1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 static char version
[] __devinitdata
=
20 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
22 static int mtu
[MAX_UNITS
];
23 static int vlan
[MAX_UNITS
];
24 static int jumbo
[MAX_UNITS
];
25 static char *media
[MAX_UNITS
];
26 static int tx_flow
=-1;
27 static int rx_flow
=-1;
28 static int copy_thresh
;
29 static int rx_coalesce
=10; /* Rx frame count each interrupt */
30 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu
, int, NULL
, 0);
38 module_param_array(media
, charp
, NULL
, 0);
39 module_param_array(vlan
, int, NULL
, 0);
40 module_param_array(jumbo
, int, NULL
, 0);
41 module_param(tx_flow
, int, 0);
42 module_param(rx_flow
, int, 0);
43 module_param(copy_thresh
, int, 0);
44 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop
= 50;
56 static const int multicast_filter_limit
= 0x40;
58 static int rio_open (struct net_device
*dev
);
59 static void rio_timer (unsigned long data
);
60 static void rio_tx_timeout (struct net_device
*dev
);
61 static void alloc_list (struct net_device
*dev
);
62 static int start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
63 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
64 static void rio_free_tx (struct net_device
*dev
, int irq
);
65 static void tx_error (struct net_device
*dev
, int tx_status
);
66 static int receive_packet (struct net_device
*dev
);
67 static void rio_error (struct net_device
*dev
, int int_status
);
68 static int change_mtu (struct net_device
*dev
, int new_mtu
);
69 static void set_multicast (struct net_device
*dev
);
70 static struct net_device_stats
*get_stats (struct net_device
*dev
);
71 static int clear_stats (struct net_device
*dev
);
72 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
73 static int rio_close (struct net_device
*dev
);
74 static int find_miiphy (struct net_device
*dev
);
75 static int parse_eeprom (struct net_device
*dev
);
76 static int read_eeprom (long ioaddr
, int eep_addr
);
77 static int mii_wait_link (struct net_device
*dev
, int wait
);
78 static int mii_set_media (struct net_device
*dev
);
79 static int mii_get_media (struct net_device
*dev
);
80 static int mii_set_media_pcs (struct net_device
*dev
);
81 static int mii_get_media_pcs (struct net_device
*dev
);
82 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
83 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
86 static const struct ethtool_ops ethtool_ops
;
89 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
91 struct net_device
*dev
;
92 struct netdev_private
*np
;
94 int chip_idx
= ent
->driver_data
;
97 static int version_printed
;
101 if (!version_printed
++)
102 printk ("%s", version
);
104 err
= pci_enable_device (pdev
);
109 err
= pci_request_regions (pdev
, "dl2k");
111 goto err_out_disable
;
113 pci_set_master (pdev
);
114 dev
= alloc_etherdev (sizeof (*np
));
119 SET_NETDEV_DEV(dev
, &pdev
->dev
);
122 ioaddr
= pci_resource_start (pdev
, 1);
123 ioaddr
= (long) ioremap (ioaddr
, RIO_IO_SIZE
);
129 ioaddr
= pci_resource_start (pdev
, 0);
131 dev
->base_addr
= ioaddr
;
133 np
= netdev_priv(dev
);
134 np
->chip_id
= chip_idx
;
136 spin_lock_init (&np
->tx_lock
);
137 spin_lock_init (&np
->rx_lock
);
139 /* Parse manual configuration */
142 if (card_idx
< MAX_UNITS
) {
143 if (media
[card_idx
] != NULL
) {
145 if (strcmp (media
[card_idx
], "auto") == 0 ||
146 strcmp (media
[card_idx
], "autosense") == 0 ||
147 strcmp (media
[card_idx
], "0") == 0 ) {
149 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
150 strcmp (media
[card_idx
], "4") == 0) {
153 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0
154 || strcmp (media
[card_idx
], "3") == 0) {
157 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
158 strcmp (media
[card_idx
], "2") == 0) {
161 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
162 strcmp (media
[card_idx
], "1") == 0) {
165 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
166 strcmp (media
[card_idx
], "6") == 0) {
169 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
170 strcmp (media
[card_idx
], "5") == 0) {
177 if (jumbo
[card_idx
] != 0) {
179 dev
->mtu
= MAX_JUMBO
;
182 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
183 dev
->mtu
= mtu
[card_idx
];
185 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
187 if (rx_coalesce
> 0 && rx_timeout
> 0) {
188 np
->rx_coalesce
= rx_coalesce
;
189 np
->rx_timeout
= rx_timeout
;
192 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
193 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
197 else if (tx_coalesce
> TX_RING_SIZE
-1)
198 tx_coalesce
= TX_RING_SIZE
- 1;
200 dev
->open
= &rio_open
;
201 dev
->hard_start_xmit
= &start_xmit
;
202 dev
->stop
= &rio_close
;
203 dev
->get_stats
= &get_stats
;
204 dev
->set_multicast_list
= &set_multicast
;
205 dev
->do_ioctl
= &rio_ioctl
;
206 dev
->tx_timeout
= &rio_tx_timeout
;
207 dev
->watchdog_timeo
= TX_TIMEOUT
;
208 dev
->change_mtu
= &change_mtu
;
209 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
211 dev
->features
= NETIF_F_IP_CSUM
;
213 pci_set_drvdata (pdev
, dev
);
215 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
217 goto err_out_iounmap
;
218 np
->tx_ring
= (struct netdev_desc
*) ring_space
;
219 np
->tx_ring_dma
= ring_dma
;
221 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
223 goto err_out_unmap_tx
;
224 np
->rx_ring
= (struct netdev_desc
*) ring_space
;
225 np
->rx_ring_dma
= ring_dma
;
227 /* Parse eeprom data */
230 /* Find PHY address */
231 err
= find_miiphy (dev
);
233 goto err_out_unmap_rx
;
236 np
->phy_media
= (readw(ioaddr
+ ASICCtrl
) & PhyMedia
) ? 1 : 0;
238 /* Set media and reset PHY */
240 /* default Auto-Negotiation for fiber deivices */
241 if (np
->an_enable
== 2) {
244 mii_set_media_pcs (dev
);
246 /* Auto-Negotiation is mandatory for 1000BASE-T,
247 IEEE 802.3ab Annex 28D page 14 */
248 if (np
->speed
== 1000)
253 err
= register_netdev (dev
);
255 goto err_out_unmap_rx
;
259 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
260 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
262 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
265 printk(KERN_INFO
"rx_coalesce:\t%d packets\n"
266 KERN_INFO
"rx_timeout: \t%d ns\n",
267 np
->rx_coalesce
, np
->rx_timeout
*640);
269 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
273 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
275 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
278 iounmap ((void *) ioaddr
);
285 pci_release_regions (pdev
);
288 pci_disable_device (pdev
);
293 find_miiphy (struct net_device
*dev
)
295 int i
, phy_found
= 0;
296 struct netdev_private
*np
;
298 np
= netdev_priv(dev
);
299 ioaddr
= dev
->base_addr
;
302 for (i
= 31; i
>= 0; i
--) {
303 int mii_status
= mii_read (dev
, i
, 1);
304 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
310 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
317 parse_eeprom (struct net_device
*dev
)
320 long ioaddr
= dev
->base_addr
;
324 PSROM_t psrom
= (PSROM_t
) sromdata
;
325 struct netdev_private
*np
= netdev_priv(dev
);
330 ioaddr
= pci_resource_start (np
->pdev
, 0);
333 for (i
= 0; i
< 128; i
++) {
334 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom (ioaddr
, i
));
337 ioaddr
= dev
->base_addr
;
339 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
341 crc
= ~ether_crc_le (256 - 4, sromdata
);
342 if (psrom
->crc
!= crc
) {
343 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
349 /* Set MAC address */
350 for (i
= 0; i
< 6; i
++)
351 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
353 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
357 /* Parse Software Information Block */
359 psib
= (u8
*) sromdata
;
363 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
364 printk (KERN_ERR
"Cell data error\n");
368 case 0: /* Format version */
370 case 1: /* End of cell */
372 case 2: /* Duplex Polarity */
373 np
->duplex_polarity
= psib
[i
];
374 writeb (readb (ioaddr
+ PhyCtrl
) | psib
[i
],
377 case 3: /* Wake Polarity */
378 np
->wake_polarity
= psib
[i
];
380 case 9: /* Adapter description */
381 j
= (next
- i
> 255) ? 255 : next
- i
;
382 memcpy (np
->name
, &(psib
[i
]), j
);
388 case 8: /* Reversed */
390 default: /* Unknown cell */
400 rio_open (struct net_device
*dev
)
402 struct netdev_private
*np
= netdev_priv(dev
);
403 long ioaddr
= dev
->base_addr
;
407 i
= request_irq (dev
->irq
, &rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
411 /* Reset all logic functions */
412 writew (GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
,
413 ioaddr
+ ASICCtrl
+ 2);
416 /* DebugCtrl bit 4, 5, 9 must set */
417 writel (readl (ioaddr
+ DebugCtrl
) | 0x0230, ioaddr
+ DebugCtrl
);
421 writew (MAX_JUMBO
+14, ioaddr
+ MaxFrameSize
);
425 /* Get station address */
426 for (i
= 0; i
< 6; i
++)
427 writeb (dev
->dev_addr
[i
], ioaddr
+ StationAddr0
+ i
);
431 writel (np
->rx_coalesce
| np
->rx_timeout
<< 16,
432 ioaddr
+ RxDMAIntCtrl
);
434 /* Set RIO to poll every N*320nsec. */
435 writeb (0x20, ioaddr
+ RxDMAPollPeriod
);
436 writeb (0xff, ioaddr
+ TxDMAPollPeriod
);
437 writeb (0x30, ioaddr
+ RxDMABurstThresh
);
438 writeb (0x30, ioaddr
+ RxDMAUrgentThresh
);
439 writel (0x0007ffff, ioaddr
+ RmonStatMask
);
440 /* clear statistics */
445 /* priority field in RxDMAIntCtrl */
446 writel (readl(ioaddr
+ RxDMAIntCtrl
) | 0x7 << 10,
447 ioaddr
+ RxDMAIntCtrl
);
449 writew (np
->vlan
, ioaddr
+ VLANId
);
450 /* Length/Type should be 0x8100 */
451 writel (0x8100 << 16 | np
->vlan
, ioaddr
+ VLANTag
);
452 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
453 VLAN information tagged by TFC' VID, CFI fields. */
454 writel (readl (ioaddr
+ MACCtrl
) | AutoVLANuntagging
,
458 init_timer (&np
->timer
);
459 np
->timer
.expires
= jiffies
+ 1*HZ
;
460 np
->timer
.data
= (unsigned long) dev
;
461 np
->timer
.function
= &rio_timer
;
462 add_timer (&np
->timer
);
465 writel (readl (ioaddr
+ MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
,
469 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
470 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
471 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
472 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
473 writew(macctrl
, ioaddr
+ MACCtrl
);
475 netif_start_queue (dev
);
477 /* Enable default interrupts */
483 rio_timer (unsigned long data
)
485 struct net_device
*dev
= (struct net_device
*)data
;
486 struct netdev_private
*np
= netdev_priv(dev
);
488 int next_tick
= 1*HZ
;
491 spin_lock_irqsave(&np
->rx_lock
, flags
);
492 /* Recover rx ring exhausted error */
493 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
494 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
495 /* Re-allocate skbuffs to fill the descriptor ring */
496 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
498 entry
= np
->old_rx
% RX_RING_SIZE
;
499 /* Dropped packets don't need to re-allocate */
500 if (np
->rx_skbuff
[entry
] == NULL
) {
501 skb
= netdev_alloc_skb (dev
, np
->rx_buf_sz
);
503 np
->rx_ring
[entry
].fraginfo
= 0;
505 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
509 np
->rx_skbuff
[entry
] = skb
;
510 /* 16 byte align the IP header */
511 skb_reserve (skb
, 2);
512 np
->rx_ring
[entry
].fraginfo
=
513 cpu_to_le64 (pci_map_single
514 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
515 PCI_DMA_FROMDEVICE
));
517 np
->rx_ring
[entry
].fraginfo
|=
518 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
519 np
->rx_ring
[entry
].status
= 0;
522 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
523 np
->timer
.expires
= jiffies
+ next_tick
;
524 add_timer(&np
->timer
);
528 rio_tx_timeout (struct net_device
*dev
)
530 long ioaddr
= dev
->base_addr
;
532 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
533 dev
->name
, readl (ioaddr
+ TxStatus
));
536 dev
->trans_start
= jiffies
;
539 /* allocate and initialize Tx and Rx descriptors */
541 alloc_list (struct net_device
*dev
)
543 struct netdev_private
*np
= netdev_priv(dev
);
546 np
->cur_rx
= np
->cur_tx
= 0;
547 np
->old_rx
= np
->old_tx
= 0;
548 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
550 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
551 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
552 np
->tx_skbuff
[i
] = NULL
;
553 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
554 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
555 ((i
+1)%TX_RING_SIZE
) *
556 sizeof (struct netdev_desc
));
559 /* Initialize Rx descriptors */
560 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
561 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
562 ((i
+ 1) % RX_RING_SIZE
) *
563 sizeof (struct netdev_desc
));
564 np
->rx_ring
[i
].status
= 0;
565 np
->rx_ring
[i
].fraginfo
= 0;
566 np
->rx_skbuff
[i
] = NULL
;
569 /* Allocate the rx buffers */
570 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
571 /* Allocated fixed size of skbuff */
572 struct sk_buff
*skb
= netdev_alloc_skb (dev
, np
->rx_buf_sz
);
573 np
->rx_skbuff
[i
] = skb
;
576 "%s: alloc_list: allocate Rx buffer error! ",
580 skb_reserve (skb
, 2); /* 16 byte align the IP header. */
581 /* Rubicon now supports 40 bits of addressing space. */
582 np
->rx_ring
[i
].fraginfo
=
583 cpu_to_le64 ( pci_map_single (
584 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
585 PCI_DMA_FROMDEVICE
));
586 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
590 writel (np
->rx_ring_dma
, dev
->base_addr
+ RFDListPtr0
);
591 writel (0, dev
->base_addr
+ RFDListPtr1
);
597 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
599 struct netdev_private
*np
= netdev_priv(dev
);
600 struct netdev_desc
*txdesc
;
603 u64 tfc_vlan_tag
= 0;
605 if (np
->link_status
== 0) { /* Link Down */
609 ioaddr
= dev
->base_addr
;
610 entry
= np
->cur_tx
% TX_RING_SIZE
;
611 np
->tx_skbuff
[entry
] = skb
;
612 txdesc
= &np
->tx_ring
[entry
];
615 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
617 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
622 tfc_vlan_tag
= VLANTagInsert
|
623 ((u64
)np
->vlan
<< 32) |
624 ((u64
)skb
->priority
<< 45);
626 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
629 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
631 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
632 * Work around: Always use 1 descriptor in 10Mbps mode */
633 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
634 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
637 (1 << FragCountShift
));
639 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
641 (1 << FragCountShift
));
644 writel (readl (ioaddr
+ DMACtrl
) | 0x00001000, ioaddr
+ DMACtrl
);
646 writel(10000, ioaddr
+ CountDown
);
647 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
648 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
649 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
651 } else if (!netif_queue_stopped(dev
)) {
652 netif_stop_queue (dev
);
655 /* The first TFDListPtr */
656 if (readl (dev
->base_addr
+ TFDListPtr0
) == 0) {
657 writel (np
->tx_ring_dma
+ entry
* sizeof (struct netdev_desc
),
658 dev
->base_addr
+ TFDListPtr0
);
659 writel (0, dev
->base_addr
+ TFDListPtr1
);
662 /* NETDEV WATCHDOG timer */
663 dev
->trans_start
= jiffies
;
668 rio_interrupt (int irq
, void *dev_instance
)
670 struct net_device
*dev
= dev_instance
;
671 struct netdev_private
*np
;
674 int cnt
= max_intrloop
;
677 ioaddr
= dev
->base_addr
;
678 np
= netdev_priv(dev
);
680 int_status
= readw (ioaddr
+ IntStatus
);
681 writew (int_status
, ioaddr
+ IntStatus
);
682 int_status
&= DEFAULT_INTR
;
683 if (int_status
== 0 || --cnt
< 0)
686 /* Processing received packets */
687 if (int_status
& RxDMAComplete
)
688 receive_packet (dev
);
689 /* TxDMAComplete interrupt */
690 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
692 tx_status
= readl (ioaddr
+ TxStatus
);
693 if (tx_status
& 0x01)
694 tx_error (dev
, tx_status
);
695 /* Free used tx skbuffs */
696 rio_free_tx (dev
, 1);
699 /* Handle uncommon events */
701 (HostError
| LinkEvent
| UpdateStats
))
702 rio_error (dev
, int_status
);
704 if (np
->cur_tx
!= np
->old_tx
)
705 writel (100, ioaddr
+ CountDown
);
706 return IRQ_RETVAL(handled
);
709 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
711 return le64_to_cpu(desc
->fraginfo
) & DMA_48BIT_MASK
;
715 rio_free_tx (struct net_device
*dev
, int irq
)
717 struct netdev_private
*np
= netdev_priv(dev
);
718 int entry
= np
->old_tx
% TX_RING_SIZE
;
720 unsigned long flag
= 0;
723 spin_lock(&np
->tx_lock
);
725 spin_lock_irqsave(&np
->tx_lock
, flag
);
727 /* Free used tx skbuffs */
728 while (entry
!= np
->cur_tx
) {
731 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
733 skb
= np
->tx_skbuff
[entry
];
734 pci_unmap_single (np
->pdev
,
735 desc_to_dma(&np
->tx_ring
[entry
]),
736 skb
->len
, PCI_DMA_TODEVICE
);
738 dev_kfree_skb_irq (skb
);
742 np
->tx_skbuff
[entry
] = NULL
;
743 entry
= (entry
+ 1) % TX_RING_SIZE
;
747 spin_unlock(&np
->tx_lock
);
749 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
752 /* If the ring is no longer full, clear tx_full and
753 call netif_wake_queue() */
755 if (netif_queue_stopped(dev
) &&
756 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
757 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
758 netif_wake_queue (dev
);
763 tx_error (struct net_device
*dev
, int tx_status
)
765 struct netdev_private
*np
;
766 long ioaddr
= dev
->base_addr
;
770 np
= netdev_priv(dev
);
772 frame_id
= (tx_status
& 0xffff0000);
773 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
774 dev
->name
, tx_status
, frame_id
);
775 np
->stats
.tx_errors
++;
776 /* Ttransmit Underrun */
777 if (tx_status
& 0x10) {
778 np
->stats
.tx_fifo_errors
++;
779 writew (readw (ioaddr
+ TxStartThresh
) + 0x10,
780 ioaddr
+ TxStartThresh
);
781 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
782 writew (TxReset
| DMAReset
| FIFOReset
| NetworkReset
,
783 ioaddr
+ ASICCtrl
+ 2);
784 /* Wait for ResetBusy bit clear */
785 for (i
= 50; i
> 0; i
--) {
786 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
790 rio_free_tx (dev
, 1);
791 /* Reset TFDListPtr */
792 writel (np
->tx_ring_dma
+
793 np
->old_tx
* sizeof (struct netdev_desc
),
794 dev
->base_addr
+ TFDListPtr0
);
795 writel (0, dev
->base_addr
+ TFDListPtr1
);
797 /* Let TxStartThresh stay default value */
800 if (tx_status
& 0x04) {
801 np
->stats
.tx_fifo_errors
++;
802 /* TxReset and clear FIFO */
803 writew (TxReset
| FIFOReset
, ioaddr
+ ASICCtrl
+ 2);
804 /* Wait reset done */
805 for (i
= 50; i
> 0; i
--) {
806 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
810 /* Let TxStartThresh stay default value */
812 /* Maximum Collisions */
814 if (tx_status
& 0x08)
815 np
->stats
.collisions16
++;
817 if (tx_status
& 0x08)
818 np
->stats
.collisions
++;
821 writel (readw (dev
->base_addr
+ MACCtrl
) | TxEnable
, ioaddr
+ MACCtrl
);
825 receive_packet (struct net_device
*dev
)
827 struct netdev_private
*np
= netdev_priv(dev
);
828 int entry
= np
->cur_rx
% RX_RING_SIZE
;
831 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
833 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
837 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
838 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
839 !(desc
->status
& cpu_to_le64(FrameEnd
)))
842 /* Chip omits the CRC. */
843 frame_status
= le64_to_cpu(desc
->status
);
844 pkt_len
= frame_status
& 0xffff;
847 /* Update rx error statistics, drop packet. */
848 if (frame_status
& RFS_Errors
) {
849 np
->stats
.rx_errors
++;
850 if (frame_status
& (RxRuntFrame
| RxLengthError
))
851 np
->stats
.rx_length_errors
++;
852 if (frame_status
& RxFCSError
)
853 np
->stats
.rx_crc_errors
++;
854 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
855 np
->stats
.rx_frame_errors
++;
856 if (frame_status
& RxFIFOOverrun
)
857 np
->stats
.rx_fifo_errors
++;
861 /* Small skbuffs for short packets */
862 if (pkt_len
> copy_thresh
) {
863 pci_unmap_single (np
->pdev
,
867 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
868 np
->rx_skbuff
[entry
] = NULL
;
869 } else if ((skb
= netdev_alloc_skb(dev
, pkt_len
+ 2))) {
870 pci_dma_sync_single_for_cpu(np
->pdev
,
874 /* 16 byte align the IP header */
875 skb_reserve (skb
, 2);
876 skb_copy_to_linear_data (skb
,
877 np
->rx_skbuff
[entry
]->data
,
879 skb_put (skb
, pkt_len
);
880 pci_dma_sync_single_for_device(np
->pdev
,
885 skb
->protocol
= eth_type_trans (skb
, dev
);
887 /* Checksum done by hw, but csum value unavailable. */
888 if (np
->pdev
->pci_rev_id
>= 0x0c &&
889 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
890 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
895 entry
= (entry
+ 1) % RX_RING_SIZE
;
897 spin_lock(&np
->rx_lock
);
899 /* Re-allocate skbuffs to fill the descriptor ring */
901 while (entry
!= np
->cur_rx
) {
903 /* Dropped packets don't need to re-allocate */
904 if (np
->rx_skbuff
[entry
] == NULL
) {
905 skb
= netdev_alloc_skb(dev
, np
->rx_buf_sz
);
907 np
->rx_ring
[entry
].fraginfo
= 0;
909 "%s: receive_packet: "
910 "Unable to re-allocate Rx skbuff.#%d\n",
914 np
->rx_skbuff
[entry
] = skb
;
915 /* 16 byte align the IP header */
916 skb_reserve (skb
, 2);
917 np
->rx_ring
[entry
].fraginfo
=
918 cpu_to_le64 (pci_map_single
919 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
920 PCI_DMA_FROMDEVICE
));
922 np
->rx_ring
[entry
].fraginfo
|=
923 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
924 np
->rx_ring
[entry
].status
= 0;
925 entry
= (entry
+ 1) % RX_RING_SIZE
;
928 spin_unlock(&np
->rx_lock
);
933 rio_error (struct net_device
*dev
, int int_status
)
935 long ioaddr
= dev
->base_addr
;
936 struct netdev_private
*np
= netdev_priv(dev
);
939 /* Link change event */
940 if (int_status
& LinkEvent
) {
941 if (mii_wait_link (dev
, 10) == 0) {
942 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
944 mii_get_media_pcs (dev
);
947 if (np
->speed
== 1000)
948 np
->tx_coalesce
= tx_coalesce
;
952 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
953 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
954 macctrl
|= (np
->tx_flow
) ?
955 TxFlowControlEnable
: 0;
956 macctrl
|= (np
->rx_flow
) ?
957 RxFlowControlEnable
: 0;
958 writew(macctrl
, ioaddr
+ MACCtrl
);
960 netif_carrier_on(dev
);
962 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
964 netif_carrier_off(dev
);
968 /* UpdateStats statistics registers */
969 if (int_status
& UpdateStats
) {
973 /* PCI Error, a catastronphic error related to the bus interface
974 occurs, set GlobalReset and HostReset to reset. */
975 if (int_status
& HostError
) {
976 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
977 dev
->name
, int_status
);
978 writew (GlobalReset
| HostReset
, ioaddr
+ ASICCtrl
+ 2);
983 static struct net_device_stats
*
984 get_stats (struct net_device
*dev
)
986 long ioaddr
= dev
->base_addr
;
987 struct netdev_private
*np
= netdev_priv(dev
);
991 unsigned int stat_reg
;
993 /* All statistics registers need to be acknowledged,
994 else statistic overflow could cause problems */
996 np
->stats
.rx_packets
+= readl (ioaddr
+ FramesRcvOk
);
997 np
->stats
.tx_packets
+= readl (ioaddr
+ FramesXmtOk
);
998 np
->stats
.rx_bytes
+= readl (ioaddr
+ OctetRcvOk
);
999 np
->stats
.tx_bytes
+= readl (ioaddr
+ OctetXmtOk
);
1001 np
->stats
.multicast
= readl (ioaddr
+ McstFramesRcvdOk
);
1002 np
->stats
.collisions
+= readl (ioaddr
+ SingleColFrames
)
1003 + readl (ioaddr
+ MultiColFrames
);
1005 /* detailed tx errors */
1006 stat_reg
= readw (ioaddr
+ FramesAbortXSColls
);
1007 np
->stats
.tx_aborted_errors
+= stat_reg
;
1008 np
->stats
.tx_errors
+= stat_reg
;
1010 stat_reg
= readw (ioaddr
+ CarrierSenseErrors
);
1011 np
->stats
.tx_carrier_errors
+= stat_reg
;
1012 np
->stats
.tx_errors
+= stat_reg
;
1014 /* Clear all other statistic register. */
1015 readl (ioaddr
+ McstOctetXmtOk
);
1016 readw (ioaddr
+ BcstFramesXmtdOk
);
1017 readl (ioaddr
+ McstFramesXmtdOk
);
1018 readw (ioaddr
+ BcstFramesRcvdOk
);
1019 readw (ioaddr
+ MacControlFramesRcvd
);
1020 readw (ioaddr
+ FrameTooLongErrors
);
1021 readw (ioaddr
+ InRangeLengthErrors
);
1022 readw (ioaddr
+ FramesCheckSeqErrors
);
1023 readw (ioaddr
+ FramesLostRxErrors
);
1024 readl (ioaddr
+ McstOctetXmtOk
);
1025 readl (ioaddr
+ BcstOctetXmtOk
);
1026 readl (ioaddr
+ McstFramesXmtdOk
);
1027 readl (ioaddr
+ FramesWDeferredXmt
);
1028 readl (ioaddr
+ LateCollisions
);
1029 readw (ioaddr
+ BcstFramesXmtdOk
);
1030 readw (ioaddr
+ MacControlFramesXmtd
);
1031 readw (ioaddr
+ FramesWEXDeferal
);
1034 for (i
= 0x100; i
<= 0x150; i
+= 4)
1037 readw (ioaddr
+ TxJumboFrames
);
1038 readw (ioaddr
+ RxJumboFrames
);
1039 readw (ioaddr
+ TCPCheckSumErrors
);
1040 readw (ioaddr
+ UDPCheckSumErrors
);
1041 readw (ioaddr
+ IPCheckSumErrors
);
1046 clear_stats (struct net_device
*dev
)
1048 long ioaddr
= dev
->base_addr
;
1053 /* All statistics registers need to be acknowledged,
1054 else statistic overflow could cause problems */
1055 readl (ioaddr
+ FramesRcvOk
);
1056 readl (ioaddr
+ FramesXmtOk
);
1057 readl (ioaddr
+ OctetRcvOk
);
1058 readl (ioaddr
+ OctetXmtOk
);
1060 readl (ioaddr
+ McstFramesRcvdOk
);
1061 readl (ioaddr
+ SingleColFrames
);
1062 readl (ioaddr
+ MultiColFrames
);
1063 readl (ioaddr
+ LateCollisions
);
1064 /* detailed rx errors */
1065 readw (ioaddr
+ FrameTooLongErrors
);
1066 readw (ioaddr
+ InRangeLengthErrors
);
1067 readw (ioaddr
+ FramesCheckSeqErrors
);
1068 readw (ioaddr
+ FramesLostRxErrors
);
1070 /* detailed tx errors */
1071 readw (ioaddr
+ FramesAbortXSColls
);
1072 readw (ioaddr
+ CarrierSenseErrors
);
1074 /* Clear all other statistic register. */
1075 readl (ioaddr
+ McstOctetXmtOk
);
1076 readw (ioaddr
+ BcstFramesXmtdOk
);
1077 readl (ioaddr
+ McstFramesXmtdOk
);
1078 readw (ioaddr
+ BcstFramesRcvdOk
);
1079 readw (ioaddr
+ MacControlFramesRcvd
);
1080 readl (ioaddr
+ McstOctetXmtOk
);
1081 readl (ioaddr
+ BcstOctetXmtOk
);
1082 readl (ioaddr
+ McstFramesXmtdOk
);
1083 readl (ioaddr
+ FramesWDeferredXmt
);
1084 readw (ioaddr
+ BcstFramesXmtdOk
);
1085 readw (ioaddr
+ MacControlFramesXmtd
);
1086 readw (ioaddr
+ FramesWEXDeferal
);
1088 for (i
= 0x100; i
<= 0x150; i
+= 4)
1091 readw (ioaddr
+ TxJumboFrames
);
1092 readw (ioaddr
+ RxJumboFrames
);
1093 readw (ioaddr
+ TCPCheckSumErrors
);
1094 readw (ioaddr
+ UDPCheckSumErrors
);
1095 readw (ioaddr
+ IPCheckSumErrors
);
1101 change_mtu (struct net_device
*dev
, int new_mtu
)
1103 struct netdev_private
*np
= netdev_priv(dev
);
1104 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1106 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1116 set_multicast (struct net_device
*dev
)
1118 long ioaddr
= dev
->base_addr
;
1121 struct netdev_private
*np
= netdev_priv(dev
);
1123 hash_table
[0] = hash_table
[1] = 0;
1124 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1125 hash_table
[1] |= 0x02000000;
1126 if (dev
->flags
& IFF_PROMISC
) {
1127 /* Receive all frames promiscuously. */
1128 rx_mode
= ReceiveAllFrames
;
1129 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1130 (dev
->mc_count
> multicast_filter_limit
)) {
1131 /* Receive broadcast and multicast frames */
1132 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1133 } else if (dev
->mc_count
> 0) {
1135 struct dev_mc_list
*mclist
;
1136 /* Receive broadcast frames and multicast frames filtering
1139 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1140 for (i
=0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1141 i
++, mclist
=mclist
->next
)
1144 int crc
= ether_crc_le (ETH_ALEN
, mclist
->dmi_addr
);
1145 /* The inverted high significant 6 bits of CRC are
1146 used as an index to hashtable */
1147 for (bit
= 0; bit
< 6; bit
++)
1148 if (crc
& (1 << (31 - bit
)))
1149 index
|= (1 << bit
);
1150 hash_table
[index
/ 32] |= (1 << (index
% 32));
1153 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1156 /* ReceiveVLANMatch field in ReceiveMode */
1157 rx_mode
|= ReceiveVLANMatch
;
1160 writel (hash_table
[0], ioaddr
+ HashTable0
);
1161 writel (hash_table
[1], ioaddr
+ HashTable1
);
1162 writew (rx_mode
, ioaddr
+ ReceiveMode
);
1165 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1167 struct netdev_private
*np
= netdev_priv(dev
);
1168 strcpy(info
->driver
, "dl2k");
1169 strcpy(info
->version
, DRV_VERSION
);
1170 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1173 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1175 struct netdev_private
*np
= netdev_priv(dev
);
1176 if (np
->phy_media
) {
1178 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1179 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1180 cmd
->port
= PORT_FIBRE
;
1181 cmd
->transceiver
= XCVR_INTERNAL
;
1184 cmd
->supported
= SUPPORTED_10baseT_Half
|
1185 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1186 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1187 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1188 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1189 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1190 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1191 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1192 cmd
->port
= PORT_MII
;
1193 cmd
->transceiver
= XCVR_INTERNAL
;
1195 if ( np
->link_status
) {
1196 cmd
->speed
= np
->speed
;
1197 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1203 cmd
->autoneg
= AUTONEG_ENABLE
;
1205 cmd
->autoneg
= AUTONEG_DISABLE
;
1207 cmd
->phy_address
= np
->phy_addr
;
1211 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1213 struct netdev_private
*np
= netdev_priv(dev
);
1214 netif_carrier_off(dev
);
1215 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1225 if (np
->speed
== 1000) {
1226 cmd
->speed
= SPEED_100
;
1227 cmd
->duplex
= DUPLEX_FULL
;
1228 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1230 switch(cmd
->speed
+ cmd
->duplex
) {
1232 case SPEED_10
+ DUPLEX_HALF
:
1234 np
->full_duplex
= 0;
1237 case SPEED_10
+ DUPLEX_FULL
:
1239 np
->full_duplex
= 1;
1241 case SPEED_100
+ DUPLEX_HALF
:
1243 np
->full_duplex
= 0;
1245 case SPEED_100
+ DUPLEX_FULL
:
1247 np
->full_duplex
= 1;
1249 case SPEED_1000
+ DUPLEX_HALF
:/* not supported */
1250 case SPEED_1000
+ DUPLEX_FULL
:/* not supported */
1259 static u32
rio_get_link(struct net_device
*dev
)
1261 struct netdev_private
*np
= netdev_priv(dev
);
1262 return np
->link_status
;
1265 static const struct ethtool_ops ethtool_ops
= {
1266 .get_drvinfo
= rio_get_drvinfo
,
1267 .get_settings
= rio_get_settings
,
1268 .set_settings
= rio_set_settings
,
1269 .get_link
= rio_get_link
,
1273 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1276 struct netdev_private
*np
= netdev_priv(dev
);
1277 struct mii_data
*miidata
= (struct mii_data
*) &rq
->ifr_ifru
;
1279 struct netdev_desc
*desc
;
1282 phy_addr
= np
->phy_addr
;
1284 case SIOCDEVPRIVATE
:
1287 case SIOCDEVPRIVATE
+ 1:
1288 miidata
->out_value
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1290 case SIOCDEVPRIVATE
+ 2:
1291 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->in_value
);
1293 case SIOCDEVPRIVATE
+ 3:
1295 case SIOCDEVPRIVATE
+ 4:
1297 case SIOCDEVPRIVATE
+ 5:
1298 netif_stop_queue (dev
);
1300 case SIOCDEVPRIVATE
+ 6:
1301 netif_wake_queue (dev
);
1303 case SIOCDEVPRIVATE
+ 7:
1305 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1306 netif_queue_stopped(dev
), np
->cur_tx
, np
->old_tx
, np
->cur_rx
,
1309 case SIOCDEVPRIVATE
+ 8:
1310 printk("TX ring:\n");
1311 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1312 desc
= &np
->tx_ring
[i
];
1314 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1316 (u32
) (np
->tx_ring_dma
+ i
* sizeof (*desc
)),
1317 (u32
)le64_to_cpu(desc
->next_desc
),
1318 (u32
)le64_to_cpu(desc
->status
),
1319 (u32
)(le64_to_cpu(desc
->fraginfo
) >> 32),
1320 (u32
)le64_to_cpu(desc
->fraginfo
));
1332 #define EEP_READ 0x0200
1333 #define EEP_BUSY 0x8000
1334 /* Read the EEPROM word */
1335 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1337 read_eeprom (long ioaddr
, int eep_addr
)
1340 outw (EEP_READ
| (eep_addr
& 0xff), ioaddr
+ EepromCtrl
);
1342 if (!(inw (ioaddr
+ EepromCtrl
) & EEP_BUSY
)) {
1343 return inw (ioaddr
+ EepromData
);
1349 enum phy_ctrl_bits
{
1350 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1354 #define mii_delay() readb(ioaddr)
1356 mii_sendbit (struct net_device
*dev
, u32 data
)
1358 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1359 data
= (data
) ? MII_DATA1
: 0;
1361 data
|= (readb (ioaddr
) & 0xf8) | MII_WRITE
;
1362 writeb (data
, ioaddr
);
1364 writeb (data
| MII_CLK
, ioaddr
);
1369 mii_getbit (struct net_device
*dev
)
1371 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1374 data
= (readb (ioaddr
) & 0xf8) | MII_READ
;
1375 writeb (data
, ioaddr
);
1377 writeb (data
| MII_CLK
, ioaddr
);
1379 return ((readb (ioaddr
) >> 1) & 1);
1383 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1386 for (i
= len
- 1; i
>= 0; i
--) {
1387 mii_sendbit (dev
, data
& (1 << i
));
1392 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1399 mii_send_bits (dev
, 0xffffffff, 32);
1400 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1401 /* ST,OP = 0110'b for read operation */
1402 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1403 mii_send_bits (dev
, cmd
, 14);
1405 if (mii_getbit (dev
))
1408 for (i
= 0; i
< 16; i
++) {
1409 retval
|= mii_getbit (dev
);
1414 return (retval
>> 1) & 0xffff;
1420 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1425 mii_send_bits (dev
, 0xffffffff, 32);
1426 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1427 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1428 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1429 mii_send_bits (dev
, cmd
, 32);
1435 mii_wait_link (struct net_device
*dev
, int wait
)
1439 struct netdev_private
*np
;
1441 np
= netdev_priv(dev
);
1442 phy_addr
= np
->phy_addr
;
1445 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1446 if (bmsr
& MII_BMSR_LINK_STATUS
)
1449 } while (--wait
> 0);
1453 mii_get_media (struct net_device
*dev
)
1460 struct netdev_private
*np
;
1462 np
= netdev_priv(dev
);
1463 phy_addr
= np
->phy_addr
;
1465 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1466 if (np
->an_enable
) {
1467 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1468 /* Auto-Negotiation not completed */
1471 negotiate
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1472 mii_read (dev
, phy_addr
, MII_ANLPAR
);
1473 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1474 mssr
= mii_read (dev
, phy_addr
, MII_MSSR
);
1475 if (mscr
& MII_MSCR_1000BT_FD
&& mssr
& MII_MSSR_LP_1000BT_FD
) {
1477 np
->full_duplex
= 1;
1478 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1479 } else if (mscr
& MII_MSCR_1000BT_HD
&& mssr
& MII_MSSR_LP_1000BT_HD
) {
1481 np
->full_duplex
= 0;
1482 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1483 } else if (negotiate
& MII_ANAR_100BX_FD
) {
1485 np
->full_duplex
= 1;
1486 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1487 } else if (negotiate
& MII_ANAR_100BX_HD
) {
1489 np
->full_duplex
= 0;
1490 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1491 } else if (negotiate
& MII_ANAR_10BT_FD
) {
1493 np
->full_duplex
= 1;
1494 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1495 } else if (negotiate
& MII_ANAR_10BT_HD
) {
1497 np
->full_duplex
= 0;
1498 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1500 if (negotiate
& MII_ANAR_PAUSE
) {
1503 } else if (negotiate
& MII_ANAR_ASYMMETRIC
) {
1507 /* else tx_flow, rx_flow = user select */
1509 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1510 switch (bmcr
& (MII_BMCR_SPEED_100
| MII_BMCR_SPEED_1000
)) {
1511 case MII_BMCR_SPEED_1000
:
1512 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1514 case MII_BMCR_SPEED_100
:
1515 printk (KERN_INFO
"Operating at 100 Mbps, ");
1518 printk (KERN_INFO
"Operating at 10 Mbps, ");
1520 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1521 printk ("Full duplex\n");
1523 printk ("Half duplex\n");
1527 printk(KERN_INFO
"Enable Tx Flow Control\n");
1529 printk(KERN_INFO
"Disable Tx Flow Control\n");
1531 printk(KERN_INFO
"Enable Rx Flow Control\n");
1533 printk(KERN_INFO
"Disable Rx Flow Control\n");
1539 mii_set_media (struct net_device
*dev
)
1546 struct netdev_private
*np
;
1547 np
= netdev_priv(dev
);
1548 phy_addr
= np
->phy_addr
;
1550 /* Does user set speed? */
1551 if (np
->an_enable
) {
1552 /* Advertise capabilities */
1553 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1554 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1555 ~MII_ANAR_100BX_FD
&
1556 ~MII_ANAR_100BX_HD
&
1560 if (bmsr
& MII_BMSR_100BX_FD
)
1561 anar
|= MII_ANAR_100BX_FD
;
1562 if (bmsr
& MII_BMSR_100BX_HD
)
1563 anar
|= MII_ANAR_100BX_HD
;
1564 if (bmsr
& MII_BMSR_100BT4
)
1565 anar
|= MII_ANAR_100BT4
;
1566 if (bmsr
& MII_BMSR_10BT_FD
)
1567 anar
|= MII_ANAR_10BT_FD
;
1568 if (bmsr
& MII_BMSR_10BT_HD
)
1569 anar
|= MII_ANAR_10BT_HD
;
1570 anar
|= MII_ANAR_PAUSE
| MII_ANAR_ASYMMETRIC
;
1571 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1573 /* Enable Auto crossover */
1574 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1575 pscr
|= 3 << 5; /* 11'b */
1576 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1578 /* Soft reset PHY */
1579 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1580 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
| MII_BMCR_RESET
;
1581 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1584 /* Force speed setting */
1585 /* 1) Disable Auto crossover */
1586 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1588 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1591 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1592 bmcr
|= MII_BMCR_RESET
;
1593 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1596 bmcr
= 0x1940; /* must be 0x1940 */
1597 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1598 mdelay (100); /* wait a certain time */
1600 /* 4) Advertise nothing */
1601 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1603 /* 5) Set media and Power Up */
1604 bmcr
= MII_BMCR_POWER_DOWN
;
1605 if (np
->speed
== 100) {
1606 bmcr
|= MII_BMCR_SPEED_100
;
1607 printk (KERN_INFO
"Manual 100 Mbps, ");
1608 } else if (np
->speed
== 10) {
1609 printk (KERN_INFO
"Manual 10 Mbps, ");
1611 if (np
->full_duplex
) {
1612 bmcr
|= MII_BMCR_DUPLEX_MODE
;
1613 printk ("Full duplex\n");
1615 printk ("Half duplex\n");
1618 /* Set 1000BaseT Master/Slave setting */
1619 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1620 mscr
|= MII_MSCR_CFG_ENABLE
;
1621 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1623 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1630 mii_get_media_pcs (struct net_device
*dev
)
1635 struct netdev_private
*np
;
1637 np
= netdev_priv(dev
);
1638 phy_addr
= np
->phy_addr
;
1640 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1641 if (np
->an_enable
) {
1642 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1643 /* Auto-Negotiation not completed */
1646 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1647 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1649 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1650 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1651 np
->full_duplex
= 1;
1653 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1654 np
->full_duplex
= 0;
1656 if (negotiate
& PCS_ANAR_PAUSE
) {
1659 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1663 /* else tx_flow, rx_flow = user select */
1665 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1666 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1667 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1668 printk ("Full duplex\n");
1670 printk ("Half duplex\n");
1674 printk(KERN_INFO
"Enable Tx Flow Control\n");
1676 printk(KERN_INFO
"Disable Tx Flow Control\n");
1678 printk(KERN_INFO
"Enable Rx Flow Control\n");
1680 printk(KERN_INFO
"Disable Rx Flow Control\n");
1686 mii_set_media_pcs (struct net_device
*dev
)
1692 struct netdev_private
*np
;
1693 np
= netdev_priv(dev
);
1694 phy_addr
= np
->phy_addr
;
1696 /* Auto-Negotiation? */
1697 if (np
->an_enable
) {
1698 /* Advertise capabilities */
1699 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1700 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1701 ~PCS_ANAR_HALF_DUPLEX
&
1702 ~PCS_ANAR_FULL_DUPLEX
;
1703 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1704 anar
|= PCS_ANAR_HALF_DUPLEX
;
1705 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1706 anar
|= PCS_ANAR_FULL_DUPLEX
;
1707 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1708 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1710 /* Soft reset PHY */
1711 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1712 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
|
1714 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1717 /* Force speed setting */
1719 bmcr
= MII_BMCR_RESET
;
1720 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1722 if (np
->full_duplex
) {
1723 bmcr
= MII_BMCR_DUPLEX_MODE
;
1724 printk (KERN_INFO
"Manual full duplex\n");
1727 printk (KERN_INFO
"Manual half duplex\n");
1729 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1732 /* Advertise nothing */
1733 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1740 rio_close (struct net_device
*dev
)
1742 long ioaddr
= dev
->base_addr
;
1743 struct netdev_private
*np
= netdev_priv(dev
);
1744 struct sk_buff
*skb
;
1747 netif_stop_queue (dev
);
1749 /* Disable interrupts */
1750 writew (0, ioaddr
+ IntEnable
);
1752 /* Stop Tx and Rx logics */
1753 writel (TxDisable
| RxDisable
| StatsDisable
, ioaddr
+ MACCtrl
);
1755 free_irq (dev
->irq
, dev
);
1756 del_timer_sync (&np
->timer
);
1758 /* Free all the skbuffs in the queue. */
1759 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1760 np
->rx_ring
[i
].status
= 0;
1761 np
->rx_ring
[i
].fraginfo
= 0;
1762 skb
= np
->rx_skbuff
[i
];
1764 pci_unmap_single(np
->pdev
,
1765 desc_to_dma(&np
->rx_ring
[i
]),
1766 skb
->len
, PCI_DMA_FROMDEVICE
);
1767 dev_kfree_skb (skb
);
1768 np
->rx_skbuff
[i
] = NULL
;
1771 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1772 skb
= np
->tx_skbuff
[i
];
1774 pci_unmap_single(np
->pdev
,
1775 desc_to_dma(&np
->tx_ring
[i
]),
1776 skb
->len
, PCI_DMA_TODEVICE
);
1777 dev_kfree_skb (skb
);
1778 np
->tx_skbuff
[i
] = NULL
;
1785 static void __devexit
1786 rio_remove1 (struct pci_dev
*pdev
)
1788 struct net_device
*dev
= pci_get_drvdata (pdev
);
1791 struct netdev_private
*np
= netdev_priv(dev
);
1793 unregister_netdev (dev
);
1794 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1796 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1799 iounmap ((char *) (dev
->base_addr
));
1802 pci_release_regions (pdev
);
1803 pci_disable_device (pdev
);
1805 pci_set_drvdata (pdev
, NULL
);
1808 static struct pci_driver rio_driver
= {
1810 .id_table
= rio_pci_tbl
,
1811 .probe
= rio_probe1
,
1812 .remove
= __devexit_p(rio_remove1
),
1818 return pci_register_driver(&rio_driver
);
1824 pci_unregister_driver (&rio_driver
);
1827 module_init (rio_init
);
1828 module_exit (rio_exit
);
1834 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1836 Read Documentation/networking/dl2k.txt for details.