x86, mce: fix a race condition about mce_callin and no_way_out
[linux-2.6/verdex.git] / arch / x86 / kernel / cpu / mcheck / mce.c
blob19294b8524cb281301271c7271465c14c5b07753
1 /*
2 * Machine check handler.
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/init.h>
30 #include <linux/kmod.h>
31 #include <linux/poll.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/fs.h>
36 #include <linux/mm.h>
38 #include <asm/processor.h>
39 #include <asm/hw_irq.h>
40 #include <asm/apic.h>
41 #include <asm/idle.h>
42 #include <asm/ipi.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
46 #include "mce-internal.h"
47 #include "mce.h"
49 /* Handle unconfigured int18 (should never happen) */
50 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
52 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
53 smp_processor_id());
56 /* Call the installed machine check handler for this CPU setup. */
57 void (*machine_check_vector)(struct pt_regs *, long error_code) =
58 unexpected_machine_check;
60 int mce_disabled;
62 #ifdef CONFIG_X86_NEW_MCE
64 #define MISC_MCELOG_MINOR 227
66 #define SPINUNIT 100 /* 100ns */
68 atomic_t mce_entry;
70 DEFINE_PER_CPU(unsigned, mce_exception_count);
73 * Tolerant levels:
74 * 0: always panic on uncorrected errors, log corrected errors
75 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
76 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
77 * 3: never panic or SIGBUS, log all errors (for testing only)
79 static int tolerant = 1;
80 static int banks;
81 static u64 *bank;
82 static unsigned long notify_user;
83 static int rip_msr;
84 static int mce_bootlog = -1;
85 static int monarch_timeout = -1;
86 static int mce_panic_timeout;
87 static int mce_dont_log_ce;
88 int mce_cmci_disabled;
89 int mce_ignore_ce;
90 int mce_ser;
92 static char trigger[128];
93 static char *trigger_argv[2] = { trigger, NULL };
95 static unsigned long dont_init_banks;
97 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static int cpu_missing;
102 /* MCA banks polled by the period polling timer for corrected events */
103 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
104 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
107 static inline int skip_bank_init(int i)
109 return i < BITS_PER_LONG && test_bit(i, &dont_init_banks);
112 static DEFINE_PER_CPU(struct work_struct, mce_work);
114 /* Do initial initialization of a struct mce */
115 void mce_setup(struct mce *m)
117 memset(m, 0, sizeof(struct mce));
118 m->cpu = m->extcpu = smp_processor_id();
119 rdtscll(m->tsc);
120 /* We hope get_seconds stays lockless */
121 m->time = get_seconds();
122 m->cpuvendor = boot_cpu_data.x86_vendor;
123 m->cpuid = cpuid_eax(1);
124 #ifdef CONFIG_SMP
125 m->socketid = cpu_data(m->extcpu).phys_proc_id;
126 #endif
127 m->apicid = cpu_data(m->extcpu).initial_apicid;
128 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
131 DEFINE_PER_CPU(struct mce, injectm);
132 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
135 * Lockless MCE logging infrastructure.
136 * This avoids deadlocks on printk locks without having to break locks. Also
137 * separate MCEs from kernel messages to avoid bogus bug reports.
140 static struct mce_log mcelog = {
141 .signature = MCE_LOG_SIGNATURE,
142 .len = MCE_LOG_LEN,
143 .recordlen = sizeof(struct mce),
146 void mce_log(struct mce *mce)
148 unsigned next, entry;
150 mce->finished = 0;
151 wmb();
152 for (;;) {
153 entry = rcu_dereference(mcelog.next);
154 for (;;) {
156 * When the buffer fills up discard new entries.
157 * Assume that the earlier errors are the more
158 * interesting ones:
160 if (entry >= MCE_LOG_LEN) {
161 set_bit(MCE_OVERFLOW,
162 (unsigned long *)&mcelog.flags);
163 return;
165 /* Old left over entry. Skip: */
166 if (mcelog.entry[entry].finished) {
167 entry++;
168 continue;
170 break;
172 smp_rmb();
173 next = entry + 1;
174 if (cmpxchg(&mcelog.next, entry, next) == entry)
175 break;
177 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
178 wmb();
179 mcelog.entry[entry].finished = 1;
180 wmb();
182 mce->finished = 1;
183 set_bit(0, &notify_user);
186 static void print_mce(struct mce *m)
188 printk(KERN_EMERG
189 "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
190 m->extcpu, m->mcgstatus, m->bank, m->status);
191 if (m->ip) {
192 printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
193 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
194 m->cs, m->ip);
195 if (m->cs == __KERNEL_CS)
196 print_symbol("{%s}", m->ip);
197 printk("\n");
199 printk(KERN_EMERG "TSC %llx ", m->tsc);
200 if (m->addr)
201 printk("ADDR %llx ", m->addr);
202 if (m->misc)
203 printk("MISC %llx ", m->misc);
204 printk("\n");
205 printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
206 m->cpuvendor, m->cpuid, m->time, m->socketid,
207 m->apicid);
210 static void print_mce_head(void)
212 printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n");
215 static void print_mce_tail(void)
217 printk(KERN_EMERG "This is not a software problem!\n"
218 KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n");
221 #define PANIC_TIMEOUT 5 /* 5 seconds */
223 static atomic_t mce_paniced;
225 /* Panic in progress. Enable interrupts and wait for final IPI */
226 static void wait_for_panic(void)
228 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
229 preempt_disable();
230 local_irq_enable();
231 while (timeout-- > 0)
232 udelay(1);
233 if (panic_timeout == 0)
234 panic_timeout = mce_panic_timeout;
235 panic("Panicing machine check CPU died");
238 static void mce_panic(char *msg, struct mce *final, char *exp)
240 int i;
243 * Make sure only one CPU runs in machine check panic
245 if (atomic_add_return(1, &mce_paniced) > 1)
246 wait_for_panic();
247 barrier();
249 bust_spinlocks(1);
250 console_verbose();
251 print_mce_head();
252 /* First print corrected ones that are still unlogged */
253 for (i = 0; i < MCE_LOG_LEN; i++) {
254 struct mce *m = &mcelog.entry[i];
255 if (!(m->status & MCI_STATUS_VAL))
256 continue;
257 if (!(m->status & MCI_STATUS_UC))
258 print_mce(m);
260 /* Now print uncorrected but with the final one last */
261 for (i = 0; i < MCE_LOG_LEN; i++) {
262 struct mce *m = &mcelog.entry[i];
263 if (!(m->status & MCI_STATUS_VAL))
264 continue;
265 if (!(m->status & MCI_STATUS_UC))
266 continue;
267 if (!final || memcmp(m, final, sizeof(struct mce)))
268 print_mce(m);
270 if (final)
271 print_mce(final);
272 if (cpu_missing)
273 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
274 print_mce_tail();
275 if (exp)
276 printk(KERN_EMERG "Machine check: %s\n", exp);
277 if (panic_timeout == 0)
278 panic_timeout = mce_panic_timeout;
279 panic(msg);
282 /* Support code for software error injection */
284 static int msr_to_offset(u32 msr)
286 unsigned bank = __get_cpu_var(injectm.bank);
287 if (msr == rip_msr)
288 return offsetof(struct mce, ip);
289 if (msr == MSR_IA32_MC0_STATUS + bank*4)
290 return offsetof(struct mce, status);
291 if (msr == MSR_IA32_MC0_ADDR + bank*4)
292 return offsetof(struct mce, addr);
293 if (msr == MSR_IA32_MC0_MISC + bank*4)
294 return offsetof(struct mce, misc);
295 if (msr == MSR_IA32_MCG_STATUS)
296 return offsetof(struct mce, mcgstatus);
297 return -1;
300 /* MSR access wrappers used for error injection */
301 static u64 mce_rdmsrl(u32 msr)
303 u64 v;
304 if (__get_cpu_var(injectm).finished) {
305 int offset = msr_to_offset(msr);
306 if (offset < 0)
307 return 0;
308 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
310 rdmsrl(msr, v);
311 return v;
314 static void mce_wrmsrl(u32 msr, u64 v)
316 if (__get_cpu_var(injectm).finished) {
317 int offset = msr_to_offset(msr);
318 if (offset >= 0)
319 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
320 return;
322 wrmsrl(msr, v);
326 * Simple lockless ring to communicate PFNs from the exception handler with the
327 * process context work function. This is vastly simplified because there's
328 * only a single reader and a single writer.
330 #define MCE_RING_SIZE 16 /* we use one entry less */
332 struct mce_ring {
333 unsigned short start;
334 unsigned short end;
335 unsigned long ring[MCE_RING_SIZE];
337 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
339 /* Runs with CPU affinity in workqueue */
340 static int mce_ring_empty(void)
342 struct mce_ring *r = &__get_cpu_var(mce_ring);
344 return r->start == r->end;
347 static int mce_ring_get(unsigned long *pfn)
349 struct mce_ring *r;
350 int ret = 0;
352 *pfn = 0;
353 get_cpu();
354 r = &__get_cpu_var(mce_ring);
355 if (r->start == r->end)
356 goto out;
357 *pfn = r->ring[r->start];
358 r->start = (r->start + 1) % MCE_RING_SIZE;
359 ret = 1;
360 out:
361 put_cpu();
362 return ret;
365 /* Always runs in MCE context with preempt off */
366 static int mce_ring_add(unsigned long pfn)
368 struct mce_ring *r = &__get_cpu_var(mce_ring);
369 unsigned next;
371 next = (r->end + 1) % MCE_RING_SIZE;
372 if (next == r->start)
373 return -1;
374 r->ring[r->end] = pfn;
375 wmb();
376 r->end = next;
377 return 0;
380 int mce_available(struct cpuinfo_x86 *c)
382 if (mce_disabled)
383 return 0;
384 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
387 static void mce_schedule_work(void)
389 if (!mce_ring_empty()) {
390 struct work_struct *work = &__get_cpu_var(mce_work);
391 if (!work_pending(work))
392 schedule_work(work);
397 * Get the address of the instruction at the time of the machine check
398 * error.
400 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
403 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
404 m->ip = regs->ip;
405 m->cs = regs->cs;
406 } else {
407 m->ip = 0;
408 m->cs = 0;
410 if (rip_msr)
411 m->ip = mce_rdmsrl(rip_msr);
414 #ifdef CONFIG_X86_LOCAL_APIC
416 * Called after interrupts have been reenabled again
417 * when a MCE happened during an interrupts off region
418 * in the kernel.
420 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
422 ack_APIC_irq();
423 exit_idle();
424 irq_enter();
425 mce_notify_irq();
426 mce_schedule_work();
427 irq_exit();
429 #endif
431 static void mce_report_event(struct pt_regs *regs)
433 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
434 mce_notify_irq();
436 * Triggering the work queue here is just an insurance
437 * policy in case the syscall exit notify handler
438 * doesn't run soon enough or ends up running on the
439 * wrong CPU (can happen when audit sleeps)
441 mce_schedule_work();
442 return;
445 #ifdef CONFIG_X86_LOCAL_APIC
447 * Without APIC do not notify. The event will be picked
448 * up eventually.
450 if (!cpu_has_apic)
451 return;
454 * When interrupts are disabled we cannot use
455 * kernel services safely. Trigger an self interrupt
456 * through the APIC to instead do the notification
457 * after interrupts are reenabled again.
459 apic->send_IPI_self(MCE_SELF_VECTOR);
462 * Wait for idle afterwards again so that we don't leave the
463 * APIC in a non idle state because the normal APIC writes
464 * cannot exclude us.
466 apic_wait_icr_idle();
467 #endif
470 DEFINE_PER_CPU(unsigned, mce_poll_count);
473 * Poll for corrected events or events that happened before reset.
474 * Those are just logged through /dev/mcelog.
476 * This is executed in standard interrupt context.
478 * Note: spec recommends to panic for fatal unsignalled
479 * errors here. However this would be quite problematic --
480 * we would need to reimplement the Monarch handling and
481 * it would mess up the exclusion between exception handler
482 * and poll hander -- * so we skip this for now.
483 * These cases should not happen anyways, or only when the CPU
484 * is already totally * confused. In this case it's likely it will
485 * not fully execute the machine check handler either.
487 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
489 struct mce m;
490 int i;
492 __get_cpu_var(mce_poll_count)++;
494 mce_setup(&m);
496 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
497 for (i = 0; i < banks; i++) {
498 if (!bank[i] || !test_bit(i, *b))
499 continue;
501 m.misc = 0;
502 m.addr = 0;
503 m.bank = i;
504 m.tsc = 0;
506 barrier();
507 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
508 if (!(m.status & MCI_STATUS_VAL))
509 continue;
512 * Uncorrected or signalled events are handled by the exception
513 * handler when it is enabled, so don't process those here.
515 * TBD do the same check for MCI_STATUS_EN here?
517 if (!(flags & MCP_UC) &&
518 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
519 continue;
521 if (m.status & MCI_STATUS_MISCV)
522 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
523 if (m.status & MCI_STATUS_ADDRV)
524 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
526 if (!(flags & MCP_TIMESTAMP))
527 m.tsc = 0;
529 * Don't get the IP here because it's unlikely to
530 * have anything to do with the actual error location.
532 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
533 mce_log(&m);
534 add_taint(TAINT_MACHINE_CHECK);
538 * Clear state for this bank.
540 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
544 * Don't clear MCG_STATUS here because it's only defined for
545 * exceptions.
548 sync_core();
550 EXPORT_SYMBOL_GPL(machine_check_poll);
553 * Do a quick check if any of the events requires a panic.
554 * This decides if we keep the events around or clear them.
556 static int mce_no_way_out(struct mce *m, char **msg)
558 int i;
560 for (i = 0; i < banks; i++) {
561 m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
562 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
563 return 1;
565 return 0;
569 * Variable to establish order between CPUs while scanning.
570 * Each CPU spins initially until executing is equal its number.
572 static atomic_t mce_executing;
575 * Defines order of CPUs on entry. First CPU becomes Monarch.
577 static atomic_t mce_callin;
580 * Check if a timeout waiting for other CPUs happened.
582 static int mce_timed_out(u64 *t)
585 * The others already did panic for some reason.
586 * Bail out like in a timeout.
587 * rmb() to tell the compiler that system_state
588 * might have been modified by someone else.
590 rmb();
591 if (atomic_read(&mce_paniced))
592 wait_for_panic();
593 if (!monarch_timeout)
594 goto out;
595 if ((s64)*t < SPINUNIT) {
596 /* CHECKME: Make panic default for 1 too? */
597 if (tolerant < 1)
598 mce_panic("Timeout synchronizing machine check over CPUs",
599 NULL, NULL);
600 cpu_missing = 1;
601 return 1;
603 *t -= SPINUNIT;
604 out:
605 touch_nmi_watchdog();
606 return 0;
610 * The Monarch's reign. The Monarch is the CPU who entered
611 * the machine check handler first. It waits for the others to
612 * raise the exception too and then grades them. When any
613 * error is fatal panic. Only then let the others continue.
615 * The other CPUs entering the MCE handler will be controlled by the
616 * Monarch. They are called Subjects.
618 * This way we prevent any potential data corruption in a unrecoverable case
619 * and also makes sure always all CPU's errors are examined.
621 * Also this detects the case of an machine check event coming from outer
622 * space (not detected by any CPUs) In this case some external agent wants
623 * us to shut down, so panic too.
625 * The other CPUs might still decide to panic if the handler happens
626 * in a unrecoverable place, but in this case the system is in a semi-stable
627 * state and won't corrupt anything by itself. It's ok to let the others
628 * continue for a bit first.
630 * All the spin loops have timeouts; when a timeout happens a CPU
631 * typically elects itself to be Monarch.
633 static void mce_reign(void)
635 int cpu;
636 struct mce *m = NULL;
637 int global_worst = 0;
638 char *msg = NULL;
639 char *nmsg = NULL;
642 * This CPU is the Monarch and the other CPUs have run
643 * through their handlers.
644 * Grade the severity of the errors of all the CPUs.
646 for_each_possible_cpu(cpu) {
647 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
648 &nmsg);
649 if (severity > global_worst) {
650 msg = nmsg;
651 global_worst = severity;
652 m = &per_cpu(mces_seen, cpu);
657 * Cannot recover? Panic here then.
658 * This dumps all the mces in the log buffer and stops the
659 * other CPUs.
661 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
662 mce_panic("Fatal Machine check", m, msg);
665 * For UC somewhere we let the CPU who detects it handle it.
666 * Also must let continue the others, otherwise the handling
667 * CPU could deadlock on a lock.
671 * No machine check event found. Must be some external
672 * source or one CPU is hung. Panic.
674 if (!m && tolerant < 3)
675 mce_panic("Machine check from unknown source", NULL, NULL);
678 * Now clear all the mces_seen so that they don't reappear on
679 * the next mce.
681 for_each_possible_cpu(cpu)
682 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
685 static atomic_t global_nwo;
688 * Start of Monarch synchronization. This waits until all CPUs have
689 * entered the exception handler and then determines if any of them
690 * saw a fatal event that requires panic. Then it executes them
691 * in the entry order.
692 * TBD double check parallel CPU hotunplug
694 static int mce_start(int no_way_out, int *order)
696 int nwo;
697 int cpus = num_online_cpus();
698 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
700 if (!timeout) {
701 *order = -1;
702 return no_way_out;
705 atomic_add(no_way_out, &global_nwo);
707 * global_nwo should be updated before mce_callin
709 smp_wmb();
710 *order = atomic_add_return(1, &mce_callin);
713 * Wait for everyone.
715 while (atomic_read(&mce_callin) != cpus) {
716 if (mce_timed_out(&timeout)) {
717 atomic_set(&global_nwo, 0);
718 *order = -1;
719 return no_way_out;
721 ndelay(SPINUNIT);
725 * mce_callin should be read before global_nwo
727 smp_rmb();
729 * Cache the global no_way_out state.
731 nwo = atomic_read(&global_nwo);
734 * Monarch starts executing now, the others wait.
736 if (*order == 1) {
737 atomic_set(&mce_executing, 1);
738 return nwo;
742 * Now start the scanning loop one by one
743 * in the original callin order.
744 * This way when there are any shared banks it will
745 * be only seen by one CPU before cleared, avoiding duplicates.
747 while (atomic_read(&mce_executing) < *order) {
748 if (mce_timed_out(&timeout)) {
749 atomic_set(&global_nwo, 0);
750 *order = -1;
751 return no_way_out;
753 ndelay(SPINUNIT);
755 return nwo;
759 * Synchronize between CPUs after main scanning loop.
760 * This invokes the bulk of the Monarch processing.
762 static int mce_end(int order)
764 int ret = -1;
765 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
767 if (!timeout)
768 goto reset;
769 if (order < 0)
770 goto reset;
773 * Allow others to run.
775 atomic_inc(&mce_executing);
777 if (order == 1) {
778 /* CHECKME: Can this race with a parallel hotplug? */
779 int cpus = num_online_cpus();
782 * Monarch: Wait for everyone to go through their scanning
783 * loops.
785 while (atomic_read(&mce_executing) <= cpus) {
786 if (mce_timed_out(&timeout))
787 goto reset;
788 ndelay(SPINUNIT);
791 mce_reign();
792 barrier();
793 ret = 0;
794 } else {
796 * Subject: Wait for Monarch to finish.
798 while (atomic_read(&mce_executing) != 0) {
799 if (mce_timed_out(&timeout))
800 goto reset;
801 ndelay(SPINUNIT);
805 * Don't reset anything. That's done by the Monarch.
807 return 0;
811 * Reset all global state.
813 reset:
814 atomic_set(&global_nwo, 0);
815 atomic_set(&mce_callin, 0);
816 barrier();
819 * Let others run again.
821 atomic_set(&mce_executing, 0);
822 return ret;
826 * Check if the address reported by the CPU is in a format we can parse.
827 * It would be possible to add code for most other cases, but all would
828 * be somewhat complicated (e.g. segment offset would require an instruction
829 * parser). So only support physical addresses upto page granuality for now.
831 static int mce_usable_address(struct mce *m)
833 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
834 return 0;
835 if ((m->misc & 0x3f) > PAGE_SHIFT)
836 return 0;
837 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
838 return 0;
839 return 1;
842 static void mce_clear_state(unsigned long *toclear)
844 int i;
846 for (i = 0; i < banks; i++) {
847 if (test_bit(i, toclear))
848 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
853 * The actual machine check handler. This only handles real
854 * exceptions when something got corrupted coming in through int 18.
856 * This is executed in NMI context not subject to normal locking rules. This
857 * implies that most kernel services cannot be safely used. Don't even
858 * think about putting a printk in there!
860 * On Intel systems this is entered on all CPUs in parallel through
861 * MCE broadcast. However some CPUs might be broken beyond repair,
862 * so be always careful when synchronizing with others.
864 void do_machine_check(struct pt_regs *regs, long error_code)
866 struct mce m, *final;
867 int i;
868 int worst = 0;
869 int severity;
871 * Establish sequential order between the CPUs entering the machine
872 * check handler.
874 int order = -1;
877 * If no_way_out gets set, there is no safe way to recover from this
878 * MCE. If tolerant is cranked up, we'll try anyway.
880 int no_way_out = 0;
882 * If kill_it gets set, there might be a way to recover from this
883 * error.
885 int kill_it = 0;
886 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
887 char *msg = "Unknown";
889 atomic_inc(&mce_entry);
891 __get_cpu_var(mce_exception_count)++;
893 if (notify_die(DIE_NMI, "machine check", regs, error_code,
894 18, SIGKILL) == NOTIFY_STOP)
895 goto out;
896 if (!banks)
897 goto out;
899 mce_setup(&m);
901 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
902 no_way_out = mce_no_way_out(&m, &msg);
904 final = &__get_cpu_var(mces_seen);
905 *final = m;
907 barrier();
910 * When no restart IP must always kill or panic.
912 if (!(m.mcgstatus & MCG_STATUS_RIPV))
913 kill_it = 1;
916 * Go through all the banks in exclusion of the other CPUs.
917 * This way we don't report duplicated events on shared banks
918 * because the first one to see it will clear it.
920 no_way_out = mce_start(no_way_out, &order);
921 for (i = 0; i < banks; i++) {
922 __clear_bit(i, toclear);
923 if (!bank[i])
924 continue;
926 m.misc = 0;
927 m.addr = 0;
928 m.bank = i;
930 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
931 if ((m.status & MCI_STATUS_VAL) == 0)
932 continue;
935 * Non uncorrected or non signaled errors are handled by
936 * machine_check_poll. Leave them alone, unless this panics.
938 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
939 !no_way_out)
940 continue;
943 * Set taint even when machine check was not enabled.
945 add_taint(TAINT_MACHINE_CHECK);
947 severity = mce_severity(&m, tolerant, NULL);
950 * When machine check was for corrected handler don't touch,
951 * unless we're panicing.
953 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
954 continue;
955 __set_bit(i, toclear);
956 if (severity == MCE_NO_SEVERITY) {
958 * Machine check event was not enabled. Clear, but
959 * ignore.
961 continue;
965 * Kill on action required.
967 if (severity == MCE_AR_SEVERITY)
968 kill_it = 1;
970 if (m.status & MCI_STATUS_MISCV)
971 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
972 if (m.status & MCI_STATUS_ADDRV)
973 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
976 * Action optional error. Queue address for later processing.
977 * When the ring overflows we just ignore the AO error.
978 * RED-PEN add some logging mechanism when
979 * usable_address or mce_add_ring fails.
980 * RED-PEN don't ignore overflow for tolerant == 0
982 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
983 mce_ring_add(m.addr >> PAGE_SHIFT);
985 mce_get_rip(&m, regs);
986 mce_log(&m);
988 if (severity > worst) {
989 *final = m;
990 worst = severity;
994 if (!no_way_out)
995 mce_clear_state(toclear);
998 * Do most of the synchronization with other CPUs.
999 * When there's any problem use only local no_way_out state.
1001 if (mce_end(order) < 0)
1002 no_way_out = worst >= MCE_PANIC_SEVERITY;
1005 * If we have decided that we just CAN'T continue, and the user
1006 * has not set tolerant to an insane level, give up and die.
1008 * This is mainly used in the case when the system doesn't
1009 * support MCE broadcasting or it has been disabled.
1011 if (no_way_out && tolerant < 3)
1012 mce_panic("Fatal machine check on current CPU", final, msg);
1015 * If the error seems to be unrecoverable, something should be
1016 * done. Try to kill as little as possible. If we can kill just
1017 * one task, do that. If the user has set the tolerance very
1018 * high, don't try to do anything at all.
1021 if (kill_it && tolerant < 3)
1022 force_sig(SIGBUS, current);
1024 /* notify userspace ASAP */
1025 set_thread_flag(TIF_MCE_NOTIFY);
1027 if (worst > 0)
1028 mce_report_event(regs);
1029 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1030 out:
1031 atomic_dec(&mce_entry);
1032 sync_core();
1034 EXPORT_SYMBOL_GPL(do_machine_check);
1036 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1037 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1039 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1043 * Called after mce notification in process context. This code
1044 * is allowed to sleep. Call the high level VM handler to process
1045 * any corrupted pages.
1046 * Assume that the work queue code only calls this one at a time
1047 * per CPU.
1048 * Note we don't disable preemption, so this code might run on the wrong
1049 * CPU. In this case the event is picked up by the scheduled work queue.
1050 * This is merely a fast path to expedite processing in some common
1051 * cases.
1053 void mce_notify_process(void)
1055 unsigned long pfn;
1056 mce_notify_irq();
1057 while (mce_ring_get(&pfn))
1058 memory_failure(pfn, MCE_VECTOR);
1061 static void mce_process_work(struct work_struct *dummy)
1063 mce_notify_process();
1066 #ifdef CONFIG_X86_MCE_INTEL
1067 /***
1068 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1069 * @cpu: The CPU on which the event occurred.
1070 * @status: Event status information
1072 * This function should be called by the thermal interrupt after the
1073 * event has been processed and the decision was made to log the event
1074 * further.
1076 * The status parameter will be saved to the 'status' field of 'struct mce'
1077 * and historically has been the register value of the
1078 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1080 void mce_log_therm_throt_event(__u64 status)
1082 struct mce m;
1084 mce_setup(&m);
1085 m.bank = MCE_THERMAL_BANK;
1086 m.status = status;
1087 mce_log(&m);
1089 #endif /* CONFIG_X86_MCE_INTEL */
1092 * Periodic polling timer for "silent" machine check errors. If the
1093 * poller finds an MCE, poll 2x faster. When the poller finds no more
1094 * errors, poll 2x slower (up to check_interval seconds).
1096 static int check_interval = 5 * 60; /* 5 minutes */
1098 static DEFINE_PER_CPU(int, next_interval); /* in jiffies */
1099 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1101 static void mcheck_timer(unsigned long data)
1103 struct timer_list *t = &per_cpu(mce_timer, data);
1104 int *n;
1106 WARN_ON(smp_processor_id() != data);
1108 if (mce_available(&current_cpu_data)) {
1109 machine_check_poll(MCP_TIMESTAMP,
1110 &__get_cpu_var(mce_poll_banks));
1114 * Alert userspace if needed. If we logged an MCE, reduce the
1115 * polling interval, otherwise increase the polling interval.
1117 n = &__get_cpu_var(next_interval);
1118 if (mce_notify_irq())
1119 *n = max(*n/2, HZ/100);
1120 else
1121 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1123 t->expires = jiffies + *n;
1124 add_timer(t);
1127 static void mce_do_trigger(struct work_struct *work)
1129 call_usermodehelper(trigger, trigger_argv, NULL, UMH_NO_WAIT);
1132 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1135 * Notify the user(s) about new machine check events.
1136 * Can be called from interrupt context, but not from machine check/NMI
1137 * context.
1139 int mce_notify_irq(void)
1141 /* Not more than two messages every minute */
1142 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1144 clear_thread_flag(TIF_MCE_NOTIFY);
1146 if (test_and_clear_bit(0, &notify_user)) {
1147 wake_up_interruptible(&mce_wait);
1150 * There is no risk of missing notifications because
1151 * work_pending is always cleared before the function is
1152 * executed.
1154 if (trigger[0] && !work_pending(&mce_trigger_work))
1155 schedule_work(&mce_trigger_work);
1157 if (__ratelimit(&ratelimit))
1158 printk(KERN_INFO "Machine check events logged\n");
1160 return 1;
1162 return 0;
1164 EXPORT_SYMBOL_GPL(mce_notify_irq);
1167 * Initialize Machine Checks for a CPU.
1169 static int mce_cap_init(void)
1171 unsigned b;
1172 u64 cap;
1174 rdmsrl(MSR_IA32_MCG_CAP, cap);
1176 b = cap & MCG_BANKCNT_MASK;
1177 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1179 if (b > MAX_NR_BANKS) {
1180 printk(KERN_WARNING
1181 "MCE: Using only %u machine check banks out of %u\n",
1182 MAX_NR_BANKS, b);
1183 b = MAX_NR_BANKS;
1186 /* Don't support asymmetric configurations today */
1187 WARN_ON(banks != 0 && b != banks);
1188 banks = b;
1189 if (!bank) {
1190 bank = kmalloc(banks * sizeof(u64), GFP_KERNEL);
1191 if (!bank)
1192 return -ENOMEM;
1193 memset(bank, 0xff, banks * sizeof(u64));
1196 /* Use accurate RIP reporting if available. */
1197 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1198 rip_msr = MSR_IA32_MCG_EIP;
1200 if (cap & MCG_SER_P)
1201 mce_ser = 1;
1203 return 0;
1206 static void mce_init(void)
1208 mce_banks_t all_banks;
1209 u64 cap;
1210 int i;
1213 * Log the machine checks left over from the previous reset.
1215 bitmap_fill(all_banks, MAX_NR_BANKS);
1216 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1218 set_in_cr4(X86_CR4_MCE);
1220 rdmsrl(MSR_IA32_MCG_CAP, cap);
1221 if (cap & MCG_CTL_P)
1222 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1224 for (i = 0; i < banks; i++) {
1225 if (skip_bank_init(i))
1226 continue;
1227 wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]);
1228 wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
1232 /* Add per CPU specific workarounds here */
1233 static void mce_cpu_quirks(struct cpuinfo_x86 *c)
1235 /* This should be disabled by the BIOS, but isn't always */
1236 if (c->x86_vendor == X86_VENDOR_AMD) {
1237 if (c->x86 == 15 && banks > 4) {
1239 * disable GART TBL walk error reporting, which
1240 * trips off incorrectly with the IOMMU & 3ware
1241 * & Cerberus:
1243 clear_bit(10, (unsigned long *)&bank[4]);
1245 if (c->x86 <= 17 && mce_bootlog < 0) {
1247 * Lots of broken BIOS around that don't clear them
1248 * by default and leave crap in there. Don't log:
1250 mce_bootlog = 0;
1253 * Various K7s with broken bank 0 around. Always disable
1254 * by default.
1256 if (c->x86 == 6)
1257 bank[0] = 0;
1260 if (c->x86_vendor == X86_VENDOR_INTEL) {
1262 * SDM documents that on family 6 bank 0 should not be written
1263 * because it aliases to another special BIOS controlled
1264 * register.
1265 * But it's not aliased anymore on model 0x1a+
1266 * Don't ignore bank 0 completely because there could be a
1267 * valid event later, merely don't write CTL0.
1270 if (c->x86 == 6 && c->x86_model < 0x1A)
1271 __set_bit(0, &dont_init_banks);
1274 * All newer Intel systems support MCE broadcasting. Enable
1275 * synchronization with a one second timeout.
1277 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1278 monarch_timeout < 0)
1279 monarch_timeout = USEC_PER_SEC;
1281 if (monarch_timeout < 0)
1282 monarch_timeout = 0;
1283 if (mce_bootlog != 0)
1284 mce_panic_timeout = 30;
1287 static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
1289 if (c->x86 != 5)
1290 return;
1291 switch (c->x86_vendor) {
1292 case X86_VENDOR_INTEL:
1293 if (mce_p5_enabled())
1294 intel_p5_mcheck_init(c);
1295 break;
1296 case X86_VENDOR_CENTAUR:
1297 winchip_mcheck_init(c);
1298 break;
1302 static void mce_cpu_features(struct cpuinfo_x86 *c)
1304 switch (c->x86_vendor) {
1305 case X86_VENDOR_INTEL:
1306 mce_intel_feature_init(c);
1307 break;
1308 case X86_VENDOR_AMD:
1309 mce_amd_feature_init(c);
1310 break;
1311 default:
1312 break;
1316 static void mce_init_timer(void)
1318 struct timer_list *t = &__get_cpu_var(mce_timer);
1319 int *n = &__get_cpu_var(next_interval);
1321 if (mce_ignore_ce)
1322 return;
1324 *n = check_interval * HZ;
1325 if (!*n)
1326 return;
1327 setup_timer(t, mcheck_timer, smp_processor_id());
1328 t->expires = round_jiffies(jiffies + *n);
1329 add_timer(t);
1333 * Called for each booted CPU to set up machine checks.
1334 * Must be called with preempt off:
1336 void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
1338 if (mce_disabled)
1339 return;
1341 mce_ancient_init(c);
1343 if (!mce_available(c))
1344 return;
1346 if (mce_cap_init() < 0) {
1347 mce_disabled = 1;
1348 return;
1350 mce_cpu_quirks(c);
1352 machine_check_vector = do_machine_check;
1354 mce_init();
1355 mce_cpu_features(c);
1356 mce_init_timer();
1357 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1361 * Character device to read and clear the MCE log.
1364 static DEFINE_SPINLOCK(mce_state_lock);
1365 static int open_count; /* #times opened */
1366 static int open_exclu; /* already open exclusive? */
1368 static int mce_open(struct inode *inode, struct file *file)
1370 spin_lock(&mce_state_lock);
1372 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1373 spin_unlock(&mce_state_lock);
1375 return -EBUSY;
1378 if (file->f_flags & O_EXCL)
1379 open_exclu = 1;
1380 open_count++;
1382 spin_unlock(&mce_state_lock);
1384 return nonseekable_open(inode, file);
1387 static int mce_release(struct inode *inode, struct file *file)
1389 spin_lock(&mce_state_lock);
1391 open_count--;
1392 open_exclu = 0;
1394 spin_unlock(&mce_state_lock);
1396 return 0;
1399 static void collect_tscs(void *data)
1401 unsigned long *cpu_tsc = (unsigned long *)data;
1403 rdtscll(cpu_tsc[smp_processor_id()]);
1406 static DEFINE_MUTEX(mce_read_mutex);
1408 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1409 loff_t *off)
1411 char __user *buf = ubuf;
1412 unsigned long *cpu_tsc;
1413 unsigned prev, next;
1414 int i, err;
1416 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1417 if (!cpu_tsc)
1418 return -ENOMEM;
1420 mutex_lock(&mce_read_mutex);
1421 next = rcu_dereference(mcelog.next);
1423 /* Only supports full reads right now */
1424 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1425 mutex_unlock(&mce_read_mutex);
1426 kfree(cpu_tsc);
1428 return -EINVAL;
1431 err = 0;
1432 prev = 0;
1433 do {
1434 for (i = prev; i < next; i++) {
1435 unsigned long start = jiffies;
1437 while (!mcelog.entry[i].finished) {
1438 if (time_after_eq(jiffies, start + 2)) {
1439 memset(mcelog.entry + i, 0,
1440 sizeof(struct mce));
1441 goto timeout;
1443 cpu_relax();
1445 smp_rmb();
1446 err |= copy_to_user(buf, mcelog.entry + i,
1447 sizeof(struct mce));
1448 buf += sizeof(struct mce);
1449 timeout:
1453 memset(mcelog.entry + prev, 0,
1454 (next - prev) * sizeof(struct mce));
1455 prev = next;
1456 next = cmpxchg(&mcelog.next, prev, 0);
1457 } while (next != prev);
1459 synchronize_sched();
1462 * Collect entries that were still getting written before the
1463 * synchronize.
1465 on_each_cpu(collect_tscs, cpu_tsc, 1);
1467 for (i = next; i < MCE_LOG_LEN; i++) {
1468 if (mcelog.entry[i].finished &&
1469 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1470 err |= copy_to_user(buf, mcelog.entry+i,
1471 sizeof(struct mce));
1472 smp_rmb();
1473 buf += sizeof(struct mce);
1474 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1477 mutex_unlock(&mce_read_mutex);
1478 kfree(cpu_tsc);
1480 return err ? -EFAULT : buf - ubuf;
1483 static unsigned int mce_poll(struct file *file, poll_table *wait)
1485 poll_wait(file, &mce_wait, wait);
1486 if (rcu_dereference(mcelog.next))
1487 return POLLIN | POLLRDNORM;
1488 return 0;
1491 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1493 int __user *p = (int __user *)arg;
1495 if (!capable(CAP_SYS_ADMIN))
1496 return -EPERM;
1498 switch (cmd) {
1499 case MCE_GET_RECORD_LEN:
1500 return put_user(sizeof(struct mce), p);
1501 case MCE_GET_LOG_LEN:
1502 return put_user(MCE_LOG_LEN, p);
1503 case MCE_GETCLEAR_FLAGS: {
1504 unsigned flags;
1506 do {
1507 flags = mcelog.flags;
1508 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1510 return put_user(flags, p);
1512 default:
1513 return -ENOTTY;
1517 /* Modified in mce-inject.c, so not static or const */
1518 struct file_operations mce_chrdev_ops = {
1519 .open = mce_open,
1520 .release = mce_release,
1521 .read = mce_read,
1522 .poll = mce_poll,
1523 .unlocked_ioctl = mce_ioctl,
1525 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1527 static struct miscdevice mce_log_device = {
1528 MISC_MCELOG_MINOR,
1529 "mcelog",
1530 &mce_chrdev_ops,
1534 * mce=off Disables machine check
1535 * mce=no_cmci Disables CMCI
1536 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1537 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1538 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1539 * monarchtimeout is how long to wait for other CPUs on machine
1540 * check, or 0 to not wait
1541 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1542 * mce=nobootlog Don't log MCEs from before booting.
1544 static int __init mcheck_enable(char *str)
1546 if (*str == 0)
1547 enable_p5_mce();
1548 if (*str == '=')
1549 str++;
1550 if (!strcmp(str, "off"))
1551 mce_disabled = 1;
1552 else if (!strcmp(str, "no_cmci"))
1553 mce_cmci_disabled = 1;
1554 else if (!strcmp(str, "dont_log_ce"))
1555 mce_dont_log_ce = 1;
1556 else if (!strcmp(str, "ignore_ce"))
1557 mce_ignore_ce = 1;
1558 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1559 mce_bootlog = (str[0] == 'b');
1560 else if (isdigit(str[0])) {
1561 get_option(&str, &tolerant);
1562 if (*str == ',') {
1563 ++str;
1564 get_option(&str, &monarch_timeout);
1566 } else {
1567 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1568 str);
1569 return 0;
1571 return 1;
1573 __setup("mce", mcheck_enable);
1576 * Sysfs support
1580 * Disable machine checks on suspend and shutdown. We can't really handle
1581 * them later.
1583 static int mce_disable(void)
1585 int i;
1587 for (i = 0; i < banks; i++) {
1588 if (!skip_bank_init(i))
1589 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1591 return 0;
1594 static int mce_suspend(struct sys_device *dev, pm_message_t state)
1596 return mce_disable();
1599 static int mce_shutdown(struct sys_device *dev)
1601 return mce_disable();
1605 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1606 * Only one CPU is active at this time, the others get re-added later using
1607 * CPU hotplug:
1609 static int mce_resume(struct sys_device *dev)
1611 mce_init();
1612 mce_cpu_features(&current_cpu_data);
1614 return 0;
1617 static void mce_cpu_restart(void *data)
1619 del_timer_sync(&__get_cpu_var(mce_timer));
1620 if (mce_available(&current_cpu_data))
1621 mce_init();
1622 mce_init_timer();
1625 /* Reinit MCEs after user configuration changes */
1626 static void mce_restart(void)
1628 on_each_cpu(mce_cpu_restart, NULL, 1);
1631 static struct sysdev_class mce_sysclass = {
1632 .suspend = mce_suspend,
1633 .shutdown = mce_shutdown,
1634 .resume = mce_resume,
1635 .name = "machinecheck",
1638 DEFINE_PER_CPU(struct sys_device, mce_dev);
1640 __cpuinitdata
1641 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1643 static struct sysdev_attribute *bank_attrs;
1645 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1646 char *buf)
1648 u64 b = bank[attr - bank_attrs];
1650 return sprintf(buf, "%llx\n", b);
1653 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1654 const char *buf, size_t size)
1656 u64 new;
1658 if (strict_strtoull(buf, 0, &new) < 0)
1659 return -EINVAL;
1661 bank[attr - bank_attrs] = new;
1662 mce_restart();
1664 return size;
1667 static ssize_t
1668 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1670 strcpy(buf, trigger);
1671 strcat(buf, "\n");
1672 return strlen(trigger) + 1;
1675 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1676 const char *buf, size_t siz)
1678 char *p;
1679 int len;
1681 strncpy(trigger, buf, sizeof(trigger));
1682 trigger[sizeof(trigger)-1] = 0;
1683 len = strlen(trigger);
1684 p = strchr(trigger, '\n');
1686 if (*p)
1687 *p = 0;
1689 return len;
1692 static ssize_t store_int_with_restart(struct sys_device *s,
1693 struct sysdev_attribute *attr,
1694 const char *buf, size_t size)
1696 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1697 mce_restart();
1698 return ret;
1701 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1702 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1703 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1705 static struct sysdev_ext_attribute attr_check_interval = {
1706 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1707 store_int_with_restart),
1708 &check_interval
1711 static struct sysdev_attribute *mce_attrs[] = {
1712 &attr_tolerant.attr, &attr_check_interval.attr, &attr_trigger,
1713 &attr_monarch_timeout.attr,
1714 NULL
1717 static cpumask_var_t mce_dev_initialized;
1719 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1720 static __cpuinit int mce_create_device(unsigned int cpu)
1722 int err;
1723 int i;
1725 if (!mce_available(&boot_cpu_data))
1726 return -EIO;
1728 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1729 per_cpu(mce_dev, cpu).id = cpu;
1730 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1732 err = sysdev_register(&per_cpu(mce_dev, cpu));
1733 if (err)
1734 return err;
1736 for (i = 0; mce_attrs[i]; i++) {
1737 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1738 if (err)
1739 goto error;
1741 for (i = 0; i < banks; i++) {
1742 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1743 &bank_attrs[i]);
1744 if (err)
1745 goto error2;
1747 cpumask_set_cpu(cpu, mce_dev_initialized);
1749 return 0;
1750 error2:
1751 while (--i >= 0)
1752 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1753 error:
1754 while (--i >= 0)
1755 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1757 sysdev_unregister(&per_cpu(mce_dev, cpu));
1759 return err;
1762 static __cpuinit void mce_remove_device(unsigned int cpu)
1764 int i;
1766 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1767 return;
1769 for (i = 0; mce_attrs[i]; i++)
1770 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1772 for (i = 0; i < banks; i++)
1773 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1775 sysdev_unregister(&per_cpu(mce_dev, cpu));
1776 cpumask_clear_cpu(cpu, mce_dev_initialized);
1779 /* Make sure there are no machine checks on offlined CPUs. */
1780 static void mce_disable_cpu(void *h)
1782 unsigned long action = *(unsigned long *)h;
1783 int i;
1785 if (!mce_available(&current_cpu_data))
1786 return;
1787 if (!(action & CPU_TASKS_FROZEN))
1788 cmci_clear();
1789 for (i = 0; i < banks; i++) {
1790 if (!skip_bank_init(i))
1791 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1795 static void mce_reenable_cpu(void *h)
1797 unsigned long action = *(unsigned long *)h;
1798 int i;
1800 if (!mce_available(&current_cpu_data))
1801 return;
1803 if (!(action & CPU_TASKS_FROZEN))
1804 cmci_reenable();
1805 for (i = 0; i < banks; i++) {
1806 if (!skip_bank_init(i))
1807 wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]);
1811 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
1812 static int __cpuinit
1813 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1815 unsigned int cpu = (unsigned long)hcpu;
1816 struct timer_list *t = &per_cpu(mce_timer, cpu);
1818 switch (action) {
1819 case CPU_ONLINE:
1820 case CPU_ONLINE_FROZEN:
1821 mce_create_device(cpu);
1822 if (threshold_cpu_callback)
1823 threshold_cpu_callback(action, cpu);
1824 break;
1825 case CPU_DEAD:
1826 case CPU_DEAD_FROZEN:
1827 if (threshold_cpu_callback)
1828 threshold_cpu_callback(action, cpu);
1829 mce_remove_device(cpu);
1830 break;
1831 case CPU_DOWN_PREPARE:
1832 case CPU_DOWN_PREPARE_FROZEN:
1833 del_timer_sync(t);
1834 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
1835 break;
1836 case CPU_DOWN_FAILED:
1837 case CPU_DOWN_FAILED_FROZEN:
1838 t->expires = round_jiffies(jiffies +
1839 __get_cpu_var(next_interval));
1840 add_timer_on(t, cpu);
1841 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
1842 break;
1843 case CPU_POST_DEAD:
1844 /* intentionally ignoring frozen here */
1845 cmci_rediscover(cpu);
1846 break;
1848 return NOTIFY_OK;
1851 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
1852 .notifier_call = mce_cpu_callback,
1855 static __init int mce_init_banks(void)
1857 int i;
1859 bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks,
1860 GFP_KERNEL);
1861 if (!bank_attrs)
1862 return -ENOMEM;
1864 for (i = 0; i < banks; i++) {
1865 struct sysdev_attribute *a = &bank_attrs[i];
1867 a->attr.name = kasprintf(GFP_KERNEL, "bank%d", i);
1868 if (!a->attr.name)
1869 goto nomem;
1871 a->attr.mode = 0644;
1872 a->show = show_bank;
1873 a->store = set_bank;
1875 return 0;
1877 nomem:
1878 while (--i >= 0)
1879 kfree(bank_attrs[i].attr.name);
1880 kfree(bank_attrs);
1881 bank_attrs = NULL;
1883 return -ENOMEM;
1886 static __init int mce_init_device(void)
1888 int err;
1889 int i = 0;
1891 if (!mce_available(&boot_cpu_data))
1892 return -EIO;
1894 alloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
1896 err = mce_init_banks();
1897 if (err)
1898 return err;
1900 err = sysdev_class_register(&mce_sysclass);
1901 if (err)
1902 return err;
1904 for_each_online_cpu(i) {
1905 err = mce_create_device(i);
1906 if (err)
1907 return err;
1910 register_hotcpu_notifier(&mce_cpu_notifier);
1911 misc_register(&mce_log_device);
1913 return err;
1916 device_initcall(mce_init_device);
1918 #else /* CONFIG_X86_OLD_MCE: */
1920 int nr_mce_banks;
1921 EXPORT_SYMBOL_GPL(nr_mce_banks); /* non-fatal.o */
1923 /* This has to be run for each processor */
1924 void mcheck_init(struct cpuinfo_x86 *c)
1926 if (mce_disabled == 1)
1927 return;
1929 switch (c->x86_vendor) {
1930 case X86_VENDOR_AMD:
1931 amd_mcheck_init(c);
1932 break;
1934 case X86_VENDOR_INTEL:
1935 if (c->x86 == 5)
1936 intel_p5_mcheck_init(c);
1937 if (c->x86 == 6)
1938 intel_p6_mcheck_init(c);
1939 if (c->x86 == 15)
1940 intel_p4_mcheck_init(c);
1941 break;
1943 case X86_VENDOR_CENTAUR:
1944 if (c->x86 == 5)
1945 winchip_mcheck_init(c);
1946 break;
1948 default:
1949 break;
1951 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks);
1954 static int __init mcheck_enable(char *str)
1956 mce_disabled = -1;
1957 return 1;
1960 __setup("mce", mcheck_enable);
1962 #endif /* CONFIG_X86_OLD_MCE */
1965 * Old style boot options parsing. Only for compatibility.
1967 static int __init mcheck_disable(char *str)
1969 mce_disabled = 1;
1970 return 1;
1972 __setup("nomce", mcheck_disable);