[PATCH] sched: new sched domain for representing multi-core
[linux-2.6/verdex.git] / arch / i386 / kernel / smpboot.c
bloba6969903f2d6ff80ef0116ec7dc262f36b7763cc
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
14 * This code is released under the GNU General Public License version 2 or
15 * later.
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
36 #include <linux/module.h>
37 #include <linux/config.h>
38 #include <linux/init.h>
39 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/sched.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/smp_lock.h>
45 #include <linux/bootmem.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/percpu.h>
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/tlbflush.h>
53 #include <asm/desc.h>
54 #include <asm/arch_hooks.h>
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
69 /* Package ID of each logical CPU */
70 int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
72 /* Core ID of each logical CPU */
73 int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
75 /* Last level cache ID of each logical CPU */
76 int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
78 /* representing HT siblings of each logical CPU */
79 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
80 EXPORT_SYMBOL(cpu_sibling_map);
82 /* representing HT and core siblings of each logical CPU */
83 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
84 EXPORT_SYMBOL(cpu_core_map);
86 /* bitmap of online cpus */
87 cpumask_t cpu_online_map __read_mostly;
88 EXPORT_SYMBOL(cpu_online_map);
90 cpumask_t cpu_callin_map;
91 cpumask_t cpu_callout_map;
92 EXPORT_SYMBOL(cpu_callout_map);
93 cpumask_t cpu_possible_map;
94 EXPORT_SYMBOL(cpu_possible_map);
95 static cpumask_t smp_commenced_mask;
97 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
98 * is no way to resync one AP against BP. TBD: for prescott and above, we
99 * should use IA64's algorithm
101 static int __devinitdata tsc_sync_disabled;
103 /* Per CPU bogomips and other parameters */
104 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
105 EXPORT_SYMBOL(cpu_data);
107 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
108 { [0 ... NR_CPUS-1] = 0xff };
109 EXPORT_SYMBOL(x86_cpu_to_apicid);
112 * Trampoline 80x86 program as an array.
115 extern unsigned char trampoline_data [];
116 extern unsigned char trampoline_end [];
117 static unsigned char *trampoline_base;
118 static int trampoline_exec;
120 static void map_cpu_to_logical_apicid(void);
122 /* State of each CPU. */
123 DEFINE_PER_CPU(int, cpu_state) = { 0 };
126 * Currently trivial. Write the real->protected mode
127 * bootstrap into the page concerned. The caller
128 * has made sure it's suitably aligned.
131 static unsigned long __devinit setup_trampoline(void)
133 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
134 return virt_to_phys(trampoline_base);
138 * We are called very early to get the low memory for the
139 * SMP bootup trampoline page.
141 void __init smp_alloc_memory(void)
143 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
145 * Has to be in very low memory so we can execute
146 * real-mode AP code.
148 if (__pa(trampoline_base) >= 0x9F000)
149 BUG();
151 * Make the SMP trampoline executable:
153 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
157 * The bootstrap kernel entry code has set these up. Save them for
158 * a given CPU
161 static void __devinit smp_store_cpu_info(int id)
163 struct cpuinfo_x86 *c = cpu_data + id;
165 *c = boot_cpu_data;
166 if (id!=0)
167 identify_cpu(c);
169 * Mask B, Pentium, but not Pentium MMX
171 if (c->x86_vendor == X86_VENDOR_INTEL &&
172 c->x86 == 5 &&
173 c->x86_mask >= 1 && c->x86_mask <= 4 &&
174 c->x86_model <= 3)
176 * Remember we have B step Pentia with bugs
178 smp_b_stepping = 1;
181 * Certain Athlons might work (for various values of 'work') in SMP
182 * but they are not certified as MP capable.
184 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
186 /* Athlon 660/661 is valid. */
187 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
188 goto valid_k7;
190 /* Duron 670 is valid */
191 if ((c->x86_model==7) && (c->x86_mask==0))
192 goto valid_k7;
195 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
196 * It's worth noting that the A5 stepping (662) of some Athlon XP's
197 * have the MP bit set.
198 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
200 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
201 ((c->x86_model==7) && (c->x86_mask>=1)) ||
202 (c->x86_model> 7))
203 if (cpu_has_mp)
204 goto valid_k7;
206 /* If we get here, it's not a certified SMP capable AMD system. */
207 add_taint(TAINT_UNSAFE_SMP);
210 valid_k7:
215 * TSC synchronization.
217 * We first check whether all CPUs have their TSC's synchronized,
218 * then we print a warning if not, and always resync.
221 static atomic_t tsc_start_flag = ATOMIC_INIT(0);
222 static atomic_t tsc_count_start = ATOMIC_INIT(0);
223 static atomic_t tsc_count_stop = ATOMIC_INIT(0);
224 static unsigned long long tsc_values[NR_CPUS];
226 #define NR_LOOPS 5
228 static void __init synchronize_tsc_bp (void)
230 int i;
231 unsigned long long t0;
232 unsigned long long sum, avg;
233 long long delta;
234 unsigned int one_usec;
235 int buggy = 0;
237 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
239 /* convert from kcyc/sec to cyc/usec */
240 one_usec = cpu_khz / 1000;
242 atomic_set(&tsc_start_flag, 1);
243 wmb();
246 * We loop a few times to get a primed instruction cache,
247 * then the last pass is more or less synchronized and
248 * the BP and APs set their cycle counters to zero all at
249 * once. This reduces the chance of having random offsets
250 * between the processors, and guarantees that the maximum
251 * delay between the cycle counters is never bigger than
252 * the latency of information-passing (cachelines) between
253 * two CPUs.
255 for (i = 0; i < NR_LOOPS; i++) {
257 * all APs synchronize but they loop on '== num_cpus'
259 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
260 mb();
261 atomic_set(&tsc_count_stop, 0);
262 wmb();
264 * this lets the APs save their current TSC:
266 atomic_inc(&tsc_count_start);
268 rdtscll(tsc_values[smp_processor_id()]);
270 * We clear the TSC in the last loop:
272 if (i == NR_LOOPS-1)
273 write_tsc(0, 0);
276 * Wait for all APs to leave the synchronization point:
278 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
279 mb();
280 atomic_set(&tsc_count_start, 0);
281 wmb();
282 atomic_inc(&tsc_count_stop);
285 sum = 0;
286 for (i = 0; i < NR_CPUS; i++) {
287 if (cpu_isset(i, cpu_callout_map)) {
288 t0 = tsc_values[i];
289 sum += t0;
292 avg = sum;
293 do_div(avg, num_booting_cpus());
295 sum = 0;
296 for (i = 0; i < NR_CPUS; i++) {
297 if (!cpu_isset(i, cpu_callout_map))
298 continue;
299 delta = tsc_values[i] - avg;
300 if (delta < 0)
301 delta = -delta;
303 * We report bigger than 2 microseconds clock differences.
305 if (delta > 2*one_usec) {
306 long realdelta;
307 if (!buggy) {
308 buggy = 1;
309 printk("\n");
311 realdelta = delta;
312 do_div(realdelta, one_usec);
313 if (tsc_values[i] < avg)
314 realdelta = -realdelta;
316 printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta);
319 sum += delta;
321 if (!buggy)
322 printk("passed.\n");
325 static void __init synchronize_tsc_ap (void)
327 int i;
330 * Not every cpu is online at the time
331 * this gets called, so we first wait for the BP to
332 * finish SMP initialization:
334 while (!atomic_read(&tsc_start_flag)) mb();
336 for (i = 0; i < NR_LOOPS; i++) {
337 atomic_inc(&tsc_count_start);
338 while (atomic_read(&tsc_count_start) != num_booting_cpus())
339 mb();
341 rdtscll(tsc_values[smp_processor_id()]);
342 if (i == NR_LOOPS-1)
343 write_tsc(0, 0);
345 atomic_inc(&tsc_count_stop);
346 while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb();
349 #undef NR_LOOPS
351 extern void calibrate_delay(void);
353 static atomic_t init_deasserted;
355 static void __devinit smp_callin(void)
357 int cpuid, phys_id;
358 unsigned long timeout;
361 * If waken up by an INIT in an 82489DX configuration
362 * we may get here before an INIT-deassert IPI reaches
363 * our local APIC. We have to wait for the IPI or we'll
364 * lock up on an APIC access.
366 wait_for_init_deassert(&init_deasserted);
369 * (This works even if the APIC is not enabled.)
371 phys_id = GET_APIC_ID(apic_read(APIC_ID));
372 cpuid = smp_processor_id();
373 if (cpu_isset(cpuid, cpu_callin_map)) {
374 printk("huh, phys CPU#%d, CPU#%d already present??\n",
375 phys_id, cpuid);
376 BUG();
378 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
381 * STARTUP IPIs are fragile beasts as they might sometimes
382 * trigger some glue motherboard logic. Complete APIC bus
383 * silence for 1 second, this overestimates the time the
384 * boot CPU is spending to send the up to 2 STARTUP IPIs
385 * by a factor of two. This should be enough.
389 * Waiting 2s total for startup (udelay is not yet working)
391 timeout = jiffies + 2*HZ;
392 while (time_before(jiffies, timeout)) {
394 * Has the boot CPU finished it's STARTUP sequence?
396 if (cpu_isset(cpuid, cpu_callout_map))
397 break;
398 rep_nop();
401 if (!time_before(jiffies, timeout)) {
402 printk("BUG: CPU%d started up but did not get a callout!\n",
403 cpuid);
404 BUG();
408 * the boot CPU has finished the init stage and is spinning
409 * on callin_map until we finish. We are free to set up this
410 * CPU, first the APIC. (this is probably redundant on most
411 * boards)
414 Dprintk("CALLIN, before setup_local_APIC().\n");
415 smp_callin_clear_local_apic();
416 setup_local_APIC();
417 map_cpu_to_logical_apicid();
420 * Get our bogomips.
422 calibrate_delay();
423 Dprintk("Stack at about %p\n",&cpuid);
426 * Save our processor parameters
428 smp_store_cpu_info(cpuid);
430 disable_APIC_timer();
433 * Allow the master to continue.
435 cpu_set(cpuid, cpu_callin_map);
438 * Synchronize the TSC with the BP
440 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
441 synchronize_tsc_ap();
444 static int cpucount;
446 /* maps the cpu to the sched domain representing multi-core */
447 cpumask_t cpu_coregroup_map(int cpu)
449 struct cpuinfo_x86 *c = cpu_data + cpu;
451 * For perf, we return last level cache shared map.
452 * TBD: when power saving sched policy is added, we will return
453 * cpu_core_map when power saving policy is enabled
455 return c->llc_shared_map;
458 /* representing cpus for which sibling maps can be computed */
459 static cpumask_t cpu_sibling_setup_map;
461 static inline void
462 set_cpu_sibling_map(int cpu)
464 int i;
465 struct cpuinfo_x86 *c = cpu_data;
467 cpu_set(cpu, cpu_sibling_setup_map);
469 if (smp_num_siblings > 1) {
470 for_each_cpu_mask(i, cpu_sibling_setup_map) {
471 if (phys_proc_id[cpu] == phys_proc_id[i] &&
472 cpu_core_id[cpu] == cpu_core_id[i]) {
473 cpu_set(i, cpu_sibling_map[cpu]);
474 cpu_set(cpu, cpu_sibling_map[i]);
475 cpu_set(i, cpu_core_map[cpu]);
476 cpu_set(cpu, cpu_core_map[i]);
477 cpu_set(i, c[cpu].llc_shared_map);
478 cpu_set(cpu, c[i].llc_shared_map);
481 } else {
482 cpu_set(cpu, cpu_sibling_map[cpu]);
485 cpu_set(cpu, c[cpu].llc_shared_map);
487 if (current_cpu_data.x86_max_cores == 1) {
488 cpu_core_map[cpu] = cpu_sibling_map[cpu];
489 c[cpu].booted_cores = 1;
490 return;
493 for_each_cpu_mask(i, cpu_sibling_setup_map) {
494 if (cpu_llc_id[cpu] != BAD_APICID &&
495 cpu_llc_id[cpu] == cpu_llc_id[i]) {
496 cpu_set(i, c[cpu].llc_shared_map);
497 cpu_set(cpu, c[i].llc_shared_map);
499 if (phys_proc_id[cpu] == phys_proc_id[i]) {
500 cpu_set(i, cpu_core_map[cpu]);
501 cpu_set(cpu, cpu_core_map[i]);
503 * Does this new cpu bringup a new core?
505 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
507 * for each core in package, increment
508 * the booted_cores for this new cpu
510 if (first_cpu(cpu_sibling_map[i]) == i)
511 c[cpu].booted_cores++;
513 * increment the core count for all
514 * the other cpus in this package
516 if (i != cpu)
517 c[i].booted_cores++;
518 } else if (i != cpu && !c[cpu].booted_cores)
519 c[cpu].booted_cores = c[i].booted_cores;
525 * Activate a secondary processor.
527 static void __devinit start_secondary(void *unused)
530 * Dont put anything before smp_callin(), SMP
531 * booting is too fragile that we want to limit the
532 * things done here to the most necessary things.
534 cpu_init();
535 preempt_disable();
536 smp_callin();
537 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
538 rep_nop();
539 setup_secondary_APIC_clock();
540 if (nmi_watchdog == NMI_IO_APIC) {
541 disable_8259A_irq(0);
542 enable_NMI_through_LVT0(NULL);
543 enable_8259A_irq(0);
545 enable_APIC_timer();
547 * low-memory mappings have been cleared, flush them from
548 * the local TLBs too.
550 local_flush_tlb();
552 /* This must be done before setting cpu_online_map */
553 set_cpu_sibling_map(raw_smp_processor_id());
554 wmb();
557 * We need to hold call_lock, so there is no inconsistency
558 * between the time smp_call_function() determines number of
559 * IPI receipients, and the time when the determination is made
560 * for which cpus receive the IPI. Holding this
561 * lock helps us to not include this cpu in a currently in progress
562 * smp_call_function().
564 lock_ipi_call_lock();
565 cpu_set(smp_processor_id(), cpu_online_map);
566 unlock_ipi_call_lock();
567 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
569 /* We can take interrupts now: we're officially "up". */
570 local_irq_enable();
572 wmb();
573 cpu_idle();
577 * Everything has been set up for the secondary
578 * CPUs - they just need to reload everything
579 * from the task structure
580 * This function must not return.
582 void __devinit initialize_secondary(void)
585 * We don't actually need to load the full TSS,
586 * basically just the stack pointer and the eip.
589 asm volatile(
590 "movl %0,%%esp\n\t"
591 "jmp *%1"
593 :"r" (current->thread.esp),"r" (current->thread.eip));
596 extern struct {
597 void * esp;
598 unsigned short ss;
599 } stack_start;
601 #ifdef CONFIG_NUMA
603 /* which logical CPUs are on which nodes */
604 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
605 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
606 /* which node each logical CPU is on */
607 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
608 EXPORT_SYMBOL(cpu_2_node);
610 /* set up a mapping between cpu and node. */
611 static inline void map_cpu_to_node(int cpu, int node)
613 printk("Mapping cpu %d to node %d\n", cpu, node);
614 cpu_set(cpu, node_2_cpu_mask[node]);
615 cpu_2_node[cpu] = node;
618 /* undo a mapping between cpu and node. */
619 static inline void unmap_cpu_to_node(int cpu)
621 int node;
623 printk("Unmapping cpu %d from all nodes\n", cpu);
624 for (node = 0; node < MAX_NUMNODES; node ++)
625 cpu_clear(cpu, node_2_cpu_mask[node]);
626 cpu_2_node[cpu] = 0;
628 #else /* !CONFIG_NUMA */
630 #define map_cpu_to_node(cpu, node) ({})
631 #define unmap_cpu_to_node(cpu) ({})
633 #endif /* CONFIG_NUMA */
635 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
637 static void map_cpu_to_logical_apicid(void)
639 int cpu = smp_processor_id();
640 int apicid = logical_smp_processor_id();
642 cpu_2_logical_apicid[cpu] = apicid;
643 map_cpu_to_node(cpu, apicid_to_node(apicid));
646 static void unmap_cpu_to_logical_apicid(int cpu)
648 cpu_2_logical_apicid[cpu] = BAD_APICID;
649 unmap_cpu_to_node(cpu);
652 #if APIC_DEBUG
653 static inline void __inquire_remote_apic(int apicid)
655 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
656 char *names[] = { "ID", "VERSION", "SPIV" };
657 int timeout, status;
659 printk("Inquiring remote APIC #%d...\n", apicid);
661 for (i = 0; i < ARRAY_SIZE(regs); i++) {
662 printk("... APIC #%d %s: ", apicid, names[i]);
665 * Wait for idle.
667 apic_wait_icr_idle();
669 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
670 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
672 timeout = 0;
673 do {
674 udelay(100);
675 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
676 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
678 switch (status) {
679 case APIC_ICR_RR_VALID:
680 status = apic_read(APIC_RRR);
681 printk("%08x\n", status);
682 break;
683 default:
684 printk("failed\n");
688 #endif
690 #ifdef WAKE_SECONDARY_VIA_NMI
692 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
693 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
694 * won't ... remember to clear down the APIC, etc later.
696 static int __devinit
697 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
699 unsigned long send_status = 0, accept_status = 0;
700 int timeout, maxlvt;
702 /* Target chip */
703 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
705 /* Boot on the stack */
706 /* Kick the second */
707 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
709 Dprintk("Waiting for send to finish...\n");
710 timeout = 0;
711 do {
712 Dprintk("+");
713 udelay(100);
714 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
715 } while (send_status && (timeout++ < 1000));
718 * Give the other CPU some time to accept the IPI.
720 udelay(200);
722 * Due to the Pentium erratum 3AP.
724 maxlvt = get_maxlvt();
725 if (maxlvt > 3) {
726 apic_read_around(APIC_SPIV);
727 apic_write(APIC_ESR, 0);
729 accept_status = (apic_read(APIC_ESR) & 0xEF);
730 Dprintk("NMI sent.\n");
732 if (send_status)
733 printk("APIC never delivered???\n");
734 if (accept_status)
735 printk("APIC delivery error (%lx).\n", accept_status);
737 return (send_status | accept_status);
739 #endif /* WAKE_SECONDARY_VIA_NMI */
741 #ifdef WAKE_SECONDARY_VIA_INIT
742 static int __devinit
743 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
745 unsigned long send_status = 0, accept_status = 0;
746 int maxlvt, timeout, num_starts, j;
749 * Be paranoid about clearing APIC errors.
751 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
752 apic_read_around(APIC_SPIV);
753 apic_write(APIC_ESR, 0);
754 apic_read(APIC_ESR);
757 Dprintk("Asserting INIT.\n");
760 * Turn INIT on target chip
762 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
765 * Send IPI
767 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
768 | APIC_DM_INIT);
770 Dprintk("Waiting for send to finish...\n");
771 timeout = 0;
772 do {
773 Dprintk("+");
774 udelay(100);
775 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
776 } while (send_status && (timeout++ < 1000));
778 mdelay(10);
780 Dprintk("Deasserting INIT.\n");
782 /* Target chip */
783 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
785 /* Send IPI */
786 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
788 Dprintk("Waiting for send to finish...\n");
789 timeout = 0;
790 do {
791 Dprintk("+");
792 udelay(100);
793 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
794 } while (send_status && (timeout++ < 1000));
796 atomic_set(&init_deasserted, 1);
799 * Should we send STARTUP IPIs ?
801 * Determine this based on the APIC version.
802 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
804 if (APIC_INTEGRATED(apic_version[phys_apicid]))
805 num_starts = 2;
806 else
807 num_starts = 0;
810 * Run STARTUP IPI loop.
812 Dprintk("#startup loops: %d.\n", num_starts);
814 maxlvt = get_maxlvt();
816 for (j = 1; j <= num_starts; j++) {
817 Dprintk("Sending STARTUP #%d.\n",j);
818 apic_read_around(APIC_SPIV);
819 apic_write(APIC_ESR, 0);
820 apic_read(APIC_ESR);
821 Dprintk("After apic_write.\n");
824 * STARTUP IPI
827 /* Target chip */
828 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
830 /* Boot on the stack */
831 /* Kick the second */
832 apic_write_around(APIC_ICR, APIC_DM_STARTUP
833 | (start_eip >> 12));
836 * Give the other CPU some time to accept the IPI.
838 udelay(300);
840 Dprintk("Startup point 1.\n");
842 Dprintk("Waiting for send to finish...\n");
843 timeout = 0;
844 do {
845 Dprintk("+");
846 udelay(100);
847 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
848 } while (send_status && (timeout++ < 1000));
851 * Give the other CPU some time to accept the IPI.
853 udelay(200);
855 * Due to the Pentium erratum 3AP.
857 if (maxlvt > 3) {
858 apic_read_around(APIC_SPIV);
859 apic_write(APIC_ESR, 0);
861 accept_status = (apic_read(APIC_ESR) & 0xEF);
862 if (send_status || accept_status)
863 break;
865 Dprintk("After Startup.\n");
867 if (send_status)
868 printk("APIC never delivered???\n");
869 if (accept_status)
870 printk("APIC delivery error (%lx).\n", accept_status);
872 return (send_status | accept_status);
874 #endif /* WAKE_SECONDARY_VIA_INIT */
876 extern cpumask_t cpu_initialized;
877 static inline int alloc_cpu_id(void)
879 cpumask_t tmp_map;
880 int cpu;
881 cpus_complement(tmp_map, cpu_present_map);
882 cpu = first_cpu(tmp_map);
883 if (cpu >= NR_CPUS)
884 return -ENODEV;
885 return cpu;
888 #ifdef CONFIG_HOTPLUG_CPU
889 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
890 static inline struct task_struct * alloc_idle_task(int cpu)
892 struct task_struct *idle;
894 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
895 /* initialize thread_struct. we really want to avoid destroy
896 * idle tread
898 idle->thread.esp = (unsigned long)task_pt_regs(idle);
899 init_idle(idle, cpu);
900 return idle;
902 idle = fork_idle(cpu);
904 if (!IS_ERR(idle))
905 cpu_idle_tasks[cpu] = idle;
906 return idle;
908 #else
909 #define alloc_idle_task(cpu) fork_idle(cpu)
910 #endif
912 static int __devinit do_boot_cpu(int apicid, int cpu)
914 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
915 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
916 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
919 struct task_struct *idle;
920 unsigned long boot_error;
921 int timeout;
922 unsigned long start_eip;
923 unsigned short nmi_high = 0, nmi_low = 0;
925 ++cpucount;
926 alternatives_smp_switch(1);
929 * We can't use kernel_thread since we must avoid to
930 * reschedule the child.
932 idle = alloc_idle_task(cpu);
933 if (IS_ERR(idle))
934 panic("failed fork for CPU %d", cpu);
935 idle->thread.eip = (unsigned long) start_secondary;
936 /* start_eip had better be page-aligned! */
937 start_eip = setup_trampoline();
939 /* So we see what's up */
940 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
941 /* Stack for startup_32 can be just as for start_secondary onwards */
942 stack_start.esp = (void *) idle->thread.esp;
944 irq_ctx_init(cpu);
947 * This grunge runs the startup process for
948 * the targeted processor.
951 atomic_set(&init_deasserted, 0);
953 Dprintk("Setting warm reset code and vector.\n");
955 store_NMI_vector(&nmi_high, &nmi_low);
957 smpboot_setup_warm_reset_vector(start_eip);
960 * Starting actual IPI sequence...
962 boot_error = wakeup_secondary_cpu(apicid, start_eip);
964 if (!boot_error) {
966 * allow APs to start initializing.
968 Dprintk("Before Callout %d.\n", cpu);
969 cpu_set(cpu, cpu_callout_map);
970 Dprintk("After Callout %d.\n", cpu);
973 * Wait 5s total for a response
975 for (timeout = 0; timeout < 50000; timeout++) {
976 if (cpu_isset(cpu, cpu_callin_map))
977 break; /* It has booted */
978 udelay(100);
981 if (cpu_isset(cpu, cpu_callin_map)) {
982 /* number CPUs logically, starting from 1 (BSP is 0) */
983 Dprintk("OK.\n");
984 printk("CPU%d: ", cpu);
985 print_cpu_info(&cpu_data[cpu]);
986 Dprintk("CPU has booted.\n");
987 } else {
988 boot_error= 1;
989 if (*((volatile unsigned char *)trampoline_base)
990 == 0xA5)
991 /* trampoline started but...? */
992 printk("Stuck ??\n");
993 else
994 /* trampoline code not run */
995 printk("Not responding.\n");
996 inquire_remote_apic(apicid);
1000 if (boot_error) {
1001 /* Try to put things back the way they were before ... */
1002 unmap_cpu_to_logical_apicid(cpu);
1003 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1004 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1005 cpucount--;
1006 } else {
1007 x86_cpu_to_apicid[cpu] = apicid;
1008 cpu_set(cpu, cpu_present_map);
1011 /* mark "stuck" area as not stuck */
1012 *((volatile unsigned long *)trampoline_base) = 0;
1014 return boot_error;
1017 #ifdef CONFIG_HOTPLUG_CPU
1018 void cpu_exit_clear(void)
1020 int cpu = raw_smp_processor_id();
1022 idle_task_exit();
1024 cpucount --;
1025 cpu_uninit();
1026 irq_ctx_exit(cpu);
1028 cpu_clear(cpu, cpu_callout_map);
1029 cpu_clear(cpu, cpu_callin_map);
1031 cpu_clear(cpu, smp_commenced_mask);
1032 unmap_cpu_to_logical_apicid(cpu);
1035 struct warm_boot_cpu_info {
1036 struct completion *complete;
1037 int apicid;
1038 int cpu;
1041 static void __cpuinit do_warm_boot_cpu(void *p)
1043 struct warm_boot_cpu_info *info = p;
1044 do_boot_cpu(info->apicid, info->cpu);
1045 complete(info->complete);
1048 static int __cpuinit __smp_prepare_cpu(int cpu)
1050 DECLARE_COMPLETION(done);
1051 struct warm_boot_cpu_info info;
1052 struct work_struct task;
1053 int apicid, ret;
1055 apicid = x86_cpu_to_apicid[cpu];
1056 if (apicid == BAD_APICID) {
1057 ret = -ENODEV;
1058 goto exit;
1061 info.complete = &done;
1062 info.apicid = apicid;
1063 info.cpu = cpu;
1064 INIT_WORK(&task, do_warm_boot_cpu, &info);
1066 tsc_sync_disabled = 1;
1068 /* init low mem mapping */
1069 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1070 KERNEL_PGD_PTRS);
1071 flush_tlb_all();
1072 schedule_work(&task);
1073 wait_for_completion(&done);
1075 tsc_sync_disabled = 0;
1076 zap_low_mappings();
1077 ret = 0;
1078 exit:
1079 return ret;
1081 #endif
1083 static void smp_tune_scheduling (void)
1085 unsigned long cachesize; /* kB */
1086 unsigned long bandwidth = 350; /* MB/s */
1088 * Rough estimation for SMP scheduling, this is the number of
1089 * cycles it takes for a fully memory-limited process to flush
1090 * the SMP-local cache.
1092 * (For a P5 this pretty much means we will choose another idle
1093 * CPU almost always at wakeup time (this is due to the small
1094 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1095 * the cache size)
1098 if (!cpu_khz) {
1100 * this basically disables processor-affinity
1101 * scheduling on SMP without a TSC.
1103 return;
1104 } else {
1105 cachesize = boot_cpu_data.x86_cache_size;
1106 if (cachesize == -1) {
1107 cachesize = 16; /* Pentiums, 2x8kB cache */
1108 bandwidth = 100;
1110 max_cache_size = cachesize * 1024;
1115 * Cycle through the processors sending APIC IPIs to boot each.
1118 static int boot_cpu_logical_apicid;
1119 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1120 void *xquad_portio;
1121 #ifdef CONFIG_X86_NUMAQ
1122 EXPORT_SYMBOL(xquad_portio);
1123 #endif
1125 static void __init smp_boot_cpus(unsigned int max_cpus)
1127 int apicid, cpu, bit, kicked;
1128 unsigned long bogosum = 0;
1131 * Setup boot CPU information
1133 smp_store_cpu_info(0); /* Final full version of the data */
1134 printk("CPU%d: ", 0);
1135 print_cpu_info(&cpu_data[0]);
1137 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1138 boot_cpu_logical_apicid = logical_smp_processor_id();
1139 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1141 current_thread_info()->cpu = 0;
1142 smp_tune_scheduling();
1144 set_cpu_sibling_map(0);
1147 * If we couldn't find an SMP configuration at boot time,
1148 * get out of here now!
1150 if (!smp_found_config && !acpi_lapic) {
1151 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1152 smpboot_clear_io_apic_irqs();
1153 phys_cpu_present_map = physid_mask_of_physid(0);
1154 if (APIC_init_uniprocessor())
1155 printk(KERN_NOTICE "Local APIC not detected."
1156 " Using dummy APIC emulation.\n");
1157 map_cpu_to_logical_apicid();
1158 cpu_set(0, cpu_sibling_map[0]);
1159 cpu_set(0, cpu_core_map[0]);
1160 return;
1164 * Should not be necessary because the MP table should list the boot
1165 * CPU too, but we do it for the sake of robustness anyway.
1166 * Makes no sense to do this check in clustered apic mode, so skip it
1168 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1169 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1170 boot_cpu_physical_apicid);
1171 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1175 * If we couldn't find a local APIC, then get out of here now!
1177 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1178 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1179 boot_cpu_physical_apicid);
1180 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1181 smpboot_clear_io_apic_irqs();
1182 phys_cpu_present_map = physid_mask_of_physid(0);
1183 cpu_set(0, cpu_sibling_map[0]);
1184 cpu_set(0, cpu_core_map[0]);
1185 return;
1188 verify_local_APIC();
1191 * If SMP should be disabled, then really disable it!
1193 if (!max_cpus) {
1194 smp_found_config = 0;
1195 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1196 smpboot_clear_io_apic_irqs();
1197 phys_cpu_present_map = physid_mask_of_physid(0);
1198 cpu_set(0, cpu_sibling_map[0]);
1199 cpu_set(0, cpu_core_map[0]);
1200 return;
1203 connect_bsp_APIC();
1204 setup_local_APIC();
1205 map_cpu_to_logical_apicid();
1208 setup_portio_remap();
1211 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1213 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1214 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1215 * clustered apic ID.
1217 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1219 kicked = 1;
1220 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1221 apicid = cpu_present_to_apicid(bit);
1223 * Don't even attempt to start the boot CPU!
1225 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1226 continue;
1228 if (!check_apicid_present(bit))
1229 continue;
1230 if (max_cpus <= cpucount+1)
1231 continue;
1233 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1234 printk("CPU #%d not responding - cannot use it.\n",
1235 apicid);
1236 else
1237 ++kicked;
1241 * Cleanup possible dangling ends...
1243 smpboot_restore_warm_reset_vector();
1246 * Allow the user to impress friends.
1248 Dprintk("Before bogomips.\n");
1249 for (cpu = 0; cpu < NR_CPUS; cpu++)
1250 if (cpu_isset(cpu, cpu_callout_map))
1251 bogosum += cpu_data[cpu].loops_per_jiffy;
1252 printk(KERN_INFO
1253 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1254 cpucount+1,
1255 bogosum/(500000/HZ),
1256 (bogosum/(5000/HZ))%100);
1258 Dprintk("Before bogocount - setting activated=1.\n");
1260 if (smp_b_stepping)
1261 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1264 * Don't taint if we are running SMP kernel on a single non-MP
1265 * approved Athlon
1267 if (tainted & TAINT_UNSAFE_SMP) {
1268 if (cpucount)
1269 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1270 else
1271 tainted &= ~TAINT_UNSAFE_SMP;
1274 Dprintk("Boot done.\n");
1277 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1278 * efficiently.
1280 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1281 cpus_clear(cpu_sibling_map[cpu]);
1282 cpus_clear(cpu_core_map[cpu]);
1285 cpu_set(0, cpu_sibling_map[0]);
1286 cpu_set(0, cpu_core_map[0]);
1288 smpboot_setup_io_apic();
1290 setup_boot_APIC_clock();
1293 * Synchronize the TSC with the AP
1295 if (cpu_has_tsc && cpucount && cpu_khz)
1296 synchronize_tsc_bp();
1299 /* These are wrappers to interface to the new boot process. Someone
1300 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1301 void __init smp_prepare_cpus(unsigned int max_cpus)
1303 smp_commenced_mask = cpumask_of_cpu(0);
1304 cpu_callin_map = cpumask_of_cpu(0);
1305 mb();
1306 smp_boot_cpus(max_cpus);
1309 void __devinit smp_prepare_boot_cpu(void)
1311 cpu_set(smp_processor_id(), cpu_online_map);
1312 cpu_set(smp_processor_id(), cpu_callout_map);
1313 cpu_set(smp_processor_id(), cpu_present_map);
1314 cpu_set(smp_processor_id(), cpu_possible_map);
1315 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1318 #ifdef CONFIG_HOTPLUG_CPU
1319 static void
1320 remove_siblinginfo(int cpu)
1322 int sibling;
1323 struct cpuinfo_x86 *c = cpu_data;
1325 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1326 cpu_clear(cpu, cpu_core_map[sibling]);
1328 * last thread sibling in this cpu core going down
1330 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1331 c[sibling].booted_cores--;
1334 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1335 cpu_clear(cpu, cpu_sibling_map[sibling]);
1336 cpus_clear(cpu_sibling_map[cpu]);
1337 cpus_clear(cpu_core_map[cpu]);
1338 phys_proc_id[cpu] = BAD_APICID;
1339 cpu_core_id[cpu] = BAD_APICID;
1340 cpu_clear(cpu, cpu_sibling_setup_map);
1343 int __cpu_disable(void)
1345 cpumask_t map = cpu_online_map;
1346 int cpu = smp_processor_id();
1349 * Perhaps use cpufreq to drop frequency, but that could go
1350 * into generic code.
1352 * We won't take down the boot processor on i386 due to some
1353 * interrupts only being able to be serviced by the BSP.
1354 * Especially so if we're not using an IOAPIC -zwane
1356 if (cpu == 0)
1357 return -EBUSY;
1359 clear_local_APIC();
1360 /* Allow any queued timer interrupts to get serviced */
1361 local_irq_enable();
1362 mdelay(1);
1363 local_irq_disable();
1365 remove_siblinginfo(cpu);
1367 cpu_clear(cpu, map);
1368 fixup_irqs(map);
1369 /* It's now safe to remove this processor from the online map */
1370 cpu_clear(cpu, cpu_online_map);
1371 return 0;
1374 void __cpu_die(unsigned int cpu)
1376 /* We don't do anything here: idle task is faking death itself. */
1377 unsigned int i;
1379 for (i = 0; i < 10; i++) {
1380 /* They ack this in play_dead by setting CPU_DEAD */
1381 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1382 printk ("CPU %d is now offline\n", cpu);
1383 if (1 == num_online_cpus())
1384 alternatives_smp_switch(0);
1385 return;
1387 msleep(100);
1389 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1391 #else /* ... !CONFIG_HOTPLUG_CPU */
1392 int __cpu_disable(void)
1394 return -ENOSYS;
1397 void __cpu_die(unsigned int cpu)
1399 /* We said "no" in __cpu_disable */
1400 BUG();
1402 #endif /* CONFIG_HOTPLUG_CPU */
1404 int __devinit __cpu_up(unsigned int cpu)
1406 #ifdef CONFIG_HOTPLUG_CPU
1407 int ret=0;
1410 * We do warm boot only on cpus that had booted earlier
1411 * Otherwise cold boot is all handled from smp_boot_cpus().
1412 * cpu_callin_map is set during AP kickstart process. Its reset
1413 * when a cpu is taken offline from cpu_exit_clear().
1415 if (!cpu_isset(cpu, cpu_callin_map))
1416 ret = __smp_prepare_cpu(cpu);
1418 if (ret)
1419 return -EIO;
1420 #endif
1422 /* In case one didn't come up */
1423 if (!cpu_isset(cpu, cpu_callin_map)) {
1424 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1425 local_irq_enable();
1426 return -EIO;
1429 local_irq_enable();
1430 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1431 /* Unleash the CPU! */
1432 cpu_set(cpu, smp_commenced_mask);
1433 while (!cpu_isset(cpu, cpu_online_map))
1434 mb();
1435 return 0;
1438 void __init smp_cpus_done(unsigned int max_cpus)
1440 #ifdef CONFIG_X86_IO_APIC
1441 setup_ioapic_dest();
1442 #endif
1443 zap_low_mappings();
1444 #ifndef CONFIG_HOTPLUG_CPU
1446 * Disable executability of the SMP trampoline:
1448 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1449 #endif
1452 void __init smp_intr_init(void)
1455 * IRQ0 must be given a fixed assignment and initialized,
1456 * because it's used before the IO-APIC is set up.
1458 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1461 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1462 * IPI, driven by wakeup.
1464 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1466 /* IPI for invalidation */
1467 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1469 /* IPI for generic function call */
1470 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);