1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004, 2005, 2006 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <asm/bitops.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
55 #define DRV_MODULE_NAME "bnx2"
56 #define PFX DRV_MODULE_NAME ": "
57 #define DRV_MODULE_VERSION "1.5.5"
58 #define DRV_MODULE_RELDATE "February 1, 2007"
60 #define RUN_AT(x) (jiffies + (x))
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT (5*HZ)
65 static const char version
[] __devinitdata
=
66 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
68 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
69 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION
);
73 static int disable_msi
= 0;
75 module_param(disable_msi
, int, 0);
76 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
89 /* indexed by board_t, above */
92 } board_info
[] __devinitdata
= {
93 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
94 { "HP NC370T Multifunction Gigabit Server Adapter" },
95 { "HP NC370i Multifunction Gigabit Server Adapter" },
96 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
97 { "HP NC370F Multifunction Gigabit Server Adapter" },
98 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
99 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
100 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
103 static struct pci_device_id bnx2_pci_tbl
[] = {
104 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
105 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
106 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
107 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
108 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
109 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
110 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
111 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
112 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
113 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
114 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
115 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
116 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
117 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
118 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
119 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
123 static struct flash_spec flash_table
[] =
126 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
127 1, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
128 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
130 /* Expansion entry 0001 */
131 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
132 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
133 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
135 /* Saifun SA25F010 (non-buffered flash) */
136 /* strap, cfg1, & write1 need updates */
137 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
138 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
139 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
140 "Non-buffered flash (128kB)"},
141 /* Saifun SA25F020 (non-buffered flash) */
142 /* strap, cfg1, & write1 need updates */
143 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
144 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
145 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
146 "Non-buffered flash (256kB)"},
147 /* Expansion entry 0100 */
148 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
149 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
150 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
152 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
153 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
154 0, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
155 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
156 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
157 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
158 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
159 0, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
160 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
161 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
162 /* Saifun SA25F005 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
165 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
166 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
167 "Non-buffered flash (64kB)"},
169 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
170 1, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
171 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
173 /* Expansion entry 1001 */
174 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
176 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
178 /* Expansion entry 1010 */
179 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
181 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
183 /* ATMEL AT45DB011B (buffered flash) */
184 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
185 1, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
186 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
187 "Buffered flash (128kB)"},
188 /* Expansion entry 1100 */
189 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
190 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
191 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
193 /* Expansion entry 1101 */
194 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
195 0, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
196 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
198 /* Ateml Expansion entry 1110 */
199 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
200 1, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
201 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
202 "Entry 1110 (Atmel)"},
203 /* ATMEL AT45DB021B (buffered flash) */
204 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
205 1, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
206 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
207 "Buffered flash (256kB)"},
210 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
212 static inline u32
bnx2_tx_avail(struct bnx2
*bp
)
218 /* The ring uses 256 indices for 255 entries, one of them
219 * needs to be skipped.
221 diff
= bp
->tx_prod
- bp
->tx_cons
;
222 if (unlikely(diff
>= TX_DESC_CNT
)) {
224 if (diff
== TX_DESC_CNT
)
225 diff
= MAX_TX_DESC_CNT
;
227 return (bp
->tx_ring_size
- diff
);
231 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
233 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
234 return (REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
));
238 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
240 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
241 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
245 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
248 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
251 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
252 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
253 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
254 for (i
= 0; i
< 5; i
++) {
256 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
257 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
262 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
263 REG_WR(bp
, BNX2_CTX_DATA
, val
);
268 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
273 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
274 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
275 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
277 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
278 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
283 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
284 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
285 BNX2_EMAC_MDIO_COMM_START_BUSY
;
286 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
288 for (i
= 0; i
< 50; i
++) {
291 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
292 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
295 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
296 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
302 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
311 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
312 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
313 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
315 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
316 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
325 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
330 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
331 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
332 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
334 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
335 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
340 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
341 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
342 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
343 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
345 for (i
= 0; i
< 50; i
++) {
348 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
349 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
355 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
360 if (bp
->phy_flags
& PHY_INT_MODE_AUTO_POLLING_FLAG
) {
361 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
362 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
364 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
365 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
374 bnx2_disable_int(struct bnx2
*bp
)
376 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
377 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
378 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
382 bnx2_enable_int(struct bnx2
*bp
)
384 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
385 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
386 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
| bp
->last_status_idx
);
388 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
389 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
| bp
->last_status_idx
);
391 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
395 bnx2_disable_int_sync(struct bnx2
*bp
)
397 atomic_inc(&bp
->intr_sem
);
398 bnx2_disable_int(bp
);
399 synchronize_irq(bp
->pdev
->irq
);
403 bnx2_netif_stop(struct bnx2
*bp
)
405 bnx2_disable_int_sync(bp
);
406 if (netif_running(bp
->dev
)) {
407 netif_poll_disable(bp
->dev
);
408 netif_tx_disable(bp
->dev
);
409 bp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
414 bnx2_netif_start(struct bnx2
*bp
)
416 if (atomic_dec_and_test(&bp
->intr_sem
)) {
417 if (netif_running(bp
->dev
)) {
418 netif_wake_queue(bp
->dev
);
419 netif_poll_enable(bp
->dev
);
426 bnx2_free_mem(struct bnx2
*bp
)
430 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
431 if (bp
->ctx_blk
[i
]) {
432 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
434 bp
->ctx_blk_mapping
[i
]);
435 bp
->ctx_blk
[i
] = NULL
;
438 if (bp
->status_blk
) {
439 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
440 bp
->status_blk
, bp
->status_blk_mapping
);
441 bp
->status_blk
= NULL
;
442 bp
->stats_blk
= NULL
;
444 if (bp
->tx_desc_ring
) {
445 pci_free_consistent(bp
->pdev
,
446 sizeof(struct tx_bd
) * TX_DESC_CNT
,
447 bp
->tx_desc_ring
, bp
->tx_desc_mapping
);
448 bp
->tx_desc_ring
= NULL
;
450 kfree(bp
->tx_buf_ring
);
451 bp
->tx_buf_ring
= NULL
;
452 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
453 if (bp
->rx_desc_ring
[i
])
454 pci_free_consistent(bp
->pdev
,
455 sizeof(struct rx_bd
) * RX_DESC_CNT
,
457 bp
->rx_desc_mapping
[i
]);
458 bp
->rx_desc_ring
[i
] = NULL
;
460 vfree(bp
->rx_buf_ring
);
461 bp
->rx_buf_ring
= NULL
;
465 bnx2_alloc_mem(struct bnx2
*bp
)
467 int i
, status_blk_size
;
469 bp
->tx_buf_ring
= kzalloc(sizeof(struct sw_bd
) * TX_DESC_CNT
,
471 if (bp
->tx_buf_ring
== NULL
)
474 bp
->tx_desc_ring
= pci_alloc_consistent(bp
->pdev
,
475 sizeof(struct tx_bd
) *
477 &bp
->tx_desc_mapping
);
478 if (bp
->tx_desc_ring
== NULL
)
481 bp
->rx_buf_ring
= vmalloc(sizeof(struct sw_bd
) * RX_DESC_CNT
*
483 if (bp
->rx_buf_ring
== NULL
)
486 memset(bp
->rx_buf_ring
, 0, sizeof(struct sw_bd
) * RX_DESC_CNT
*
489 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
490 bp
->rx_desc_ring
[i
] =
491 pci_alloc_consistent(bp
->pdev
,
492 sizeof(struct rx_bd
) * RX_DESC_CNT
,
493 &bp
->rx_desc_mapping
[i
]);
494 if (bp
->rx_desc_ring
[i
] == NULL
)
499 /* Combine status and statistics blocks into one allocation. */
500 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
501 bp
->status_stats_size
= status_blk_size
+
502 sizeof(struct statistics_block
);
504 bp
->status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
505 &bp
->status_blk_mapping
);
506 if (bp
->status_blk
== NULL
)
509 memset(bp
->status_blk
, 0, bp
->status_stats_size
);
511 bp
->stats_blk
= (void *) ((unsigned long) bp
->status_blk
+
514 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
516 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
517 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
518 if (bp
->ctx_pages
== 0)
520 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
521 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
523 &bp
->ctx_blk_mapping
[i
]);
524 if (bp
->ctx_blk
[i
] == NULL
)
536 bnx2_report_fw_link(struct bnx2
*bp
)
538 u32 fw_link_status
= 0;
543 switch (bp
->line_speed
) {
545 if (bp
->duplex
== DUPLEX_HALF
)
546 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
548 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
551 if (bp
->duplex
== DUPLEX_HALF
)
552 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
554 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
557 if (bp
->duplex
== DUPLEX_HALF
)
558 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
560 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
563 if (bp
->duplex
== DUPLEX_HALF
)
564 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
566 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
570 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
573 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
575 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
576 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
578 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
579 bp
->phy_flags
& PHY_PARALLEL_DETECT_FLAG
)
580 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
582 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
586 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
588 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_LINK_STATUS
, fw_link_status
);
592 bnx2_report_link(struct bnx2
*bp
)
595 netif_carrier_on(bp
->dev
);
596 printk(KERN_INFO PFX
"%s NIC Link is Up, ", bp
->dev
->name
);
598 printk("%d Mbps ", bp
->line_speed
);
600 if (bp
->duplex
== DUPLEX_FULL
)
601 printk("full duplex");
603 printk("half duplex");
606 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
607 printk(", receive ");
608 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
609 printk("& transmit ");
612 printk(", transmit ");
614 printk("flow control ON");
619 netif_carrier_off(bp
->dev
);
620 printk(KERN_ERR PFX
"%s NIC Link is Down\n", bp
->dev
->name
);
623 bnx2_report_fw_link(bp
);
627 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
629 u32 local_adv
, remote_adv
;
632 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
633 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
635 if (bp
->duplex
== DUPLEX_FULL
) {
636 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
641 if (bp
->duplex
!= DUPLEX_FULL
) {
645 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
646 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
649 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
650 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
651 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
652 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
653 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
657 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
658 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
660 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
661 u32 new_local_adv
= 0;
662 u32 new_remote_adv
= 0;
664 if (local_adv
& ADVERTISE_1000XPAUSE
)
665 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
666 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
667 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
668 if (remote_adv
& ADVERTISE_1000XPAUSE
)
669 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
670 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
671 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
673 local_adv
= new_local_adv
;
674 remote_adv
= new_remote_adv
;
677 /* See Table 28B-3 of 802.3ab-1999 spec. */
678 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
679 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
680 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
681 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
683 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
684 bp
->flow_ctrl
= FLOW_CTRL_RX
;
688 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
689 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
693 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
694 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
695 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
697 bp
->flow_ctrl
= FLOW_CTRL_TX
;
703 bnx2_5708s_linkup(struct bnx2
*bp
)
708 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
709 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
710 case BCM5708S_1000X_STAT1_SPEED_10
:
711 bp
->line_speed
= SPEED_10
;
713 case BCM5708S_1000X_STAT1_SPEED_100
:
714 bp
->line_speed
= SPEED_100
;
716 case BCM5708S_1000X_STAT1_SPEED_1G
:
717 bp
->line_speed
= SPEED_1000
;
719 case BCM5708S_1000X_STAT1_SPEED_2G5
:
720 bp
->line_speed
= SPEED_2500
;
723 if (val
& BCM5708S_1000X_STAT1_FD
)
724 bp
->duplex
= DUPLEX_FULL
;
726 bp
->duplex
= DUPLEX_HALF
;
732 bnx2_5706s_linkup(struct bnx2
*bp
)
734 u32 bmcr
, local_adv
, remote_adv
, common
;
737 bp
->line_speed
= SPEED_1000
;
739 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
740 if (bmcr
& BMCR_FULLDPLX
) {
741 bp
->duplex
= DUPLEX_FULL
;
744 bp
->duplex
= DUPLEX_HALF
;
747 if (!(bmcr
& BMCR_ANENABLE
)) {
751 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
752 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
754 common
= local_adv
& remote_adv
;
755 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
757 if (common
& ADVERTISE_1000XFULL
) {
758 bp
->duplex
= DUPLEX_FULL
;
761 bp
->duplex
= DUPLEX_HALF
;
769 bnx2_copper_linkup(struct bnx2
*bp
)
773 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
774 if (bmcr
& BMCR_ANENABLE
) {
775 u32 local_adv
, remote_adv
, common
;
777 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
778 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
780 common
= local_adv
& (remote_adv
>> 2);
781 if (common
& ADVERTISE_1000FULL
) {
782 bp
->line_speed
= SPEED_1000
;
783 bp
->duplex
= DUPLEX_FULL
;
785 else if (common
& ADVERTISE_1000HALF
) {
786 bp
->line_speed
= SPEED_1000
;
787 bp
->duplex
= DUPLEX_HALF
;
790 bnx2_read_phy(bp
, MII_ADVERTISE
, &local_adv
);
791 bnx2_read_phy(bp
, MII_LPA
, &remote_adv
);
793 common
= local_adv
& remote_adv
;
794 if (common
& ADVERTISE_100FULL
) {
795 bp
->line_speed
= SPEED_100
;
796 bp
->duplex
= DUPLEX_FULL
;
798 else if (common
& ADVERTISE_100HALF
) {
799 bp
->line_speed
= SPEED_100
;
800 bp
->duplex
= DUPLEX_HALF
;
802 else if (common
& ADVERTISE_10FULL
) {
803 bp
->line_speed
= SPEED_10
;
804 bp
->duplex
= DUPLEX_FULL
;
806 else if (common
& ADVERTISE_10HALF
) {
807 bp
->line_speed
= SPEED_10
;
808 bp
->duplex
= DUPLEX_HALF
;
817 if (bmcr
& BMCR_SPEED100
) {
818 bp
->line_speed
= SPEED_100
;
821 bp
->line_speed
= SPEED_10
;
823 if (bmcr
& BMCR_FULLDPLX
) {
824 bp
->duplex
= DUPLEX_FULL
;
827 bp
->duplex
= DUPLEX_HALF
;
835 bnx2_set_mac_link(struct bnx2
*bp
)
839 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
840 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
841 (bp
->duplex
== DUPLEX_HALF
)) {
842 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
845 /* Configure the EMAC mode register. */
846 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
848 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
849 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
850 BNX2_EMAC_MODE_25G_MODE
);
853 switch (bp
->line_speed
) {
855 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
856 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
861 val
|= BNX2_EMAC_MODE_PORT_MII
;
864 val
|= BNX2_EMAC_MODE_25G_MODE
;
867 val
|= BNX2_EMAC_MODE_PORT_GMII
;
872 val
|= BNX2_EMAC_MODE_PORT_GMII
;
875 /* Set the MAC to operate in the appropriate duplex mode. */
876 if (bp
->duplex
== DUPLEX_HALF
)
877 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
878 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
880 /* Enable/disable rx PAUSE. */
881 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
883 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
884 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
885 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
887 /* Enable/disable tx PAUSE. */
888 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
889 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
891 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
892 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
893 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
895 /* Acknowledge the interrupt. */
896 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
902 bnx2_set_link(struct bnx2
*bp
)
907 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
912 link_up
= bp
->link_up
;
914 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
915 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
917 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
918 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
921 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
922 if (val
& BNX2_EMAC_STATUS_LINK
)
923 bmsr
|= BMSR_LSTATUS
;
925 bmsr
&= ~BMSR_LSTATUS
;
928 if (bmsr
& BMSR_LSTATUS
) {
931 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
932 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
933 bnx2_5706s_linkup(bp
);
934 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
935 bnx2_5708s_linkup(bp
);
938 bnx2_copper_linkup(bp
);
940 bnx2_resolve_flow_ctrl(bp
);
943 if ((bp
->phy_flags
& PHY_SERDES_FLAG
) &&
944 (bp
->autoneg
& AUTONEG_SPEED
)) {
948 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
949 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
950 if (!(bmcr
& BMCR_ANENABLE
)) {
951 bnx2_write_phy(bp
, MII_BMCR
, bmcr
|
955 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
959 if (bp
->link_up
!= link_up
) {
960 bnx2_report_link(bp
);
963 bnx2_set_mac_link(bp
);
969 bnx2_reset_phy(struct bnx2
*bp
)
974 bnx2_write_phy(bp
, MII_BMCR
, BMCR_RESET
);
976 #define PHY_RESET_MAX_WAIT 100
977 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
980 bnx2_read_phy(bp
, MII_BMCR
, ®
);
981 if (!(reg
& BMCR_RESET
)) {
986 if (i
== PHY_RESET_MAX_WAIT
) {
993 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
997 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
998 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1000 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1001 adv
= ADVERTISE_1000XPAUSE
;
1004 adv
= ADVERTISE_PAUSE_CAP
;
1007 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1008 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1009 adv
= ADVERTISE_1000XPSE_ASYM
;
1012 adv
= ADVERTISE_PAUSE_ASYM
;
1015 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1016 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1017 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1020 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1027 bnx2_setup_serdes_phy(struct bnx2
*bp
)
1032 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1034 int force_link_down
= 0;
1036 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv
);
1037 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1039 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
1040 new_bmcr
= bmcr
& ~(BMCR_ANENABLE
| BCM5708S_BMCR_FORCE_2500
);
1041 new_bmcr
|= BMCR_SPEED1000
;
1042 if (bp
->req_line_speed
== SPEED_2500
) {
1043 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1044 bnx2_read_phy(bp
, BCM5708S_UP1
, &up1
);
1045 if (!(up1
& BCM5708S_UP1_2G5
)) {
1046 up1
|= BCM5708S_UP1_2G5
;
1047 bnx2_write_phy(bp
, BCM5708S_UP1
, up1
);
1048 force_link_down
= 1;
1050 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1051 bnx2_read_phy(bp
, BCM5708S_UP1
, &up1
);
1052 if (up1
& BCM5708S_UP1_2G5
) {
1053 up1
&= ~BCM5708S_UP1_2G5
;
1054 bnx2_write_phy(bp
, BCM5708S_UP1
, up1
);
1055 force_link_down
= 1;
1059 if (bp
->req_duplex
== DUPLEX_FULL
) {
1060 adv
|= ADVERTISE_1000XFULL
;
1061 new_bmcr
|= BMCR_FULLDPLX
;
1064 adv
|= ADVERTISE_1000XHALF
;
1065 new_bmcr
&= ~BMCR_FULLDPLX
;
1067 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1068 /* Force a link down visible on the other side */
1070 bnx2_write_phy(bp
, MII_ADVERTISE
, adv
&
1071 ~(ADVERTISE_1000XFULL
|
1072 ADVERTISE_1000XHALF
));
1073 bnx2_write_phy(bp
, MII_BMCR
, bmcr
|
1074 BMCR_ANRESTART
| BMCR_ANENABLE
);
1077 netif_carrier_off(bp
->dev
);
1078 bnx2_write_phy(bp
, MII_BMCR
, new_bmcr
);
1079 bnx2_report_link(bp
);
1081 bnx2_write_phy(bp
, MII_ADVERTISE
, adv
);
1082 bnx2_write_phy(bp
, MII_BMCR
, new_bmcr
);
1087 if (bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
) {
1088 bnx2_read_phy(bp
, BCM5708S_UP1
, &up1
);
1089 up1
|= BCM5708S_UP1_2G5
;
1090 bnx2_write_phy(bp
, BCM5708S_UP1
, up1
);
1093 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1094 new_adv
|= ADVERTISE_1000XFULL
;
1096 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1098 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv
);
1099 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
1101 bp
->serdes_an_pending
= 0;
1102 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1103 /* Force a link down visible on the other side */
1105 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
1106 spin_unlock_bh(&bp
->phy_lock
);
1108 spin_lock_bh(&bp
->phy_lock
);
1111 bnx2_write_phy(bp
, MII_ADVERTISE
, new_adv
);
1112 bnx2_write_phy(bp
, MII_BMCR
, bmcr
| BMCR_ANRESTART
|
1114 /* Speed up link-up time when the link partner
1115 * does not autonegotiate which is very common
1116 * in blade servers. Some blade servers use
1117 * IPMI for kerboard input and it's important
1118 * to minimize link disruptions. Autoneg. involves
1119 * exchanging base pages plus 3 next pages and
1120 * normally completes in about 120 msec.
1122 bp
->current_interval
= SERDES_AN_TIMEOUT
;
1123 bp
->serdes_an_pending
= 1;
1124 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1130 #define ETHTOOL_ALL_FIBRE_SPEED \
1131 (ADVERTISED_1000baseT_Full)
1133 #define ETHTOOL_ALL_COPPER_SPEED \
1134 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1135 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1136 ADVERTISED_1000baseT_Full)
1138 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1139 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1141 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1144 bnx2_setup_copper_phy(struct bnx2
*bp
)
1149 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
1151 if (bp
->autoneg
& AUTONEG_SPEED
) {
1152 u32 adv_reg
, adv1000_reg
;
1153 u32 new_adv_reg
= 0;
1154 u32 new_adv1000_reg
= 0;
1156 bnx2_read_phy(bp
, MII_ADVERTISE
, &adv_reg
);
1157 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
1158 ADVERTISE_PAUSE_ASYM
);
1160 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
1161 adv1000_reg
&= PHY_ALL_1000_SPEED
;
1163 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1164 new_adv_reg
|= ADVERTISE_10HALF
;
1165 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1166 new_adv_reg
|= ADVERTISE_10FULL
;
1167 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1168 new_adv_reg
|= ADVERTISE_100HALF
;
1169 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1170 new_adv_reg
|= ADVERTISE_100FULL
;
1171 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1172 new_adv1000_reg
|= ADVERTISE_1000FULL
;
1174 new_adv_reg
|= ADVERTISE_CSMA
;
1176 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
1178 if ((adv1000_reg
!= new_adv1000_reg
) ||
1179 (adv_reg
!= new_adv_reg
) ||
1180 ((bmcr
& BMCR_ANENABLE
) == 0)) {
1182 bnx2_write_phy(bp
, MII_ADVERTISE
, new_adv_reg
);
1183 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
1184 bnx2_write_phy(bp
, MII_BMCR
, BMCR_ANRESTART
|
1187 else if (bp
->link_up
) {
1188 /* Flow ctrl may have changed from auto to forced */
1189 /* or vice-versa. */
1191 bnx2_resolve_flow_ctrl(bp
);
1192 bnx2_set_mac_link(bp
);
1198 if (bp
->req_line_speed
== SPEED_100
) {
1199 new_bmcr
|= BMCR_SPEED100
;
1201 if (bp
->req_duplex
== DUPLEX_FULL
) {
1202 new_bmcr
|= BMCR_FULLDPLX
;
1204 if (new_bmcr
!= bmcr
) {
1207 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
1208 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
1210 if (bmsr
& BMSR_LSTATUS
) {
1211 /* Force link down */
1212 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
1213 spin_unlock_bh(&bp
->phy_lock
);
1215 spin_lock_bh(&bp
->phy_lock
);
1217 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
1218 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
1221 bnx2_write_phy(bp
, MII_BMCR
, new_bmcr
);
1223 /* Normally, the new speed is setup after the link has
1224 * gone down and up again. In some cases, link will not go
1225 * down so we need to set up the new speed here.
1227 if (bmsr
& BMSR_LSTATUS
) {
1228 bp
->line_speed
= bp
->req_line_speed
;
1229 bp
->duplex
= bp
->req_duplex
;
1230 bnx2_resolve_flow_ctrl(bp
);
1231 bnx2_set_mac_link(bp
);
1238 bnx2_setup_phy(struct bnx2
*bp
)
1240 if (bp
->loopback
== MAC_LOOPBACK
)
1243 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1244 return (bnx2_setup_serdes_phy(bp
));
1247 return (bnx2_setup_copper_phy(bp
));
1252 bnx2_init_5708s_phy(struct bnx2
*bp
)
1256 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
1257 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
1258 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
1260 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
1261 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
1262 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
1264 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
1265 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
1266 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
1268 if (bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
) {
1269 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
1270 val
|= BCM5708S_UP1_2G5
;
1271 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
1274 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
1275 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
1276 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
1277 /* increase tx signal amplitude */
1278 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1279 BCM5708S_BLK_ADDR_TX_MISC
);
1280 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
1281 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
1282 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
1283 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
1286 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_CONFIG
) &
1287 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
1292 is_backplane
= REG_RD_IND(bp
, bp
->shmem_base
+
1293 BNX2_SHARED_HW_CFG_CONFIG
);
1294 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
1295 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1296 BCM5708S_BLK_ADDR_TX_MISC
);
1297 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
1298 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
1299 BCM5708S_BLK_ADDR_DIG
);
1306 bnx2_init_5706s_phy(struct bnx2
*bp
)
1308 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
1310 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1311 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
1313 if (bp
->dev
->mtu
> 1500) {
1316 /* Set extended packet length bit */
1317 bnx2_write_phy(bp
, 0x18, 0x7);
1318 bnx2_read_phy(bp
, 0x18, &val
);
1319 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
1321 bnx2_write_phy(bp
, 0x1c, 0x6c00);
1322 bnx2_read_phy(bp
, 0x1c, &val
);
1323 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
1328 bnx2_write_phy(bp
, 0x18, 0x7);
1329 bnx2_read_phy(bp
, 0x18, &val
);
1330 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
1332 bnx2_write_phy(bp
, 0x1c, 0x6c00);
1333 bnx2_read_phy(bp
, 0x1c, &val
);
1334 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
1341 bnx2_init_copper_phy(struct bnx2
*bp
)
1345 if (bp
->phy_flags
& PHY_CRC_FIX_FLAG
) {
1346 bnx2_write_phy(bp
, 0x18, 0x0c00);
1347 bnx2_write_phy(bp
, 0x17, 0x000a);
1348 bnx2_write_phy(bp
, 0x15, 0x310b);
1349 bnx2_write_phy(bp
, 0x17, 0x201f);
1350 bnx2_write_phy(bp
, 0x15, 0x9506);
1351 bnx2_write_phy(bp
, 0x17, 0x401f);
1352 bnx2_write_phy(bp
, 0x15, 0x14e2);
1353 bnx2_write_phy(bp
, 0x18, 0x0400);
1356 if (bp
->phy_flags
& PHY_DIS_EARLY_DAC_FLAG
) {
1357 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
1358 MII_BNX2_DSP_EXPAND_REG
| 0x8);
1359 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1361 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
1364 if (bp
->dev
->mtu
> 1500) {
1365 /* Set extended packet length bit */
1366 bnx2_write_phy(bp
, 0x18, 0x7);
1367 bnx2_read_phy(bp
, 0x18, &val
);
1368 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
1370 bnx2_read_phy(bp
, 0x10, &val
);
1371 bnx2_write_phy(bp
, 0x10, val
| 0x1);
1374 bnx2_write_phy(bp
, 0x18, 0x7);
1375 bnx2_read_phy(bp
, 0x18, &val
);
1376 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
1378 bnx2_read_phy(bp
, 0x10, &val
);
1379 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
1382 /* ethernet@wirespeed */
1383 bnx2_write_phy(bp
, 0x18, 0x7007);
1384 bnx2_read_phy(bp
, 0x18, &val
);
1385 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
1391 bnx2_init_phy(struct bnx2
*bp
)
1396 bp
->phy_flags
&= ~PHY_INT_MODE_MASK_FLAG
;
1397 bp
->phy_flags
|= PHY_INT_MODE_LINK_READY_FLAG
;
1399 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
1403 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
1404 bp
->phy_id
= val
<< 16;
1405 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
1406 bp
->phy_id
|= val
& 0xffff;
1408 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
1409 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1410 rc
= bnx2_init_5706s_phy(bp
);
1411 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1412 rc
= bnx2_init_5708s_phy(bp
);
1415 rc
= bnx2_init_copper_phy(bp
);
1424 bnx2_set_mac_loopback(struct bnx2
*bp
)
1428 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
1429 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
1430 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
1431 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
1436 static int bnx2_test_link(struct bnx2
*);
1439 bnx2_set_phy_loopback(struct bnx2
*bp
)
1444 spin_lock_bh(&bp
->phy_lock
);
1445 rc
= bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
1447 spin_unlock_bh(&bp
->phy_lock
);
1451 for (i
= 0; i
< 10; i
++) {
1452 if (bnx2_test_link(bp
) == 0)
1457 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
1458 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1459 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1460 BNX2_EMAC_MODE_25G_MODE
);
1462 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
1463 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
1469 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int silent
)
1475 msg_data
|= bp
->fw_wr_seq
;
1477 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB
, msg_data
);
1479 /* wait for an acknowledgement. */
1480 for (i
= 0; i
< (FW_ACK_TIME_OUT_MS
/ 10); i
++) {
1483 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_FW_MB
);
1485 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
1488 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
1491 /* If we timed out, inform the firmware that this is the case. */
1492 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
1494 printk(KERN_ERR PFX
"fw sync timeout, reset code = "
1497 msg_data
&= ~BNX2_DRV_MSG_CODE
;
1498 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
1500 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_MB
, msg_data
);
1505 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
1512 bnx2_init_5709_context(struct bnx2
*bp
)
1517 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
1518 val
|= (BCM_PAGE_BITS
- 8) << 16;
1519 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
1520 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
1523 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
1524 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
1525 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
1526 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
1527 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
1528 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
1529 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
1530 for (j
= 0; j
< 10; j
++) {
1532 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
1533 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
1537 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
1546 bnx2_init_context(struct bnx2
*bp
)
1552 u32 vcid_addr
, pcid_addr
, offset
;
1556 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
1559 vcid_addr
= GET_PCID_ADDR(vcid
);
1561 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
1566 pcid_addr
= GET_PCID_ADDR(new_vcid
);
1569 vcid_addr
= GET_CID_ADDR(vcid
);
1570 pcid_addr
= vcid_addr
;
1573 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, 0x00);
1574 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
1576 /* Zero out the context. */
1577 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4) {
1578 CTX_WR(bp
, 0x00, offset
, 0);
1581 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
1582 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
1587 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
1593 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
1594 if (good_mbuf
== NULL
) {
1595 printk(KERN_ERR PFX
"Failed to allocate memory in "
1596 "bnx2_alloc_bad_rbuf\n");
1600 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
1601 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
1605 /* Allocate a bunch of mbufs and save the good ones in an array. */
1606 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
1607 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
1608 REG_WR_IND(bp
, BNX2_RBUF_COMMAND
, BNX2_RBUF_COMMAND_ALLOC_REQ
);
1610 val
= REG_RD_IND(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
1612 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
1614 /* The addresses with Bit 9 set are bad memory blocks. */
1615 if (!(val
& (1 << 9))) {
1616 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
1620 val
= REG_RD_IND(bp
, BNX2_RBUF_STATUS1
);
1623 /* Free the good ones back to the mbuf pool thus discarding
1624 * all the bad ones. */
1625 while (good_mbuf_cnt
) {
1628 val
= good_mbuf
[good_mbuf_cnt
];
1629 val
= (val
<< 9) | val
| 1;
1631 REG_WR_IND(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
1638 bnx2_set_mac_addr(struct bnx2
*bp
)
1641 u8
*mac_addr
= bp
->dev
->dev_addr
;
1643 val
= (mac_addr
[0] << 8) | mac_addr
[1];
1645 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
, val
);
1647 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
1648 (mac_addr
[4] << 8) | mac_addr
[5];
1650 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
, val
);
1654 bnx2_alloc_rx_skb(struct bnx2
*bp
, u16 index
)
1656 struct sk_buff
*skb
;
1657 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[index
];
1659 struct rx_bd
*rxbd
= &bp
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
1660 unsigned long align
;
1662 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
1667 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
1668 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
1670 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
1671 PCI_DMA_FROMDEVICE
);
1674 pci_unmap_addr_set(rx_buf
, mapping
, mapping
);
1676 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
1677 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
1679 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
1685 bnx2_phy_int(struct bnx2
*bp
)
1687 u32 new_link_state
, old_link_state
;
1689 new_link_state
= bp
->status_blk
->status_attn_bits
&
1690 STATUS_ATTN_BITS_LINK_STATE
;
1691 old_link_state
= bp
->status_blk
->status_attn_bits_ack
&
1692 STATUS_ATTN_BITS_LINK_STATE
;
1693 if (new_link_state
!= old_link_state
) {
1694 if (new_link_state
) {
1695 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
,
1696 STATUS_ATTN_BITS_LINK_STATE
);
1699 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
,
1700 STATUS_ATTN_BITS_LINK_STATE
);
1707 bnx2_tx_int(struct bnx2
*bp
)
1709 struct status_block
*sblk
= bp
->status_blk
;
1710 u16 hw_cons
, sw_cons
, sw_ring_cons
;
1713 hw_cons
= bp
->hw_tx_cons
= sblk
->status_tx_quick_consumer_index0
;
1714 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
1717 sw_cons
= bp
->tx_cons
;
1719 while (sw_cons
!= hw_cons
) {
1720 struct sw_bd
*tx_buf
;
1721 struct sk_buff
*skb
;
1724 sw_ring_cons
= TX_RING_IDX(sw_cons
);
1726 tx_buf
= &bp
->tx_buf_ring
[sw_ring_cons
];
1729 /* partial BD completions possible with TSO packets */
1730 if (skb_is_gso(skb
)) {
1731 u16 last_idx
, last_ring_idx
;
1733 last_idx
= sw_cons
+
1734 skb_shinfo(skb
)->nr_frags
+ 1;
1735 last_ring_idx
= sw_ring_cons
+
1736 skb_shinfo(skb
)->nr_frags
+ 1;
1737 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
1740 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
1745 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
1746 skb_headlen(skb
), PCI_DMA_TODEVICE
);
1749 last
= skb_shinfo(skb
)->nr_frags
;
1751 for (i
= 0; i
< last
; i
++) {
1752 sw_cons
= NEXT_TX_BD(sw_cons
);
1754 pci_unmap_page(bp
->pdev
,
1756 &bp
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
1758 skb_shinfo(skb
)->frags
[i
].size
,
1762 sw_cons
= NEXT_TX_BD(sw_cons
);
1764 tx_free_bd
+= last
+ 1;
1768 hw_cons
= bp
->hw_tx_cons
=
1769 sblk
->status_tx_quick_consumer_index0
;
1771 if ((hw_cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
) {
1776 bp
->tx_cons
= sw_cons
;
1777 /* Need to make the tx_cons update visible to bnx2_start_xmit()
1778 * before checking for netif_queue_stopped(). Without the
1779 * memory barrier, there is a small possibility that bnx2_start_xmit()
1780 * will miss it and cause the queue to be stopped forever.
1784 if (unlikely(netif_queue_stopped(bp
->dev
)) &&
1785 (bnx2_tx_avail(bp
) > bp
->tx_wake_thresh
)) {
1786 netif_tx_lock(bp
->dev
);
1787 if ((netif_queue_stopped(bp
->dev
)) &&
1788 (bnx2_tx_avail(bp
) > bp
->tx_wake_thresh
))
1789 netif_wake_queue(bp
->dev
);
1790 netif_tx_unlock(bp
->dev
);
1795 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct sk_buff
*skb
,
1798 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
1799 struct rx_bd
*cons_bd
, *prod_bd
;
1801 cons_rx_buf
= &bp
->rx_buf_ring
[cons
];
1802 prod_rx_buf
= &bp
->rx_buf_ring
[prod
];
1804 pci_dma_sync_single_for_device(bp
->pdev
,
1805 pci_unmap_addr(cons_rx_buf
, mapping
),
1806 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
1808 bp
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
1810 prod_rx_buf
->skb
= skb
;
1815 pci_unmap_addr_set(prod_rx_buf
, mapping
,
1816 pci_unmap_addr(cons_rx_buf
, mapping
));
1818 cons_bd
= &bp
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
1819 prod_bd
= &bp
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
1820 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
1821 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
1825 bnx2_rx_int(struct bnx2
*bp
, int budget
)
1827 struct status_block
*sblk
= bp
->status_blk
;
1828 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
1829 struct l2_fhdr
*rx_hdr
;
1832 hw_cons
= bp
->hw_rx_cons
= sblk
->status_rx_quick_consumer_index0
;
1833 if ((hw_cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
) {
1836 sw_cons
= bp
->rx_cons
;
1837 sw_prod
= bp
->rx_prod
;
1839 /* Memory barrier necessary as speculative reads of the rx
1840 * buffer can be ahead of the index in the status block
1843 while (sw_cons
!= hw_cons
) {
1846 struct sw_bd
*rx_buf
;
1847 struct sk_buff
*skb
;
1848 dma_addr_t dma_addr
;
1850 sw_ring_cons
= RX_RING_IDX(sw_cons
);
1851 sw_ring_prod
= RX_RING_IDX(sw_prod
);
1853 rx_buf
= &bp
->rx_buf_ring
[sw_ring_cons
];
1858 dma_addr
= pci_unmap_addr(rx_buf
, mapping
);
1860 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
1861 bp
->rx_offset
+ RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
1863 rx_hdr
= (struct l2_fhdr
*) skb
->data
;
1864 len
= rx_hdr
->l2_fhdr_pkt_len
- 4;
1866 if ((status
= rx_hdr
->l2_fhdr_status
) &
1867 (L2_FHDR_ERRORS_BAD_CRC
|
1868 L2_FHDR_ERRORS_PHY_DECODE
|
1869 L2_FHDR_ERRORS_ALIGNMENT
|
1870 L2_FHDR_ERRORS_TOO_SHORT
|
1871 L2_FHDR_ERRORS_GIANT_FRAME
)) {
1876 /* Since we don't have a jumbo ring, copy small packets
1879 if ((bp
->dev
->mtu
> 1500) && (len
<= RX_COPY_THRESH
)) {
1880 struct sk_buff
*new_skb
;
1882 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 2);
1883 if (new_skb
== NULL
)
1887 memcpy(new_skb
->data
,
1888 skb
->data
+ bp
->rx_offset
- 2,
1891 skb_reserve(new_skb
, 2);
1892 skb_put(new_skb
, len
);
1894 bnx2_reuse_rx_skb(bp
, skb
,
1895 sw_ring_cons
, sw_ring_prod
);
1899 else if (bnx2_alloc_rx_skb(bp
, sw_ring_prod
) == 0) {
1900 pci_unmap_single(bp
->pdev
, dma_addr
,
1901 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
1903 skb_reserve(skb
, bp
->rx_offset
);
1908 bnx2_reuse_rx_skb(bp
, skb
,
1909 sw_ring_cons
, sw_ring_prod
);
1913 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
1915 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
1916 (ntohs(skb
->protocol
) != 0x8100)) {
1923 skb
->ip_summed
= CHECKSUM_NONE
;
1925 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
1926 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
1928 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
1929 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
1930 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1934 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) && (bp
->vlgrp
!= 0)) {
1935 vlan_hwaccel_receive_skb(skb
, bp
->vlgrp
,
1936 rx_hdr
->l2_fhdr_vlan_tag
);
1940 netif_receive_skb(skb
);
1942 bp
->dev
->last_rx
= jiffies
;
1946 sw_cons
= NEXT_RX_BD(sw_cons
);
1947 sw_prod
= NEXT_RX_BD(sw_prod
);
1949 if ((rx_pkt
== budget
))
1952 /* Refresh hw_cons to see if there is new work */
1953 if (sw_cons
== hw_cons
) {
1954 hw_cons
= bp
->hw_rx_cons
=
1955 sblk
->status_rx_quick_consumer_index0
;
1956 if ((hw_cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
)
1961 bp
->rx_cons
= sw_cons
;
1962 bp
->rx_prod
= sw_prod
;
1964 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, sw_prod
);
1966 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
1974 /* MSI ISR - The only difference between this and the INTx ISR
1975 * is that the MSI interrupt is always serviced.
1978 bnx2_msi(int irq
, void *dev_instance
)
1980 struct net_device
*dev
= dev_instance
;
1981 struct bnx2
*bp
= netdev_priv(dev
);
1983 prefetch(bp
->status_blk
);
1984 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
1985 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
1986 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
1988 /* Return here if interrupt is disabled. */
1989 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
1992 netif_rx_schedule(dev
);
1998 bnx2_interrupt(int irq
, void *dev_instance
)
2000 struct net_device
*dev
= dev_instance
;
2001 struct bnx2
*bp
= netdev_priv(dev
);
2003 /* When using INTx, it is possible for the interrupt to arrive
2004 * at the CPU before the status block posted prior to the
2005 * interrupt. Reading a register will flush the status block.
2006 * When using MSI, the MSI message will always complete after
2007 * the status block write.
2009 if ((bp
->status_blk
->status_idx
== bp
->last_status_idx
) &&
2010 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
2011 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
2014 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2015 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
2016 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
2018 /* Return here if interrupt is shared and is disabled. */
2019 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
2022 netif_rx_schedule(dev
);
2028 bnx2_has_work(struct bnx2
*bp
)
2030 struct status_block
*sblk
= bp
->status_blk
;
2032 if ((sblk
->status_rx_quick_consumer_index0
!= bp
->hw_rx_cons
) ||
2033 (sblk
->status_tx_quick_consumer_index0
!= bp
->hw_tx_cons
))
2036 if (((sblk
->status_attn_bits
& STATUS_ATTN_BITS_LINK_STATE
) != 0) !=
2044 bnx2_poll(struct net_device
*dev
, int *budget
)
2046 struct bnx2
*bp
= netdev_priv(dev
);
2048 if ((bp
->status_blk
->status_attn_bits
&
2049 STATUS_ATTN_BITS_LINK_STATE
) !=
2050 (bp
->status_blk
->status_attn_bits_ack
&
2051 STATUS_ATTN_BITS_LINK_STATE
)) {
2053 spin_lock(&bp
->phy_lock
);
2055 spin_unlock(&bp
->phy_lock
);
2057 /* This is needed to take care of transient status
2058 * during link changes.
2060 REG_WR(bp
, BNX2_HC_COMMAND
,
2061 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
2062 REG_RD(bp
, BNX2_HC_COMMAND
);
2065 if (bp
->status_blk
->status_tx_quick_consumer_index0
!= bp
->hw_tx_cons
)
2068 if (bp
->status_blk
->status_rx_quick_consumer_index0
!= bp
->hw_rx_cons
) {
2069 int orig_budget
= *budget
;
2072 if (orig_budget
> dev
->quota
)
2073 orig_budget
= dev
->quota
;
2075 work_done
= bnx2_rx_int(bp
, orig_budget
);
2076 *budget
-= work_done
;
2077 dev
->quota
-= work_done
;
2080 bp
->last_status_idx
= bp
->status_blk
->status_idx
;
2083 if (!bnx2_has_work(bp
)) {
2084 netif_rx_complete(dev
);
2085 if (likely(bp
->flags
& USING_MSI_FLAG
)) {
2086 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2087 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
2088 bp
->last_status_idx
);
2091 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2092 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
2093 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
2094 bp
->last_status_idx
);
2096 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
2097 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
2098 bp
->last_status_idx
);
2105 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
2106 * from set_multicast.
2109 bnx2_set_rx_mode(struct net_device
*dev
)
2111 struct bnx2
*bp
= netdev_priv(dev
);
2112 u32 rx_mode
, sort_mode
;
2115 spin_lock_bh(&bp
->phy_lock
);
2117 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
2118 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
2119 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
2121 if (!bp
->vlgrp
&& !(bp
->flags
& ASF_ENABLE_FLAG
))
2122 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
2124 if (!(bp
->flags
& ASF_ENABLE_FLAG
))
2125 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
2127 if (dev
->flags
& IFF_PROMISC
) {
2128 /* Promiscuous mode. */
2129 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
2130 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
2131 BNX2_RPM_SORT_USER0_PROM_VLAN
;
2133 else if (dev
->flags
& IFF_ALLMULTI
) {
2134 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
2135 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
2138 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
2141 /* Accept one or more multicast(s). */
2142 struct dev_mc_list
*mclist
;
2143 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
2148 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
2150 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
2151 i
++, mclist
= mclist
->next
) {
2153 crc
= ether_crc_le(ETH_ALEN
, mclist
->dmi_addr
);
2155 regidx
= (bit
& 0xe0) >> 5;
2157 mc_filter
[regidx
] |= (1 << bit
);
2160 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
2161 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
2165 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
2168 if (rx_mode
!= bp
->rx_mode
) {
2169 bp
->rx_mode
= rx_mode
;
2170 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
2173 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
2174 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
2175 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
2177 spin_unlock_bh(&bp
->phy_lock
);
2180 #define FW_BUF_SIZE 0x8000
2183 bnx2_gunzip_init(struct bnx2
*bp
)
2185 if ((bp
->gunzip_buf
= vmalloc(FW_BUF_SIZE
)) == NULL
)
2188 if ((bp
->strm
= kmalloc(sizeof(*bp
->strm
), GFP_KERNEL
)) == NULL
)
2191 bp
->strm
->workspace
= kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL
);
2192 if (bp
->strm
->workspace
== NULL
)
2202 vfree(bp
->gunzip_buf
);
2203 bp
->gunzip_buf
= NULL
;
2206 printk(KERN_ERR PFX
"%s: Cannot allocate firmware buffer for "
2207 "uncompression.\n", bp
->dev
->name
);
2212 bnx2_gunzip_end(struct bnx2
*bp
)
2214 kfree(bp
->strm
->workspace
);
2219 if (bp
->gunzip_buf
) {
2220 vfree(bp
->gunzip_buf
);
2221 bp
->gunzip_buf
= NULL
;
2226 bnx2_gunzip(struct bnx2
*bp
, u8
*zbuf
, int len
, void **outbuf
, int *outlen
)
2230 /* check gzip header */
2231 if ((zbuf
[0] != 0x1f) || (zbuf
[1] != 0x8b) || (zbuf
[2] != Z_DEFLATED
))
2237 if (zbuf
[3] & FNAME
)
2238 while ((zbuf
[n
++] != 0) && (n
< len
));
2240 bp
->strm
->next_in
= zbuf
+ n
;
2241 bp
->strm
->avail_in
= len
- n
;
2242 bp
->strm
->next_out
= bp
->gunzip_buf
;
2243 bp
->strm
->avail_out
= FW_BUF_SIZE
;
2245 rc
= zlib_inflateInit2(bp
->strm
, -MAX_WBITS
);
2249 rc
= zlib_inflate(bp
->strm
, Z_FINISH
);
2251 *outlen
= FW_BUF_SIZE
- bp
->strm
->avail_out
;
2252 *outbuf
= bp
->gunzip_buf
;
2254 if ((rc
!= Z_OK
) && (rc
!= Z_STREAM_END
))
2255 printk(KERN_ERR PFX
"%s: Firmware decompression error: %s\n",
2256 bp
->dev
->name
, bp
->strm
->msg
);
2258 zlib_inflateEnd(bp
->strm
);
2260 if (rc
== Z_STREAM_END
)
2267 load_rv2p_fw(struct bnx2
*bp
, u32
*rv2p_code
, u32 rv2p_code_len
,
2274 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
2275 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, cpu_to_le32(*rv2p_code
));
2277 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, cpu_to_le32(*rv2p_code
));
2280 if (rv2p_proc
== RV2P_PROC1
) {
2281 val
= (i
/ 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
2282 REG_WR(bp
, BNX2_RV2P_PROC1_ADDR_CMD
, val
);
2285 val
= (i
/ 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
2286 REG_WR(bp
, BNX2_RV2P_PROC2_ADDR_CMD
, val
);
2290 /* Reset the processor, un-stall is done later. */
2291 if (rv2p_proc
== RV2P_PROC1
) {
2292 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
2295 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
2300 load_cpu_fw(struct bnx2
*bp
, struct cpu_reg
*cpu_reg
, struct fw_info
*fw
)
2307 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
2308 val
|= cpu_reg
->mode_value_halt
;
2309 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
2310 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
2312 /* Load the Text area. */
2313 offset
= cpu_reg
->spad_base
+ (fw
->text_addr
- cpu_reg
->mips_view_base
);
2318 rc
= bnx2_gunzip(bp
, fw
->gz_text
, fw
->gz_text_len
, &text
,
2328 for (j
= 0; j
< (fw
->text_len
/ 4); j
++, offset
+= 4) {
2329 REG_WR_IND(bp
, offset
, cpu_to_le32(fw
->text
[j
]));
2333 /* Load the Data area. */
2334 offset
= cpu_reg
->spad_base
+ (fw
->data_addr
- cpu_reg
->mips_view_base
);
2338 for (j
= 0; j
< (fw
->data_len
/ 4); j
++, offset
+= 4) {
2339 REG_WR_IND(bp
, offset
, fw
->data
[j
]);
2343 /* Load the SBSS area. */
2344 offset
= cpu_reg
->spad_base
+ (fw
->sbss_addr
- cpu_reg
->mips_view_base
);
2348 for (j
= 0; j
< (fw
->sbss_len
/ 4); j
++, offset
+= 4) {
2349 REG_WR_IND(bp
, offset
, fw
->sbss
[j
]);
2353 /* Load the BSS area. */
2354 offset
= cpu_reg
->spad_base
+ (fw
->bss_addr
- cpu_reg
->mips_view_base
);
2358 for (j
= 0; j
< (fw
->bss_len
/4); j
++, offset
+= 4) {
2359 REG_WR_IND(bp
, offset
, fw
->bss
[j
]);
2363 /* Load the Read-Only area. */
2364 offset
= cpu_reg
->spad_base
+
2365 (fw
->rodata_addr
- cpu_reg
->mips_view_base
);
2369 for (j
= 0; j
< (fw
->rodata_len
/ 4); j
++, offset
+= 4) {
2370 REG_WR_IND(bp
, offset
, fw
->rodata
[j
]);
2374 /* Clear the pre-fetch instruction. */
2375 REG_WR_IND(bp
, cpu_reg
->inst
, 0);
2376 REG_WR_IND(bp
, cpu_reg
->pc
, fw
->start_addr
);
2378 /* Start the CPU. */
2379 val
= REG_RD_IND(bp
, cpu_reg
->mode
);
2380 val
&= ~cpu_reg
->mode_value_halt
;
2381 REG_WR_IND(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
2382 REG_WR_IND(bp
, cpu_reg
->mode
, val
);
2388 bnx2_init_cpus(struct bnx2
*bp
)
2390 struct cpu_reg cpu_reg
;
2396 if ((rc
= bnx2_gunzip_init(bp
)) != 0)
2399 /* Initialize the RV2P processor. */
2400 rc
= bnx2_gunzip(bp
, bnx2_rv2p_proc1
, sizeof(bnx2_rv2p_proc1
), &text
,
2405 load_rv2p_fw(bp
, text
, text_len
, RV2P_PROC1
);
2407 rc
= bnx2_gunzip(bp
, bnx2_rv2p_proc2
, sizeof(bnx2_rv2p_proc2
), &text
,
2412 load_rv2p_fw(bp
, text
, text_len
, RV2P_PROC2
);
2414 /* Initialize the RX Processor. */
2415 cpu_reg
.mode
= BNX2_RXP_CPU_MODE
;
2416 cpu_reg
.mode_value_halt
= BNX2_RXP_CPU_MODE_SOFT_HALT
;
2417 cpu_reg
.mode_value_sstep
= BNX2_RXP_CPU_MODE_STEP_ENA
;
2418 cpu_reg
.state
= BNX2_RXP_CPU_STATE
;
2419 cpu_reg
.state_value_clear
= 0xffffff;
2420 cpu_reg
.gpr0
= BNX2_RXP_CPU_REG_FILE
;
2421 cpu_reg
.evmask
= BNX2_RXP_CPU_EVENT_MASK
;
2422 cpu_reg
.pc
= BNX2_RXP_CPU_PROGRAM_COUNTER
;
2423 cpu_reg
.inst
= BNX2_RXP_CPU_INSTRUCTION
;
2424 cpu_reg
.bp
= BNX2_RXP_CPU_HW_BREAKPOINT
;
2425 cpu_reg
.spad_base
= BNX2_RXP_SCRATCH
;
2426 cpu_reg
.mips_view_base
= 0x8000000;
2428 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2429 fw
= &bnx2_rxp_fw_09
;
2431 fw
= &bnx2_rxp_fw_06
;
2433 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2437 /* Initialize the TX Processor. */
2438 cpu_reg
.mode
= BNX2_TXP_CPU_MODE
;
2439 cpu_reg
.mode_value_halt
= BNX2_TXP_CPU_MODE_SOFT_HALT
;
2440 cpu_reg
.mode_value_sstep
= BNX2_TXP_CPU_MODE_STEP_ENA
;
2441 cpu_reg
.state
= BNX2_TXP_CPU_STATE
;
2442 cpu_reg
.state_value_clear
= 0xffffff;
2443 cpu_reg
.gpr0
= BNX2_TXP_CPU_REG_FILE
;
2444 cpu_reg
.evmask
= BNX2_TXP_CPU_EVENT_MASK
;
2445 cpu_reg
.pc
= BNX2_TXP_CPU_PROGRAM_COUNTER
;
2446 cpu_reg
.inst
= BNX2_TXP_CPU_INSTRUCTION
;
2447 cpu_reg
.bp
= BNX2_TXP_CPU_HW_BREAKPOINT
;
2448 cpu_reg
.spad_base
= BNX2_TXP_SCRATCH
;
2449 cpu_reg
.mips_view_base
= 0x8000000;
2451 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2452 fw
= &bnx2_txp_fw_09
;
2454 fw
= &bnx2_txp_fw_06
;
2456 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2460 /* Initialize the TX Patch-up Processor. */
2461 cpu_reg
.mode
= BNX2_TPAT_CPU_MODE
;
2462 cpu_reg
.mode_value_halt
= BNX2_TPAT_CPU_MODE_SOFT_HALT
;
2463 cpu_reg
.mode_value_sstep
= BNX2_TPAT_CPU_MODE_STEP_ENA
;
2464 cpu_reg
.state
= BNX2_TPAT_CPU_STATE
;
2465 cpu_reg
.state_value_clear
= 0xffffff;
2466 cpu_reg
.gpr0
= BNX2_TPAT_CPU_REG_FILE
;
2467 cpu_reg
.evmask
= BNX2_TPAT_CPU_EVENT_MASK
;
2468 cpu_reg
.pc
= BNX2_TPAT_CPU_PROGRAM_COUNTER
;
2469 cpu_reg
.inst
= BNX2_TPAT_CPU_INSTRUCTION
;
2470 cpu_reg
.bp
= BNX2_TPAT_CPU_HW_BREAKPOINT
;
2471 cpu_reg
.spad_base
= BNX2_TPAT_SCRATCH
;
2472 cpu_reg
.mips_view_base
= 0x8000000;
2474 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2475 fw
= &bnx2_tpat_fw_09
;
2477 fw
= &bnx2_tpat_fw_06
;
2479 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2483 /* Initialize the Completion Processor. */
2484 cpu_reg
.mode
= BNX2_COM_CPU_MODE
;
2485 cpu_reg
.mode_value_halt
= BNX2_COM_CPU_MODE_SOFT_HALT
;
2486 cpu_reg
.mode_value_sstep
= BNX2_COM_CPU_MODE_STEP_ENA
;
2487 cpu_reg
.state
= BNX2_COM_CPU_STATE
;
2488 cpu_reg
.state_value_clear
= 0xffffff;
2489 cpu_reg
.gpr0
= BNX2_COM_CPU_REG_FILE
;
2490 cpu_reg
.evmask
= BNX2_COM_CPU_EVENT_MASK
;
2491 cpu_reg
.pc
= BNX2_COM_CPU_PROGRAM_COUNTER
;
2492 cpu_reg
.inst
= BNX2_COM_CPU_INSTRUCTION
;
2493 cpu_reg
.bp
= BNX2_COM_CPU_HW_BREAKPOINT
;
2494 cpu_reg
.spad_base
= BNX2_COM_SCRATCH
;
2495 cpu_reg
.mips_view_base
= 0x8000000;
2497 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2498 fw
= &bnx2_com_fw_09
;
2500 fw
= &bnx2_com_fw_06
;
2502 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2506 /* Initialize the Command Processor. */
2507 cpu_reg
.mode
= BNX2_CP_CPU_MODE
;
2508 cpu_reg
.mode_value_halt
= BNX2_CP_CPU_MODE_SOFT_HALT
;
2509 cpu_reg
.mode_value_sstep
= BNX2_CP_CPU_MODE_STEP_ENA
;
2510 cpu_reg
.state
= BNX2_CP_CPU_STATE
;
2511 cpu_reg
.state_value_clear
= 0xffffff;
2512 cpu_reg
.gpr0
= BNX2_CP_CPU_REG_FILE
;
2513 cpu_reg
.evmask
= BNX2_CP_CPU_EVENT_MASK
;
2514 cpu_reg
.pc
= BNX2_CP_CPU_PROGRAM_COUNTER
;
2515 cpu_reg
.inst
= BNX2_CP_CPU_INSTRUCTION
;
2516 cpu_reg
.bp
= BNX2_CP_CPU_HW_BREAKPOINT
;
2517 cpu_reg
.spad_base
= BNX2_CP_SCRATCH
;
2518 cpu_reg
.mips_view_base
= 0x8000000;
2520 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
2521 fw
= &bnx2_cp_fw_09
;
2523 rc
= load_cpu_fw(bp
, &cpu_reg
, fw
);
2528 bnx2_gunzip_end(bp
);
2533 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
2537 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2543 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
2544 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
2545 PCI_PM_CTRL_PME_STATUS
);
2547 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
2548 /* delay required during transition out of D3hot */
2551 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
2552 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
2553 val
&= ~BNX2_EMAC_MODE_MPKT
;
2554 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
2556 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
2557 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
2558 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
2569 autoneg
= bp
->autoneg
;
2570 advertising
= bp
->advertising
;
2572 bp
->autoneg
= AUTONEG_SPEED
;
2573 bp
->advertising
= ADVERTISED_10baseT_Half
|
2574 ADVERTISED_10baseT_Full
|
2575 ADVERTISED_100baseT_Half
|
2576 ADVERTISED_100baseT_Full
|
2579 bnx2_setup_copper_phy(bp
);
2581 bp
->autoneg
= autoneg
;
2582 bp
->advertising
= advertising
;
2584 bnx2_set_mac_addr(bp
);
2586 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
2588 /* Enable port mode. */
2589 val
&= ~BNX2_EMAC_MODE_PORT
;
2590 val
|= BNX2_EMAC_MODE_PORT_MII
|
2591 BNX2_EMAC_MODE_MPKT_RCVD
|
2592 BNX2_EMAC_MODE_ACPI_RCVD
|
2593 BNX2_EMAC_MODE_MPKT
;
2595 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
2597 /* receive all multicast */
2598 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
2599 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
2602 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
2603 BNX2_EMAC_RX_MODE_SORT_MODE
);
2605 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
2606 BNX2_RPM_SORT_USER0_MC_EN
;
2607 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
2608 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
2609 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
2610 BNX2_RPM_SORT_USER0_ENA
);
2612 /* Need to enable EMAC and RPM for WOL. */
2613 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2614 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
2615 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
2616 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
2618 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
2619 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
2620 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
2622 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
2625 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
2628 if (!(bp
->flags
& NO_WOL_FLAG
))
2629 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
, 0);
2631 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
2632 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
2633 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
2642 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2644 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
2647 /* No more memory access after this point until
2648 * device is brought back to D0.
2660 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
2665 /* Request access to the flash interface. */
2666 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
2667 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2668 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
2669 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
2675 if (j
>= NVRAM_TIMEOUT_COUNT
)
2682 bnx2_release_nvram_lock(struct bnx2
*bp
)
2687 /* Relinquish nvram interface. */
2688 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
2690 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2691 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
2692 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
2698 if (j
>= NVRAM_TIMEOUT_COUNT
)
2706 bnx2_enable_nvram_write(struct bnx2
*bp
)
2710 val
= REG_RD(bp
, BNX2_MISC_CFG
);
2711 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
2713 if (!bp
->flash_info
->buffered
) {
2716 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2717 REG_WR(bp
, BNX2_NVM_COMMAND
,
2718 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
2720 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2723 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2724 if (val
& BNX2_NVM_COMMAND_DONE
)
2728 if (j
>= NVRAM_TIMEOUT_COUNT
)
2735 bnx2_disable_nvram_write(struct bnx2
*bp
)
2739 val
= REG_RD(bp
, BNX2_MISC_CFG
);
2740 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
2745 bnx2_enable_nvram_access(struct bnx2
*bp
)
2749 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
2750 /* Enable both bits, even on read. */
2751 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
2752 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
2756 bnx2_disable_nvram_access(struct bnx2
*bp
)
2760 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
2761 /* Disable both bits, even after read. */
2762 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
2763 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
2764 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
2768 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
2773 if (bp
->flash_info
->buffered
)
2774 /* Buffered flash, no erase needed */
2777 /* Build an erase command */
2778 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
2779 BNX2_NVM_COMMAND_DOIT
;
2781 /* Need to clear DONE bit separately. */
2782 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2784 /* Address of the NVRAM to read from. */
2785 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2787 /* Issue an erase command. */
2788 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2790 /* Wait for completion. */
2791 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2796 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2797 if (val
& BNX2_NVM_COMMAND_DONE
)
2801 if (j
>= NVRAM_TIMEOUT_COUNT
)
2808 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
2813 /* Build the command word. */
2814 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
2816 /* Calculate an offset of a buffered flash. */
2817 if (bp
->flash_info
->buffered
) {
2818 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
2819 bp
->flash_info
->page_bits
) +
2820 (offset
% bp
->flash_info
->page_size
);
2823 /* Need to clear DONE bit separately. */
2824 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2826 /* Address of the NVRAM to read from. */
2827 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2829 /* Issue a read command. */
2830 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2832 /* Wait for completion. */
2833 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2838 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
2839 if (val
& BNX2_NVM_COMMAND_DONE
) {
2840 val
= REG_RD(bp
, BNX2_NVM_READ
);
2842 val
= be32_to_cpu(val
);
2843 memcpy(ret_val
, &val
, 4);
2847 if (j
>= NVRAM_TIMEOUT_COUNT
)
2855 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
2860 /* Build the command word. */
2861 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
2863 /* Calculate an offset of a buffered flash. */
2864 if (bp
->flash_info
->buffered
) {
2865 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
2866 bp
->flash_info
->page_bits
) +
2867 (offset
% bp
->flash_info
->page_size
);
2870 /* Need to clear DONE bit separately. */
2871 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
2873 memcpy(&val32
, val
, 4);
2874 val32
= cpu_to_be32(val32
);
2876 /* Write the data. */
2877 REG_WR(bp
, BNX2_NVM_WRITE
, val32
);
2879 /* Address of the NVRAM to write to. */
2880 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
2882 /* Issue the write command. */
2883 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
2885 /* Wait for completion. */
2886 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
2889 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
2892 if (j
>= NVRAM_TIMEOUT_COUNT
)
2899 bnx2_init_nvram(struct bnx2
*bp
)
2902 int j
, entry_count
, rc
;
2903 struct flash_spec
*flash
;
2905 /* Determine the selected interface. */
2906 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
2908 entry_count
= sizeof(flash_table
) / sizeof(struct flash_spec
);
2911 if (val
& 0x40000000) {
2913 /* Flash interface has been reconfigured */
2914 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
2916 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
2917 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
2918 bp
->flash_info
= flash
;
2925 /* Not yet been reconfigured */
2927 if (val
& (1 << 23))
2928 mask
= FLASH_BACKUP_STRAP_MASK
;
2930 mask
= FLASH_STRAP_MASK
;
2932 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
2935 if ((val
& mask
) == (flash
->strapping
& mask
)) {
2936 bp
->flash_info
= flash
;
2938 /* Request access to the flash interface. */
2939 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2942 /* Enable access to flash interface */
2943 bnx2_enable_nvram_access(bp
);
2945 /* Reconfigure the flash interface */
2946 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
2947 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
2948 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
2949 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
2951 /* Disable access to flash interface */
2952 bnx2_disable_nvram_access(bp
);
2953 bnx2_release_nvram_lock(bp
);
2958 } /* if (val & 0x40000000) */
2960 if (j
== entry_count
) {
2961 bp
->flash_info
= NULL
;
2962 printk(KERN_ALERT PFX
"Unknown flash/EEPROM type.\n");
2966 val
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_SHARED_HW_CFG_CONFIG2
);
2967 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
2969 bp
->flash_size
= val
;
2971 bp
->flash_size
= bp
->flash_info
->total_size
;
2977 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
2981 u32 cmd_flags
, offset32
, len32
, extra
;
2986 /* Request access to the flash interface. */
2987 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
2990 /* Enable access to flash interface */
2991 bnx2_enable_nvram_access(bp
);
3004 pre_len
= 4 - (offset
& 3);
3006 if (pre_len
>= len32
) {
3008 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
3009 BNX2_NVM_COMMAND_LAST
;
3012 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3015 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3020 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
3027 extra
= 4 - (len32
& 3);
3028 len32
= (len32
+ 4) & ~3;
3035 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3037 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
3038 BNX2_NVM_COMMAND_LAST
;
3040 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3042 memcpy(ret_buf
, buf
, 4 - extra
);
3044 else if (len32
> 0) {
3047 /* Read the first word. */
3051 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3053 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
3055 /* Advance to the next dword. */
3060 while (len32
> 4 && rc
== 0) {
3061 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
3063 /* Advance to the next dword. */
3072 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3073 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
3075 memcpy(ret_buf
, buf
, 4 - extra
);
3078 /* Disable access to flash interface */
3079 bnx2_disable_nvram_access(bp
);
3081 bnx2_release_nvram_lock(bp
);
3087 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
3090 u32 written
, offset32
, len32
;
3091 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
3093 int align_start
, align_end
;
3098 align_start
= align_end
= 0;
3100 if ((align_start
= (offset32
& 3))) {
3102 len32
+= (4 - align_start
);
3103 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
3108 if ((len32
> 4) || !align_start
) {
3109 align_end
= 4 - (len32
& 3);
3111 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4,
3118 if (align_start
|| align_end
) {
3119 align_buf
= kmalloc(len32
, GFP_KERNEL
);
3120 if (align_buf
== NULL
)
3123 memcpy(align_buf
, start
, 4);
3126 memcpy(align_buf
+ len32
- 4, end
, 4);
3128 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
3132 if (bp
->flash_info
->buffered
== 0) {
3133 flash_buffer
= kmalloc(264, GFP_KERNEL
);
3134 if (flash_buffer
== NULL
) {
3136 goto nvram_write_end
;
3141 while ((written
< len32
) && (rc
== 0)) {
3142 u32 page_start
, page_end
, data_start
, data_end
;
3143 u32 addr
, cmd_flags
;
3146 /* Find the page_start addr */
3147 page_start
= offset32
+ written
;
3148 page_start
-= (page_start
% bp
->flash_info
->page_size
);
3149 /* Find the page_end addr */
3150 page_end
= page_start
+ bp
->flash_info
->page_size
;
3151 /* Find the data_start addr */
3152 data_start
= (written
== 0) ? offset32
: page_start
;
3153 /* Find the data_end addr */
3154 data_end
= (page_end
> offset32
+ len32
) ?
3155 (offset32
+ len32
) : page_end
;
3157 /* Request access to the flash interface. */
3158 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
3159 goto nvram_write_end
;
3161 /* Enable access to flash interface */
3162 bnx2_enable_nvram_access(bp
);
3164 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
3165 if (bp
->flash_info
->buffered
== 0) {
3168 /* Read the whole page into the buffer
3169 * (non-buffer flash only) */
3170 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
3171 if (j
== (bp
->flash_info
->page_size
- 4)) {
3172 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
3174 rc
= bnx2_nvram_read_dword(bp
,
3180 goto nvram_write_end
;
3186 /* Enable writes to flash interface (unlock write-protect) */
3187 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
3188 goto nvram_write_end
;
3190 /* Erase the page */
3191 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
3192 goto nvram_write_end
;
3194 /* Re-enable the write again for the actual write */
3195 bnx2_enable_nvram_write(bp
);
3197 /* Loop to write back the buffer data from page_start to
3200 if (bp
->flash_info
->buffered
== 0) {
3201 for (addr
= page_start
; addr
< data_start
;
3202 addr
+= 4, i
+= 4) {
3204 rc
= bnx2_nvram_write_dword(bp
, addr
,
3205 &flash_buffer
[i
], cmd_flags
);
3208 goto nvram_write_end
;
3214 /* Loop to write the new data from data_start to data_end */
3215 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
3216 if ((addr
== page_end
- 4) ||
3217 ((bp
->flash_info
->buffered
) &&
3218 (addr
== data_end
- 4))) {
3220 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
3222 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
3226 goto nvram_write_end
;
3232 /* Loop to write back the buffer data from data_end
3234 if (bp
->flash_info
->buffered
== 0) {
3235 for (addr
= data_end
; addr
< page_end
;
3236 addr
+= 4, i
+= 4) {
3238 if (addr
== page_end
-4) {
3239 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
3241 rc
= bnx2_nvram_write_dword(bp
, addr
,
3242 &flash_buffer
[i
], cmd_flags
);
3245 goto nvram_write_end
;
3251 /* Disable writes to flash interface (lock write-protect) */
3252 bnx2_disable_nvram_write(bp
);
3254 /* Disable access to flash interface */
3255 bnx2_disable_nvram_access(bp
);
3256 bnx2_release_nvram_lock(bp
);
3258 /* Increment written */
3259 written
+= data_end
- data_start
;
3263 kfree(flash_buffer
);
3269 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
3274 /* Wait for the current PCI transaction to complete before
3275 * issuing a reset. */
3276 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
3277 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
3278 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
3279 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
3280 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
3281 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
3284 /* Wait for the firmware to tell us it is ok to issue a reset. */
3285 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1);
3287 /* Deposit a driver reset signature so the firmware knows that
3288 * this is a soft reset. */
3289 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_RESET_SIGNATURE
,
3290 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
3292 /* Do a dummy read to force the chip to complete all current transaction
3293 * before we issue a reset. */
3294 val
= REG_RD(bp
, BNX2_MISC_ID
);
3296 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3297 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
3298 REG_RD(bp
, BNX2_MISC_COMMAND
);
3301 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
3302 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
3304 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
3307 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
3308 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
3309 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
3312 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
3314 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3315 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3316 current
->state
= TASK_UNINTERRUPTIBLE
;
3317 schedule_timeout(HZ
/ 50);
3320 /* Reset takes approximate 30 usec */
3321 for (i
= 0; i
< 10; i
++) {
3322 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
3323 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
3324 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
3329 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
3330 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
3331 printk(KERN_ERR PFX
"Chip reset did not complete\n");
3336 /* Make sure byte swapping is properly configured. */
3337 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
3338 if (val
!= 0x01020304) {
3339 printk(KERN_ERR PFX
"Chip not in correct endian mode\n");
3343 /* Wait for the firmware to finish its initialization. */
3344 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 0);
3348 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
3349 /* Adjust the voltage regular to two steps lower. The default
3350 * of this register is 0x0000000e. */
3351 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
3353 /* Remove bad rbuf memory from the free pool. */
3354 rc
= bnx2_alloc_bad_rbuf(bp
);
3361 bnx2_init_chip(struct bnx2
*bp
)
3366 /* Make sure the interrupt is not active. */
3367 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3369 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
3370 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
3372 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
3374 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
3375 DMA_READ_CHANS
<< 12 |
3376 DMA_WRITE_CHANS
<< 16;
3378 val
|= (0x2 << 20) | (1 << 11);
3380 if ((bp
->flags
& PCIX_FLAG
) && (bp
->bus_speed_mhz
== 133))
3383 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
3384 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& PCIX_FLAG
))
3385 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
3387 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
3389 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
3390 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
3391 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
3392 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
3395 if (bp
->flags
& PCIX_FLAG
) {
3398 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
3400 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
3401 val16
& ~PCI_X_CMD_ERO
);
3404 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3405 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
3406 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
3407 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
3409 /* Initialize context mapping and zero out the quick contexts. The
3410 * context block must have already been enabled. */
3411 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
3412 bnx2_init_5709_context(bp
);
3414 bnx2_init_context(bp
);
3416 if ((rc
= bnx2_init_cpus(bp
)) != 0)
3419 bnx2_init_nvram(bp
);
3421 bnx2_set_mac_addr(bp
);
3423 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
3424 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
3425 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
3426 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
3428 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
3429 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
3430 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
3432 val
= (BCM_PAGE_BITS
- 8) << 24;
3433 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
3435 /* Configure page size. */
3436 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
3437 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
3438 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
3439 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
3441 val
= bp
->mac_addr
[0] +
3442 (bp
->mac_addr
[1] << 8) +
3443 (bp
->mac_addr
[2] << 16) +
3445 (bp
->mac_addr
[4] << 8) +
3446 (bp
->mac_addr
[5] << 16);
3447 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
3449 /* Program the MTU. Also include 4 bytes for CRC32. */
3450 val
= bp
->dev
->mtu
+ ETH_HLEN
+ 4;
3451 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
3452 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
3453 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
3455 bp
->last_status_idx
= 0;
3456 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
3458 /* Set up how to generate a link change interrupt. */
3459 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
3461 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
3462 (u64
) bp
->status_blk_mapping
& 0xffffffff);
3463 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
3465 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
3466 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
3467 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
3468 (u64
) bp
->stats_blk_mapping
>> 32);
3470 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
3471 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
3473 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
3474 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
3476 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
3477 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
3479 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
3481 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
3483 REG_WR(bp
, BNX2_HC_COM_TICKS
,
3484 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
3486 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
3487 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
3489 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
& 0xffff00);
3490 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
3492 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
3493 REG_WR(bp
, BNX2_HC_CONFIG
, BNX2_HC_CONFIG_COLLECT_STATS
);
3495 REG_WR(bp
, BNX2_HC_CONFIG
, BNX2_HC_CONFIG_RX_TMR_MODE
|
3496 BNX2_HC_CONFIG_TX_TMR_MODE
|
3497 BNX2_HC_CONFIG_COLLECT_STATS
);
3500 /* Clear internal stats counters. */
3501 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
3503 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_BITS_LINK_STATE
);
3505 if (REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_FEATURE
) &
3506 BNX2_PORT_FEATURE_ASF_ENABLED
)
3507 bp
->flags
|= ASF_ENABLE_FLAG
;
3509 /* Initialize the receive filter. */
3510 bnx2_set_rx_mode(bp
->dev
);
3512 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
3515 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, 0x5ffffff);
3516 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
3520 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
3526 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
)
3528 u32 val
, offset0
, offset1
, offset2
, offset3
;
3530 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3531 offset0
= BNX2_L2CTX_TYPE_XI
;
3532 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
3533 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
3534 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
3536 offset0
= BNX2_L2CTX_TYPE
;
3537 offset1
= BNX2_L2CTX_CMD_TYPE
;
3538 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
3539 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
3541 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
3542 CTX_WR(bp
, GET_CID_ADDR(cid
), offset0
, val
);
3544 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
3545 CTX_WR(bp
, GET_CID_ADDR(cid
), offset1
, val
);
3547 val
= (u64
) bp
->tx_desc_mapping
>> 32;
3548 CTX_WR(bp
, GET_CID_ADDR(cid
), offset2
, val
);
3550 val
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
3551 CTX_WR(bp
, GET_CID_ADDR(cid
), offset3
, val
);
3555 bnx2_init_tx_ring(struct bnx2
*bp
)
3560 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
3562 txbd
= &bp
->tx_desc_ring
[MAX_TX_DESC_CNT
];
3564 txbd
->tx_bd_haddr_hi
= (u64
) bp
->tx_desc_mapping
>> 32;
3565 txbd
->tx_bd_haddr_lo
= (u64
) bp
->tx_desc_mapping
& 0xffffffff;
3570 bp
->tx_prod_bseq
= 0;
3573 bp
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
3574 bp
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
3576 bnx2_init_tx_context(bp
, cid
);
3580 bnx2_init_rx_ring(struct bnx2
*bp
)
3584 u16 prod
, ring_prod
;
3587 /* 8 for CRC and VLAN */
3588 bp
->rx_buf_use_size
= bp
->dev
->mtu
+ ETH_HLEN
+ bp
->rx_offset
+ 8;
3590 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
3592 ring_prod
= prod
= bp
->rx_prod
= 0;
3595 bp
->rx_prod_bseq
= 0;
3597 for (i
= 0; i
< bp
->rx_max_ring
; i
++) {
3600 rxbd
= &bp
->rx_desc_ring
[i
][0];
3601 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
3602 rxbd
->rx_bd_len
= bp
->rx_buf_use_size
;
3603 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
3605 if (i
== (bp
->rx_max_ring
- 1))
3609 rxbd
->rx_bd_haddr_hi
= (u64
) bp
->rx_desc_mapping
[j
] >> 32;
3610 rxbd
->rx_bd_haddr_lo
= (u64
) bp
->rx_desc_mapping
[j
] &
3614 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
3615 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
3617 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_CTX_TYPE
, val
);
3619 val
= (u64
) bp
->rx_desc_mapping
[0] >> 32;
3620 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_HI
, val
);
3622 val
= (u64
) bp
->rx_desc_mapping
[0] & 0xffffffff;
3623 CTX_WR(bp
, GET_CID_ADDR(RX_CID
), BNX2_L2CTX_NX_BDHADDR_LO
, val
);
3625 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
3626 if (bnx2_alloc_rx_skb(bp
, ring_prod
) < 0) {
3629 prod
= NEXT_RX_BD(prod
);
3630 ring_prod
= RX_RING_IDX(prod
);
3634 REG_WR16(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BDIDX
, prod
);
3636 REG_WR(bp
, MB_RX_CID_ADDR
+ BNX2_L2CTX_HOST_BSEQ
, bp
->rx_prod_bseq
);
3640 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
3644 bp
->rx_ring_size
= size
;
3646 while (size
> MAX_RX_DESC_CNT
) {
3647 size
-= MAX_RX_DESC_CNT
;
3650 /* round to next power of 2 */
3652 while ((max
& num_rings
) == 0)
3655 if (num_rings
!= max
)
3658 bp
->rx_max_ring
= max
;
3659 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
3663 bnx2_free_tx_skbs(struct bnx2
*bp
)
3667 if (bp
->tx_buf_ring
== NULL
)
3670 for (i
= 0; i
< TX_DESC_CNT
; ) {
3671 struct sw_bd
*tx_buf
= &bp
->tx_buf_ring
[i
];
3672 struct sk_buff
*skb
= tx_buf
->skb
;
3680 pci_unmap_single(bp
->pdev
, pci_unmap_addr(tx_buf
, mapping
),
3681 skb_headlen(skb
), PCI_DMA_TODEVICE
);
3685 last
= skb_shinfo(skb
)->nr_frags
;
3686 for (j
= 0; j
< last
; j
++) {
3687 tx_buf
= &bp
->tx_buf_ring
[i
+ j
+ 1];
3688 pci_unmap_page(bp
->pdev
,
3689 pci_unmap_addr(tx_buf
, mapping
),
3690 skb_shinfo(skb
)->frags
[j
].size
,
3700 bnx2_free_rx_skbs(struct bnx2
*bp
)
3704 if (bp
->rx_buf_ring
== NULL
)
3707 for (i
= 0; i
< bp
->rx_max_ring_idx
; i
++) {
3708 struct sw_bd
*rx_buf
= &bp
->rx_buf_ring
[i
];
3709 struct sk_buff
*skb
= rx_buf
->skb
;
3714 pci_unmap_single(bp
->pdev
, pci_unmap_addr(rx_buf
, mapping
),
3715 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
3724 bnx2_free_skbs(struct bnx2
*bp
)
3726 bnx2_free_tx_skbs(bp
);
3727 bnx2_free_rx_skbs(bp
);
3731 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
3735 rc
= bnx2_reset_chip(bp
, reset_code
);
3740 if ((rc
= bnx2_init_chip(bp
)) != 0)
3743 bnx2_init_tx_ring(bp
);
3744 bnx2_init_rx_ring(bp
);
3749 bnx2_init_nic(struct bnx2
*bp
)
3753 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
3756 spin_lock_bh(&bp
->phy_lock
);
3758 spin_unlock_bh(&bp
->phy_lock
);
3764 bnx2_test_registers(struct bnx2
*bp
)
3768 static const struct {
3774 { 0x006c, 0, 0x00000000, 0x0000003f },
3775 { 0x0090, 0, 0xffffffff, 0x00000000 },
3776 { 0x0094, 0, 0x00000000, 0x00000000 },
3778 { 0x0404, 0, 0x00003f00, 0x00000000 },
3779 { 0x0418, 0, 0x00000000, 0xffffffff },
3780 { 0x041c, 0, 0x00000000, 0xffffffff },
3781 { 0x0420, 0, 0x00000000, 0x80ffffff },
3782 { 0x0424, 0, 0x00000000, 0x00000000 },
3783 { 0x0428, 0, 0x00000000, 0x00000001 },
3784 { 0x0450, 0, 0x00000000, 0x0000ffff },
3785 { 0x0454, 0, 0x00000000, 0xffffffff },
3786 { 0x0458, 0, 0x00000000, 0xffffffff },
3788 { 0x0808, 0, 0x00000000, 0xffffffff },
3789 { 0x0854, 0, 0x00000000, 0xffffffff },
3790 { 0x0868, 0, 0x00000000, 0x77777777 },
3791 { 0x086c, 0, 0x00000000, 0x77777777 },
3792 { 0x0870, 0, 0x00000000, 0x77777777 },
3793 { 0x0874, 0, 0x00000000, 0x77777777 },
3795 { 0x0c00, 0, 0x00000000, 0x00000001 },
3796 { 0x0c04, 0, 0x00000000, 0x03ff0001 },
3797 { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
3799 { 0x1000, 0, 0x00000000, 0x00000001 },
3800 { 0x1004, 0, 0x00000000, 0x000f0001 },
3802 { 0x1408, 0, 0x01c00800, 0x00000000 },
3803 { 0x149c, 0, 0x8000ffff, 0x00000000 },
3804 { 0x14a8, 0, 0x00000000, 0x000001ff },
3805 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
3806 { 0x14b0, 0, 0x00000002, 0x00000001 },
3807 { 0x14b8, 0, 0x00000000, 0x00000000 },
3808 { 0x14c0, 0, 0x00000000, 0x00000009 },
3809 { 0x14c4, 0, 0x00003fff, 0x00000000 },
3810 { 0x14cc, 0, 0x00000000, 0x00000001 },
3811 { 0x14d0, 0, 0xffffffff, 0x00000000 },
3813 { 0x1800, 0, 0x00000000, 0x00000001 },
3814 { 0x1804, 0, 0x00000000, 0x00000003 },
3816 { 0x2800, 0, 0x00000000, 0x00000001 },
3817 { 0x2804, 0, 0x00000000, 0x00003f01 },
3818 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
3819 { 0x2810, 0, 0xffff0000, 0x00000000 },
3820 { 0x2814, 0, 0xffff0000, 0x00000000 },
3821 { 0x2818, 0, 0xffff0000, 0x00000000 },
3822 { 0x281c, 0, 0xffff0000, 0x00000000 },
3823 { 0x2834, 0, 0xffffffff, 0x00000000 },
3824 { 0x2840, 0, 0x00000000, 0xffffffff },
3825 { 0x2844, 0, 0x00000000, 0xffffffff },
3826 { 0x2848, 0, 0xffffffff, 0x00000000 },
3827 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
3829 { 0x2c00, 0, 0x00000000, 0x00000011 },
3830 { 0x2c04, 0, 0x00000000, 0x00030007 },
3832 { 0x3c00, 0, 0x00000000, 0x00000001 },
3833 { 0x3c04, 0, 0x00000000, 0x00070000 },
3834 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
3835 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
3836 { 0x3c10, 0, 0xffffffff, 0x00000000 },
3837 { 0x3c14, 0, 0x00000000, 0xffffffff },
3838 { 0x3c18, 0, 0x00000000, 0xffffffff },
3839 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
3840 { 0x3c20, 0, 0xffffff00, 0x00000000 },
3842 { 0x5004, 0, 0x00000000, 0x0000007f },
3843 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
3844 { 0x500c, 0, 0xf800f800, 0x07ff07ff },
3846 { 0x5c00, 0, 0x00000000, 0x00000001 },
3847 { 0x5c04, 0, 0x00000000, 0x0003000f },
3848 { 0x5c08, 0, 0x00000003, 0x00000000 },
3849 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
3850 { 0x5c10, 0, 0x00000000, 0xffffffff },
3851 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
3852 { 0x5c84, 0, 0x00000000, 0x0000f333 },
3853 { 0x5c88, 0, 0x00000000, 0x00077373 },
3854 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
3856 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
3857 { 0x680c, 0, 0xffffffff, 0x00000000 },
3858 { 0x6810, 0, 0xffffffff, 0x00000000 },
3859 { 0x6814, 0, 0xffffffff, 0x00000000 },
3860 { 0x6818, 0, 0xffffffff, 0x00000000 },
3861 { 0x681c, 0, 0xffffffff, 0x00000000 },
3862 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
3863 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
3864 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
3865 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
3866 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
3867 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
3868 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
3869 { 0x683c, 0, 0x0000ffff, 0x00000000 },
3870 { 0x6840, 0, 0x00000ff0, 0x00000000 },
3871 { 0x6844, 0, 0x00ffff00, 0x00000000 },
3872 { 0x684c, 0, 0xffffffff, 0x00000000 },
3873 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
3874 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
3875 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
3876 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
3877 { 0x6908, 0, 0x00000000, 0x0001ff0f },
3878 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
3880 { 0xffff, 0, 0x00000000, 0x00000000 },
3884 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
3885 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
3887 offset
= (u32
) reg_tbl
[i
].offset
;
3888 rw_mask
= reg_tbl
[i
].rw_mask
;
3889 ro_mask
= reg_tbl
[i
].ro_mask
;
3891 save_val
= readl(bp
->regview
+ offset
);
3893 writel(0, bp
->regview
+ offset
);
3895 val
= readl(bp
->regview
+ offset
);
3896 if ((val
& rw_mask
) != 0) {
3900 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
3904 writel(0xffffffff, bp
->regview
+ offset
);
3906 val
= readl(bp
->regview
+ offset
);
3907 if ((val
& rw_mask
) != rw_mask
) {
3911 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
3915 writel(save_val
, bp
->regview
+ offset
);
3919 writel(save_val
, bp
->regview
+ offset
);
3927 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
3929 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
3930 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
3933 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
3936 for (offset
= 0; offset
< size
; offset
+= 4) {
3938 REG_WR_IND(bp
, start
+ offset
, test_pattern
[i
]);
3940 if (REG_RD_IND(bp
, start
+ offset
) !=
3950 bnx2_test_memory(struct bnx2
*bp
)
3954 static const struct {
3958 { 0x60000, 0x4000 },
3959 { 0xa0000, 0x3000 },
3960 { 0xe0000, 0x4000 },
3961 { 0x120000, 0x4000 },
3962 { 0x1a0000, 0x4000 },
3963 { 0x160000, 0x4000 },
3967 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
3968 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
3969 mem_tbl
[i
].len
)) != 0) {
3977 #define BNX2_MAC_LOOPBACK 0
3978 #define BNX2_PHY_LOOPBACK 1
3981 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
3983 unsigned int pkt_size
, num_pkts
, i
;
3984 struct sk_buff
*skb
, *rx_skb
;
3985 unsigned char *packet
;
3986 u16 rx_start_idx
, rx_idx
;
3989 struct sw_bd
*rx_buf
;
3990 struct l2_fhdr
*rx_hdr
;
3993 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
3994 bp
->loopback
= MAC_LOOPBACK
;
3995 bnx2_set_mac_loopback(bp
);
3997 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
3998 bp
->loopback
= PHY_LOOPBACK
;
3999 bnx2_set_phy_loopback(bp
);
4005 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
4008 packet
= skb_put(skb
, pkt_size
);
4009 memcpy(packet
, bp
->dev
->dev_addr
, 6);
4010 memset(packet
+ 6, 0x0, 8);
4011 for (i
= 14; i
< pkt_size
; i
++)
4012 packet
[i
] = (unsigned char) (i
& 0xff);
4014 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
4017 REG_WR(bp
, BNX2_HC_COMMAND
,
4018 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
4020 REG_RD(bp
, BNX2_HC_COMMAND
);
4023 rx_start_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
4027 txbd
= &bp
->tx_desc_ring
[TX_RING_IDX(bp
->tx_prod
)];
4029 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
4030 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
4031 txbd
->tx_bd_mss_nbytes
= pkt_size
;
4032 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
4035 bp
->tx_prod
= NEXT_TX_BD(bp
->tx_prod
);
4036 bp
->tx_prod_bseq
+= pkt_size
;
4038 REG_WR16(bp
, bp
->tx_bidx_addr
, bp
->tx_prod
);
4039 REG_WR(bp
, bp
->tx_bseq_addr
, bp
->tx_prod_bseq
);
4043 REG_WR(bp
, BNX2_HC_COMMAND
,
4044 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
4046 REG_RD(bp
, BNX2_HC_COMMAND
);
4050 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
4053 if (bp
->status_blk
->status_tx_quick_consumer_index0
!= bp
->tx_prod
) {
4054 goto loopback_test_done
;
4057 rx_idx
= bp
->status_blk
->status_rx_quick_consumer_index0
;
4058 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
4059 goto loopback_test_done
;
4062 rx_buf
= &bp
->rx_buf_ring
[rx_start_idx
];
4063 rx_skb
= rx_buf
->skb
;
4065 rx_hdr
= (struct l2_fhdr
*) rx_skb
->data
;
4066 skb_reserve(rx_skb
, bp
->rx_offset
);
4068 pci_dma_sync_single_for_cpu(bp
->pdev
,
4069 pci_unmap_addr(rx_buf
, mapping
),
4070 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
4072 if (rx_hdr
->l2_fhdr_status
&
4073 (L2_FHDR_ERRORS_BAD_CRC
|
4074 L2_FHDR_ERRORS_PHY_DECODE
|
4075 L2_FHDR_ERRORS_ALIGNMENT
|
4076 L2_FHDR_ERRORS_TOO_SHORT
|
4077 L2_FHDR_ERRORS_GIANT_FRAME
)) {
4079 goto loopback_test_done
;
4082 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
4083 goto loopback_test_done
;
4086 for (i
= 14; i
< pkt_size
; i
++) {
4087 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
4088 goto loopback_test_done
;
4099 #define BNX2_MAC_LOOPBACK_FAILED 1
4100 #define BNX2_PHY_LOOPBACK_FAILED 2
4101 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
4102 BNX2_PHY_LOOPBACK_FAILED)
4105 bnx2_test_loopback(struct bnx2
*bp
)
4109 if (!netif_running(bp
->dev
))
4110 return BNX2_LOOPBACK_FAILED
;
4112 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
4113 spin_lock_bh(&bp
->phy_lock
);
4115 spin_unlock_bh(&bp
->phy_lock
);
4116 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
4117 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
4118 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
4119 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
4123 #define NVRAM_SIZE 0x200
4124 #define CRC32_RESIDUAL 0xdebb20e3
4127 bnx2_test_nvram(struct bnx2
*bp
)
4129 u32 buf
[NVRAM_SIZE
/ 4];
4130 u8
*data
= (u8
*) buf
;
4134 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
4135 goto test_nvram_done
;
4137 magic
= be32_to_cpu(buf
[0]);
4138 if (magic
!= 0x669955aa) {
4140 goto test_nvram_done
;
4143 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
4144 goto test_nvram_done
;
4146 csum
= ether_crc_le(0x100, data
);
4147 if (csum
!= CRC32_RESIDUAL
) {
4149 goto test_nvram_done
;
4152 csum
= ether_crc_le(0x100, data
+ 0x100);
4153 if (csum
!= CRC32_RESIDUAL
) {
4162 bnx2_test_link(struct bnx2
*bp
)
4166 spin_lock_bh(&bp
->phy_lock
);
4167 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
4168 bnx2_read_phy(bp
, MII_BMSR
, &bmsr
);
4169 spin_unlock_bh(&bp
->phy_lock
);
4171 if (bmsr
& BMSR_LSTATUS
) {
4178 bnx2_test_intr(struct bnx2
*bp
)
4183 if (!netif_running(bp
->dev
))
4186 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
4188 /* This register is not touched during run-time. */
4189 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
4190 REG_RD(bp
, BNX2_HC_COMMAND
);
4192 for (i
= 0; i
< 10; i
++) {
4193 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
4199 msleep_interruptible(10);
4208 bnx2_5706_serdes_timer(struct bnx2
*bp
)
4210 spin_lock(&bp
->phy_lock
);
4211 if (bp
->serdes_an_pending
)
4212 bp
->serdes_an_pending
--;
4213 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
4216 bp
->current_interval
= bp
->timer_interval
;
4218 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
4220 if (bmcr
& BMCR_ANENABLE
) {
4223 bnx2_write_phy(bp
, 0x1c, 0x7c00);
4224 bnx2_read_phy(bp
, 0x1c, &phy1
);
4226 bnx2_write_phy(bp
, 0x17, 0x0f01);
4227 bnx2_read_phy(bp
, 0x15, &phy2
);
4228 bnx2_write_phy(bp
, 0x17, 0x0f01);
4229 bnx2_read_phy(bp
, 0x15, &phy2
);
4231 if ((phy1
& 0x10) && /* SIGNAL DETECT */
4232 !(phy2
& 0x20)) { /* no CONFIG */
4234 bmcr
&= ~BMCR_ANENABLE
;
4235 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
4236 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
4237 bp
->phy_flags
|= PHY_PARALLEL_DETECT_FLAG
;
4241 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
4242 (bp
->phy_flags
& PHY_PARALLEL_DETECT_FLAG
)) {
4245 bnx2_write_phy(bp
, 0x17, 0x0f01);
4246 bnx2_read_phy(bp
, 0x15, &phy2
);
4250 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
4251 bmcr
|= BMCR_ANENABLE
;
4252 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
4254 bp
->phy_flags
&= ~PHY_PARALLEL_DETECT_FLAG
;
4257 bp
->current_interval
= bp
->timer_interval
;
4259 spin_unlock(&bp
->phy_lock
);
4263 bnx2_5708_serdes_timer(struct bnx2
*bp
)
4265 if ((bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
) == 0) {
4266 bp
->serdes_an_pending
= 0;
4270 spin_lock(&bp
->phy_lock
);
4271 if (bp
->serdes_an_pending
)
4272 bp
->serdes_an_pending
--;
4273 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
4276 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
4278 if (bmcr
& BMCR_ANENABLE
) {
4279 bmcr
&= ~BMCR_ANENABLE
;
4280 bmcr
|= BMCR_FULLDPLX
| BCM5708S_BMCR_FORCE_2500
;
4281 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
4282 bp
->current_interval
= SERDES_FORCED_TIMEOUT
;
4284 bmcr
&= ~(BMCR_FULLDPLX
| BCM5708S_BMCR_FORCE_2500
);
4285 bmcr
|= BMCR_ANENABLE
;
4286 bnx2_write_phy(bp
, MII_BMCR
, bmcr
);
4287 bp
->serdes_an_pending
= 2;
4288 bp
->current_interval
= bp
->timer_interval
;
4292 bp
->current_interval
= bp
->timer_interval
;
4294 spin_unlock(&bp
->phy_lock
);
4298 bnx2_timer(unsigned long data
)
4300 struct bnx2
*bp
= (struct bnx2
*) data
;
4303 if (!netif_running(bp
->dev
))
4306 if (atomic_read(&bp
->intr_sem
) != 0)
4307 goto bnx2_restart_timer
;
4309 msg
= (u32
) ++bp
->fw_drv_pulse_wr_seq
;
4310 REG_WR_IND(bp
, bp
->shmem_base
+ BNX2_DRV_PULSE_MB
, msg
);
4312 bp
->stats_blk
->stat_FwRxDrop
= REG_RD_IND(bp
, BNX2_FW_RX_DROP_COUNT
);
4314 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4315 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
4316 bnx2_5706_serdes_timer(bp
);
4317 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
4318 bnx2_5708_serdes_timer(bp
);
4322 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
4325 /* Called with rtnl_lock */
4327 bnx2_open(struct net_device
*dev
)
4329 struct bnx2
*bp
= netdev_priv(dev
);
4332 bnx2_set_power_state(bp
, PCI_D0
);
4333 bnx2_disable_int(bp
);
4335 rc
= bnx2_alloc_mem(bp
);
4339 if ((CHIP_ID(bp
) != CHIP_ID_5706_A0
) &&
4340 (CHIP_ID(bp
) != CHIP_ID_5706_A1
) &&
4343 if (pci_enable_msi(bp
->pdev
) == 0) {
4344 bp
->flags
|= USING_MSI_FLAG
;
4345 rc
= request_irq(bp
->pdev
->irq
, bnx2_msi
, 0, dev
->name
,
4349 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
,
4350 IRQF_SHARED
, dev
->name
, dev
);
4354 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
, IRQF_SHARED
,
4362 rc
= bnx2_init_nic(bp
);
4365 free_irq(bp
->pdev
->irq
, dev
);
4366 if (bp
->flags
& USING_MSI_FLAG
) {
4367 pci_disable_msi(bp
->pdev
);
4368 bp
->flags
&= ~USING_MSI_FLAG
;
4375 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
4377 atomic_set(&bp
->intr_sem
, 0);
4379 bnx2_enable_int(bp
);
4381 if (bp
->flags
& USING_MSI_FLAG
) {
4382 /* Test MSI to make sure it is working
4383 * If MSI test fails, go back to INTx mode
4385 if (bnx2_test_intr(bp
) != 0) {
4386 printk(KERN_WARNING PFX
"%s: No interrupt was generated"
4387 " using MSI, switching to INTx mode. Please"
4388 " report this failure to the PCI maintainer"
4389 " and include system chipset information.\n",
4392 bnx2_disable_int(bp
);
4393 free_irq(bp
->pdev
->irq
, dev
);
4394 pci_disable_msi(bp
->pdev
);
4395 bp
->flags
&= ~USING_MSI_FLAG
;
4397 rc
= bnx2_init_nic(bp
);
4400 rc
= request_irq(bp
->pdev
->irq
, bnx2_interrupt
,
4401 IRQF_SHARED
, dev
->name
, dev
);
4406 del_timer_sync(&bp
->timer
);
4409 bnx2_enable_int(bp
);
4412 if (bp
->flags
& USING_MSI_FLAG
) {
4413 printk(KERN_INFO PFX
"%s: using MSI\n", dev
->name
);
4416 netif_start_queue(dev
);
4422 bnx2_reset_task(struct work_struct
*work
)
4424 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
4426 if (!netif_running(bp
->dev
))
4429 bp
->in_reset_task
= 1;
4430 bnx2_netif_stop(bp
);
4434 atomic_set(&bp
->intr_sem
, 1);
4435 bnx2_netif_start(bp
);
4436 bp
->in_reset_task
= 0;
4440 bnx2_tx_timeout(struct net_device
*dev
)
4442 struct bnx2
*bp
= netdev_priv(dev
);
4444 /* This allows the netif to be shutdown gracefully before resetting */
4445 schedule_work(&bp
->reset_task
);
4449 /* Called with rtnl_lock */
4451 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
4453 struct bnx2
*bp
= netdev_priv(dev
);
4455 bnx2_netif_stop(bp
);
4458 bnx2_set_rx_mode(dev
);
4460 bnx2_netif_start(bp
);
4463 /* Called with rtnl_lock */
4465 bnx2_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
4467 struct bnx2
*bp
= netdev_priv(dev
);
4469 bnx2_netif_stop(bp
);
4472 bp
->vlgrp
->vlan_devices
[vid
] = NULL
;
4473 bnx2_set_rx_mode(dev
);
4475 bnx2_netif_start(bp
);
4479 /* Called with netif_tx_lock.
4480 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
4481 * netif_wake_queue().
4484 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4486 struct bnx2
*bp
= netdev_priv(dev
);
4489 struct sw_bd
*tx_buf
;
4490 u32 len
, vlan_tag_flags
, last_frag
, mss
;
4491 u16 prod
, ring_prod
;
4494 if (unlikely(bnx2_tx_avail(bp
) < (skb_shinfo(skb
)->nr_frags
+ 1))) {
4495 netif_stop_queue(dev
);
4496 printk(KERN_ERR PFX
"%s: BUG! Tx ring full when queue awake!\n",
4499 return NETDEV_TX_BUSY
;
4501 len
= skb_headlen(skb
);
4503 ring_prod
= TX_RING_IDX(prod
);
4506 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4507 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
4510 if (bp
->vlgrp
!= 0 && vlan_tx_tag_present(skb
)) {
4512 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
4514 if ((mss
= skb_shinfo(skb
)->gso_size
) &&
4515 (skb
->len
> (bp
->dev
->mtu
+ ETH_HLEN
))) {
4516 u32 tcp_opt_len
, ip_tcp_len
;
4518 if (skb_header_cloned(skb
) &&
4519 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
)) {
4521 return NETDEV_TX_OK
;
4524 tcp_opt_len
= ((skb
->h
.th
->doff
- 5) * 4);
4525 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
4528 if (skb
->h
.th
->doff
> 5) {
4529 tcp_opt_len
= (skb
->h
.th
->doff
- 5) << 2;
4531 ip_tcp_len
= (skb
->nh
.iph
->ihl
<< 2) + sizeof(struct tcphdr
);
4533 skb
->nh
.iph
->check
= 0;
4534 skb
->nh
.iph
->tot_len
= htons(mss
+ ip_tcp_len
+ tcp_opt_len
);
4536 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
4540 if (tcp_opt_len
|| (skb
->nh
.iph
->ihl
> 5)) {
4541 vlan_tag_flags
|= ((skb
->nh
.iph
->ihl
- 5) +
4542 (tcp_opt_len
>> 2)) << 8;
4550 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
4552 tx_buf
= &bp
->tx_buf_ring
[ring_prod
];
4554 pci_unmap_addr_set(tx_buf
, mapping
, mapping
);
4556 txbd
= &bp
->tx_desc_ring
[ring_prod
];
4558 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
4559 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
4560 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
4561 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
4563 last_frag
= skb_shinfo(skb
)->nr_frags
;
4565 for (i
= 0; i
< last_frag
; i
++) {
4566 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4568 prod
= NEXT_TX_BD(prod
);
4569 ring_prod
= TX_RING_IDX(prod
);
4570 txbd
= &bp
->tx_desc_ring
[ring_prod
];
4573 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
4574 len
, PCI_DMA_TODEVICE
);
4575 pci_unmap_addr_set(&bp
->tx_buf_ring
[ring_prod
],
4578 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
4579 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
4580 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
4581 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
4584 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
4586 prod
= NEXT_TX_BD(prod
);
4587 bp
->tx_prod_bseq
+= skb
->len
;
4589 REG_WR16(bp
, bp
->tx_bidx_addr
, prod
);
4590 REG_WR(bp
, bp
->tx_bseq_addr
, bp
->tx_prod_bseq
);
4595 dev
->trans_start
= jiffies
;
4597 if (unlikely(bnx2_tx_avail(bp
) <= MAX_SKB_FRAGS
)) {
4598 netif_stop_queue(dev
);
4599 if (bnx2_tx_avail(bp
) > bp
->tx_wake_thresh
)
4600 netif_wake_queue(dev
);
4603 return NETDEV_TX_OK
;
4606 /* Called with rtnl_lock */
4608 bnx2_close(struct net_device
*dev
)
4610 struct bnx2
*bp
= netdev_priv(dev
);
4613 /* Calling flush_scheduled_work() may deadlock because
4614 * linkwatch_event() may be on the workqueue and it will try to get
4615 * the rtnl_lock which we are holding.
4617 while (bp
->in_reset_task
)
4620 bnx2_netif_stop(bp
);
4621 del_timer_sync(&bp
->timer
);
4622 if (bp
->flags
& NO_WOL_FLAG
)
4623 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
4625 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4627 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4628 bnx2_reset_chip(bp
, reset_code
);
4629 free_irq(bp
->pdev
->irq
, dev
);
4630 if (bp
->flags
& USING_MSI_FLAG
) {
4631 pci_disable_msi(bp
->pdev
);
4632 bp
->flags
&= ~USING_MSI_FLAG
;
4637 netif_carrier_off(bp
->dev
);
4638 bnx2_set_power_state(bp
, PCI_D3hot
);
4642 #define GET_NET_STATS64(ctr) \
4643 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
4644 (unsigned long) (ctr##_lo)
4646 #define GET_NET_STATS32(ctr) \
4649 #if (BITS_PER_LONG == 64)
4650 #define GET_NET_STATS GET_NET_STATS64
4652 #define GET_NET_STATS GET_NET_STATS32
4655 static struct net_device_stats
*
4656 bnx2_get_stats(struct net_device
*dev
)
4658 struct bnx2
*bp
= netdev_priv(dev
);
4659 struct statistics_block
*stats_blk
= bp
->stats_blk
;
4660 struct net_device_stats
*net_stats
= &bp
->net_stats
;
4662 if (bp
->stats_blk
== NULL
) {
4665 net_stats
->rx_packets
=
4666 GET_NET_STATS(stats_blk
->stat_IfHCInUcastPkts
) +
4667 GET_NET_STATS(stats_blk
->stat_IfHCInMulticastPkts
) +
4668 GET_NET_STATS(stats_blk
->stat_IfHCInBroadcastPkts
);
4670 net_stats
->tx_packets
=
4671 GET_NET_STATS(stats_blk
->stat_IfHCOutUcastPkts
) +
4672 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
) +
4673 GET_NET_STATS(stats_blk
->stat_IfHCOutBroadcastPkts
);
4675 net_stats
->rx_bytes
=
4676 GET_NET_STATS(stats_blk
->stat_IfHCInOctets
);
4678 net_stats
->tx_bytes
=
4679 GET_NET_STATS(stats_blk
->stat_IfHCOutOctets
);
4681 net_stats
->multicast
=
4682 GET_NET_STATS(stats_blk
->stat_IfHCOutMulticastPkts
);
4684 net_stats
->collisions
=
4685 (unsigned long) stats_blk
->stat_EtherStatsCollisions
;
4687 net_stats
->rx_length_errors
=
4688 (unsigned long) (stats_blk
->stat_EtherStatsUndersizePkts
+
4689 stats_blk
->stat_EtherStatsOverrsizePkts
);
4691 net_stats
->rx_over_errors
=
4692 (unsigned long) stats_blk
->stat_IfInMBUFDiscards
;
4694 net_stats
->rx_frame_errors
=
4695 (unsigned long) stats_blk
->stat_Dot3StatsAlignmentErrors
;
4697 net_stats
->rx_crc_errors
=
4698 (unsigned long) stats_blk
->stat_Dot3StatsFCSErrors
;
4700 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
4701 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
4702 net_stats
->rx_crc_errors
;
4704 net_stats
->tx_aborted_errors
=
4705 (unsigned long) (stats_blk
->stat_Dot3StatsExcessiveCollisions
+
4706 stats_blk
->stat_Dot3StatsLateCollisions
);
4708 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
4709 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
4710 net_stats
->tx_carrier_errors
= 0;
4712 net_stats
->tx_carrier_errors
=
4714 stats_blk
->stat_Dot3StatsCarrierSenseErrors
;
4717 net_stats
->tx_errors
=
4719 stats_blk
->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
4721 net_stats
->tx_aborted_errors
+
4722 net_stats
->tx_carrier_errors
;
4724 net_stats
->rx_missed_errors
=
4725 (unsigned long) (stats_blk
->stat_IfInMBUFDiscards
+
4726 stats_blk
->stat_FwRxDrop
);
4731 /* All ethtool functions called with rtnl_lock */
4734 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4736 struct bnx2
*bp
= netdev_priv(dev
);
4738 cmd
->supported
= SUPPORTED_Autoneg
;
4739 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4740 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
4743 cmd
->port
= PORT_FIBRE
;
4746 cmd
->supported
|= SUPPORTED_10baseT_Half
|
4747 SUPPORTED_10baseT_Full
|
4748 SUPPORTED_100baseT_Half
|
4749 SUPPORTED_100baseT_Full
|
4750 SUPPORTED_1000baseT_Full
|
4753 cmd
->port
= PORT_TP
;
4756 cmd
->advertising
= bp
->advertising
;
4758 if (bp
->autoneg
& AUTONEG_SPEED
) {
4759 cmd
->autoneg
= AUTONEG_ENABLE
;
4762 cmd
->autoneg
= AUTONEG_DISABLE
;
4765 if (netif_carrier_ok(dev
)) {
4766 cmd
->speed
= bp
->line_speed
;
4767 cmd
->duplex
= bp
->duplex
;
4774 cmd
->transceiver
= XCVR_INTERNAL
;
4775 cmd
->phy_address
= bp
->phy_addr
;
4781 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4783 struct bnx2
*bp
= netdev_priv(dev
);
4784 u8 autoneg
= bp
->autoneg
;
4785 u8 req_duplex
= bp
->req_duplex
;
4786 u16 req_line_speed
= bp
->req_line_speed
;
4787 u32 advertising
= bp
->advertising
;
4789 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
4790 autoneg
|= AUTONEG_SPEED
;
4792 cmd
->advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
4794 /* allow advertising 1 speed */
4795 if ((cmd
->advertising
== ADVERTISED_10baseT_Half
) ||
4796 (cmd
->advertising
== ADVERTISED_10baseT_Full
) ||
4797 (cmd
->advertising
== ADVERTISED_100baseT_Half
) ||
4798 (cmd
->advertising
== ADVERTISED_100baseT_Full
)) {
4800 if (bp
->phy_flags
& PHY_SERDES_FLAG
)
4803 advertising
= cmd
->advertising
;
4806 else if (cmd
->advertising
== ADVERTISED_1000baseT_Full
) {
4807 advertising
= cmd
->advertising
;
4809 else if (cmd
->advertising
== ADVERTISED_1000baseT_Half
) {
4813 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4814 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
4817 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
4820 advertising
|= ADVERTISED_Autoneg
;
4823 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4824 if ((cmd
->speed
!= SPEED_1000
&&
4825 cmd
->speed
!= SPEED_2500
) ||
4826 (cmd
->duplex
!= DUPLEX_FULL
))
4829 if (cmd
->speed
== SPEED_2500
&&
4830 !(bp
->phy_flags
& PHY_2_5G_CAPABLE_FLAG
))
4833 else if (cmd
->speed
== SPEED_1000
) {
4836 autoneg
&= ~AUTONEG_SPEED
;
4837 req_line_speed
= cmd
->speed
;
4838 req_duplex
= cmd
->duplex
;
4842 bp
->autoneg
= autoneg
;
4843 bp
->advertising
= advertising
;
4844 bp
->req_line_speed
= req_line_speed
;
4845 bp
->req_duplex
= req_duplex
;
4847 spin_lock_bh(&bp
->phy_lock
);
4851 spin_unlock_bh(&bp
->phy_lock
);
4857 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4859 struct bnx2
*bp
= netdev_priv(dev
);
4861 strcpy(info
->driver
, DRV_MODULE_NAME
);
4862 strcpy(info
->version
, DRV_MODULE_VERSION
);
4863 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
4864 info
->fw_version
[0] = ((bp
->fw_ver
& 0xff000000) >> 24) + '0';
4865 info
->fw_version
[2] = ((bp
->fw_ver
& 0xff0000) >> 16) + '0';
4866 info
->fw_version
[4] = ((bp
->fw_ver
& 0xff00) >> 8) + '0';
4867 info
->fw_version
[1] = info
->fw_version
[3] = '.';
4868 info
->fw_version
[5] = 0;
4871 #define BNX2_REGDUMP_LEN (32 * 1024)
4874 bnx2_get_regs_len(struct net_device
*dev
)
4876 return BNX2_REGDUMP_LEN
;
4880 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
4882 u32
*p
= _p
, i
, offset
;
4884 struct bnx2
*bp
= netdev_priv(dev
);
4885 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
4886 0x0800, 0x0880, 0x0c00, 0x0c10,
4887 0x0c30, 0x0d08, 0x1000, 0x101c,
4888 0x1040, 0x1048, 0x1080, 0x10a4,
4889 0x1400, 0x1490, 0x1498, 0x14f0,
4890 0x1500, 0x155c, 0x1580, 0x15dc,
4891 0x1600, 0x1658, 0x1680, 0x16d8,
4892 0x1800, 0x1820, 0x1840, 0x1854,
4893 0x1880, 0x1894, 0x1900, 0x1984,
4894 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
4895 0x1c80, 0x1c94, 0x1d00, 0x1d84,
4896 0x2000, 0x2030, 0x23c0, 0x2400,
4897 0x2800, 0x2820, 0x2830, 0x2850,
4898 0x2b40, 0x2c10, 0x2fc0, 0x3058,
4899 0x3c00, 0x3c94, 0x4000, 0x4010,
4900 0x4080, 0x4090, 0x43c0, 0x4458,
4901 0x4c00, 0x4c18, 0x4c40, 0x4c54,
4902 0x4fc0, 0x5010, 0x53c0, 0x5444,
4903 0x5c00, 0x5c18, 0x5c80, 0x5c90,
4904 0x5fc0, 0x6000, 0x6400, 0x6428,
4905 0x6800, 0x6848, 0x684c, 0x6860,
4906 0x6888, 0x6910, 0x8000 };
4910 memset(p
, 0, BNX2_REGDUMP_LEN
);
4912 if (!netif_running(bp
->dev
))
4916 offset
= reg_boundaries
[0];
4918 while (offset
< BNX2_REGDUMP_LEN
) {
4919 *p
++ = REG_RD(bp
, offset
);
4921 if (offset
== reg_boundaries
[i
+ 1]) {
4922 offset
= reg_boundaries
[i
+ 2];
4923 p
= (u32
*) (orig_p
+ offset
);
4930 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
4932 struct bnx2
*bp
= netdev_priv(dev
);
4934 if (bp
->flags
& NO_WOL_FLAG
) {
4939 wol
->supported
= WAKE_MAGIC
;
4941 wol
->wolopts
= WAKE_MAGIC
;
4945 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
4949 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
4951 struct bnx2
*bp
= netdev_priv(dev
);
4953 if (wol
->wolopts
& ~WAKE_MAGIC
)
4956 if (wol
->wolopts
& WAKE_MAGIC
) {
4957 if (bp
->flags
& NO_WOL_FLAG
)
4969 bnx2_nway_reset(struct net_device
*dev
)
4971 struct bnx2
*bp
= netdev_priv(dev
);
4974 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
4978 spin_lock_bh(&bp
->phy_lock
);
4980 /* Force a link down visible on the other side */
4981 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
4982 bnx2_write_phy(bp
, MII_BMCR
, BMCR_LOOPBACK
);
4983 spin_unlock_bh(&bp
->phy_lock
);
4987 spin_lock_bh(&bp
->phy_lock
);
4989 bp
->current_interval
= SERDES_AN_TIMEOUT
;
4990 bp
->serdes_an_pending
= 1;
4991 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
4994 bnx2_read_phy(bp
, MII_BMCR
, &bmcr
);
4995 bmcr
&= ~BMCR_LOOPBACK
;
4996 bnx2_write_phy(bp
, MII_BMCR
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
4998 spin_unlock_bh(&bp
->phy_lock
);
5004 bnx2_get_eeprom_len(struct net_device
*dev
)
5006 struct bnx2
*bp
= netdev_priv(dev
);
5008 if (bp
->flash_info
== NULL
)
5011 return (int) bp
->flash_size
;
5015 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
5018 struct bnx2
*bp
= netdev_priv(dev
);
5021 /* parameters already validated in ethtool_get_eeprom */
5023 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
5029 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
5032 struct bnx2
*bp
= netdev_priv(dev
);
5035 /* parameters already validated in ethtool_set_eeprom */
5037 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
5043 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
5045 struct bnx2
*bp
= netdev_priv(dev
);
5047 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
5049 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
5050 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
5051 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
5052 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
5054 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
5055 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
5056 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
5057 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
5059 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
5065 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
5067 struct bnx2
*bp
= netdev_priv(dev
);
5069 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
5070 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
5072 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
5073 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
5075 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
5076 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
5078 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
5079 if (bp
->rx_quick_cons_trip_int
> 0xff)
5080 bp
->rx_quick_cons_trip_int
= 0xff;
5082 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
5083 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
5085 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
5086 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
5088 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
5089 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
5091 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
5092 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
5095 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
5096 if (bp
->stats_ticks
> 0xffff00) bp
->stats_ticks
= 0xffff00;
5097 bp
->stats_ticks
&= 0xffff00;
5099 if (netif_running(bp
->dev
)) {
5100 bnx2_netif_stop(bp
);
5102 bnx2_netif_start(bp
);
5109 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
5111 struct bnx2
*bp
= netdev_priv(dev
);
5113 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
5114 ering
->rx_mini_max_pending
= 0;
5115 ering
->rx_jumbo_max_pending
= 0;
5117 ering
->rx_pending
= bp
->rx_ring_size
;
5118 ering
->rx_mini_pending
= 0;
5119 ering
->rx_jumbo_pending
= 0;
5121 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
5122 ering
->tx_pending
= bp
->tx_ring_size
;
5126 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
5128 struct bnx2
*bp
= netdev_priv(dev
);
5130 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
5131 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
5132 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
5136 if (netif_running(bp
->dev
)) {
5137 bnx2_netif_stop(bp
);
5138 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
5143 bnx2_set_rx_ring_size(bp
, ering
->rx_pending
);
5144 bp
->tx_ring_size
= ering
->tx_pending
;
5146 if (netif_running(bp
->dev
)) {
5149 rc
= bnx2_alloc_mem(bp
);
5153 bnx2_netif_start(bp
);
5160 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
5162 struct bnx2
*bp
= netdev_priv(dev
);
5164 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
5165 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
5166 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
5170 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
5172 struct bnx2
*bp
= netdev_priv(dev
);
5174 bp
->req_flow_ctrl
= 0;
5175 if (epause
->rx_pause
)
5176 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
5177 if (epause
->tx_pause
)
5178 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
5180 if (epause
->autoneg
) {
5181 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
5184 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
5187 spin_lock_bh(&bp
->phy_lock
);
5191 spin_unlock_bh(&bp
->phy_lock
);
5197 bnx2_get_rx_csum(struct net_device
*dev
)
5199 struct bnx2
*bp
= netdev_priv(dev
);
5205 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
5207 struct bnx2
*bp
= netdev_priv(dev
);
5214 bnx2_set_tso(struct net_device
*dev
, u32 data
)
5217 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
5219 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO_ECN
);
5223 #define BNX2_NUM_STATS 46
5226 char string
[ETH_GSTRING_LEN
];
5227 } bnx2_stats_str_arr
[BNX2_NUM_STATS
] = {
5229 { "rx_error_bytes" },
5231 { "tx_error_bytes" },
5232 { "rx_ucast_packets" },
5233 { "rx_mcast_packets" },
5234 { "rx_bcast_packets" },
5235 { "tx_ucast_packets" },
5236 { "tx_mcast_packets" },
5237 { "tx_bcast_packets" },
5238 { "tx_mac_errors" },
5239 { "tx_carrier_errors" },
5240 { "rx_crc_errors" },
5241 { "rx_align_errors" },
5242 { "tx_single_collisions" },
5243 { "tx_multi_collisions" },
5245 { "tx_excess_collisions" },
5246 { "tx_late_collisions" },
5247 { "tx_total_collisions" },
5250 { "rx_undersize_packets" },
5251 { "rx_oversize_packets" },
5252 { "rx_64_byte_packets" },
5253 { "rx_65_to_127_byte_packets" },
5254 { "rx_128_to_255_byte_packets" },
5255 { "rx_256_to_511_byte_packets" },
5256 { "rx_512_to_1023_byte_packets" },
5257 { "rx_1024_to_1522_byte_packets" },
5258 { "rx_1523_to_9022_byte_packets" },
5259 { "tx_64_byte_packets" },
5260 { "tx_65_to_127_byte_packets" },
5261 { "tx_128_to_255_byte_packets" },
5262 { "tx_256_to_511_byte_packets" },
5263 { "tx_512_to_1023_byte_packets" },
5264 { "tx_1024_to_1522_byte_packets" },
5265 { "tx_1523_to_9022_byte_packets" },
5266 { "rx_xon_frames" },
5267 { "rx_xoff_frames" },
5268 { "tx_xon_frames" },
5269 { "tx_xoff_frames" },
5270 { "rx_mac_ctrl_frames" },
5271 { "rx_filtered_packets" },
5273 { "rx_fw_discards" },
5276 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
5278 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
5279 STATS_OFFSET32(stat_IfHCInOctets_hi
),
5280 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
5281 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
5282 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
5283 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
5284 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
5285 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
5286 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
5287 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
5288 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
5289 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
5290 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
5291 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
5292 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
5293 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
5294 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
5295 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
5296 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
5297 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
5298 STATS_OFFSET32(stat_EtherStatsCollisions
),
5299 STATS_OFFSET32(stat_EtherStatsFragments
),
5300 STATS_OFFSET32(stat_EtherStatsJabbers
),
5301 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
5302 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
5303 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
5304 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
5305 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
5306 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
5307 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
5308 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
5309 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
5310 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
5311 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
5312 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
5313 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
5314 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
5315 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
5316 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
5317 STATS_OFFSET32(stat_XonPauseFramesReceived
),
5318 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
5319 STATS_OFFSET32(stat_OutXonSent
),
5320 STATS_OFFSET32(stat_OutXoffSent
),
5321 STATS_OFFSET32(stat_MacControlFramesReceived
),
5322 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
5323 STATS_OFFSET32(stat_IfInMBUFDiscards
),
5324 STATS_OFFSET32(stat_FwRxDrop
),
5327 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
5328 * skipped because of errata.
5330 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
5331 8,0,8,8,8,8,8,8,8,8,
5332 4,0,4,4,4,4,4,4,4,4,
5333 4,4,4,4,4,4,4,4,4,4,
5334 4,4,4,4,4,4,4,4,4,4,
5338 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
5339 8,0,8,8,8,8,8,8,8,8,
5340 4,4,4,4,4,4,4,4,4,4,
5341 4,4,4,4,4,4,4,4,4,4,
5342 4,4,4,4,4,4,4,4,4,4,
5346 #define BNX2_NUM_TESTS 6
5349 char string
[ETH_GSTRING_LEN
];
5350 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
5351 { "register_test (offline)" },
5352 { "memory_test (offline)" },
5353 { "loopback_test (offline)" },
5354 { "nvram_test (online)" },
5355 { "interrupt_test (online)" },
5356 { "link_test (online)" },
5360 bnx2_self_test_count(struct net_device
*dev
)
5362 return BNX2_NUM_TESTS
;
5366 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
5368 struct bnx2
*bp
= netdev_priv(dev
);
5370 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
5371 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
5374 bnx2_netif_stop(bp
);
5375 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
5378 if (bnx2_test_registers(bp
) != 0) {
5380 etest
->flags
|= ETH_TEST_FL_FAILED
;
5382 if (bnx2_test_memory(bp
) != 0) {
5384 etest
->flags
|= ETH_TEST_FL_FAILED
;
5386 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
5387 etest
->flags
|= ETH_TEST_FL_FAILED
;
5389 if (!netif_running(bp
->dev
)) {
5390 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
5394 bnx2_netif_start(bp
);
5397 /* wait for link up */
5398 for (i
= 0; i
< 7; i
++) {
5401 msleep_interruptible(1000);
5405 if (bnx2_test_nvram(bp
) != 0) {
5407 etest
->flags
|= ETH_TEST_FL_FAILED
;
5409 if (bnx2_test_intr(bp
) != 0) {
5411 etest
->flags
|= ETH_TEST_FL_FAILED
;
5414 if (bnx2_test_link(bp
) != 0) {
5416 etest
->flags
|= ETH_TEST_FL_FAILED
;
5422 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
5424 switch (stringset
) {
5426 memcpy(buf
, bnx2_stats_str_arr
,
5427 sizeof(bnx2_stats_str_arr
));
5430 memcpy(buf
, bnx2_tests_str_arr
,
5431 sizeof(bnx2_tests_str_arr
));
5437 bnx2_get_stats_count(struct net_device
*dev
)
5439 return BNX2_NUM_STATS
;
5443 bnx2_get_ethtool_stats(struct net_device
*dev
,
5444 struct ethtool_stats
*stats
, u64
*buf
)
5446 struct bnx2
*bp
= netdev_priv(dev
);
5448 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
5449 u8
*stats_len_arr
= NULL
;
5451 if (hw_stats
== NULL
) {
5452 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
5456 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
5457 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
5458 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
5459 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
5460 stats_len_arr
= bnx2_5706_stats_len_arr
;
5462 stats_len_arr
= bnx2_5708_stats_len_arr
;
5464 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
5465 if (stats_len_arr
[i
] == 0) {
5466 /* skip this counter */
5470 if (stats_len_arr
[i
] == 4) {
5471 /* 4-byte counter */
5473 *(hw_stats
+ bnx2_stats_offset_arr
[i
]);
5476 /* 8-byte counter */
5477 buf
[i
] = (((u64
) *(hw_stats
+
5478 bnx2_stats_offset_arr
[i
])) << 32) +
5479 *(hw_stats
+ bnx2_stats_offset_arr
[i
] + 1);
5484 bnx2_phys_id(struct net_device
*dev
, u32 data
)
5486 struct bnx2
*bp
= netdev_priv(dev
);
5493 save
= REG_RD(bp
, BNX2_MISC_CFG
);
5494 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
5496 for (i
= 0; i
< (data
* 2); i
++) {
5498 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
5501 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
5502 BNX2_EMAC_LED_1000MB_OVERRIDE
|
5503 BNX2_EMAC_LED_100MB_OVERRIDE
|
5504 BNX2_EMAC_LED_10MB_OVERRIDE
|
5505 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
5506 BNX2_EMAC_LED_TRAFFIC
);
5508 msleep_interruptible(500);
5509 if (signal_pending(current
))
5512 REG_WR(bp
, BNX2_EMAC_LED
, 0);
5513 REG_WR(bp
, BNX2_MISC_CFG
, save
);
5517 static const struct ethtool_ops bnx2_ethtool_ops
= {
5518 .get_settings
= bnx2_get_settings
,
5519 .set_settings
= bnx2_set_settings
,
5520 .get_drvinfo
= bnx2_get_drvinfo
,
5521 .get_regs_len
= bnx2_get_regs_len
,
5522 .get_regs
= bnx2_get_regs
,
5523 .get_wol
= bnx2_get_wol
,
5524 .set_wol
= bnx2_set_wol
,
5525 .nway_reset
= bnx2_nway_reset
,
5526 .get_link
= ethtool_op_get_link
,
5527 .get_eeprom_len
= bnx2_get_eeprom_len
,
5528 .get_eeprom
= bnx2_get_eeprom
,
5529 .set_eeprom
= bnx2_set_eeprom
,
5530 .get_coalesce
= bnx2_get_coalesce
,
5531 .set_coalesce
= bnx2_set_coalesce
,
5532 .get_ringparam
= bnx2_get_ringparam
,
5533 .set_ringparam
= bnx2_set_ringparam
,
5534 .get_pauseparam
= bnx2_get_pauseparam
,
5535 .set_pauseparam
= bnx2_set_pauseparam
,
5536 .get_rx_csum
= bnx2_get_rx_csum
,
5537 .set_rx_csum
= bnx2_set_rx_csum
,
5538 .get_tx_csum
= ethtool_op_get_tx_csum
,
5539 .set_tx_csum
= ethtool_op_set_tx_csum
,
5540 .get_sg
= ethtool_op_get_sg
,
5541 .set_sg
= ethtool_op_set_sg
,
5542 .get_tso
= ethtool_op_get_tso
,
5543 .set_tso
= bnx2_set_tso
,
5544 .self_test_count
= bnx2_self_test_count
,
5545 .self_test
= bnx2_self_test
,
5546 .get_strings
= bnx2_get_strings
,
5547 .phys_id
= bnx2_phys_id
,
5548 .get_stats_count
= bnx2_get_stats_count
,
5549 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
5550 .get_perm_addr
= ethtool_op_get_perm_addr
,
5553 /* Called with rtnl_lock */
5555 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
5557 struct mii_ioctl_data
*data
= if_mii(ifr
);
5558 struct bnx2
*bp
= netdev_priv(dev
);
5563 data
->phy_id
= bp
->phy_addr
;
5569 spin_lock_bh(&bp
->phy_lock
);
5570 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
5571 spin_unlock_bh(&bp
->phy_lock
);
5573 data
->val_out
= mii_regval
;
5579 if (!capable(CAP_NET_ADMIN
))
5582 spin_lock_bh(&bp
->phy_lock
);
5583 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
5584 spin_unlock_bh(&bp
->phy_lock
);
5595 /* Called with rtnl_lock */
5597 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
5599 struct sockaddr
*addr
= p
;
5600 struct bnx2
*bp
= netdev_priv(dev
);
5602 if (!is_valid_ether_addr(addr
->sa_data
))
5605 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5606 if (netif_running(dev
))
5607 bnx2_set_mac_addr(bp
);
5612 /* Called with rtnl_lock */
5614 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
5616 struct bnx2
*bp
= netdev_priv(dev
);
5618 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
5619 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
5623 if (netif_running(dev
)) {
5624 bnx2_netif_stop(bp
);
5628 bnx2_netif_start(bp
);
5633 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
5635 poll_bnx2(struct net_device
*dev
)
5637 struct bnx2
*bp
= netdev_priv(dev
);
5639 disable_irq(bp
->pdev
->irq
);
5640 bnx2_interrupt(bp
->pdev
->irq
, dev
);
5641 enable_irq(bp
->pdev
->irq
);
5645 static void __devinit
5646 bnx2_get_5709_media(struct bnx2
*bp
)
5648 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
5649 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
5652 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
5654 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
5655 bp
->phy_flags
|= PHY_SERDES_FLAG
;
5659 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
5660 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
5662 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
5664 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
5669 bp
->phy_flags
|= PHY_SERDES_FLAG
;
5677 bp
->phy_flags
|= PHY_SERDES_FLAG
;
5683 static int __devinit
5684 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
5687 unsigned long mem_len
;
5691 SET_MODULE_OWNER(dev
);
5692 SET_NETDEV_DEV(dev
, &pdev
->dev
);
5693 bp
= netdev_priv(dev
);
5698 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5699 rc
= pci_enable_device(pdev
);
5701 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.");
5705 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
5707 "Cannot find PCI device base address, aborting.\n");
5709 goto err_out_disable
;
5712 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
5714 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
5715 goto err_out_disable
;
5718 pci_set_master(pdev
);
5720 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
5721 if (bp
->pm_cap
== 0) {
5723 "Cannot find power management capability, aborting.\n");
5725 goto err_out_release
;
5728 if (pci_set_dma_mask(pdev
, DMA_64BIT_MASK
) == 0) {
5729 bp
->flags
|= USING_DAC_FLAG
;
5730 if (pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
) != 0) {
5732 "pci_set_consistent_dma_mask failed, aborting.\n");
5734 goto err_out_release
;
5737 else if (pci_set_dma_mask(pdev
, DMA_32BIT_MASK
) != 0) {
5738 dev_err(&pdev
->dev
, "System does not support DMA, aborting.\n");
5740 goto err_out_release
;
5746 spin_lock_init(&bp
->phy_lock
);
5747 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
5749 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
5750 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ 1);
5751 dev
->mem_end
= dev
->mem_start
+ mem_len
;
5752 dev
->irq
= pdev
->irq
;
5754 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
5757 dev_err(&pdev
->dev
, "Cannot map register space, aborting.\n");
5759 goto err_out_release
;
5762 /* Configure byte swap and enable write to the reg_window registers.
5763 * Rely on CPU to do target byte swapping on big endian systems
5764 * The chip's target access swapping will not swap all accesses
5766 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
5767 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
5768 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
5770 bnx2_set_power_state(bp
, PCI_D0
);
5772 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
5774 if (CHIP_NUM(bp
) != CHIP_NUM_5709
) {
5775 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
5776 if (bp
->pcix_cap
== 0) {
5778 "Cannot find PCIX capability, aborting.\n");
5784 /* Get bus information. */
5785 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
5786 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
5789 bp
->flags
|= PCIX_FLAG
;
5791 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
5793 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
5795 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
5796 bp
->bus_speed_mhz
= 133;
5799 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
5800 bp
->bus_speed_mhz
= 100;
5803 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
5804 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
5805 bp
->bus_speed_mhz
= 66;
5808 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
5809 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
5810 bp
->bus_speed_mhz
= 50;
5813 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
5814 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
5815 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
5816 bp
->bus_speed_mhz
= 33;
5821 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
5822 bp
->bus_speed_mhz
= 66;
5824 bp
->bus_speed_mhz
= 33;
5827 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
5828 bp
->flags
|= PCI_32BIT_FLAG
;
5830 /* 5706A0 may falsely detect SERR and PERR. */
5831 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
5832 reg
= REG_RD(bp
, PCI_COMMAND
);
5833 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
5834 REG_WR(bp
, PCI_COMMAND
, reg
);
5836 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
5837 !(bp
->flags
& PCIX_FLAG
)) {
5840 "5706 A1 can only be used in a PCIX bus, aborting.\n");
5844 bnx2_init_nvram(bp
);
5846 reg
= REG_RD_IND(bp
, BNX2_SHM_HDR_SIGNATURE
);
5848 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
5849 BNX2_SHM_HDR_SIGNATURE_SIG
) {
5850 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
5852 bp
->shmem_base
= REG_RD_IND(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
5854 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
5856 /* Get the permanent MAC address. First we need to make sure the
5857 * firmware is actually running.
5859 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_DEV_INFO_SIGNATURE
);
5861 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
5862 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
5863 dev_err(&pdev
->dev
, "Firmware not running, aborting.\n");
5868 bp
->fw_ver
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_DEV_INFO_BC_REV
);
5870 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_MAC_UPPER
);
5871 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
5872 bp
->mac_addr
[1] = (u8
) reg
;
5874 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_MAC_LOWER
);
5875 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
5876 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
5877 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
5878 bp
->mac_addr
[5] = (u8
) reg
;
5880 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
5881 bnx2_set_rx_ring_size(bp
, 255);
5885 bp
->rx_offset
= sizeof(struct l2_fhdr
) + 2;
5887 bp
->tx_quick_cons_trip_int
= 20;
5888 bp
->tx_quick_cons_trip
= 20;
5889 bp
->tx_ticks_int
= 80;
5892 bp
->rx_quick_cons_trip_int
= 6;
5893 bp
->rx_quick_cons_trip
= 6;
5894 bp
->rx_ticks_int
= 18;
5897 bp
->stats_ticks
= 1000000 & 0xffff00;
5899 bp
->timer_interval
= HZ
;
5900 bp
->current_interval
= HZ
;
5904 /* Disable WOL support if we are running on a SERDES chip. */
5905 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5906 bnx2_get_5709_media(bp
);
5907 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
5908 bp
->phy_flags
|= PHY_SERDES_FLAG
;
5910 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
5911 bp
->flags
|= NO_WOL_FLAG
;
5912 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
5914 reg
= REG_RD_IND(bp
, bp
->shmem_base
+
5915 BNX2_SHARED_HW_CFG_CONFIG
);
5916 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
5917 bp
->phy_flags
|= PHY_2_5G_CAPABLE_FLAG
;
5919 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
5920 CHIP_NUM(bp
) == CHIP_NUM_5708
)
5921 bp
->phy_flags
|= PHY_CRC_FIX_FLAG
;
5922 else if (CHIP_ID(bp
) == CHIP_ID_5709_A0
)
5923 bp
->phy_flags
|= PHY_DIS_EARLY_DAC_FLAG
;
5925 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
5926 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
5927 (CHIP_ID(bp
) == CHIP_ID_5708_B1
))
5928 bp
->flags
|= NO_WOL_FLAG
;
5930 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
5931 bp
->tx_quick_cons_trip_int
=
5932 bp
->tx_quick_cons_trip
;
5933 bp
->tx_ticks_int
= bp
->tx_ticks
;
5934 bp
->rx_quick_cons_trip_int
=
5935 bp
->rx_quick_cons_trip
;
5936 bp
->rx_ticks_int
= bp
->rx_ticks
;
5937 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
5938 bp
->com_ticks_int
= bp
->com_ticks
;
5939 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
5942 /* Disable MSI on 5706 if AMD 8132 bridge is found.
5944 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
5945 * with byte enables disabled on the unused 32-bit word. This is legal
5946 * but causes problems on the AMD 8132 which will eventually stop
5947 * responding after a while.
5949 * AMD believes this incompatibility is unique to the 5706, and
5950 * prefers to locally disable MSI rather than globally disabling it
5951 * using pci_msi_quirk.
5953 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
5954 struct pci_dev
*amd_8132
= NULL
;
5956 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
5957 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
5961 pci_read_config_byte(amd_8132
, PCI_REVISION_ID
, &rev
);
5962 if (rev
>= 0x10 && rev
<= 0x13) {
5964 pci_dev_put(amd_8132
);
5970 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
5971 bp
->req_line_speed
= 0;
5972 if (bp
->phy_flags
& PHY_SERDES_FLAG
) {
5973 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
5975 reg
= REG_RD_IND(bp
, bp
->shmem_base
+ BNX2_PORT_HW_CFG_CONFIG
);
5976 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
5977 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
5979 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
5980 bp
->req_duplex
= DUPLEX_FULL
;
5984 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
5987 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
5989 init_timer(&bp
->timer
);
5990 bp
->timer
.expires
= RUN_AT(bp
->timer_interval
);
5991 bp
->timer
.data
= (unsigned long) bp
;
5992 bp
->timer
.function
= bnx2_timer
;
5998 iounmap(bp
->regview
);
6003 pci_release_regions(pdev
);
6006 pci_disable_device(pdev
);
6007 pci_set_drvdata(pdev
, NULL
);
6013 static int __devinit
6014 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6016 static int version_printed
= 0;
6017 struct net_device
*dev
= NULL
;
6021 if (version_printed
++ == 0)
6022 printk(KERN_INFO
"%s", version
);
6024 /* dev zeroed in init_etherdev */
6025 dev
= alloc_etherdev(sizeof(*bp
));
6030 rc
= bnx2_init_board(pdev
, dev
);
6036 dev
->open
= bnx2_open
;
6037 dev
->hard_start_xmit
= bnx2_start_xmit
;
6038 dev
->stop
= bnx2_close
;
6039 dev
->get_stats
= bnx2_get_stats
;
6040 dev
->set_multicast_list
= bnx2_set_rx_mode
;
6041 dev
->do_ioctl
= bnx2_ioctl
;
6042 dev
->set_mac_address
= bnx2_change_mac_addr
;
6043 dev
->change_mtu
= bnx2_change_mtu
;
6044 dev
->tx_timeout
= bnx2_tx_timeout
;
6045 dev
->watchdog_timeo
= TX_TIMEOUT
;
6047 dev
->vlan_rx_register
= bnx2_vlan_rx_register
;
6048 dev
->vlan_rx_kill_vid
= bnx2_vlan_rx_kill_vid
;
6050 dev
->poll
= bnx2_poll
;
6051 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
6054 bp
= netdev_priv(dev
);
6056 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
6057 dev
->poll_controller
= poll_bnx2
;
6060 if ((rc
= register_netdev(dev
))) {
6061 dev_err(&pdev
->dev
, "Cannot register net device\n");
6063 iounmap(bp
->regview
);
6064 pci_release_regions(pdev
);
6065 pci_disable_device(pdev
);
6066 pci_set_drvdata(pdev
, NULL
);
6071 pci_set_drvdata(pdev
, dev
);
6073 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
6074 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
6075 bp
->name
= board_info
[ent
->driver_data
].name
,
6076 printk(KERN_INFO
"%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
6080 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
6081 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
6082 ((bp
->flags
& PCIX_FLAG
) ? "-X" : ""),
6083 ((bp
->flags
& PCI_32BIT_FLAG
) ? "32-bit" : "64-bit"),
6088 printk("node addr ");
6089 for (i
= 0; i
< 6; i
++)
6090 printk("%2.2x", dev
->dev_addr
[i
]);
6093 dev
->features
|= NETIF_F_SG
;
6094 if (bp
->flags
& USING_DAC_FLAG
)
6095 dev
->features
|= NETIF_F_HIGHDMA
;
6096 dev
->features
|= NETIF_F_IP_CSUM
;
6098 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
6100 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
6102 netif_carrier_off(bp
->dev
);
6107 static void __devexit
6108 bnx2_remove_one(struct pci_dev
*pdev
)
6110 struct net_device
*dev
= pci_get_drvdata(pdev
);
6111 struct bnx2
*bp
= netdev_priv(dev
);
6113 flush_scheduled_work();
6115 unregister_netdev(dev
);
6118 iounmap(bp
->regview
);
6121 pci_release_regions(pdev
);
6122 pci_disable_device(pdev
);
6123 pci_set_drvdata(pdev
, NULL
);
6127 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
6129 struct net_device
*dev
= pci_get_drvdata(pdev
);
6130 struct bnx2
*bp
= netdev_priv(dev
);
6133 if (!netif_running(dev
))
6136 flush_scheduled_work();
6137 bnx2_netif_stop(bp
);
6138 netif_device_detach(dev
);
6139 del_timer_sync(&bp
->timer
);
6140 if (bp
->flags
& NO_WOL_FLAG
)
6141 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
6143 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
6145 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
6146 bnx2_reset_chip(bp
, reset_code
);
6148 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
6153 bnx2_resume(struct pci_dev
*pdev
)
6155 struct net_device
*dev
= pci_get_drvdata(pdev
);
6156 struct bnx2
*bp
= netdev_priv(dev
);
6158 if (!netif_running(dev
))
6161 bnx2_set_power_state(bp
, PCI_D0
);
6162 netif_device_attach(dev
);
6164 bnx2_netif_start(bp
);
6168 static struct pci_driver bnx2_pci_driver
= {
6169 .name
= DRV_MODULE_NAME
,
6170 .id_table
= bnx2_pci_tbl
,
6171 .probe
= bnx2_init_one
,
6172 .remove
= __devexit_p(bnx2_remove_one
),
6173 .suspend
= bnx2_suspend
,
6174 .resume
= bnx2_resume
,
6177 static int __init
bnx2_init(void)
6179 return pci_register_driver(&bnx2_pci_driver
);
6182 static void __exit
bnx2_cleanup(void)
6184 pci_unregister_driver(&bnx2_pci_driver
);
6187 module_init(bnx2_init
);
6188 module_exit(bnx2_cleanup
);