1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
31 #define MLOG_MASK_PREFIX ML_FILE_IO
32 #include <cluster/masklog.h>
39 #include "extent_map.h"
47 #include "buffer_head_io.h"
49 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
50 struct buffer_head
*bh_result
, int create
)
54 struct ocfs2_dinode
*fe
= NULL
;
55 struct buffer_head
*bh
= NULL
;
56 struct buffer_head
*buffer_cache_bh
= NULL
;
57 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
61 (unsigned long long)iblock
, bh_result
, create
);
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
65 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
66 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock
);
71 status
= ocfs2_read_block(inode
, OCFS2_I(inode
)->ip_blkno
, &bh
);
76 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
78 if (!OCFS2_IS_VALID_DINODE(fe
)) {
79 mlog(ML_ERROR
, "Invalid dinode #%llu: signature = %.*s\n",
80 (unsigned long long)le64_to_cpu(fe
->i_blkno
), 7,
85 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
86 le32_to_cpu(fe
->i_clusters
))) {
87 mlog(ML_ERROR
, "block offset is outside the allocated size: "
88 "%llu\n", (unsigned long long)iblock
);
92 /* We don't use the page cache to create symlink data, so if
93 * need be, copy it over from the buffer cache. */
94 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
95 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
97 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
98 if (!buffer_cache_bh
) {
99 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
103 /* we haven't locked out transactions, so a commit
104 * could've happened. Since we've got a reference on
105 * the bh, even if it commits while we're doing the
106 * copy, the data is still good. */
107 if (buffer_jbd(buffer_cache_bh
)
108 && ocfs2_inode_is_new(inode
)) {
109 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
111 mlog(ML_ERROR
, "couldn't kmap!\n");
114 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
115 buffer_cache_bh
->b_data
,
117 kunmap_atomic(kaddr
, KM_USER0
);
118 set_buffer_uptodate(bh_result
);
120 brelse(buffer_cache_bh
);
123 map_bh(bh_result
, inode
->i_sb
,
124 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
135 static int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
136 struct buffer_head
*bh_result
, int create
)
139 unsigned int ext_flags
;
140 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
141 u64 p_blkno
, count
, past_eof
;
142 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
144 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
145 (unsigned long long)iblock
, bh_result
, create
);
147 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
148 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
149 inode
, inode
->i_ino
);
151 if (S_ISLNK(inode
->i_mode
)) {
152 /* this always does I/O for some reason. */
153 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
157 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
160 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
161 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
162 (unsigned long long)p_blkno
);
166 if (max_blocks
< count
)
170 * ocfs2 never allocates in this function - the only time we
171 * need to use BH_New is when we're extending i_size on a file
172 * system which doesn't support holes, in which case BH_New
173 * allows block_prepare_write() to zero.
175 * If we see this on a sparse file system, then a truncate has
176 * raced us and removed the cluster. In this case, we clear
177 * the buffers dirty and uptodate bits and let the buffer code
178 * ignore it as a hole.
180 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
181 clear_buffer_dirty(bh_result
);
182 clear_buffer_uptodate(bh_result
);
186 /* Treat the unwritten extent as a hole for zeroing purposes. */
187 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
188 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
190 bh_result
->b_size
= count
<< inode
->i_blkbits
;
192 if (!ocfs2_sparse_alloc(osb
)) {
196 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
197 (unsigned long long)iblock
,
198 (unsigned long long)p_blkno
,
199 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
200 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
204 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
205 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
206 (unsigned long long)past_eof
);
208 if (create
&& (iblock
>= past_eof
))
209 set_buffer_new(bh_result
);
220 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
221 struct buffer_head
*di_bh
)
225 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
227 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
228 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag",
229 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
233 size
= i_size_read(inode
);
235 if (size
> PAGE_CACHE_SIZE
||
236 size
> ocfs2_max_inline_data(inode
->i_sb
)) {
237 ocfs2_error(inode
->i_sb
,
238 "Inode %llu has with inline data has bad size: %Lu",
239 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
240 (unsigned long long)size
);
244 kaddr
= kmap_atomic(page
, KM_USER0
);
246 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
247 /* Clear the remaining part of the page */
248 memset(kaddr
+ size
, 0, PAGE_CACHE_SIZE
- size
);
249 flush_dcache_page(page
);
250 kunmap_atomic(kaddr
, KM_USER0
);
252 SetPageUptodate(page
);
257 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
260 struct buffer_head
*di_bh
= NULL
;
262 BUG_ON(!PageLocked(page
));
263 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
265 ret
= ocfs2_read_block(inode
, OCFS2_I(inode
)->ip_blkno
, &di_bh
);
271 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
279 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
281 struct inode
*inode
= page
->mapping
->host
;
282 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
283 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
286 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
288 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
290 if (ret
== AOP_TRUNCATED_PAGE
)
296 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
297 ret
= AOP_TRUNCATED_PAGE
;
298 goto out_inode_unlock
;
302 * i_size might have just been updated as we grabed the meta lock. We
303 * might now be discovering a truncate that hit on another node.
304 * block_read_full_page->get_block freaks out if it is asked to read
305 * beyond the end of a file, so we check here. Callers
306 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
307 * and notice that the page they just read isn't needed.
309 * XXX sys_readahead() seems to get that wrong?
311 if (start
>= i_size_read(inode
)) {
312 zero_user(page
, 0, PAGE_SIZE
);
313 SetPageUptodate(page
);
318 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
319 ret
= ocfs2_readpage_inline(inode
, page
);
321 ret
= block_read_full_page(page
, ocfs2_get_block
);
325 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
327 ocfs2_inode_unlock(inode
, 0);
336 * This is used only for read-ahead. Failures or difficult to handle
337 * situations are safe to ignore.
339 * Right now, we don't bother with BH_Boundary - in-inode extent lists
340 * are quite large (243 extents on 4k blocks), so most inodes don't
341 * grow out to a tree. If need be, detecting boundary extents could
342 * trivially be added in a future version of ocfs2_get_block().
344 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
345 struct list_head
*pages
, unsigned nr_pages
)
348 struct inode
*inode
= mapping
->host
;
349 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
354 * Use the nonblocking flag for the dlm code to avoid page
355 * lock inversion, but don't bother with retrying.
357 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
361 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
362 ocfs2_inode_unlock(inode
, 0);
367 * Don't bother with inline-data. There isn't anything
368 * to read-ahead in that case anyway...
370 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
374 * Check whether a remote node truncated this file - we just
375 * drop out in that case as it's not worth handling here.
377 last
= list_entry(pages
->prev
, struct page
, lru
);
378 start
= (loff_t
)last
->index
<< PAGE_CACHE_SHIFT
;
379 if (start
>= i_size_read(inode
))
382 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
385 up_read(&oi
->ip_alloc_sem
);
386 ocfs2_inode_unlock(inode
, 0);
391 /* Note: Because we don't support holes, our allocation has
392 * already happened (allocation writes zeros to the file data)
393 * so we don't have to worry about ordered writes in
396 * ->writepage is called during the process of invalidating the page cache
397 * during blocked lock processing. It can't block on any cluster locks
398 * to during block mapping. It's relying on the fact that the block
399 * mapping can't have disappeared under the dirty pages that it is
400 * being asked to write back.
402 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
406 mlog_entry("(0x%p)\n", page
);
408 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
416 * This is called from ocfs2_write_zero_page() which has handled it's
417 * own cluster locking and has ensured allocation exists for those
418 * blocks to be written.
420 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
421 unsigned from
, unsigned to
)
425 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
430 /* Taken from ext3. We don't necessarily need the full blown
431 * functionality yet, but IMHO it's better to cut and paste the whole
432 * thing so we can avoid introducing our own bugs (and easily pick up
433 * their fixes when they happen) --Mark */
434 int walk_page_buffers( handle_t
*handle
,
435 struct buffer_head
*head
,
439 int (*fn
)( handle_t
*handle
,
440 struct buffer_head
*bh
))
442 struct buffer_head
*bh
;
443 unsigned block_start
, block_end
;
444 unsigned blocksize
= head
->b_size
;
446 struct buffer_head
*next
;
448 for ( bh
= head
, block_start
= 0;
449 ret
== 0 && (bh
!= head
|| !block_start
);
450 block_start
= block_end
, bh
= next
)
452 next
= bh
->b_this_page
;
453 block_end
= block_start
+ blocksize
;
454 if (block_end
<= from
|| block_start
>= to
) {
455 if (partial
&& !buffer_uptodate(bh
))
459 err
= (*fn
)(handle
, bh
);
466 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
471 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
475 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
476 if (IS_ERR(handle
)) {
482 if (ocfs2_should_order_data(inode
)) {
483 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
484 #ifdef CONFIG_OCFS2_COMPAT_JBD
485 ret
= walk_page_buffers(handle
,
488 ocfs2_journal_dirty_data
);
496 ocfs2_commit_trans(osb
, handle
);
497 handle
= ERR_PTR(ret
);
502 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
507 struct inode
*inode
= mapping
->host
;
509 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
511 /* We don't need to lock journal system files, since they aren't
512 * accessed concurrently from multiple nodes.
514 if (!INODE_JOURNAL(inode
)) {
515 err
= ocfs2_inode_lock(inode
, NULL
, 0);
521 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
524 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
525 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
528 if (!INODE_JOURNAL(inode
)) {
529 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
530 ocfs2_inode_unlock(inode
, 0);
534 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
535 (unsigned long long)block
);
541 status
= err
? 0 : p_blkno
;
543 mlog_exit((int)status
);
549 * TODO: Make this into a generic get_blocks function.
551 * From do_direct_io in direct-io.c:
552 * "So what we do is to permit the ->get_blocks function to populate
553 * bh.b_size with the size of IO which is permitted at this offset and
556 * This function is called directly from get_more_blocks in direct-io.c.
558 * called like this: dio->get_blocks(dio->inode, fs_startblk,
559 * fs_count, map_bh, dio->rw == WRITE);
561 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
562 struct buffer_head
*bh_result
, int create
)
565 u64 p_blkno
, inode_blocks
, contig_blocks
;
566 unsigned int ext_flags
;
567 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
568 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
570 /* This function won't even be called if the request isn't all
571 * nicely aligned and of the right size, so there's no need
572 * for us to check any of that. */
574 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
577 * Any write past EOF is not allowed because we'd be extending.
579 if (create
&& (iblock
+ max_blocks
) > inode_blocks
) {
584 /* This figures out the size of the next contiguous block, and
585 * our logical offset */
586 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
587 &contig_blocks
, &ext_flags
);
589 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
590 (unsigned long long)iblock
);
595 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)) && !p_blkno
&& create
) {
596 ocfs2_error(inode
->i_sb
,
597 "Inode %llu has a hole at block %llu\n",
598 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
599 (unsigned long long)iblock
);
605 * get_more_blocks() expects us to describe a hole by clearing
606 * the mapped bit on bh_result().
608 * Consider an unwritten extent as a hole.
610 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
611 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
614 * ocfs2_prepare_inode_for_write() should have caught
615 * the case where we'd be filling a hole and triggered
616 * a buffered write instead.
624 clear_buffer_mapped(bh_result
);
627 /* make sure we don't map more than max_blocks blocks here as
628 that's all the kernel will handle at this point. */
629 if (max_blocks
< contig_blocks
)
630 contig_blocks
= max_blocks
;
631 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
637 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
638 * particularly interested in the aio/dio case. Like the core uses
639 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
640 * truncation on another.
642 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
647 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
650 /* this io's submitter should not have unlocked this before we could */
651 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
653 ocfs2_iocb_clear_rw_locked(iocb
);
655 level
= ocfs2_iocb_rw_locked_level(iocb
);
657 up_read(&inode
->i_alloc_sem
);
658 ocfs2_rw_unlock(inode
, level
);
662 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
663 * from ext3. PageChecked() bits have been removed as OCFS2 does not
664 * do journalled data.
666 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
668 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
670 jbd2_journal_invalidatepage(journal
, page
, offset
);
673 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
675 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
677 if (!page_has_buffers(page
))
679 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
682 static ssize_t
ocfs2_direct_IO(int rw
,
684 const struct iovec
*iov
,
686 unsigned long nr_segs
)
688 struct file
*file
= iocb
->ki_filp
;
689 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
695 * Fallback to buffered I/O if we see an inode without
698 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
701 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
702 inode
->i_sb
->s_bdev
, iov
, offset
,
704 ocfs2_direct_IO_get_blocks
,
711 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
716 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
718 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
721 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
723 cluster_start
= cpos
% cpp
;
724 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
726 cluster_end
= cluster_start
+ osb
->s_clustersize
;
729 BUG_ON(cluster_start
> PAGE_SIZE
);
730 BUG_ON(cluster_end
> PAGE_SIZE
);
733 *start
= cluster_start
;
739 * 'from' and 'to' are the region in the page to avoid zeroing.
741 * If pagesize > clustersize, this function will avoid zeroing outside
742 * of the cluster boundary.
744 * from == to == 0 is code for "zero the entire cluster region"
746 static void ocfs2_clear_page_regions(struct page
*page
,
747 struct ocfs2_super
*osb
, u32 cpos
,
748 unsigned from
, unsigned to
)
751 unsigned int cluster_start
, cluster_end
;
753 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
755 kaddr
= kmap_atomic(page
, KM_USER0
);
758 if (from
> cluster_start
)
759 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
760 if (to
< cluster_end
)
761 memset(kaddr
+ to
, 0, cluster_end
- to
);
763 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
766 kunmap_atomic(kaddr
, KM_USER0
);
770 * Nonsparse file systems fully allocate before we get to the write
771 * code. This prevents ocfs2_write() from tagging the write as an
772 * allocating one, which means ocfs2_map_page_blocks() might try to
773 * read-in the blocks at the tail of our file. Avoid reading them by
774 * testing i_size against each block offset.
776 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
777 unsigned int block_start
)
779 u64 offset
= page_offset(page
) + block_start
;
781 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
784 if (i_size_read(inode
) > offset
)
791 * Some of this taken from block_prepare_write(). We already have our
792 * mapping by now though, and the entire write will be allocating or
793 * it won't, so not much need to use BH_New.
795 * This will also skip zeroing, which is handled externally.
797 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
798 struct inode
*inode
, unsigned int from
,
799 unsigned int to
, int new)
802 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
803 unsigned int block_end
, block_start
;
804 unsigned int bsize
= 1 << inode
->i_blkbits
;
806 if (!page_has_buffers(page
))
807 create_empty_buffers(page
, bsize
, 0);
809 head
= page_buffers(page
);
810 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
811 bh
= bh
->b_this_page
, block_start
+= bsize
) {
812 block_end
= block_start
+ bsize
;
814 clear_buffer_new(bh
);
817 * Ignore blocks outside of our i/o range -
818 * they may belong to unallocated clusters.
820 if (block_start
>= to
|| block_end
<= from
) {
821 if (PageUptodate(page
))
822 set_buffer_uptodate(bh
);
827 * For an allocating write with cluster size >= page
828 * size, we always write the entire page.
833 if (!buffer_mapped(bh
)) {
834 map_bh(bh
, inode
->i_sb
, *p_blkno
);
835 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
838 if (PageUptodate(page
)) {
839 if (!buffer_uptodate(bh
))
840 set_buffer_uptodate(bh
);
841 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
843 ocfs2_should_read_blk(inode
, page
, block_start
) &&
844 (block_start
< from
|| block_end
> to
)) {
845 ll_rw_block(READ
, 1, &bh
);
849 *p_blkno
= *p_blkno
+ 1;
853 * If we issued read requests - let them complete.
855 while(wait_bh
> wait
) {
856 wait_on_buffer(*--wait_bh
);
857 if (!buffer_uptodate(*wait_bh
))
861 if (ret
== 0 || !new)
865 * If we get -EIO above, zero out any newly allocated blocks
866 * to avoid exposing stale data.
871 block_end
= block_start
+ bsize
;
872 if (block_end
<= from
)
874 if (block_start
>= to
)
877 zero_user(page
, block_start
, bh
->b_size
);
878 set_buffer_uptodate(bh
);
879 mark_buffer_dirty(bh
);
882 block_start
= block_end
;
883 bh
= bh
->b_this_page
;
884 } while (bh
!= head
);
889 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
890 #define OCFS2_MAX_CTXT_PAGES 1
892 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
895 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
898 * Describe the state of a single cluster to be written to.
900 struct ocfs2_write_cluster_desc
{
904 * Give this a unique field because c_phys eventually gets
908 unsigned c_unwritten
;
911 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc
*d
)
913 return d
->c_new
|| d
->c_unwritten
;
916 struct ocfs2_write_ctxt
{
917 /* Logical cluster position / len of write */
921 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
924 * This is true if page_size > cluster_size.
926 * It triggers a set of special cases during write which might
927 * have to deal with allocating writes to partial pages.
929 unsigned int w_large_pages
;
932 * Pages involved in this write.
934 * w_target_page is the page being written to by the user.
936 * w_pages is an array of pages which always contains
937 * w_target_page, and in the case of an allocating write with
938 * page_size < cluster size, it will contain zero'd and mapped
939 * pages adjacent to w_target_page which need to be written
940 * out in so that future reads from that region will get
943 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
944 unsigned int w_num_pages
;
945 struct page
*w_target_page
;
948 * ocfs2_write_end() uses this to know what the real range to
949 * write in the target should be.
951 unsigned int w_target_from
;
952 unsigned int w_target_to
;
955 * We could use journal_current_handle() but this is cleaner,
960 struct buffer_head
*w_di_bh
;
962 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
965 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
969 for(i
= 0; i
< num_pages
; i
++) {
971 unlock_page(pages
[i
]);
972 mark_page_accessed(pages
[i
]);
973 page_cache_release(pages
[i
]);
978 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt
*wc
)
980 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
986 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
987 struct ocfs2_super
*osb
, loff_t pos
,
988 unsigned len
, struct buffer_head
*di_bh
)
991 struct ocfs2_write_ctxt
*wc
;
993 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
997 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
998 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
999 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
1001 wc
->w_di_bh
= di_bh
;
1003 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
1004 wc
->w_large_pages
= 1;
1006 wc
->w_large_pages
= 0;
1008 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
1016 * If a page has any new buffers, zero them out here, and mark them uptodate
1017 * and dirty so they'll be written out (in order to prevent uninitialised
1018 * block data from leaking). And clear the new bit.
1020 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1022 unsigned int block_start
, block_end
;
1023 struct buffer_head
*head
, *bh
;
1025 BUG_ON(!PageLocked(page
));
1026 if (!page_has_buffers(page
))
1029 bh
= head
= page_buffers(page
);
1032 block_end
= block_start
+ bh
->b_size
;
1034 if (buffer_new(bh
)) {
1035 if (block_end
> from
&& block_start
< to
) {
1036 if (!PageUptodate(page
)) {
1037 unsigned start
, end
;
1039 start
= max(from
, block_start
);
1040 end
= min(to
, block_end
);
1042 zero_user_segment(page
, start
, end
);
1043 set_buffer_uptodate(bh
);
1046 clear_buffer_new(bh
);
1047 mark_buffer_dirty(bh
);
1051 block_start
= block_end
;
1052 bh
= bh
->b_this_page
;
1053 } while (bh
!= head
);
1057 * Only called when we have a failure during allocating write to write
1058 * zero's to the newly allocated region.
1060 static void ocfs2_write_failure(struct inode
*inode
,
1061 struct ocfs2_write_ctxt
*wc
,
1062 loff_t user_pos
, unsigned user_len
)
1065 unsigned from
= user_pos
& (PAGE_CACHE_SIZE
- 1),
1066 to
= user_pos
+ user_len
;
1067 struct page
*tmppage
;
1069 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
1071 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1072 tmppage
= wc
->w_pages
[i
];
1074 if (page_has_buffers(tmppage
)) {
1075 if (ocfs2_should_order_data(inode
)) {
1076 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1077 #ifdef CONFIG_OCFS2_COMPAT_JBD
1078 walk_page_buffers(wc
->w_handle
,
1079 page_buffers(tmppage
),
1081 ocfs2_journal_dirty_data
);
1085 block_commit_write(tmppage
, from
, to
);
1090 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
1091 struct ocfs2_write_ctxt
*wc
,
1092 struct page
*page
, u32 cpos
,
1093 loff_t user_pos
, unsigned user_len
,
1097 unsigned int map_from
= 0, map_to
= 0;
1098 unsigned int cluster_start
, cluster_end
;
1099 unsigned int user_data_from
= 0, user_data_to
= 0;
1101 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
1102 &cluster_start
, &cluster_end
);
1104 if (page
== wc
->w_target_page
) {
1105 map_from
= user_pos
& (PAGE_CACHE_SIZE
- 1);
1106 map_to
= map_from
+ user_len
;
1109 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1110 cluster_start
, cluster_end
,
1113 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1114 map_from
, map_to
, new);
1120 user_data_from
= map_from
;
1121 user_data_to
= map_to
;
1123 map_from
= cluster_start
;
1124 map_to
= cluster_end
;
1128 * If we haven't allocated the new page yet, we
1129 * shouldn't be writing it out without copying user
1130 * data. This is likely a math error from the caller.
1134 map_from
= cluster_start
;
1135 map_to
= cluster_end
;
1137 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1138 cluster_start
, cluster_end
, new);
1146 * Parts of newly allocated pages need to be zero'd.
1148 * Above, we have also rewritten 'to' and 'from' - as far as
1149 * the rest of the function is concerned, the entire cluster
1150 * range inside of a page needs to be written.
1152 * We can skip this if the page is up to date - it's already
1153 * been zero'd from being read in as a hole.
1155 if (new && !PageUptodate(page
))
1156 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1157 cpos
, user_data_from
, user_data_to
);
1159 flush_dcache_page(page
);
1166 * This function will only grab one clusters worth of pages.
1168 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1169 struct ocfs2_write_ctxt
*wc
,
1170 u32 cpos
, loff_t user_pos
, int new,
1171 struct page
*mmap_page
)
1174 unsigned long start
, target_index
, index
;
1175 struct inode
*inode
= mapping
->host
;
1177 target_index
= user_pos
>> PAGE_CACHE_SHIFT
;
1180 * Figure out how many pages we'll be manipulating here. For
1181 * non allocating write, we just change the one
1182 * page. Otherwise, we'll need a whole clusters worth.
1185 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1186 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1188 wc
->w_num_pages
= 1;
1189 start
= target_index
;
1192 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1195 if (index
== target_index
&& mmap_page
) {
1197 * ocfs2_pagemkwrite() is a little different
1198 * and wants us to directly use the page
1201 lock_page(mmap_page
);
1203 if (mmap_page
->mapping
!= mapping
) {
1204 unlock_page(mmap_page
);
1206 * Sanity check - the locking in
1207 * ocfs2_pagemkwrite() should ensure
1208 * that this code doesn't trigger.
1215 page_cache_get(mmap_page
);
1216 wc
->w_pages
[i
] = mmap_page
;
1218 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1220 if (!wc
->w_pages
[i
]) {
1227 if (index
== target_index
)
1228 wc
->w_target_page
= wc
->w_pages
[i
];
1235 * Prepare a single cluster for write one cluster into the file.
1237 static int ocfs2_write_cluster(struct address_space
*mapping
,
1238 u32 phys
, unsigned int unwritten
,
1239 struct ocfs2_alloc_context
*data_ac
,
1240 struct ocfs2_alloc_context
*meta_ac
,
1241 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1242 loff_t user_pos
, unsigned user_len
)
1244 int ret
, i
, new, should_zero
= 0;
1245 u64 v_blkno
, p_blkno
;
1246 struct inode
*inode
= mapping
->host
;
1247 struct ocfs2_extent_tree et
;
1249 new = phys
== 0 ? 1 : 0;
1250 if (new || unwritten
)
1257 * This is safe to call with the page locks - it won't take
1258 * any additional semaphores or cluster locks.
1261 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1262 &tmp_pos
, 1, 0, wc
->w_di_bh
,
1263 wc
->w_handle
, data_ac
,
1266 * This shouldn't happen because we must have already
1267 * calculated the correct meta data allocation required. The
1268 * internal tree allocation code should know how to increase
1269 * transaction credits itself.
1271 * If need be, we could handle -EAGAIN for a
1272 * RESTART_TRANS here.
1274 mlog_bug_on_msg(ret
== -EAGAIN
,
1275 "Inode %llu: EAGAIN return during allocation.\n",
1276 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1281 } else if (unwritten
) {
1282 ocfs2_init_dinode_extent_tree(&et
, inode
, wc
->w_di_bh
);
1283 ret
= ocfs2_mark_extent_written(inode
, &et
,
1284 wc
->w_handle
, cpos
, 1, phys
,
1285 meta_ac
, &wc
->w_dealloc
);
1293 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, cpos
);
1295 v_blkno
= user_pos
>> inode
->i_sb
->s_blocksize_bits
;
1298 * The only reason this should fail is due to an inability to
1299 * find the extent added.
1301 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1304 ocfs2_error(inode
->i_sb
, "Corrupting extend for inode %llu, "
1305 "at logical block %llu",
1306 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1307 (unsigned long long)v_blkno
);
1311 BUG_ON(p_blkno
== 0);
1313 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1316 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1317 wc
->w_pages
[i
], cpos
,
1328 * We only have cleanup to do in case of allocating write.
1331 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1338 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1339 struct ocfs2_alloc_context
*data_ac
,
1340 struct ocfs2_alloc_context
*meta_ac
,
1341 struct ocfs2_write_ctxt
*wc
,
1342 loff_t pos
, unsigned len
)
1346 unsigned int local_len
= len
;
1347 struct ocfs2_write_cluster_desc
*desc
;
1348 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1350 for (i
= 0; i
< wc
->w_clen
; i
++) {
1351 desc
= &wc
->w_desc
[i
];
1354 * We have to make sure that the total write passed in
1355 * doesn't extend past a single cluster.
1358 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1359 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1360 local_len
= osb
->s_clustersize
- cluster_off
;
1362 ret
= ocfs2_write_cluster(mapping
, desc
->c_phys
,
1363 desc
->c_unwritten
, data_ac
, meta_ac
,
1364 wc
, desc
->c_cpos
, pos
, local_len
);
1380 * ocfs2_write_end() wants to know which parts of the target page it
1381 * should complete the write on. It's easiest to compute them ahead of
1382 * time when a more complete view of the write is available.
1384 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1385 struct ocfs2_write_ctxt
*wc
,
1386 loff_t pos
, unsigned len
, int alloc
)
1388 struct ocfs2_write_cluster_desc
*desc
;
1390 wc
->w_target_from
= pos
& (PAGE_CACHE_SIZE
- 1);
1391 wc
->w_target_to
= wc
->w_target_from
+ len
;
1397 * Allocating write - we may have different boundaries based
1398 * on page size and cluster size.
1400 * NOTE: We can no longer compute one value from the other as
1401 * the actual write length and user provided length may be
1405 if (wc
->w_large_pages
) {
1407 * We only care about the 1st and last cluster within
1408 * our range and whether they should be zero'd or not. Either
1409 * value may be extended out to the start/end of a
1410 * newly allocated cluster.
1412 desc
= &wc
->w_desc
[0];
1413 if (ocfs2_should_zero_cluster(desc
))
1414 ocfs2_figure_cluster_boundaries(osb
,
1419 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1420 if (ocfs2_should_zero_cluster(desc
))
1421 ocfs2_figure_cluster_boundaries(osb
,
1426 wc
->w_target_from
= 0;
1427 wc
->w_target_to
= PAGE_CACHE_SIZE
;
1432 * Populate each single-cluster write descriptor in the write context
1433 * with information about the i/o to be done.
1435 * Returns the number of clusters that will have to be allocated, as
1436 * well as a worst case estimate of the number of extent records that
1437 * would have to be created during a write to an unwritten region.
1439 static int ocfs2_populate_write_desc(struct inode
*inode
,
1440 struct ocfs2_write_ctxt
*wc
,
1441 unsigned int *clusters_to_alloc
,
1442 unsigned int *extents_to_split
)
1445 struct ocfs2_write_cluster_desc
*desc
;
1446 unsigned int num_clusters
= 0;
1447 unsigned int ext_flags
= 0;
1451 *clusters_to_alloc
= 0;
1452 *extents_to_split
= 0;
1454 for (i
= 0; i
< wc
->w_clen
; i
++) {
1455 desc
= &wc
->w_desc
[i
];
1456 desc
->c_cpos
= wc
->w_cpos
+ i
;
1458 if (num_clusters
== 0) {
1460 * Need to look up the next extent record.
1462 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1463 &num_clusters
, &ext_flags
);
1470 * Assume worst case - that we're writing in
1471 * the middle of the extent.
1473 * We can assume that the write proceeds from
1474 * left to right, in which case the extent
1475 * insert code is smart enough to coalesce the
1476 * next splits into the previous records created.
1478 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1479 *extents_to_split
= *extents_to_split
+ 2;
1482 * Only increment phys if it doesn't describe
1488 desc
->c_phys
= phys
;
1491 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1493 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1494 desc
->c_unwritten
= 1;
1504 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1505 struct inode
*inode
,
1506 struct ocfs2_write_ctxt
*wc
)
1509 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1512 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1514 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1521 * If we don't set w_num_pages then this page won't get unlocked
1522 * and freed on cleanup of the write context.
1524 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1525 wc
->w_num_pages
= 1;
1527 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1528 if (IS_ERR(handle
)) {
1529 ret
= PTR_ERR(handle
);
1534 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1535 OCFS2_JOURNAL_ACCESS_WRITE
);
1537 ocfs2_commit_trans(osb
, handle
);
1543 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1544 ocfs2_set_inode_data_inline(inode
, di
);
1546 if (!PageUptodate(page
)) {
1547 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1549 ocfs2_commit_trans(osb
, handle
);
1555 wc
->w_handle
= handle
;
1560 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1562 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1564 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1569 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1570 struct inode
*inode
, loff_t pos
,
1571 unsigned len
, struct page
*mmap_page
,
1572 struct ocfs2_write_ctxt
*wc
)
1574 int ret
, written
= 0;
1575 loff_t end
= pos
+ len
;
1576 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1578 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1579 (unsigned long long)oi
->ip_blkno
, len
, (unsigned long long)pos
,
1580 oi
->ip_dyn_features
);
1583 * Handle inodes which already have inline data 1st.
1585 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1586 if (mmap_page
== NULL
&&
1587 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1588 goto do_inline_write
;
1591 * The write won't fit - we have to give this inode an
1592 * inline extent list now.
1594 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1601 * Check whether the inode can accept inline data.
1603 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1607 * Check whether the write can fit.
1609 if (mmap_page
|| end
> ocfs2_max_inline_data(inode
->i_sb
))
1613 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1620 * This signals to the caller that the data can be written
1625 return written
? written
: ret
;
1629 * This function only does anything for file systems which can't
1630 * handle sparse files.
1632 * What we want to do here is fill in any hole between the current end
1633 * of allocation and the end of our write. That way the rest of the
1634 * write path can treat it as an non-allocating write, which has no
1635 * special case code for sparse/nonsparse files.
1637 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
, loff_t pos
,
1639 struct ocfs2_write_ctxt
*wc
)
1642 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1643 loff_t newsize
= pos
+ len
;
1645 if (ocfs2_sparse_alloc(osb
))
1648 if (newsize
<= i_size_read(inode
))
1651 ret
= ocfs2_extend_no_holes(inode
, newsize
, newsize
- len
);
1658 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1659 loff_t pos
, unsigned len
, unsigned flags
,
1660 struct page
**pagep
, void **fsdata
,
1661 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1663 int ret
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1664 unsigned int clusters_to_alloc
, extents_to_split
;
1665 struct ocfs2_write_ctxt
*wc
;
1666 struct inode
*inode
= mapping
->host
;
1667 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1668 struct ocfs2_dinode
*di
;
1669 struct ocfs2_alloc_context
*data_ac
= NULL
;
1670 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1672 struct ocfs2_extent_tree et
;
1674 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, di_bh
);
1680 if (ocfs2_supports_inline_data(osb
)) {
1681 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1693 ret
= ocfs2_expand_nonsparse_inode(inode
, pos
, len
, wc
);
1699 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1706 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1709 * We set w_target_from, w_target_to here so that
1710 * ocfs2_write_end() knows which range in the target page to
1711 * write out. An allocation requires that we write the entire
1714 if (clusters_to_alloc
|| extents_to_split
) {
1716 * XXX: We are stretching the limits of
1717 * ocfs2_lock_allocators(). It greatly over-estimates
1718 * the work to be done.
1720 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721 " clusters_to_add = %u, extents_to_split = %u\n",
1722 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1723 (long long)i_size_read(inode
), le32_to_cpu(di
->i_clusters
),
1724 clusters_to_alloc
, extents_to_split
);
1726 ocfs2_init_dinode_extent_tree(&et
, inode
, wc
->w_di_bh
);
1727 ret
= ocfs2_lock_allocators(inode
, &et
,
1728 clusters_to_alloc
, extents_to_split
,
1729 &data_ac
, &meta_ac
);
1735 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1741 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
,
1742 clusters_to_alloc
+ extents_to_split
);
1744 handle
= ocfs2_start_trans(osb
, credits
);
1745 if (IS_ERR(handle
)) {
1746 ret
= PTR_ERR(handle
);
1751 wc
->w_handle
= handle
;
1754 * We don't want this to fail in ocfs2_write_end(), so do it
1757 ret
= ocfs2_journal_access(handle
, inode
, wc
->w_di_bh
,
1758 OCFS2_JOURNAL_ACCESS_WRITE
);
1765 * Fill our page array first. That way we've grabbed enough so
1766 * that we can zero and flush if we error after adding the
1769 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
,
1770 clusters_to_alloc
+ extents_to_split
,
1777 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1785 ocfs2_free_alloc_context(data_ac
);
1787 ocfs2_free_alloc_context(meta_ac
);
1790 *pagep
= wc
->w_target_page
;
1794 ocfs2_commit_trans(osb
, handle
);
1797 ocfs2_free_write_ctxt(wc
);
1800 ocfs2_free_alloc_context(data_ac
);
1802 ocfs2_free_alloc_context(meta_ac
);
1806 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1807 loff_t pos
, unsigned len
, unsigned flags
,
1808 struct page
**pagep
, void **fsdata
)
1811 struct buffer_head
*di_bh
= NULL
;
1812 struct inode
*inode
= mapping
->host
;
1814 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1821 * Take alloc sem here to prevent concurrent lookups. That way
1822 * the mapping, zeroing and tree manipulation within
1823 * ocfs2_write() will be safe against ->readpage(). This
1824 * should also serve to lock out allocation from a shared
1827 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1829 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, flags
, pagep
,
1830 fsdata
, di_bh
, NULL
);
1841 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1844 ocfs2_inode_unlock(inode
, 1);
1849 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1850 unsigned len
, unsigned *copied
,
1851 struct ocfs2_dinode
*di
,
1852 struct ocfs2_write_ctxt
*wc
)
1856 if (unlikely(*copied
< len
)) {
1857 if (!PageUptodate(wc
->w_target_page
)) {
1863 kaddr
= kmap_atomic(wc
->w_target_page
, KM_USER0
);
1864 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1865 kunmap_atomic(kaddr
, KM_USER0
);
1867 mlog(0, "Data written to inode at offset %llu. "
1868 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1869 (unsigned long long)pos
, *copied
,
1870 le16_to_cpu(di
->id2
.i_data
.id_count
),
1871 le16_to_cpu(di
->i_dyn_features
));
1874 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1875 loff_t pos
, unsigned len
, unsigned copied
,
1876 struct page
*page
, void *fsdata
)
1879 unsigned from
, to
, start
= pos
& (PAGE_CACHE_SIZE
- 1);
1880 struct inode
*inode
= mapping
->host
;
1881 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1882 struct ocfs2_write_ctxt
*wc
= fsdata
;
1883 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1884 handle_t
*handle
= wc
->w_handle
;
1885 struct page
*tmppage
;
1887 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1888 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1889 goto out_write_size
;
1892 if (unlikely(copied
< len
)) {
1893 if (!PageUptodate(wc
->w_target_page
))
1896 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1899 flush_dcache_page(wc
->w_target_page
);
1901 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1902 tmppage
= wc
->w_pages
[i
];
1904 if (tmppage
== wc
->w_target_page
) {
1905 from
= wc
->w_target_from
;
1906 to
= wc
->w_target_to
;
1908 BUG_ON(from
> PAGE_CACHE_SIZE
||
1909 to
> PAGE_CACHE_SIZE
||
1913 * Pages adjacent to the target (if any) imply
1914 * a hole-filling write in which case we want
1915 * to flush their entire range.
1918 to
= PAGE_CACHE_SIZE
;
1921 if (page_has_buffers(tmppage
)) {
1922 if (ocfs2_should_order_data(inode
)) {
1923 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
1924 #ifdef CONFIG_OCFS2_COMPAT_JBD
1925 walk_page_buffers(wc
->w_handle
,
1926 page_buffers(tmppage
),
1928 ocfs2_journal_dirty_data
);
1931 block_commit_write(tmppage
, from
, to
);
1937 if (pos
> inode
->i_size
) {
1938 i_size_write(inode
, pos
);
1939 mark_inode_dirty(inode
);
1941 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1942 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1943 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1944 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1945 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1946 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
1948 ocfs2_commit_trans(osb
, handle
);
1950 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
1952 ocfs2_free_write_ctxt(wc
);
1957 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
1958 loff_t pos
, unsigned len
, unsigned copied
,
1959 struct page
*page
, void *fsdata
)
1962 struct inode
*inode
= mapping
->host
;
1964 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
1966 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1967 ocfs2_inode_unlock(inode
, 1);
1972 const struct address_space_operations ocfs2_aops
= {
1973 .readpage
= ocfs2_readpage
,
1974 .readpages
= ocfs2_readpages
,
1975 .writepage
= ocfs2_writepage
,
1976 .write_begin
= ocfs2_write_begin
,
1977 .write_end
= ocfs2_write_end
,
1979 .sync_page
= block_sync_page
,
1980 .direct_IO
= ocfs2_direct_IO
,
1981 .invalidatepage
= ocfs2_invalidatepage
,
1982 .releasepage
= ocfs2_releasepage
,
1983 .migratepage
= buffer_migrate_page
,