2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
53 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map
);
55 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
56 EXPORT_SYMBOL(node_possible_map
);
57 unsigned long totalram_pages __read_mostly
;
58 unsigned long totalreserve_pages __read_mostly
;
60 int percpu_pagelist_fraction
;
62 static void __free_pages_ok(struct page
*page
, unsigned int order
);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
76 #ifdef CONFIG_ZONE_DMA
79 #ifdef CONFIG_ZONE_DMA32
88 EXPORT_SYMBOL(totalram_pages
);
90 static char * const zone_names
[MAX_NR_ZONES
] = {
91 #ifdef CONFIG_ZONE_DMA
94 #ifdef CONFIG_ZONE_DMA32
104 int min_free_kbytes
= 1024;
106 unsigned long __meminitdata nr_kernel_pages
;
107 unsigned long __meminitdata nr_all_pages
;
108 static unsigned long __meminitdata dma_reserve
;
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113 * ranges of memory (RAM) that may be registered with add_active_range().
114 * Ranges passed to add_active_range() will be merged if possible
115 * so the number of times add_active_range() can be called is
116 * related to the number of nodes and the number of holes
118 #ifdef CONFIG_MAX_ACTIVE_REGIONS
119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
122 #if MAX_NUMNODES >= 32
123 /* If there can be many nodes, allow up to 50 holes per node */
124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
126 /* By default, allow up to 256 distinct regions */
127 #define MAX_ACTIVE_REGIONS 256
131 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
132 static int __meminitdata nr_nodemap_entries
;
133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
134 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
137 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139 unsigned long __initdata required_kernelcore
;
140 unsigned long __initdata required_movablecore
;
141 unsigned long __initdata zone_movable_pfn
[MAX_NUMNODES
];
143 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
145 EXPORT_SYMBOL(movable_zone
);
146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
149 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
150 EXPORT_SYMBOL(nr_node_ids
);
153 #ifdef CONFIG_DEBUG_VM
154 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
158 unsigned long pfn
= page_to_pfn(page
);
161 seq
= zone_span_seqbegin(zone
);
162 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
164 else if (pfn
< zone
->zone_start_pfn
)
166 } while (zone_span_seqretry(zone
, seq
));
171 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
173 if (!pfn_valid_within(page_to_pfn(page
)))
175 if (zone
!= page_zone(page
))
181 * Temporary debugging check for pages not lying within a given zone.
183 static int bad_range(struct zone
*zone
, struct page
*page
)
185 if (page_outside_zone_boundaries(zone
, page
))
187 if (!page_is_consistent(zone
, page
))
193 static inline int bad_range(struct zone
*zone
, struct page
*page
)
199 static void bad_page(struct page
*page
)
201 printk(KERN_EMERG
"Bad page state in process '%s'\n"
202 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
204 KERN_EMERG
"Backtrace:\n",
205 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
206 (unsigned long)page
->flags
, page
->mapping
,
207 page_mapcount(page
), page_count(page
));
209 page
->flags
&= ~(1 << PG_lru
|
219 set_page_count(page
, 0);
220 reset_page_mapcount(page
);
221 page
->mapping
= NULL
;
222 add_taint(TAINT_BAD_PAGE
);
226 * Higher-order pages are called "compound pages". They are structured thusly:
228 * The first PAGE_SIZE page is called the "head page".
230 * The remaining PAGE_SIZE pages are called "tail pages".
232 * All pages have PG_compound set. All pages have their ->private pointing at
233 * the head page (even the head page has this).
235 * The first tail page's ->lru.next holds the address of the compound page's
236 * put_page() function. Its ->lru.prev holds the order of allocation.
237 * This usage means that zero-order pages may not be compound.
240 static void free_compound_page(struct page
*page
)
242 __free_pages_ok(page
, compound_order(page
));
245 static void prep_compound_page(struct page
*page
, unsigned long order
)
248 int nr_pages
= 1 << order
;
250 set_compound_page_dtor(page
, free_compound_page
);
251 set_compound_order(page
, order
);
253 for (i
= 1; i
< nr_pages
; i
++) {
254 struct page
*p
= page
+ i
;
257 p
->first_page
= page
;
261 static void destroy_compound_page(struct page
*page
, unsigned long order
)
264 int nr_pages
= 1 << order
;
266 if (unlikely(compound_order(page
) != order
))
269 if (unlikely(!PageHead(page
)))
271 __ClearPageHead(page
);
272 for (i
= 1; i
< nr_pages
; i
++) {
273 struct page
*p
= page
+ i
;
275 if (unlikely(!PageTail(p
) |
276 (p
->first_page
!= page
)))
282 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
286 VM_BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
288 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 * and __GFP_HIGHMEM from hard or soft interrupt context.
291 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
292 for (i
= 0; i
< (1 << order
); i
++)
293 clear_highpage(page
+ i
);
297 * function for dealing with page's order in buddy system.
298 * zone->lock is already acquired when we use these.
299 * So, we don't need atomic page->flags operations here.
301 static inline unsigned long page_order(struct page
*page
)
303 return page_private(page
);
306 static inline void set_page_order(struct page
*page
, int order
)
308 set_page_private(page
, order
);
309 __SetPageBuddy(page
);
312 static inline void rmv_page_order(struct page
*page
)
314 __ClearPageBuddy(page
);
315 set_page_private(page
, 0);
319 * Locate the struct page for both the matching buddy in our
320 * pair (buddy1) and the combined O(n+1) page they form (page).
322 * 1) Any buddy B1 will have an order O twin B2 which satisfies
323 * the following equation:
325 * For example, if the starting buddy (buddy2) is #8 its order
327 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
329 * 2) Any buddy B will have an order O+1 parent P which
330 * satisfies the following equation:
333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
335 static inline struct page
*
336 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
338 unsigned long buddy_idx
= page_idx
^ (1 << order
);
340 return page
+ (buddy_idx
- page_idx
);
343 static inline unsigned long
344 __find_combined_index(unsigned long page_idx
, unsigned int order
)
346 return (page_idx
& ~(1 << order
));
350 * This function checks whether a page is free && is the buddy
351 * we can do coalesce a page and its buddy if
352 * (a) the buddy is not in a hole &&
353 * (b) the buddy is in the buddy system &&
354 * (c) a page and its buddy have the same order &&
355 * (d) a page and its buddy are in the same zone.
357 * For recording whether a page is in the buddy system, we use PG_buddy.
358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
360 * For recording page's order, we use page_private(page).
362 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
365 if (!pfn_valid_within(page_to_pfn(buddy
)))
368 if (page_zone_id(page
) != page_zone_id(buddy
))
371 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
372 BUG_ON(page_count(buddy
) != 0);
379 * Freeing function for a buddy system allocator.
381 * The concept of a buddy system is to maintain direct-mapped table
382 * (containing bit values) for memory blocks of various "orders".
383 * The bottom level table contains the map for the smallest allocatable
384 * units of memory (here, pages), and each level above it describes
385 * pairs of units from the levels below, hence, "buddies".
386 * At a high level, all that happens here is marking the table entry
387 * at the bottom level available, and propagating the changes upward
388 * as necessary, plus some accounting needed to play nicely with other
389 * parts of the VM system.
390 * At each level, we keep a list of pages, which are heads of continuous
391 * free pages of length of (1 << order) and marked with PG_buddy. Page's
392 * order is recorded in page_private(page) field.
393 * So when we are allocating or freeing one, we can derive the state of the
394 * other. That is, if we allocate a small block, and both were
395 * free, the remainder of the region must be split into blocks.
396 * If a block is freed, and its buddy is also free, then this
397 * triggers coalescing into a block of larger size.
402 static inline void __free_one_page(struct page
*page
,
403 struct zone
*zone
, unsigned int order
)
405 unsigned long page_idx
;
406 int order_size
= 1 << order
;
408 if (unlikely(PageCompound(page
)))
409 destroy_compound_page(page
, order
);
411 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
413 VM_BUG_ON(page_idx
& (order_size
- 1));
414 VM_BUG_ON(bad_range(zone
, page
));
416 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
417 while (order
< MAX_ORDER
-1) {
418 unsigned long combined_idx
;
419 struct free_area
*area
;
422 buddy
= __page_find_buddy(page
, page_idx
, order
);
423 if (!page_is_buddy(page
, buddy
, order
))
424 break; /* Move the buddy up one level. */
426 list_del(&buddy
->lru
);
427 area
= zone
->free_area
+ order
;
429 rmv_page_order(buddy
);
430 combined_idx
= __find_combined_index(page_idx
, order
);
431 page
= page
+ (combined_idx
- page_idx
);
432 page_idx
= combined_idx
;
435 set_page_order(page
, order
);
436 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
437 zone
->free_area
[order
].nr_free
++;
440 static inline int free_pages_check(struct page
*page
)
442 if (unlikely(page_mapcount(page
) |
443 (page
->mapping
!= NULL
) |
444 (page_count(page
) != 0) |
457 * PageReclaim == PageTail. It is only an error
458 * for PageReclaim to be set if PageCompound is clear.
460 if (unlikely(!PageCompound(page
) && PageReclaim(page
)))
463 __ClearPageDirty(page
);
465 * For now, we report if PG_reserved was found set, but do not
466 * clear it, and do not free the page. But we shall soon need
467 * to do more, for when the ZERO_PAGE count wraps negative.
469 return PageReserved(page
);
473 * Frees a list of pages.
474 * Assumes all pages on list are in same zone, and of same order.
475 * count is the number of pages to free.
477 * If the zone was previously in an "all pages pinned" state then look to
478 * see if this freeing clears that state.
480 * And clear the zone's pages_scanned counter, to hold off the "all pages are
481 * pinned" detection logic.
483 static void free_pages_bulk(struct zone
*zone
, int count
,
484 struct list_head
*list
, int order
)
486 spin_lock(&zone
->lock
);
487 zone
->all_unreclaimable
= 0;
488 zone
->pages_scanned
= 0;
492 VM_BUG_ON(list_empty(list
));
493 page
= list_entry(list
->prev
, struct page
, lru
);
494 /* have to delete it as __free_one_page list manipulates */
495 list_del(&page
->lru
);
496 __free_one_page(page
, zone
, order
);
498 spin_unlock(&zone
->lock
);
501 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
503 spin_lock(&zone
->lock
);
504 zone
->all_unreclaimable
= 0;
505 zone
->pages_scanned
= 0;
506 __free_one_page(page
, zone
, order
);
507 spin_unlock(&zone
->lock
);
510 static void __free_pages_ok(struct page
*page
, unsigned int order
)
516 for (i
= 0 ; i
< (1 << order
) ; ++i
)
517 reserved
+= free_pages_check(page
+ i
);
521 if (!PageHighMem(page
))
522 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
523 arch_free_page(page
, order
);
524 kernel_map_pages(page
, 1 << order
, 0);
526 local_irq_save(flags
);
527 __count_vm_events(PGFREE
, 1 << order
);
528 free_one_page(page_zone(page
), page
, order
);
529 local_irq_restore(flags
);
533 * permit the bootmem allocator to evade page validation on high-order frees
535 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
538 __ClearPageReserved(page
);
539 set_page_count(page
, 0);
540 set_page_refcounted(page
);
546 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
547 struct page
*p
= &page
[loop
];
549 if (loop
+ 1 < BITS_PER_LONG
)
551 __ClearPageReserved(p
);
552 set_page_count(p
, 0);
555 set_page_refcounted(page
);
556 __free_pages(page
, order
);
562 * The order of subdivision here is critical for the IO subsystem.
563 * Please do not alter this order without good reasons and regression
564 * testing. Specifically, as large blocks of memory are subdivided,
565 * the order in which smaller blocks are delivered depends on the order
566 * they're subdivided in this function. This is the primary factor
567 * influencing the order in which pages are delivered to the IO
568 * subsystem according to empirical testing, and this is also justified
569 * by considering the behavior of a buddy system containing a single
570 * large block of memory acted on by a series of small allocations.
571 * This behavior is a critical factor in sglist merging's success.
575 static inline void expand(struct zone
*zone
, struct page
*page
,
576 int low
, int high
, struct free_area
*area
)
578 unsigned long size
= 1 << high
;
584 VM_BUG_ON(bad_range(zone
, &page
[size
]));
585 list_add(&page
[size
].lru
, &area
->free_list
);
587 set_page_order(&page
[size
], high
);
592 * This page is about to be returned from the page allocator
594 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
596 if (unlikely(page_mapcount(page
) |
597 (page
->mapping
!= NULL
) |
598 (page_count(page
) != 0) |
614 * For now, we report if PG_reserved was found set, but do not
615 * clear it, and do not allocate the page: as a safety net.
617 if (PageReserved(page
))
620 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
621 1 << PG_referenced
| 1 << PG_arch_1
|
622 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
623 set_page_private(page
, 0);
624 set_page_refcounted(page
);
626 arch_alloc_page(page
, order
);
627 kernel_map_pages(page
, 1 << order
, 1);
629 if (gfp_flags
& __GFP_ZERO
)
630 prep_zero_page(page
, order
, gfp_flags
);
632 if (order
&& (gfp_flags
& __GFP_COMP
))
633 prep_compound_page(page
, order
);
639 * Do the hard work of removing an element from the buddy allocator.
640 * Call me with the zone->lock already held.
642 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
644 struct free_area
* area
;
645 unsigned int current_order
;
648 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
649 area
= zone
->free_area
+ current_order
;
650 if (list_empty(&area
->free_list
))
653 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
654 list_del(&page
->lru
);
655 rmv_page_order(page
);
657 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
658 expand(zone
, page
, order
, current_order
, area
);
666 * Obtain a specified number of elements from the buddy allocator, all under
667 * a single hold of the lock, for efficiency. Add them to the supplied list.
668 * Returns the number of new pages which were placed at *list.
670 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
671 unsigned long count
, struct list_head
*list
)
675 spin_lock(&zone
->lock
);
676 for (i
= 0; i
< count
; ++i
) {
677 struct page
*page
= __rmqueue(zone
, order
);
678 if (unlikely(page
== NULL
))
680 list_add_tail(&page
->lru
, list
);
682 spin_unlock(&zone
->lock
);
688 * Called from the vmstat counter updater to drain pagesets of this
689 * currently executing processor on remote nodes after they have
692 * Note that this function must be called with the thread pinned to
693 * a single processor.
695 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
700 local_irq_save(flags
);
701 if (pcp
->count
>= pcp
->batch
)
702 to_drain
= pcp
->batch
;
704 to_drain
= pcp
->count
;
705 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
706 pcp
->count
-= to_drain
;
707 local_irq_restore(flags
);
711 static void __drain_pages(unsigned int cpu
)
717 for_each_zone(zone
) {
718 struct per_cpu_pageset
*pset
;
720 if (!populated_zone(zone
))
723 pset
= zone_pcp(zone
, cpu
);
724 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
725 struct per_cpu_pages
*pcp
;
728 local_irq_save(flags
);
729 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
731 local_irq_restore(flags
);
738 void mark_free_pages(struct zone
*zone
)
740 unsigned long pfn
, max_zone_pfn
;
743 struct list_head
*curr
;
745 if (!zone
->spanned_pages
)
748 spin_lock_irqsave(&zone
->lock
, flags
);
750 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
751 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
752 if (pfn_valid(pfn
)) {
753 struct page
*page
= pfn_to_page(pfn
);
755 if (!swsusp_page_is_forbidden(page
))
756 swsusp_unset_page_free(page
);
759 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
760 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
763 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
764 for (i
= 0; i
< (1UL << order
); i
++)
765 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
768 spin_unlock_irqrestore(&zone
->lock
, flags
);
772 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
774 void drain_local_pages(void)
778 local_irq_save(flags
);
779 __drain_pages(smp_processor_id());
780 local_irq_restore(flags
);
782 #endif /* CONFIG_PM */
785 * Free a 0-order page
787 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
789 struct zone
*zone
= page_zone(page
);
790 struct per_cpu_pages
*pcp
;
794 page
->mapping
= NULL
;
795 if (free_pages_check(page
))
798 if (!PageHighMem(page
))
799 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
800 arch_free_page(page
, 0);
801 kernel_map_pages(page
, 1, 0);
803 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
804 local_irq_save(flags
);
805 __count_vm_event(PGFREE
);
806 list_add(&page
->lru
, &pcp
->list
);
808 if (pcp
->count
>= pcp
->high
) {
809 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
810 pcp
->count
-= pcp
->batch
;
812 local_irq_restore(flags
);
816 void fastcall
free_hot_page(struct page
*page
)
818 free_hot_cold_page(page
, 0);
821 void fastcall
free_cold_page(struct page
*page
)
823 free_hot_cold_page(page
, 1);
827 * split_page takes a non-compound higher-order page, and splits it into
828 * n (1<<order) sub-pages: page[0..n]
829 * Each sub-page must be freed individually.
831 * Note: this is probably too low level an operation for use in drivers.
832 * Please consult with lkml before using this in your driver.
834 void split_page(struct page
*page
, unsigned int order
)
838 VM_BUG_ON(PageCompound(page
));
839 VM_BUG_ON(!page_count(page
));
840 for (i
= 1; i
< (1 << order
); i
++)
841 set_page_refcounted(page
+ i
);
845 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
846 * we cheat by calling it from here, in the order > 0 path. Saves a branch
849 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
850 struct zone
*zone
, int order
, gfp_t gfp_flags
)
854 int cold
= !!(gfp_flags
& __GFP_COLD
);
859 if (likely(order
== 0)) {
860 struct per_cpu_pages
*pcp
;
862 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
863 local_irq_save(flags
);
865 pcp
->count
= rmqueue_bulk(zone
, 0,
866 pcp
->batch
, &pcp
->list
);
867 if (unlikely(!pcp
->count
))
870 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
871 list_del(&page
->lru
);
874 spin_lock_irqsave(&zone
->lock
, flags
);
875 page
= __rmqueue(zone
, order
);
876 spin_unlock(&zone
->lock
);
881 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
882 zone_statistics(zonelist
, zone
);
883 local_irq_restore(flags
);
886 VM_BUG_ON(bad_range(zone
, page
));
887 if (prep_new_page(page
, order
, gfp_flags
))
892 local_irq_restore(flags
);
897 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
898 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
899 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
900 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
901 #define ALLOC_HARDER 0x10 /* try to alloc harder */
902 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
903 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
905 #ifdef CONFIG_FAIL_PAGE_ALLOC
907 static struct fail_page_alloc_attr
{
908 struct fault_attr attr
;
910 u32 ignore_gfp_highmem
;
914 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
916 struct dentry
*ignore_gfp_highmem_file
;
917 struct dentry
*ignore_gfp_wait_file
;
918 struct dentry
*min_order_file
;
920 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
922 } fail_page_alloc
= {
923 .attr
= FAULT_ATTR_INITIALIZER
,
924 .ignore_gfp_wait
= 1,
925 .ignore_gfp_highmem
= 1,
929 static int __init
setup_fail_page_alloc(char *str
)
931 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
933 __setup("fail_page_alloc=", setup_fail_page_alloc
);
935 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
937 if (order
< fail_page_alloc
.min_order
)
939 if (gfp_mask
& __GFP_NOFAIL
)
941 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
943 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
946 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
949 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
951 static int __init
fail_page_alloc_debugfs(void)
953 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
957 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
961 dir
= fail_page_alloc
.attr
.dentries
.dir
;
963 fail_page_alloc
.ignore_gfp_wait_file
=
964 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
965 &fail_page_alloc
.ignore_gfp_wait
);
967 fail_page_alloc
.ignore_gfp_highmem_file
=
968 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
969 &fail_page_alloc
.ignore_gfp_highmem
);
970 fail_page_alloc
.min_order_file
=
971 debugfs_create_u32("min-order", mode
, dir
,
972 &fail_page_alloc
.min_order
);
974 if (!fail_page_alloc
.ignore_gfp_wait_file
||
975 !fail_page_alloc
.ignore_gfp_highmem_file
||
976 !fail_page_alloc
.min_order_file
) {
978 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
979 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
980 debugfs_remove(fail_page_alloc
.min_order_file
);
981 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
987 late_initcall(fail_page_alloc_debugfs
);
989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
991 #else /* CONFIG_FAIL_PAGE_ALLOC */
993 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
998 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1001 * Return 1 if free pages are above 'mark'. This takes into account the order
1002 * of the allocation.
1004 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1005 int classzone_idx
, int alloc_flags
)
1007 /* free_pages my go negative - that's OK */
1009 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1012 if (alloc_flags
& ALLOC_HIGH
)
1014 if (alloc_flags
& ALLOC_HARDER
)
1017 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1019 for (o
= 0; o
< order
; o
++) {
1020 /* At the next order, this order's pages become unavailable */
1021 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1023 /* Require fewer higher order pages to be free */
1026 if (free_pages
<= min
)
1034 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1035 * skip over zones that are not allowed by the cpuset, or that have
1036 * been recently (in last second) found to be nearly full. See further
1037 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1038 * that have to skip over alot of full or unallowed zones.
1040 * If the zonelist cache is present in the passed in zonelist, then
1041 * returns a pointer to the allowed node mask (either the current
1042 * tasks mems_allowed, or node_online_map.)
1044 * If the zonelist cache is not available for this zonelist, does
1045 * nothing and returns NULL.
1047 * If the fullzones BITMAP in the zonelist cache is stale (more than
1048 * a second since last zap'd) then we zap it out (clear its bits.)
1050 * We hold off even calling zlc_setup, until after we've checked the
1051 * first zone in the zonelist, on the theory that most allocations will
1052 * be satisfied from that first zone, so best to examine that zone as
1053 * quickly as we can.
1055 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1057 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1058 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1060 zlc
= zonelist
->zlcache_ptr
;
1064 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1065 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1066 zlc
->last_full_zap
= jiffies
;
1069 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1070 &cpuset_current_mems_allowed
:
1072 return allowednodes
;
1076 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1077 * if it is worth looking at further for free memory:
1078 * 1) Check that the zone isn't thought to be full (doesn't have its
1079 * bit set in the zonelist_cache fullzones BITMAP).
1080 * 2) Check that the zones node (obtained from the zonelist_cache
1081 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1082 * Return true (non-zero) if zone is worth looking at further, or
1083 * else return false (zero) if it is not.
1085 * This check -ignores- the distinction between various watermarks,
1086 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1087 * found to be full for any variation of these watermarks, it will
1088 * be considered full for up to one second by all requests, unless
1089 * we are so low on memory on all allowed nodes that we are forced
1090 * into the second scan of the zonelist.
1092 * In the second scan we ignore this zonelist cache and exactly
1093 * apply the watermarks to all zones, even it is slower to do so.
1094 * We are low on memory in the second scan, and should leave no stone
1095 * unturned looking for a free page.
1097 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1098 nodemask_t
*allowednodes
)
1100 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1101 int i
; /* index of *z in zonelist zones */
1102 int n
; /* node that zone *z is on */
1104 zlc
= zonelist
->zlcache_ptr
;
1108 i
= z
- zonelist
->zones
;
1111 /* This zone is worth trying if it is allowed but not full */
1112 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1116 * Given 'z' scanning a zonelist, set the corresponding bit in
1117 * zlc->fullzones, so that subsequent attempts to allocate a page
1118 * from that zone don't waste time re-examining it.
1120 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1122 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1123 int i
; /* index of *z in zonelist zones */
1125 zlc
= zonelist
->zlcache_ptr
;
1129 i
= z
- zonelist
->zones
;
1131 set_bit(i
, zlc
->fullzones
);
1134 #else /* CONFIG_NUMA */
1136 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1141 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1142 nodemask_t
*allowednodes
)
1147 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1150 #endif /* CONFIG_NUMA */
1153 * get_page_from_freelist goes through the zonelist trying to allocate
1156 static struct page
*
1157 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1158 struct zonelist
*zonelist
, int alloc_flags
)
1161 struct page
*page
= NULL
;
1162 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1164 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1165 int zlc_active
= 0; /* set if using zonelist_cache */
1166 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1170 * Scan zonelist, looking for a zone with enough free.
1171 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1173 z
= zonelist
->zones
;
1176 if (NUMA_BUILD
&& zlc_active
&&
1177 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1180 if (unlikely(NUMA_BUILD
&& (gfp_mask
& __GFP_THISNODE
) &&
1181 zone
->zone_pgdat
!= zonelist
->zones
[0]->zone_pgdat
))
1183 if ((alloc_flags
& ALLOC_CPUSET
) &&
1184 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1187 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1189 if (alloc_flags
& ALLOC_WMARK_MIN
)
1190 mark
= zone
->pages_min
;
1191 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1192 mark
= zone
->pages_low
;
1194 mark
= zone
->pages_high
;
1195 if (!zone_watermark_ok(zone
, order
, mark
,
1196 classzone_idx
, alloc_flags
)) {
1197 if (!zone_reclaim_mode
||
1198 !zone_reclaim(zone
, gfp_mask
, order
))
1199 goto this_zone_full
;
1203 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1208 zlc_mark_zone_full(zonelist
, z
);
1210 if (NUMA_BUILD
&& !did_zlc_setup
) {
1211 /* we do zlc_setup after the first zone is tried */
1212 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1216 } while (*(++z
) != NULL
);
1218 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1219 /* Disable zlc cache for second zonelist scan */
1227 * This is the 'heart' of the zoned buddy allocator.
1229 struct page
* fastcall
1230 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1231 struct zonelist
*zonelist
)
1233 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1236 struct reclaim_state reclaim_state
;
1237 struct task_struct
*p
= current
;
1240 int did_some_progress
;
1242 might_sleep_if(wait
);
1244 if (should_fail_alloc_page(gfp_mask
, order
))
1248 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1250 if (unlikely(*z
== NULL
)) {
1251 /* Should this ever happen?? */
1255 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1256 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1261 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1262 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1263 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1264 * using a larger set of nodes after it has established that the
1265 * allowed per node queues are empty and that nodes are
1268 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1271 for (z
= zonelist
->zones
; *z
; z
++)
1272 wakeup_kswapd(*z
, order
);
1275 * OK, we're below the kswapd watermark and have kicked background
1276 * reclaim. Now things get more complex, so set up alloc_flags according
1277 * to how we want to proceed.
1279 * The caller may dip into page reserves a bit more if the caller
1280 * cannot run direct reclaim, or if the caller has realtime scheduling
1281 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1282 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1284 alloc_flags
= ALLOC_WMARK_MIN
;
1285 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1286 alloc_flags
|= ALLOC_HARDER
;
1287 if (gfp_mask
& __GFP_HIGH
)
1288 alloc_flags
|= ALLOC_HIGH
;
1290 alloc_flags
|= ALLOC_CPUSET
;
1293 * Go through the zonelist again. Let __GFP_HIGH and allocations
1294 * coming from realtime tasks go deeper into reserves.
1296 * This is the last chance, in general, before the goto nopage.
1297 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1298 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1300 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1304 /* This allocation should allow future memory freeing. */
1307 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1308 && !in_interrupt()) {
1309 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1311 /* go through the zonelist yet again, ignoring mins */
1312 page
= get_page_from_freelist(gfp_mask
, order
,
1313 zonelist
, ALLOC_NO_WATERMARKS
);
1316 if (gfp_mask
& __GFP_NOFAIL
) {
1317 congestion_wait(WRITE
, HZ
/50);
1324 /* Atomic allocations - we can't balance anything */
1330 /* We now go into synchronous reclaim */
1331 cpuset_memory_pressure_bump();
1332 p
->flags
|= PF_MEMALLOC
;
1333 reclaim_state
.reclaimed_slab
= 0;
1334 p
->reclaim_state
= &reclaim_state
;
1336 did_some_progress
= try_to_free_pages(zonelist
->zones
, order
, gfp_mask
);
1338 p
->reclaim_state
= NULL
;
1339 p
->flags
&= ~PF_MEMALLOC
;
1343 if (likely(did_some_progress
)) {
1344 page
= get_page_from_freelist(gfp_mask
, order
,
1345 zonelist
, alloc_flags
);
1348 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1350 * Go through the zonelist yet one more time, keep
1351 * very high watermark here, this is only to catch
1352 * a parallel oom killing, we must fail if we're still
1353 * under heavy pressure.
1355 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1356 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1360 out_of_memory(zonelist
, gfp_mask
, order
);
1365 * Don't let big-order allocations loop unless the caller explicitly
1366 * requests that. Wait for some write requests to complete then retry.
1368 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1369 * <= 3, but that may not be true in other implementations.
1372 if (!(gfp_mask
& __GFP_NORETRY
)) {
1373 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1374 (gfp_mask
& __GFP_REPEAT
))
1376 if (gfp_mask
& __GFP_NOFAIL
)
1380 congestion_wait(WRITE
, HZ
/50);
1385 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1386 printk(KERN_WARNING
"%s: page allocation failure."
1387 " order:%d, mode:0x%x\n",
1388 p
->comm
, order
, gfp_mask
);
1396 EXPORT_SYMBOL(__alloc_pages
);
1399 * Common helper functions.
1401 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1404 page
= alloc_pages(gfp_mask
, order
);
1407 return (unsigned long) page_address(page
);
1410 EXPORT_SYMBOL(__get_free_pages
);
1412 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1417 * get_zeroed_page() returns a 32-bit address, which cannot represent
1420 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1422 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1424 return (unsigned long) page_address(page
);
1428 EXPORT_SYMBOL(get_zeroed_page
);
1430 void __pagevec_free(struct pagevec
*pvec
)
1432 int i
= pagevec_count(pvec
);
1435 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1438 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1440 if (put_page_testzero(page
)) {
1442 free_hot_page(page
);
1444 __free_pages_ok(page
, order
);
1448 EXPORT_SYMBOL(__free_pages
);
1450 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1453 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1454 __free_pages(virt_to_page((void *)addr
), order
);
1458 EXPORT_SYMBOL(free_pages
);
1460 static unsigned int nr_free_zone_pages(int offset
)
1462 /* Just pick one node, since fallback list is circular */
1463 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1464 unsigned int sum
= 0;
1466 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1467 struct zone
**zonep
= zonelist
->zones
;
1470 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1471 unsigned long size
= zone
->present_pages
;
1472 unsigned long high
= zone
->pages_high
;
1481 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1483 unsigned int nr_free_buffer_pages(void)
1485 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1487 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1490 * Amount of free RAM allocatable within all zones
1492 unsigned int nr_free_pagecache_pages(void)
1494 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1497 static inline void show_node(struct zone
*zone
)
1500 printk("Node %d ", zone_to_nid(zone
));
1503 void si_meminfo(struct sysinfo
*val
)
1505 val
->totalram
= totalram_pages
;
1507 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1508 val
->bufferram
= nr_blockdev_pages();
1509 val
->totalhigh
= totalhigh_pages
;
1510 val
->freehigh
= nr_free_highpages();
1511 val
->mem_unit
= PAGE_SIZE
;
1514 EXPORT_SYMBOL(si_meminfo
);
1517 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1519 pg_data_t
*pgdat
= NODE_DATA(nid
);
1521 val
->totalram
= pgdat
->node_present_pages
;
1522 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1523 #ifdef CONFIG_HIGHMEM
1524 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1525 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1531 val
->mem_unit
= PAGE_SIZE
;
1535 #define K(x) ((x) << (PAGE_SHIFT-10))
1538 * Show free area list (used inside shift_scroll-lock stuff)
1539 * We also calculate the percentage fragmentation. We do this by counting the
1540 * memory on each free list with the exception of the first item on the list.
1542 void show_free_areas(void)
1547 for_each_zone(zone
) {
1548 if (!populated_zone(zone
))
1552 printk("%s per-cpu:\n", zone
->name
);
1554 for_each_online_cpu(cpu
) {
1555 struct per_cpu_pageset
*pageset
;
1557 pageset
= zone_pcp(zone
, cpu
);
1559 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1560 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1561 cpu
, pageset
->pcp
[0].high
,
1562 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1563 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1564 pageset
->pcp
[1].count
);
1568 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1569 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1570 global_page_state(NR_ACTIVE
),
1571 global_page_state(NR_INACTIVE
),
1572 global_page_state(NR_FILE_DIRTY
),
1573 global_page_state(NR_WRITEBACK
),
1574 global_page_state(NR_UNSTABLE_NFS
),
1575 global_page_state(NR_FREE_PAGES
),
1576 global_page_state(NR_SLAB_RECLAIMABLE
) +
1577 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1578 global_page_state(NR_FILE_MAPPED
),
1579 global_page_state(NR_PAGETABLE
),
1580 global_page_state(NR_BOUNCE
));
1582 for_each_zone(zone
) {
1585 if (!populated_zone(zone
))
1597 " pages_scanned:%lu"
1598 " all_unreclaimable? %s"
1601 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1604 K(zone
->pages_high
),
1605 K(zone_page_state(zone
, NR_ACTIVE
)),
1606 K(zone_page_state(zone
, NR_INACTIVE
)),
1607 K(zone
->present_pages
),
1608 zone
->pages_scanned
,
1609 (zone
->all_unreclaimable
? "yes" : "no")
1611 printk("lowmem_reserve[]:");
1612 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1613 printk(" %lu", zone
->lowmem_reserve
[i
]);
1617 for_each_zone(zone
) {
1618 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1620 if (!populated_zone(zone
))
1624 printk("%s: ", zone
->name
);
1626 spin_lock_irqsave(&zone
->lock
, flags
);
1627 for (order
= 0; order
< MAX_ORDER
; order
++) {
1628 nr
[order
] = zone
->free_area
[order
].nr_free
;
1629 total
+= nr
[order
] << order
;
1631 spin_unlock_irqrestore(&zone
->lock
, flags
);
1632 for (order
= 0; order
< MAX_ORDER
; order
++)
1633 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1634 printk("= %lukB\n", K(total
));
1637 show_swap_cache_info();
1641 * Builds allocation fallback zone lists.
1643 * Add all populated zones of a node to the zonelist.
1645 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1646 int nr_zones
, enum zone_type zone_type
)
1650 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1655 zone
= pgdat
->node_zones
+ zone_type
;
1656 if (populated_zone(zone
)) {
1657 zonelist
->zones
[nr_zones
++] = zone
;
1658 check_highest_zone(zone_type
);
1661 } while (zone_type
);
1668 * 0 = automatic detection of better ordering.
1669 * 1 = order by ([node] distance, -zonetype)
1670 * 2 = order by (-zonetype, [node] distance)
1672 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1673 * the same zonelist. So only NUMA can configure this param.
1675 #define ZONELIST_ORDER_DEFAULT 0
1676 #define ZONELIST_ORDER_NODE 1
1677 #define ZONELIST_ORDER_ZONE 2
1679 /* zonelist order in the kernel.
1680 * set_zonelist_order() will set this to NODE or ZONE.
1682 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1683 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1687 /* The value user specified ....changed by config */
1688 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1689 /* string for sysctl */
1690 #define NUMA_ZONELIST_ORDER_LEN 16
1691 char numa_zonelist_order
[16] = "default";
1694 * interface for configure zonelist ordering.
1695 * command line option "numa_zonelist_order"
1696 * = "[dD]efault - default, automatic configuration.
1697 * = "[nN]ode - order by node locality, then by zone within node
1698 * = "[zZ]one - order by zone, then by locality within zone
1701 static int __parse_numa_zonelist_order(char *s
)
1703 if (*s
== 'd' || *s
== 'D') {
1704 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1705 } else if (*s
== 'n' || *s
== 'N') {
1706 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1707 } else if (*s
== 'z' || *s
== 'Z') {
1708 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1711 "Ignoring invalid numa_zonelist_order value: "
1718 static __init
int setup_numa_zonelist_order(char *s
)
1721 return __parse_numa_zonelist_order(s
);
1724 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
1727 * sysctl handler for numa_zonelist_order
1729 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
1730 struct file
*file
, void __user
*buffer
, size_t *length
,
1733 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
1737 strncpy(saved_string
, (char*)table
->data
,
1738 NUMA_ZONELIST_ORDER_LEN
);
1739 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
1743 int oldval
= user_zonelist_order
;
1744 if (__parse_numa_zonelist_order((char*)table
->data
)) {
1746 * bogus value. restore saved string
1748 strncpy((char*)table
->data
, saved_string
,
1749 NUMA_ZONELIST_ORDER_LEN
);
1750 user_zonelist_order
= oldval
;
1751 } else if (oldval
!= user_zonelist_order
)
1752 build_all_zonelists();
1758 #define MAX_NODE_LOAD (num_online_nodes())
1759 static int node_load
[MAX_NUMNODES
];
1762 * find_next_best_node - find the next node that should appear in a given node's fallback list
1763 * @node: node whose fallback list we're appending
1764 * @used_node_mask: nodemask_t of already used nodes
1766 * We use a number of factors to determine which is the next node that should
1767 * appear on a given node's fallback list. The node should not have appeared
1768 * already in @node's fallback list, and it should be the next closest node
1769 * according to the distance array (which contains arbitrary distance values
1770 * from each node to each node in the system), and should also prefer nodes
1771 * with no CPUs, since presumably they'll have very little allocation pressure
1772 * on them otherwise.
1773 * It returns -1 if no node is found.
1775 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1778 int min_val
= INT_MAX
;
1781 /* Use the local node if we haven't already */
1782 if (!node_isset(node
, *used_node_mask
)) {
1783 node_set(node
, *used_node_mask
);
1787 for_each_online_node(n
) {
1790 /* Don't want a node to appear more than once */
1791 if (node_isset(n
, *used_node_mask
))
1794 /* Use the distance array to find the distance */
1795 val
= node_distance(node
, n
);
1797 /* Penalize nodes under us ("prefer the next node") */
1800 /* Give preference to headless and unused nodes */
1801 tmp
= node_to_cpumask(n
);
1802 if (!cpus_empty(tmp
))
1803 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1805 /* Slight preference for less loaded node */
1806 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1807 val
+= node_load
[n
];
1809 if (val
< min_val
) {
1816 node_set(best_node
, *used_node_mask
);
1823 * Build zonelists ordered by node and zones within node.
1824 * This results in maximum locality--normal zone overflows into local
1825 * DMA zone, if any--but risks exhausting DMA zone.
1827 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
1831 struct zonelist
*zonelist
;
1833 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1834 zonelist
= pgdat
->node_zonelists
+ i
;
1835 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++)
1837 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
1838 zonelist
->zones
[j
] = NULL
;
1843 * Build zonelists ordered by zone and nodes within zones.
1844 * This results in conserving DMA zone[s] until all Normal memory is
1845 * exhausted, but results in overflowing to remote node while memory
1846 * may still exist in local DMA zone.
1848 static int node_order
[MAX_NUMNODES
];
1850 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
1854 int zone_type
; /* needs to be signed */
1856 struct zonelist
*zonelist
;
1858 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1859 zonelist
= pgdat
->node_zonelists
+ i
;
1861 for (zone_type
= i
; zone_type
>= 0; zone_type
--) {
1862 for (j
= 0; j
< nr_nodes
; j
++) {
1863 node
= node_order
[j
];
1864 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
1865 if (populated_zone(z
)) {
1866 zonelist
->zones
[pos
++] = z
;
1867 check_highest_zone(zone_type
);
1871 zonelist
->zones
[pos
] = NULL
;
1875 static int default_zonelist_order(void)
1878 unsigned long low_kmem_size
,total_size
;
1882 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1883 * If they are really small and used heavily, the system can fall
1884 * into OOM very easily.
1885 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1887 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1890 for_each_online_node(nid
) {
1891 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
1892 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
1893 if (populated_zone(z
)) {
1894 if (zone_type
< ZONE_NORMAL
)
1895 low_kmem_size
+= z
->present_pages
;
1896 total_size
+= z
->present_pages
;
1900 if (!low_kmem_size
|| /* there are no DMA area. */
1901 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
1902 return ZONELIST_ORDER_NODE
;
1904 * look into each node's config.
1905 * If there is a node whose DMA/DMA32 memory is very big area on
1906 * local memory, NODE_ORDER may be suitable.
1908 average_size
= total_size
/ (num_online_nodes() + 1);
1909 for_each_online_node(nid
) {
1912 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
1913 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
1914 if (populated_zone(z
)) {
1915 if (zone_type
< ZONE_NORMAL
)
1916 low_kmem_size
+= z
->present_pages
;
1917 total_size
+= z
->present_pages
;
1920 if (low_kmem_size
&&
1921 total_size
> average_size
&& /* ignore small node */
1922 low_kmem_size
> total_size
* 70/100)
1923 return ZONELIST_ORDER_NODE
;
1925 return ZONELIST_ORDER_ZONE
;
1928 static void set_zonelist_order(void)
1930 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
1931 current_zonelist_order
= default_zonelist_order();
1933 current_zonelist_order
= user_zonelist_order
;
1936 static void build_zonelists(pg_data_t
*pgdat
)
1940 nodemask_t used_mask
;
1941 int local_node
, prev_node
;
1942 struct zonelist
*zonelist
;
1943 int order
= current_zonelist_order
;
1945 /* initialize zonelists */
1946 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1947 zonelist
= pgdat
->node_zonelists
+ i
;
1948 zonelist
->zones
[0] = NULL
;
1951 /* NUMA-aware ordering of nodes */
1952 local_node
= pgdat
->node_id
;
1953 load
= num_online_nodes();
1954 prev_node
= local_node
;
1955 nodes_clear(used_mask
);
1957 memset(node_load
, 0, sizeof(node_load
));
1958 memset(node_order
, 0, sizeof(node_order
));
1961 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1962 int distance
= node_distance(local_node
, node
);
1965 * If another node is sufficiently far away then it is better
1966 * to reclaim pages in a zone before going off node.
1968 if (distance
> RECLAIM_DISTANCE
)
1969 zone_reclaim_mode
= 1;
1972 * We don't want to pressure a particular node.
1973 * So adding penalty to the first node in same
1974 * distance group to make it round-robin.
1976 if (distance
!= node_distance(local_node
, prev_node
))
1977 node_load
[node
] = load
;
1981 if (order
== ZONELIST_ORDER_NODE
)
1982 build_zonelists_in_node_order(pgdat
, node
);
1984 node_order
[j
++] = node
; /* remember order */
1987 if (order
== ZONELIST_ORDER_ZONE
) {
1988 /* calculate node order -- i.e., DMA last! */
1989 build_zonelists_in_zone_order(pgdat
, j
);
1993 /* Construct the zonelist performance cache - see further mmzone.h */
1994 static void build_zonelist_cache(pg_data_t
*pgdat
)
1998 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1999 struct zonelist
*zonelist
;
2000 struct zonelist_cache
*zlc
;
2003 zonelist
= pgdat
->node_zonelists
+ i
;
2004 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2005 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2006 for (z
= zonelist
->zones
; *z
; z
++)
2007 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
2012 #else /* CONFIG_NUMA */
2014 static void set_zonelist_order(void)
2016 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2019 static void build_zonelists(pg_data_t
*pgdat
)
2021 int node
, local_node
;
2024 local_node
= pgdat
->node_id
;
2025 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2026 struct zonelist
*zonelist
;
2028 zonelist
= pgdat
->node_zonelists
+ i
;
2030 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2032 * Now we build the zonelist so that it contains the zones
2033 * of all the other nodes.
2034 * We don't want to pressure a particular node, so when
2035 * building the zones for node N, we make sure that the
2036 * zones coming right after the local ones are those from
2037 * node N+1 (modulo N)
2039 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2040 if (!node_online(node
))
2042 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2044 for (node
= 0; node
< local_node
; node
++) {
2045 if (!node_online(node
))
2047 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2050 zonelist
->zones
[j
] = NULL
;
2054 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2055 static void build_zonelist_cache(pg_data_t
*pgdat
)
2059 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2060 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
2063 #endif /* CONFIG_NUMA */
2065 /* return values int ....just for stop_machine_run() */
2066 static int __build_all_zonelists(void *dummy
)
2070 for_each_online_node(nid
) {
2071 build_zonelists(NODE_DATA(nid
));
2072 build_zonelist_cache(NODE_DATA(nid
));
2077 void build_all_zonelists(void)
2079 set_zonelist_order();
2081 if (system_state
== SYSTEM_BOOTING
) {
2082 __build_all_zonelists(NULL
);
2083 cpuset_init_current_mems_allowed();
2085 /* we have to stop all cpus to guaranntee there is no user
2087 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2088 /* cpuset refresh routine should be here */
2090 vm_total_pages
= nr_free_pagecache_pages();
2091 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2093 zonelist_order_name
[current_zonelist_order
],
2096 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2101 * Helper functions to size the waitqueue hash table.
2102 * Essentially these want to choose hash table sizes sufficiently
2103 * large so that collisions trying to wait on pages are rare.
2104 * But in fact, the number of active page waitqueues on typical
2105 * systems is ridiculously low, less than 200. So this is even
2106 * conservative, even though it seems large.
2108 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2109 * waitqueues, i.e. the size of the waitq table given the number of pages.
2111 #define PAGES_PER_WAITQUEUE 256
2113 #ifndef CONFIG_MEMORY_HOTPLUG
2114 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2116 unsigned long size
= 1;
2118 pages
/= PAGES_PER_WAITQUEUE
;
2120 while (size
< pages
)
2124 * Once we have dozens or even hundreds of threads sleeping
2125 * on IO we've got bigger problems than wait queue collision.
2126 * Limit the size of the wait table to a reasonable size.
2128 size
= min(size
, 4096UL);
2130 return max(size
, 4UL);
2134 * A zone's size might be changed by hot-add, so it is not possible to determine
2135 * a suitable size for its wait_table. So we use the maximum size now.
2137 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2139 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2140 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2141 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2143 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2144 * or more by the traditional way. (See above). It equals:
2146 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2147 * ia64(16K page size) : = ( 8G + 4M)byte.
2148 * powerpc (64K page size) : = (32G +16M)byte.
2150 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2157 * This is an integer logarithm so that shifts can be used later
2158 * to extract the more random high bits from the multiplicative
2159 * hash function before the remainder is taken.
2161 static inline unsigned long wait_table_bits(unsigned long size
)
2166 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2169 * Initially all pages are reserved - free ones are freed
2170 * up by free_all_bootmem() once the early boot process is
2171 * done. Non-atomic initialization, single-pass.
2173 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2174 unsigned long start_pfn
, enum memmap_context context
)
2177 unsigned long end_pfn
= start_pfn
+ size
;
2180 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2182 * There can be holes in boot-time mem_map[]s
2183 * handed to this function. They do not
2184 * exist on hotplugged memory.
2186 if (context
== MEMMAP_EARLY
) {
2187 if (!early_pfn_valid(pfn
))
2189 if (!early_pfn_in_nid(pfn
, nid
))
2192 page
= pfn_to_page(pfn
);
2193 set_page_links(page
, zone
, nid
, pfn
);
2194 init_page_count(page
);
2195 reset_page_mapcount(page
);
2196 SetPageReserved(page
);
2197 INIT_LIST_HEAD(&page
->lru
);
2198 #ifdef WANT_PAGE_VIRTUAL
2199 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2200 if (!is_highmem_idx(zone
))
2201 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2206 static void __meminit
zone_init_free_lists(struct pglist_data
*pgdat
,
2207 struct zone
*zone
, unsigned long size
)
2210 for (order
= 0; order
< MAX_ORDER
; order
++) {
2211 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
2212 zone
->free_area
[order
].nr_free
= 0;
2216 #ifndef __HAVE_ARCH_MEMMAP_INIT
2217 #define memmap_init(size, nid, zone, start_pfn) \
2218 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2221 static int __devinit
zone_batchsize(struct zone
*zone
)
2226 * The per-cpu-pages pools are set to around 1000th of the
2227 * size of the zone. But no more than 1/2 of a meg.
2229 * OK, so we don't know how big the cache is. So guess.
2231 batch
= zone
->present_pages
/ 1024;
2232 if (batch
* PAGE_SIZE
> 512 * 1024)
2233 batch
= (512 * 1024) / PAGE_SIZE
;
2234 batch
/= 4; /* We effectively *= 4 below */
2239 * Clamp the batch to a 2^n - 1 value. Having a power
2240 * of 2 value was found to be more likely to have
2241 * suboptimal cache aliasing properties in some cases.
2243 * For example if 2 tasks are alternately allocating
2244 * batches of pages, one task can end up with a lot
2245 * of pages of one half of the possible page colors
2246 * and the other with pages of the other colors.
2248 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2253 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2255 struct per_cpu_pages
*pcp
;
2257 memset(p
, 0, sizeof(*p
));
2259 pcp
= &p
->pcp
[0]; /* hot */
2261 pcp
->high
= 6 * batch
;
2262 pcp
->batch
= max(1UL, 1 * batch
);
2263 INIT_LIST_HEAD(&pcp
->list
);
2265 pcp
= &p
->pcp
[1]; /* cold*/
2267 pcp
->high
= 2 * batch
;
2268 pcp
->batch
= max(1UL, batch
/2);
2269 INIT_LIST_HEAD(&pcp
->list
);
2273 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2274 * to the value high for the pageset p.
2277 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2280 struct per_cpu_pages
*pcp
;
2282 pcp
= &p
->pcp
[0]; /* hot list */
2284 pcp
->batch
= max(1UL, high
/4);
2285 if ((high
/4) > (PAGE_SHIFT
* 8))
2286 pcp
->batch
= PAGE_SHIFT
* 8;
2292 * Boot pageset table. One per cpu which is going to be used for all
2293 * zones and all nodes. The parameters will be set in such a way
2294 * that an item put on a list will immediately be handed over to
2295 * the buddy list. This is safe since pageset manipulation is done
2296 * with interrupts disabled.
2298 * Some NUMA counter updates may also be caught by the boot pagesets.
2300 * The boot_pagesets must be kept even after bootup is complete for
2301 * unused processors and/or zones. They do play a role for bootstrapping
2302 * hotplugged processors.
2304 * zoneinfo_show() and maybe other functions do
2305 * not check if the processor is online before following the pageset pointer.
2306 * Other parts of the kernel may not check if the zone is available.
2308 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2311 * Dynamically allocate memory for the
2312 * per cpu pageset array in struct zone.
2314 static int __cpuinit
process_zones(int cpu
)
2316 struct zone
*zone
, *dzone
;
2318 for_each_zone(zone
) {
2320 if (!populated_zone(zone
))
2323 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2324 GFP_KERNEL
, cpu_to_node(cpu
));
2325 if (!zone_pcp(zone
, cpu
))
2328 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2330 if (percpu_pagelist_fraction
)
2331 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2332 (zone
->present_pages
/ percpu_pagelist_fraction
));
2337 for_each_zone(dzone
) {
2340 kfree(zone_pcp(dzone
, cpu
));
2341 zone_pcp(dzone
, cpu
) = NULL
;
2346 static inline void free_zone_pagesets(int cpu
)
2350 for_each_zone(zone
) {
2351 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2353 /* Free per_cpu_pageset if it is slab allocated */
2354 if (pset
!= &boot_pageset
[cpu
])
2356 zone_pcp(zone
, cpu
) = NULL
;
2360 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2361 unsigned long action
,
2364 int cpu
= (long)hcpu
;
2365 int ret
= NOTIFY_OK
;
2368 case CPU_UP_PREPARE
:
2369 case CPU_UP_PREPARE_FROZEN
:
2370 if (process_zones(cpu
))
2373 case CPU_UP_CANCELED
:
2374 case CPU_UP_CANCELED_FROZEN
:
2376 case CPU_DEAD_FROZEN
:
2377 free_zone_pagesets(cpu
);
2385 static struct notifier_block __cpuinitdata pageset_notifier
=
2386 { &pageset_cpuup_callback
, NULL
, 0 };
2388 void __init
setup_per_cpu_pageset(void)
2392 /* Initialize per_cpu_pageset for cpu 0.
2393 * A cpuup callback will do this for every cpu
2394 * as it comes online
2396 err
= process_zones(smp_processor_id());
2398 register_cpu_notifier(&pageset_notifier
);
2403 static noinline __init_refok
2404 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2407 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2411 * The per-page waitqueue mechanism uses hashed waitqueues
2414 zone
->wait_table_hash_nr_entries
=
2415 wait_table_hash_nr_entries(zone_size_pages
);
2416 zone
->wait_table_bits
=
2417 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2418 alloc_size
= zone
->wait_table_hash_nr_entries
2419 * sizeof(wait_queue_head_t
);
2421 if (system_state
== SYSTEM_BOOTING
) {
2422 zone
->wait_table
= (wait_queue_head_t
*)
2423 alloc_bootmem_node(pgdat
, alloc_size
);
2426 * This case means that a zone whose size was 0 gets new memory
2427 * via memory hot-add.
2428 * But it may be the case that a new node was hot-added. In
2429 * this case vmalloc() will not be able to use this new node's
2430 * memory - this wait_table must be initialized to use this new
2431 * node itself as well.
2432 * To use this new node's memory, further consideration will be
2435 zone
->wait_table
= (wait_queue_head_t
*)vmalloc(alloc_size
);
2437 if (!zone
->wait_table
)
2440 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2441 init_waitqueue_head(zone
->wait_table
+ i
);
2446 static __meminit
void zone_pcp_init(struct zone
*zone
)
2449 unsigned long batch
= zone_batchsize(zone
);
2451 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2453 /* Early boot. Slab allocator not functional yet */
2454 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2455 setup_pageset(&boot_pageset
[cpu
],0);
2457 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2460 if (zone
->present_pages
)
2461 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2462 zone
->name
, zone
->present_pages
, batch
);
2465 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2466 unsigned long zone_start_pfn
,
2468 enum memmap_context context
)
2470 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2472 ret
= zone_wait_table_init(zone
, size
);
2475 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2477 zone
->zone_start_pfn
= zone_start_pfn
;
2479 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2481 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2486 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2488 * Basic iterator support. Return the first range of PFNs for a node
2489 * Note: nid == MAX_NUMNODES returns first region regardless of node
2491 static int __meminit
first_active_region_index_in_nid(int nid
)
2495 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2496 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2503 * Basic iterator support. Return the next active range of PFNs for a node
2504 * Note: nid == MAX_NUMNODES returns next region regardles of node
2506 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2508 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2509 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2515 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2517 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2518 * Architectures may implement their own version but if add_active_range()
2519 * was used and there are no special requirements, this is a convenient
2522 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2526 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2527 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2528 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2530 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2531 return early_node_map
[i
].nid
;
2536 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2538 /* Basic iterator support to walk early_node_map[] */
2539 #define for_each_active_range_index_in_nid(i, nid) \
2540 for (i = first_active_region_index_in_nid(nid); i != -1; \
2541 i = next_active_region_index_in_nid(i, nid))
2544 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2545 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2546 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2548 * If an architecture guarantees that all ranges registered with
2549 * add_active_ranges() contain no holes and may be freed, this
2550 * this function may be used instead of calling free_bootmem() manually.
2552 void __init
free_bootmem_with_active_regions(int nid
,
2553 unsigned long max_low_pfn
)
2557 for_each_active_range_index_in_nid(i
, nid
) {
2558 unsigned long size_pages
= 0;
2559 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2561 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2564 if (end_pfn
> max_low_pfn
)
2565 end_pfn
= max_low_pfn
;
2567 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2568 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2569 PFN_PHYS(early_node_map
[i
].start_pfn
),
2570 size_pages
<< PAGE_SHIFT
);
2575 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2576 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2578 * If an architecture guarantees that all ranges registered with
2579 * add_active_ranges() contain no holes and may be freed, this
2580 * function may be used instead of calling memory_present() manually.
2582 void __init
sparse_memory_present_with_active_regions(int nid
)
2586 for_each_active_range_index_in_nid(i
, nid
)
2587 memory_present(early_node_map
[i
].nid
,
2588 early_node_map
[i
].start_pfn
,
2589 early_node_map
[i
].end_pfn
);
2593 * push_node_boundaries - Push node boundaries to at least the requested boundary
2594 * @nid: The nid of the node to push the boundary for
2595 * @start_pfn: The start pfn of the node
2596 * @end_pfn: The end pfn of the node
2598 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2599 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2600 * be hotplugged even though no physical memory exists. This function allows
2601 * an arch to push out the node boundaries so mem_map is allocated that can
2604 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2605 void __init
push_node_boundaries(unsigned int nid
,
2606 unsigned long start_pfn
, unsigned long end_pfn
)
2608 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2609 nid
, start_pfn
, end_pfn
);
2611 /* Initialise the boundary for this node if necessary */
2612 if (node_boundary_end_pfn
[nid
] == 0)
2613 node_boundary_start_pfn
[nid
] = -1UL;
2615 /* Update the boundaries */
2616 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2617 node_boundary_start_pfn
[nid
] = start_pfn
;
2618 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2619 node_boundary_end_pfn
[nid
] = end_pfn
;
2622 /* If necessary, push the node boundary out for reserve hotadd */
2623 static void __meminit
account_node_boundary(unsigned int nid
,
2624 unsigned long *start_pfn
, unsigned long *end_pfn
)
2626 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2627 nid
, *start_pfn
, *end_pfn
);
2629 /* Return if boundary information has not been provided */
2630 if (node_boundary_end_pfn
[nid
] == 0)
2633 /* Check the boundaries and update if necessary */
2634 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2635 *start_pfn
= node_boundary_start_pfn
[nid
];
2636 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2637 *end_pfn
= node_boundary_end_pfn
[nid
];
2640 void __init
push_node_boundaries(unsigned int nid
,
2641 unsigned long start_pfn
, unsigned long end_pfn
) {}
2643 static void __meminit
account_node_boundary(unsigned int nid
,
2644 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
2649 * get_pfn_range_for_nid - Return the start and end page frames for a node
2650 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2651 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2652 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2654 * It returns the start and end page frame of a node based on information
2655 * provided by an arch calling add_active_range(). If called for a node
2656 * with no available memory, a warning is printed and the start and end
2659 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
2660 unsigned long *start_pfn
, unsigned long *end_pfn
)
2666 for_each_active_range_index_in_nid(i
, nid
) {
2667 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
2668 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
2671 if (*start_pfn
== -1UL) {
2672 printk(KERN_WARNING
"Node %u active with no memory\n", nid
);
2676 /* Push the node boundaries out if requested */
2677 account_node_boundary(nid
, start_pfn
, end_pfn
);
2681 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2682 * assumption is made that zones within a node are ordered in monotonic
2683 * increasing memory addresses so that the "highest" populated zone is used
2685 void __init
find_usable_zone_for_movable(void)
2688 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
2689 if (zone_index
== ZONE_MOVABLE
)
2692 if (arch_zone_highest_possible_pfn
[zone_index
] >
2693 arch_zone_lowest_possible_pfn
[zone_index
])
2697 VM_BUG_ON(zone_index
== -1);
2698 movable_zone
= zone_index
;
2702 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2703 * because it is sized independant of architecture. Unlike the other zones,
2704 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2705 * in each node depending on the size of each node and how evenly kernelcore
2706 * is distributed. This helper function adjusts the zone ranges
2707 * provided by the architecture for a given node by using the end of the
2708 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2709 * zones within a node are in order of monotonic increases memory addresses
2711 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
2712 unsigned long zone_type
,
2713 unsigned long node_start_pfn
,
2714 unsigned long node_end_pfn
,
2715 unsigned long *zone_start_pfn
,
2716 unsigned long *zone_end_pfn
)
2718 /* Only adjust if ZONE_MOVABLE is on this node */
2719 if (zone_movable_pfn
[nid
]) {
2720 /* Size ZONE_MOVABLE */
2721 if (zone_type
== ZONE_MOVABLE
) {
2722 *zone_start_pfn
= zone_movable_pfn
[nid
];
2723 *zone_end_pfn
= min(node_end_pfn
,
2724 arch_zone_highest_possible_pfn
[movable_zone
]);
2726 /* Adjust for ZONE_MOVABLE starting within this range */
2727 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
2728 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
2729 *zone_end_pfn
= zone_movable_pfn
[nid
];
2731 /* Check if this whole range is within ZONE_MOVABLE */
2732 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
2733 *zone_start_pfn
= *zone_end_pfn
;
2738 * Return the number of pages a zone spans in a node, including holes
2739 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2741 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
2742 unsigned long zone_type
,
2743 unsigned long *ignored
)
2745 unsigned long node_start_pfn
, node_end_pfn
;
2746 unsigned long zone_start_pfn
, zone_end_pfn
;
2748 /* Get the start and end of the node and zone */
2749 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2750 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
2751 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
2752 adjust_zone_range_for_zone_movable(nid
, zone_type
,
2753 node_start_pfn
, node_end_pfn
,
2754 &zone_start_pfn
, &zone_end_pfn
);
2756 /* Check that this node has pages within the zone's required range */
2757 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
2760 /* Move the zone boundaries inside the node if necessary */
2761 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
2762 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
2764 /* Return the spanned pages */
2765 return zone_end_pfn
- zone_start_pfn
;
2769 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2770 * then all holes in the requested range will be accounted for.
2772 unsigned long __meminit
__absent_pages_in_range(int nid
,
2773 unsigned long range_start_pfn
,
2774 unsigned long range_end_pfn
)
2777 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
2778 unsigned long start_pfn
;
2780 /* Find the end_pfn of the first active range of pfns in the node */
2781 i
= first_active_region_index_in_nid(nid
);
2785 /* Account for ranges before physical memory on this node */
2786 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
2787 hole_pages
= early_node_map
[i
].start_pfn
- range_start_pfn
;
2789 prev_end_pfn
= early_node_map
[i
].start_pfn
;
2791 /* Find all holes for the zone within the node */
2792 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
2794 /* No need to continue if prev_end_pfn is outside the zone */
2795 if (prev_end_pfn
>= range_end_pfn
)
2798 /* Make sure the end of the zone is not within the hole */
2799 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
2800 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
2802 /* Update the hole size cound and move on */
2803 if (start_pfn
> range_start_pfn
) {
2804 BUG_ON(prev_end_pfn
> start_pfn
);
2805 hole_pages
+= start_pfn
- prev_end_pfn
;
2807 prev_end_pfn
= early_node_map
[i
].end_pfn
;
2810 /* Account for ranges past physical memory on this node */
2811 if (range_end_pfn
> prev_end_pfn
)
2812 hole_pages
+= range_end_pfn
-
2813 max(range_start_pfn
, prev_end_pfn
);
2819 * absent_pages_in_range - Return number of page frames in holes within a range
2820 * @start_pfn: The start PFN to start searching for holes
2821 * @end_pfn: The end PFN to stop searching for holes
2823 * It returns the number of pages frames in memory holes within a range.
2825 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
2826 unsigned long end_pfn
)
2828 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
2831 /* Return the number of page frames in holes in a zone on a node */
2832 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
2833 unsigned long zone_type
,
2834 unsigned long *ignored
)
2836 unsigned long node_start_pfn
, node_end_pfn
;
2837 unsigned long zone_start_pfn
, zone_end_pfn
;
2839 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
2840 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
2842 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
2845 adjust_zone_range_for_zone_movable(nid
, zone_type
,
2846 node_start_pfn
, node_end_pfn
,
2847 &zone_start_pfn
, &zone_end_pfn
);
2848 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
2852 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
2853 unsigned long zone_type
,
2854 unsigned long *zones_size
)
2856 return zones_size
[zone_type
];
2859 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
2860 unsigned long zone_type
,
2861 unsigned long *zholes_size
)
2866 return zholes_size
[zone_type
];
2871 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
2872 unsigned long *zones_size
, unsigned long *zholes_size
)
2874 unsigned long realtotalpages
, totalpages
= 0;
2877 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2878 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
2880 pgdat
->node_spanned_pages
= totalpages
;
2882 realtotalpages
= totalpages
;
2883 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2885 zone_absent_pages_in_node(pgdat
->node_id
, i
,
2887 pgdat
->node_present_pages
= realtotalpages
;
2888 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
2893 * Set up the zone data structures:
2894 * - mark all pages reserved
2895 * - mark all memory queues empty
2896 * - clear the memory bitmaps
2898 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
2899 unsigned long *zones_size
, unsigned long *zholes_size
)
2902 int nid
= pgdat
->node_id
;
2903 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2906 pgdat_resize_init(pgdat
);
2907 pgdat
->nr_zones
= 0;
2908 init_waitqueue_head(&pgdat
->kswapd_wait
);
2909 pgdat
->kswapd_max_order
= 0;
2911 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2912 struct zone
*zone
= pgdat
->node_zones
+ j
;
2913 unsigned long size
, realsize
, memmap_pages
;
2915 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
2916 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
2920 * Adjust realsize so that it accounts for how much memory
2921 * is used by this zone for memmap. This affects the watermark
2922 * and per-cpu initialisations
2924 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
2925 if (realsize
>= memmap_pages
) {
2926 realsize
-= memmap_pages
;
2928 " %s zone: %lu pages used for memmap\n",
2929 zone_names
[j
], memmap_pages
);
2932 " %s zone: %lu pages exceeds realsize %lu\n",
2933 zone_names
[j
], memmap_pages
, realsize
);
2935 /* Account for reserved pages */
2936 if (j
== 0 && realsize
> dma_reserve
) {
2937 realsize
-= dma_reserve
;
2938 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
2939 zone_names
[0], dma_reserve
);
2942 if (!is_highmem_idx(j
))
2943 nr_kernel_pages
+= realsize
;
2944 nr_all_pages
+= realsize
;
2946 zone
->spanned_pages
= size
;
2947 zone
->present_pages
= realsize
;
2950 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
2952 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
2954 zone
->name
= zone_names
[j
];
2955 spin_lock_init(&zone
->lock
);
2956 spin_lock_init(&zone
->lru_lock
);
2957 zone_seqlock_init(zone
);
2958 zone
->zone_pgdat
= pgdat
;
2960 zone
->prev_priority
= DEF_PRIORITY
;
2962 zone_pcp_init(zone
);
2963 INIT_LIST_HEAD(&zone
->active_list
);
2964 INIT_LIST_HEAD(&zone
->inactive_list
);
2965 zone
->nr_scan_active
= 0;
2966 zone
->nr_scan_inactive
= 0;
2967 zap_zone_vm_stats(zone
);
2968 atomic_set(&zone
->reclaim_in_progress
, 0);
2972 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
2973 size
, MEMMAP_EARLY
);
2975 zone_start_pfn
+= size
;
2979 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
2981 /* Skip empty nodes */
2982 if (!pgdat
->node_spanned_pages
)
2985 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2986 /* ia64 gets its own node_mem_map, before this, without bootmem */
2987 if (!pgdat
->node_mem_map
) {
2988 unsigned long size
, start
, end
;
2992 * The zone's endpoints aren't required to be MAX_ORDER
2993 * aligned but the node_mem_map endpoints must be in order
2994 * for the buddy allocator to function correctly.
2996 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
2997 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
2998 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
2999 size
= (end
- start
) * sizeof(struct page
);
3000 map
= alloc_remap(pgdat
->node_id
, size
);
3002 map
= alloc_bootmem_node(pgdat
, size
);
3003 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3005 #ifndef CONFIG_NEED_MULTIPLE_NODES
3007 * With no DISCONTIG, the global mem_map is just set as node 0's
3009 if (pgdat
== NODE_DATA(0)) {
3010 mem_map
= NODE_DATA(0)->node_mem_map
;
3011 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3012 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3013 mem_map
-= pgdat
->node_start_pfn
;
3014 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3017 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3020 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3021 unsigned long *zones_size
, unsigned long node_start_pfn
,
3022 unsigned long *zholes_size
)
3024 pgdat
->node_id
= nid
;
3025 pgdat
->node_start_pfn
= node_start_pfn
;
3026 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3028 alloc_node_mem_map(pgdat
);
3030 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3033 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3035 #if MAX_NUMNODES > 1
3037 * Figure out the number of possible node ids.
3039 static void __init
setup_nr_node_ids(void)
3042 unsigned int highest
= 0;
3044 for_each_node_mask(node
, node_possible_map
)
3046 nr_node_ids
= highest
+ 1;
3049 static inline void setup_nr_node_ids(void)
3055 * add_active_range - Register a range of PFNs backed by physical memory
3056 * @nid: The node ID the range resides on
3057 * @start_pfn: The start PFN of the available physical memory
3058 * @end_pfn: The end PFN of the available physical memory
3060 * These ranges are stored in an early_node_map[] and later used by
3061 * free_area_init_nodes() to calculate zone sizes and holes. If the
3062 * range spans a memory hole, it is up to the architecture to ensure
3063 * the memory is not freed by the bootmem allocator. If possible
3064 * the range being registered will be merged with existing ranges.
3066 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3067 unsigned long end_pfn
)
3071 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3072 "%d entries of %d used\n",
3073 nid
, start_pfn
, end_pfn
,
3074 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3076 /* Merge with existing active regions if possible */
3077 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3078 if (early_node_map
[i
].nid
!= nid
)
3081 /* Skip if an existing region covers this new one */
3082 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3083 end_pfn
<= early_node_map
[i
].end_pfn
)
3086 /* Merge forward if suitable */
3087 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3088 end_pfn
> early_node_map
[i
].end_pfn
) {
3089 early_node_map
[i
].end_pfn
= end_pfn
;
3093 /* Merge backward if suitable */
3094 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3095 end_pfn
>= early_node_map
[i
].start_pfn
) {
3096 early_node_map
[i
].start_pfn
= start_pfn
;
3101 /* Check that early_node_map is large enough */
3102 if (i
>= MAX_ACTIVE_REGIONS
) {
3103 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3104 MAX_ACTIVE_REGIONS
);
3108 early_node_map
[i
].nid
= nid
;
3109 early_node_map
[i
].start_pfn
= start_pfn
;
3110 early_node_map
[i
].end_pfn
= end_pfn
;
3111 nr_nodemap_entries
= i
+ 1;
3115 * shrink_active_range - Shrink an existing registered range of PFNs
3116 * @nid: The node id the range is on that should be shrunk
3117 * @old_end_pfn: The old end PFN of the range
3118 * @new_end_pfn: The new PFN of the range
3120 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3121 * The map is kept at the end physical page range that has already been
3122 * registered with add_active_range(). This function allows an arch to shrink
3123 * an existing registered range.
3125 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3126 unsigned long new_end_pfn
)
3130 /* Find the old active region end and shrink */
3131 for_each_active_range_index_in_nid(i
, nid
)
3132 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3133 early_node_map
[i
].end_pfn
= new_end_pfn
;
3139 * remove_all_active_ranges - Remove all currently registered regions
3141 * During discovery, it may be found that a table like SRAT is invalid
3142 * and an alternative discovery method must be used. This function removes
3143 * all currently registered regions.
3145 void __init
remove_all_active_ranges(void)
3147 memset(early_node_map
, 0, sizeof(early_node_map
));
3148 nr_nodemap_entries
= 0;
3149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3150 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3151 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3155 /* Compare two active node_active_regions */
3156 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3158 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3159 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3161 /* Done this way to avoid overflows */
3162 if (arange
->start_pfn
> brange
->start_pfn
)
3164 if (arange
->start_pfn
< brange
->start_pfn
)
3170 /* sort the node_map by start_pfn */
3171 static void __init
sort_node_map(void)
3173 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3174 sizeof(struct node_active_region
),
3175 cmp_node_active_region
, NULL
);
3178 /* Find the lowest pfn for a node */
3179 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3182 unsigned long min_pfn
= ULONG_MAX
;
3184 /* Assuming a sorted map, the first range found has the starting pfn */
3185 for_each_active_range_index_in_nid(i
, nid
)
3186 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3188 if (min_pfn
== ULONG_MAX
) {
3190 "Could not find start_pfn for node %lu\n", nid
);
3198 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3200 * It returns the minimum PFN based on information provided via
3201 * add_active_range().
3203 unsigned long __init
find_min_pfn_with_active_regions(void)
3205 return find_min_pfn_for_node(MAX_NUMNODES
);
3209 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3211 * It returns the maximum PFN based on information provided via
3212 * add_active_range().
3214 unsigned long __init
find_max_pfn_with_active_regions(void)
3217 unsigned long max_pfn
= 0;
3219 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3220 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3225 unsigned long __init
early_calculate_totalpages(void)
3228 unsigned long totalpages
= 0;
3230 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3231 totalpages
+= early_node_map
[i
].end_pfn
-
3232 early_node_map
[i
].start_pfn
;
3238 * Find the PFN the Movable zone begins in each node. Kernel memory
3239 * is spread evenly between nodes as long as the nodes have enough
3240 * memory. When they don't, some nodes will have more kernelcore than
3243 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3246 unsigned long usable_startpfn
;
3247 unsigned long kernelcore_node
, kernelcore_remaining
;
3248 int usable_nodes
= num_online_nodes();
3251 * If movablecore was specified, calculate what size of
3252 * kernelcore that corresponds so that memory usable for
3253 * any allocation type is evenly spread. If both kernelcore
3254 * and movablecore are specified, then the value of kernelcore
3255 * will be used for required_kernelcore if it's greater than
3256 * what movablecore would have allowed.
3258 if (required_movablecore
) {
3259 unsigned long totalpages
= early_calculate_totalpages();
3260 unsigned long corepages
;
3263 * Round-up so that ZONE_MOVABLE is at least as large as what
3264 * was requested by the user
3266 required_movablecore
=
3267 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3268 corepages
= totalpages
- required_movablecore
;
3270 required_kernelcore
= max(required_kernelcore
, corepages
);
3273 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3274 if (!required_kernelcore
)
3277 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3278 find_usable_zone_for_movable();
3279 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3282 /* Spread kernelcore memory as evenly as possible throughout nodes */
3283 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3284 for_each_online_node(nid
) {
3286 * Recalculate kernelcore_node if the division per node
3287 * now exceeds what is necessary to satisfy the requested
3288 * amount of memory for the kernel
3290 if (required_kernelcore
< kernelcore_node
)
3291 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3294 * As the map is walked, we track how much memory is usable
3295 * by the kernel using kernelcore_remaining. When it is
3296 * 0, the rest of the node is usable by ZONE_MOVABLE
3298 kernelcore_remaining
= kernelcore_node
;
3300 /* Go through each range of PFNs within this node */
3301 for_each_active_range_index_in_nid(i
, nid
) {
3302 unsigned long start_pfn
, end_pfn
;
3303 unsigned long size_pages
;
3305 start_pfn
= max(early_node_map
[i
].start_pfn
,
3306 zone_movable_pfn
[nid
]);
3307 end_pfn
= early_node_map
[i
].end_pfn
;
3308 if (start_pfn
>= end_pfn
)
3311 /* Account for what is only usable for kernelcore */
3312 if (start_pfn
< usable_startpfn
) {
3313 unsigned long kernel_pages
;
3314 kernel_pages
= min(end_pfn
, usable_startpfn
)
3317 kernelcore_remaining
-= min(kernel_pages
,
3318 kernelcore_remaining
);
3319 required_kernelcore
-= min(kernel_pages
,
3320 required_kernelcore
);
3322 /* Continue if range is now fully accounted */
3323 if (end_pfn
<= usable_startpfn
) {
3326 * Push zone_movable_pfn to the end so
3327 * that if we have to rebalance
3328 * kernelcore across nodes, we will
3329 * not double account here
3331 zone_movable_pfn
[nid
] = end_pfn
;
3334 start_pfn
= usable_startpfn
;
3338 * The usable PFN range for ZONE_MOVABLE is from
3339 * start_pfn->end_pfn. Calculate size_pages as the
3340 * number of pages used as kernelcore
3342 size_pages
= end_pfn
- start_pfn
;
3343 if (size_pages
> kernelcore_remaining
)
3344 size_pages
= kernelcore_remaining
;
3345 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3348 * Some kernelcore has been met, update counts and
3349 * break if the kernelcore for this node has been
3352 required_kernelcore
-= min(required_kernelcore
,
3354 kernelcore_remaining
-= size_pages
;
3355 if (!kernelcore_remaining
)
3361 * If there is still required_kernelcore, we do another pass with one
3362 * less node in the count. This will push zone_movable_pfn[nid] further
3363 * along on the nodes that still have memory until kernelcore is
3367 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3370 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3371 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3372 zone_movable_pfn
[nid
] =
3373 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3377 * free_area_init_nodes - Initialise all pg_data_t and zone data
3378 * @max_zone_pfn: an array of max PFNs for each zone
3380 * This will call free_area_init_node() for each active node in the system.
3381 * Using the page ranges provided by add_active_range(), the size of each
3382 * zone in each node and their holes is calculated. If the maximum PFN
3383 * between two adjacent zones match, it is assumed that the zone is empty.
3384 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3385 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3386 * starts where the previous one ended. For example, ZONE_DMA32 starts
3387 * at arch_max_dma_pfn.
3389 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3394 /* Sort early_node_map as initialisation assumes it is sorted */
3397 /* Record where the zone boundaries are */
3398 memset(arch_zone_lowest_possible_pfn
, 0,
3399 sizeof(arch_zone_lowest_possible_pfn
));
3400 memset(arch_zone_highest_possible_pfn
, 0,
3401 sizeof(arch_zone_highest_possible_pfn
));
3402 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3403 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3404 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3405 if (i
== ZONE_MOVABLE
)
3407 arch_zone_lowest_possible_pfn
[i
] =
3408 arch_zone_highest_possible_pfn
[i
-1];
3409 arch_zone_highest_possible_pfn
[i
] =
3410 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3412 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3413 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3415 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3416 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3417 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3419 /* Print out the zone ranges */
3420 printk("Zone PFN ranges:\n");
3421 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3422 if (i
== ZONE_MOVABLE
)
3424 printk(" %-8s %8lu -> %8lu\n",
3426 arch_zone_lowest_possible_pfn
[i
],
3427 arch_zone_highest_possible_pfn
[i
]);
3430 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3431 printk("Movable zone start PFN for each node\n");
3432 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3433 if (zone_movable_pfn
[i
])
3434 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3437 /* Print out the early_node_map[] */
3438 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3439 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3440 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3441 early_node_map
[i
].start_pfn
,
3442 early_node_map
[i
].end_pfn
);
3444 /* Initialise every node */
3445 setup_nr_node_ids();
3446 for_each_online_node(nid
) {
3447 pg_data_t
*pgdat
= NODE_DATA(nid
);
3448 free_area_init_node(nid
, pgdat
, NULL
,
3449 find_min_pfn_for_node(nid
), NULL
);
3453 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3455 unsigned long long coremem
;
3459 coremem
= memparse(p
, &p
);
3460 *core
= coremem
>> PAGE_SHIFT
;
3462 /* Paranoid check that UL is enough for the coremem value */
3463 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3469 * kernelcore=size sets the amount of memory for use for allocations that
3470 * cannot be reclaimed or migrated.
3472 static int __init
cmdline_parse_kernelcore(char *p
)
3474 return cmdline_parse_core(p
, &required_kernelcore
);
3478 * movablecore=size sets the amount of memory for use for allocations that
3479 * can be reclaimed or migrated.
3481 static int __init
cmdline_parse_movablecore(char *p
)
3483 return cmdline_parse_core(p
, &required_movablecore
);
3486 early_param("kernelcore", cmdline_parse_kernelcore
);
3487 early_param("movablecore", cmdline_parse_movablecore
);
3489 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3492 * set_dma_reserve - set the specified number of pages reserved in the first zone
3493 * @new_dma_reserve: The number of pages to mark reserved
3495 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3496 * In the DMA zone, a significant percentage may be consumed by kernel image
3497 * and other unfreeable allocations which can skew the watermarks badly. This
3498 * function may optionally be used to account for unfreeable pages in the
3499 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3500 * smaller per-cpu batchsize.
3502 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3504 dma_reserve
= new_dma_reserve
;
3507 #ifndef CONFIG_NEED_MULTIPLE_NODES
3508 static bootmem_data_t contig_bootmem_data
;
3509 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3511 EXPORT_SYMBOL(contig_page_data
);
3514 void __init
free_area_init(unsigned long *zones_size
)
3516 free_area_init_node(0, NODE_DATA(0), zones_size
,
3517 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3520 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3521 unsigned long action
, void *hcpu
)
3523 int cpu
= (unsigned long)hcpu
;
3525 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3526 local_irq_disable();
3528 vm_events_fold_cpu(cpu
);
3530 refresh_cpu_vm_stats(cpu
);
3535 void __init
page_alloc_init(void)
3537 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3541 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3542 * or min_free_kbytes changes.
3544 static void calculate_totalreserve_pages(void)
3546 struct pglist_data
*pgdat
;
3547 unsigned long reserve_pages
= 0;
3548 enum zone_type i
, j
;
3550 for_each_online_pgdat(pgdat
) {
3551 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3552 struct zone
*zone
= pgdat
->node_zones
+ i
;
3553 unsigned long max
= 0;
3555 /* Find valid and maximum lowmem_reserve in the zone */
3556 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
3557 if (zone
->lowmem_reserve
[j
] > max
)
3558 max
= zone
->lowmem_reserve
[j
];
3561 /* we treat pages_high as reserved pages. */
3562 max
+= zone
->pages_high
;
3564 if (max
> zone
->present_pages
)
3565 max
= zone
->present_pages
;
3566 reserve_pages
+= max
;
3569 totalreserve_pages
= reserve_pages
;
3573 * setup_per_zone_lowmem_reserve - called whenever
3574 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3575 * has a correct pages reserved value, so an adequate number of
3576 * pages are left in the zone after a successful __alloc_pages().
3578 static void setup_per_zone_lowmem_reserve(void)
3580 struct pglist_data
*pgdat
;
3581 enum zone_type j
, idx
;
3583 for_each_online_pgdat(pgdat
) {
3584 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3585 struct zone
*zone
= pgdat
->node_zones
+ j
;
3586 unsigned long present_pages
= zone
->present_pages
;
3588 zone
->lowmem_reserve
[j
] = 0;
3592 struct zone
*lower_zone
;
3596 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
3597 sysctl_lowmem_reserve_ratio
[idx
] = 1;
3599 lower_zone
= pgdat
->node_zones
+ idx
;
3600 lower_zone
->lowmem_reserve
[j
] = present_pages
/
3601 sysctl_lowmem_reserve_ratio
[idx
];
3602 present_pages
+= lower_zone
->present_pages
;
3607 /* update totalreserve_pages */
3608 calculate_totalreserve_pages();
3612 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3614 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3615 * with respect to min_free_kbytes.
3617 void setup_per_zone_pages_min(void)
3619 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
3620 unsigned long lowmem_pages
= 0;
3622 unsigned long flags
;
3624 /* Calculate total number of !ZONE_HIGHMEM pages */
3625 for_each_zone(zone
) {
3626 if (!is_highmem(zone
))
3627 lowmem_pages
+= zone
->present_pages
;
3630 for_each_zone(zone
) {
3633 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3634 tmp
= (u64
)pages_min
* zone
->present_pages
;
3635 do_div(tmp
, lowmem_pages
);
3636 if (is_highmem(zone
)) {
3638 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3639 * need highmem pages, so cap pages_min to a small
3642 * The (pages_high-pages_low) and (pages_low-pages_min)
3643 * deltas controls asynch page reclaim, and so should
3644 * not be capped for highmem.
3648 min_pages
= zone
->present_pages
/ 1024;
3649 if (min_pages
< SWAP_CLUSTER_MAX
)
3650 min_pages
= SWAP_CLUSTER_MAX
;
3651 if (min_pages
> 128)
3653 zone
->pages_min
= min_pages
;
3656 * If it's a lowmem zone, reserve a number of pages
3657 * proportionate to the zone's size.
3659 zone
->pages_min
= tmp
;
3662 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
3663 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
3664 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3667 /* update totalreserve_pages */
3668 calculate_totalreserve_pages();
3672 * Initialise min_free_kbytes.
3674 * For small machines we want it small (128k min). For large machines
3675 * we want it large (64MB max). But it is not linear, because network
3676 * bandwidth does not increase linearly with machine size. We use
3678 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3679 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3695 static int __init
init_per_zone_pages_min(void)
3697 unsigned long lowmem_kbytes
;
3699 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
3701 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
3702 if (min_free_kbytes
< 128)
3703 min_free_kbytes
= 128;
3704 if (min_free_kbytes
> 65536)
3705 min_free_kbytes
= 65536;
3706 setup_per_zone_pages_min();
3707 setup_per_zone_lowmem_reserve();
3710 module_init(init_per_zone_pages_min
)
3713 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3714 * that we can call two helper functions whenever min_free_kbytes
3717 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
3718 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3720 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
3722 setup_per_zone_pages_min();
3727 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
3728 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3733 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3738 zone
->min_unmapped_pages
= (zone
->present_pages
*
3739 sysctl_min_unmapped_ratio
) / 100;
3743 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
3744 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3749 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3754 zone
->min_slab_pages
= (zone
->present_pages
*
3755 sysctl_min_slab_ratio
) / 100;
3761 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3762 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3763 * whenever sysctl_lowmem_reserve_ratio changes.
3765 * The reserve ratio obviously has absolutely no relation with the
3766 * pages_min watermarks. The lowmem reserve ratio can only make sense
3767 * if in function of the boot time zone sizes.
3769 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
3770 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3772 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3773 setup_per_zone_lowmem_reserve();
3778 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3779 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3780 * can have before it gets flushed back to buddy allocator.
3783 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
3784 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
3790 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
3791 if (!write
|| (ret
== -EINVAL
))
3793 for_each_zone(zone
) {
3794 for_each_online_cpu(cpu
) {
3796 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
3797 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
3803 int hashdist
= HASHDIST_DEFAULT
;
3806 static int __init
set_hashdist(char *str
)
3810 hashdist
= simple_strtoul(str
, &str
, 0);
3813 __setup("hashdist=", set_hashdist
);
3817 * allocate a large system hash table from bootmem
3818 * - it is assumed that the hash table must contain an exact power-of-2
3819 * quantity of entries
3820 * - limit is the number of hash buckets, not the total allocation size
3822 void *__init
alloc_large_system_hash(const char *tablename
,
3823 unsigned long bucketsize
,
3824 unsigned long numentries
,
3827 unsigned int *_hash_shift
,
3828 unsigned int *_hash_mask
,
3829 unsigned long limit
)
3831 unsigned long long max
= limit
;
3832 unsigned long log2qty
, size
;
3835 /* allow the kernel cmdline to have a say */
3837 /* round applicable memory size up to nearest megabyte */
3838 numentries
= nr_kernel_pages
;
3839 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
3840 numentries
>>= 20 - PAGE_SHIFT
;
3841 numentries
<<= 20 - PAGE_SHIFT
;
3843 /* limit to 1 bucket per 2^scale bytes of low memory */
3844 if (scale
> PAGE_SHIFT
)
3845 numentries
>>= (scale
- PAGE_SHIFT
);
3847 numentries
<<= (PAGE_SHIFT
- scale
);
3849 /* Make sure we've got at least a 0-order allocation.. */
3850 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
3851 numentries
= PAGE_SIZE
/ bucketsize
;
3853 numentries
= roundup_pow_of_two(numentries
);
3855 /* limit allocation size to 1/16 total memory by default */
3857 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
3858 do_div(max
, bucketsize
);
3861 if (numentries
> max
)
3864 log2qty
= ilog2(numentries
);
3867 size
= bucketsize
<< log2qty
;
3868 if (flags
& HASH_EARLY
)
3869 table
= alloc_bootmem(size
);
3871 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
3873 unsigned long order
;
3874 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
3876 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
3878 * If bucketsize is not a power-of-two, we may free
3879 * some pages at the end of hash table.
3882 unsigned long alloc_end
= (unsigned long)table
+
3883 (PAGE_SIZE
<< order
);
3884 unsigned long used
= (unsigned long)table
+
3886 split_page(virt_to_page(table
), order
);
3887 while (used
< alloc_end
) {
3893 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
3896 panic("Failed to allocate %s hash table\n", tablename
);
3898 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
3901 ilog2(size
) - PAGE_SHIFT
,
3905 *_hash_shift
= log2qty
;
3907 *_hash_mask
= (1 << log2qty
) - 1;
3912 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3913 struct page
*pfn_to_page(unsigned long pfn
)
3915 return __pfn_to_page(pfn
);
3917 unsigned long page_to_pfn(struct page
*page
)
3919 return __page_to_pfn(page
);
3921 EXPORT_SYMBOL(pfn_to_page
);
3922 EXPORT_SYMBOL(page_to_pfn
);
3923 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */