsigned long) sp->bar0;
7721 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7722 for (j = 0; j < MAX_TX_FIFOS; j++) {
7723 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7724 (sp->bar1 + (j * 0x00020000));
7727 /* Driver entry points */
7728 dev->open = &s2io_open;
7729 dev->stop = &s2io_close;
7730 dev->hard_start_xmit = &s2io_xmit;
7731 dev->get_stats = &s2io_get_stats;
7732 dev->set_multicast_list = &s2io_set_multicast;
7733 dev->do_ioctl = &s2io_ioctl;
7734 dev->set_mac_address = &s2io_set_mac_addr;
7735 dev->change_mtu = &s2io_change_mtu;
7736 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7737 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7738 dev->vlan_rx_register = s2io_vlan_rx_register;
7741 * will use eth_mac_addr() for dev->set_mac_address
7742 * mac address will be set every time dev->open() is called
7744 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7746 #ifdef CONFIG_NET_POLL_CONTROLLER
7747 dev->poll_controller = s2io_netpoll;
7748 #endif
7750 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7751 if (sp->high_dma_flag == TRUE)
7752 dev->features |= NETIF_F_HIGHDMA;
7753 dev->features |= NETIF_F_TSO;
7754 dev->features |= NETIF_F_TSO6;
7755 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7756 dev->features |= NETIF_F_UFO;
7757 dev->features |= NETIF_F_HW_CSUM;
7760 dev->tx_timeout = &s2io_tx_watchdog;
7761 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7762 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7763 INIT_WORK(&sp->set_link_task, s2io_set_link);
7765 pci_save_state(sp->pdev);
7767 /* Setting swapper control on the NIC, for proper reset operation */
7768 if (s2io_set_swapper(sp)) {
7769 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7770 dev->name);
7771 ret = -EAGAIN;
7772 goto set_swap_failed;
7775 /* Verify if the Herc works on the slot its placed into */
7776 if (sp->device_type & XFRAME_II_DEVICE) {
7777 mode = s2io_verify_pci_mode(sp);
7778 if (mode < 0) {
7779 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7780 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7781 ret = -EBADSLT;
7782 goto set_swap_failed;
7786 /* Not needed for Herc */
7787 if (sp->device_type & XFRAME_I_DEVICE) {
7789 * Fix for all "FFs" MAC address problems observed on
7790 * Alpha platforms
7792 fix_mac_address(sp);
7793 s2io_reset(sp);
7797 * MAC address initialization.
7798 * For now only one mac address will be read and used.
7800 bar0 = sp->bar0;
7801 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7802 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7803 writeq(val64, &bar0->rmac_addr_cmd_mem);
7804 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7805 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7806 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7807 mac_down = (u32) tmp64;
7808 mac_up = (u32) (tmp64 >> 32);
7810 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7811 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7812 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7813 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7814 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7815 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7817 /* Set the factory defined MAC address initially */
7818 dev->addr_len = ETH_ALEN;
7819 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7820 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7822 /* initialize number of multicast & unicast MAC entries variables */
7823 if (sp->device_type == XFRAME_I_DEVICE) {
7824 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7825 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7826 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7827 } else if (sp->device_type == XFRAME_II_DEVICE) {
7828 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7829 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7830 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7833 /* store mac addresses from CAM to s2io_nic structure */
7834 do_s2io_store_unicast_mc(sp);
7836 /* Store the values of the MSIX table in the s2io_nic structure */
7837 store_xmsi_data(sp);
7838 /* reset Nic and bring it to known state */
7839 s2io_reset(sp);
7842 * Initialize the tasklet status and link state flags
7843 * and the card state parameter
7845 sp->tasklet_status = 0;
7846 sp->state = 0;
7848 /* Initialize spinlocks */
7849 spin_lock_init(&sp->tx_lock);
7851 if (!napi)
7852 spin_lock_init(&sp->put_lock);
7853 spin_lock_init(&sp->rx_lock);
7856 * SXE-002: Configure link and activity LED to init state
7857 * on driver load.
7859 subid = sp->pdev->subsystem_device;
7860 if ((subid & 0xFF) >= 0x07) {
7861 val64 = readq(&bar0->gpio_control);
7862 val64 |= 0x0000800000000000ULL;
7863 writeq(val64, &bar0->gpio_control);
7864 val64 = 0x0411040400000000ULL;
7865 writeq(val64, (void __iomem *) bar0 + 0x2700);
7866 val64 = readq(&bar0->gpio_control);
7869 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7871 if (register_netdev(dev)) {
7872 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7873 ret = -ENODEV;
7874 goto register_failed;
7876 s2io_vpd_read(sp);
7877 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7878 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7879 sp->product_name, pdev->revision);
7880 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7881 s2io_driver_version);
7882 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7883 dev->name, print_mac(mac, dev->dev_addr));
7884 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7885 if (sp->device_type & XFRAME_II_DEVICE) {
7886 mode = s2io_print_pci_mode(sp);
7887 if (mode < 0) {
7888 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7889 ret = -EBADSLT;
7890 unregister_netdev(dev);
7891 goto set_swap_failed;
7894 switch(sp->rxd_mode) {
7895 case RXD_MODE_1:
7896 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7897 dev->name);
7898 break;
7899 case RXD_MODE_3B:
7900 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7901 dev->name);
7902 break;
7905 if (napi)
7906 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7907 switch(sp->config.intr_type) {
7908 case INTA:
7909 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7910 break;
7911 case MSI_X:
7912 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7913 break;
7915 if (sp->lro)
7916 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7917 dev->name);
7918 if (ufo)
7919 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7920 " enabled\n", dev->name);
7921 /* Initialize device name */
7922 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7925 * Make Link state as off at this point, when the Link change
7926 * interrupt comes the state will be automatically changed to
7927 * the right state.
7929 netif_carrier_off(dev);
7931 return 0;
7933 register_failed:
7934 set_swap_failed:
7935 iounmap(sp->bar1);
7936 bar1_remap_failed:
7937 iounmap(sp->bar0);
7938 bar0_remap_failed:
7939 mem_alloc_failed:
7940 free_shared_mem(sp);
7941 pci_disable_device(pdev);
7942 pci_release_regions(pdev);
7943 pci_set_drvdata(pdev, NULL);
7944 free_netdev(dev);
7946 return ret;
7950 * s2io_rem_nic - Free the PCI device
7951 * @pdev: structure containing the PCI related information of the device.
7952 * Description: This function is called by the Pci subsystem to release a
7953 * PCI device and free up all resource held up by the device. This could
7954 * be in response to a Hot plug event or when the driver is to be removed
7955 * from memory.
7958 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7960 struct net_device *dev =
7961 (struct net_device *) pci_get_drvdata(pdev);
7962 struct s2io_nic *sp;
7964 if (dev == NULL) {
7965 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7966 return;
7969 flush_scheduled_work();
7971 sp = dev->priv;
7972 unregister_netdev(dev);
7974 free_shared_mem(sp);
7975 iounmap(sp->bar0);
7976 iounmap(sp->bar1);
7977 pci_release_regions(pdev);
7978 pci_set_drvdata(pdev, NULL);
7979 free_netdev(dev);
7980 pci_disable_device(pdev);
7984 * s2io_starter - Entry point for the driver
7985 * Description: This function is the entry point for the driver. It verifies
7986 * the module loadable parameters and initializes PCI configuration space.
7989 static int __init s2io_starter(void)
7991 return pci_register_driver(&s2io_driver);
7995 * s2io_closer - Cleanup routine for the driver
7996 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7999 static __exit void s2io_closer(void)
8001 pci_unregister_driver(&s2io_driver);
8002 DBG_PRINT(INIT_DBG, "cleanup done\n");
8005 module_init(s2io_starter);
8006 module_exit(s2io_closer);
8008 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8009 struct tcphdr **tcp, struct RxD_t *rxdp)
8011 int ip_off;
8012 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8014 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8015 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8016 __FUNCTION__);
8017 return -1;
8020 /* TODO:
8021 * By default the VLAN field in the MAC is stripped by the card, if this
8022 * feature is turned off in rx_pa_cfg register, then the ip_off field
8023 * has to be shifted by a further 2 bytes
8025 switch (l2_type) {
8026 case 0: /* DIX type */
8027 case 4: /* DIX type with VLAN */
8028 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8029 break;
8030 /* LLC, SNAP etc are considered non-mergeable */
8031 default:
8032 return -1;
8035 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8036 ip_len = (u8)((*ip)->ihl);
8037 ip_len <<= 2;
8038 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8040 return 0;
8043 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8044 struct tcphdr *tcp)
8046 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8047 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8048 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8049 return -1;
8050 return 0;
8053 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8055 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8058 static void initiate_new_session(struct lro *lro, u8 *l2h,
8059 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
8061 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8062 lro->l2h = l2h;
8063 lro->iph = ip;
8064 lro->tcph = tcp;
8065 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8066 lro->tcp_ack = ntohl(tcp->ack_seq);
8067 lro->sg_num = 1;
8068 lro->total_len = ntohs(ip->tot_len);
8069 lro->frags_len = 0;
8071 * check if we saw TCP timestamp. Other consistency checks have
8072 * already been done.
8074 if (tcp->doff == 8) {
8075 u32 *ptr;
8076 ptr = (u32 *)(tcp+1);
8077 lro->saw_ts = 1;
8078 lro->cur_tsval = *(ptr+1);
8079 lro->cur_tsecr = *(ptr+2);
8081 lro->in_use = 1;
8084 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8086 struct iphdr *ip = lro->iph;
8087 struct tcphdr *tcp = lro->tcph;
8088 __sum16 nchk;
8089 struct stat_block *statinfo = sp->mac_control.stats_info;
8090 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8092 /* Update L3 header */
8093 ip->tot_len = htons(lro->total_len);
8094 ip->check = 0;
8095 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8096 ip->check = nchk;
8098 /* Update L4 header */
8099 tcp->ack_seq = lro->tcp_ack;
8100 tcp->window = lro->window;
8102 /* Update tsecr field if this session has timestamps enabled */
8103 if (lro->saw_ts) {
8104 u32 *ptr = (u32 *)(tcp + 1);
8105 *(ptr+2) = lro->cur_tsecr;
8108 /* Update counters required for calculation of
8109 * average no. of packets aggregated.
8111 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8112 statinfo->sw_stat.num_aggregations++;
8115 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8116 struct tcphdr *tcp, u32 l4_pyld)
8118 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8119 lro->total_len += l4_pyld;
8120 lro->frags_len += l4_pyld;
8121 lro->tcp_next_seq += l4_pyld;
8122 lro->sg_num++;
8124 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8125 lro->tcp_ack = tcp->ack_seq;
8126 lro->window = tcp->window;
8128 if (lro->saw_ts) {
8129 u32 *ptr;
8130 /* Update tsecr and tsval from this packet */
8131 ptr = (u32 *) (tcp + 1);
8132 lro->cur_tsval = *(ptr + 1);
8133 lro->cur_tsecr = *(ptr + 2);
8137 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8138 struct tcphdr *tcp, u32 tcp_pyld_len)
8140 u8 *ptr;
8142 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8144 if (!tcp_pyld_len) {
8145 /* Runt frame or a pure ack */
8146 return -1;
8149 if (ip->ihl != 5) /* IP has options */
8150 return -1;
8152 /* If we see CE codepoint in IP header, packet is not mergeable */
8153 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8154 return -1;
8156 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8157 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8158 tcp->ece || tcp->cwr || !tcp->ack) {
8160 * Currently recognize only the ack control word and
8161 * any other control field being set would result in
8162 * flushing the LRO session
8164 return -1;
8168 * Allow only one TCP timestamp option. Don't aggregate if
8169 * any other options are detected.
8171 if (tcp->doff != 5 && tcp->doff != 8)
8172 return -1;
8174 if (tcp->doff == 8) {
8175 ptr = (u8 *)(tcp + 1);
8176 while (*ptr == TCPOPT_NOP)
8177 ptr++;
8178 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8179 return -1;
8181 /* Ensure timestamp value increases monotonically */
8182 if (l_lro)
8183 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8184 return -1;
8186 /* timestamp echo reply should be non-zero */
8187 if (*((u32 *)(ptr+6)) == 0)
8188 return -1;
8191 return 0;
8194 static int
8195 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8196 struct RxD_t *rxdp, struct s2io_nic *sp)
8198 struct iphdr *ip;
8199 struct tcphdr *tcph;
8200 int ret = 0, i;
8202 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8203 rxdp))) {
8204 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8205 ip->saddr, ip->daddr);
8206 } else {
8207 return ret;
8210 tcph = (struct tcphdr *)*tcp;
8211 *tcp_len = get_l4_pyld_length(ip, tcph);
8212 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8213 struct lro *l_lro = &sp->lro0_n[i];
8214 if (l_lro->in_use) {
8215 if (check_for_socket_match(l_lro, ip, tcph))
8216 continue;
8217 /* Sock pair matched */
8218 *lro = l_lro;
8220 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8221 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8222 "0x%x, actual 0x%x\n", __FUNCTION__,
8223 (*lro)->tcp_next_seq,
8224 ntohl(tcph->seq));
8226 sp->mac_control.stats_info->
8227 sw_stat.outof_sequence_pkts++;
8228 ret = 2;
8229 break;
8232 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8233 ret = 1; /* Aggregate */
8234 else
8235 ret = 2; /* Flush both */
8236 break;
8240 if (ret == 0) {
8241 /* Before searching for available LRO objects,
8242 * check if the pkt is L3/L4 aggregatable. If not
8243 * don't create new LRO session. Just send this
8244 * packet up.
8246 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8247 return 5;
8250 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8251 struct lro *l_lro = &sp->lro0_n[i];
8252 if (!(l_lro->in_use)) {
8253 *lro = l_lro;
8254 ret = 3; /* Begin anew */
8255 break;
8260 if (ret == 0) { /* sessions exceeded */
8261 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8262 __FUNCTION__);
8263 *lro = NULL;
8264 return ret;
8267 switch (ret) {
8268 case 3:
8269 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8270 break;
8271 case 2:
8272 update_L3L4_header(sp, *lro);
8273 break;
8274 case 1:
8275 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8276 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8277 update_L3L4_header(sp, *lro);
8278 ret = 4; /* Flush the LRO */
8280 break;
8281 default:
8282 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8283 __FUNCTION__);
8284 break;
8287 return ret;
8290 static void clear_lro_session(struct lro *lro)
8292 static u16 lro_struct_size = sizeof(struct lro);
8294 memset(lro, 0, lro_struct_size);
8297 static void queue_rx_frame(struct sk_buff *skb)
8299 struct net_device *dev = skb->dev;
8301 skb->protocol = eth_type_trans(skb, dev);
8302 if (napi)
8303 netif_receive_skb(skb);
8304 else
8305 netif_rx(skb);
8308 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8309 struct sk_buff *skb,
8310 u32 tcp_len)
8312 struct sk_buff *first = lro->parent;
8314 first->len += tcp_len;
8315 first->data_len = lro->frags_len;
8316 skb_pull(skb, (skb->len - tcp_len));
8317 if (skb_shinfo(first)->frag_list)
8318 lro->last_frag->next = skb;
8319 else
8320 skb_shinfo(first)->frag_list = skb;
8321 first->truesize += skb->truesize;
8322 lro->last_frag = skb;
8323 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8324 return;
8328 * s2io_io_error_detected - called when PCI error is detected
8329 * @pdev: Pointer to PCI device
8330 * @state: The current pci connection state
8332 * This function is called after a PCI bus error affecting
8333 * this device has been detected.
8335 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8336 pci_channel_state_t state)
8338 struct net_device *netdev = pci_get_drvdata(pdev);
8339 struct s2io_nic *sp = netdev->priv;
8341 netif_device_detach(netdev);
8343 if (netif_running(netdev)) {
8344 /* Bring down the card, while avoiding PCI I/O */
8345 do_s2io_card_down(sp, 0);
8347 pci_disable_device(pdev);
8349 return PCI_ERS_RESULT_NEED_RESET;
8353 * s2io_io_slot_reset - called after the pci bus has been reset.
8354 * @pdev: Pointer to PCI device
8356 * Restart the card from scratch, as if from a cold-boot.
8357 * At this point, the card has exprienced a hard reset,
8358 * followed by fixups by BIOS, and has its config space
8359 * set up identically to what it was at cold boot.
8361 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8363 struct net_device *netdev = pci_get_drvdata(pdev);
8364 struct s2io_nic *sp = netdev->priv;
8366 if (pci_enable_device(pdev)) {
8367 printk(KERN_ERR "s2io: "
8368 "Cannot re-enable PCI device after reset.\n");
8369 return PCI_ERS_RESULT_DISCONNECT;
8372 pci_set_master(pdev);
8373 s2io_reset(sp);
8375 return PCI_ERS_RESULT_RECOVERED;
8379 * s2io_io_resume - called when traffic can start flowing again.
8380 * @pdev: Pointer to PCI device
8382 * This callback is called when the error recovery driver tells
8383 * us that its OK to resume normal operation.
8385 static void s2io_io_resume(struct pci_dev *pdev)
8387 struct net_device *netdev = pci_get_drvdata(pdev);
8388 struct s2io_nic *sp = netdev->priv;
8390 if (netif_running(netdev)) {
8391 if (s2io_card_up(sp)) {
8392 printk(KERN_ERR "s2io: "
8393 "Can't bring device back up after reset.\n");
8394 return;
8397 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8398 s2io_card_down(sp);
8399 printk(KERN_ERR "s2io: "
8400 "Can't resetore mac addr after reset.\n");
8401 return;
8405 netif_device_attach(netdev);
8406 netif_wake_queue(netdev);