memcg: add inactive_anon_is_low()
[linux-2.6/verdex.git] / mm / memcontrol.c
blob6611328460e91a15bbc4d304cadc369cdfb9b600
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
41 #include <asm/uaccess.h>
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account (0)
52 #endif
56 * Statistics for memory cgroup.
58 enum mem_cgroup_stat_index {
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
67 MEM_CGROUP_STAT_NSTATS,
70 struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72 } ____cacheline_aligned_in_smp;
74 struct mem_cgroup_stat {
75 struct mem_cgroup_stat_cpu cpustat[0];
79 * For accounting under irq disable, no need for increment preempt count.
81 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82 enum mem_cgroup_stat_index idx, int val)
84 stat->count[idx] += val;
87 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
98 * per-zone information in memory controller.
100 struct mem_cgroup_per_zone {
102 * spin_lock to protect the per cgroup LRU
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
107 /* Macro for accessing counter */
108 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
110 struct mem_cgroup_per_node {
111 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
114 struct mem_cgroup_lru_info {
115 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
129 struct mem_cgroup {
130 struct cgroup_subsys_state css;
132 * the counter to account for memory usage
134 struct res_counter res;
136 * the counter to account for mem+swap usage.
138 struct res_counter memsw;
140 * Per cgroup active and inactive list, similar to the
141 * per zone LRU lists.
143 struct mem_cgroup_lru_info info;
145 int prev_priority; /* for recording reclaim priority */
148 * While reclaiming in a hiearchy, we cache the last child we
149 * reclaimed from. Protected by cgroup_lock()
151 struct mem_cgroup *last_scanned_child;
153 * Should the accounting and control be hierarchical, per subtree?
155 bool use_hierarchy;
156 unsigned long last_oom_jiffies;
157 int obsolete;
158 atomic_t refcnt;
160 unsigned int inactive_ratio;
163 * statistics. This must be placed at the end of memcg.
165 struct mem_cgroup_stat stat;
168 enum charge_type {
169 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
170 MEM_CGROUP_CHARGE_TYPE_MAPPED,
171 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
172 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
173 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
174 NR_CHARGE_TYPE,
177 /* only for here (for easy reading.) */
178 #define PCGF_CACHE (1UL << PCG_CACHE)
179 #define PCGF_USED (1UL << PCG_USED)
180 #define PCGF_LOCK (1UL << PCG_LOCK)
181 static const unsigned long
182 pcg_default_flags[NR_CHARGE_TYPE] = {
183 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
184 PCGF_USED | PCGF_LOCK, /* Anon */
185 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
186 0, /* FORCE */
190 /* for encoding cft->private value on file */
191 #define _MEM (0)
192 #define _MEMSWAP (1)
193 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
194 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
195 #define MEMFILE_ATTR(val) ((val) & 0xffff)
197 static void mem_cgroup_get(struct mem_cgroup *mem);
198 static void mem_cgroup_put(struct mem_cgroup *mem);
200 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
201 struct page_cgroup *pc,
202 bool charge)
204 int val = (charge)? 1 : -1;
205 struct mem_cgroup_stat *stat = &mem->stat;
206 struct mem_cgroup_stat_cpu *cpustat;
207 int cpu = get_cpu();
209 cpustat = &stat->cpustat[cpu];
210 if (PageCgroupCache(pc))
211 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
212 else
213 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
215 if (charge)
216 __mem_cgroup_stat_add_safe(cpustat,
217 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
218 else
219 __mem_cgroup_stat_add_safe(cpustat,
220 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
221 put_cpu();
224 static struct mem_cgroup_per_zone *
225 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
227 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
230 static struct mem_cgroup_per_zone *
231 page_cgroup_zoneinfo(struct page_cgroup *pc)
233 struct mem_cgroup *mem = pc->mem_cgroup;
234 int nid = page_cgroup_nid(pc);
235 int zid = page_cgroup_zid(pc);
237 if (!mem)
238 return NULL;
240 return mem_cgroup_zoneinfo(mem, nid, zid);
243 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
244 enum lru_list idx)
246 int nid, zid;
247 struct mem_cgroup_per_zone *mz;
248 u64 total = 0;
250 for_each_online_node(nid)
251 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
252 mz = mem_cgroup_zoneinfo(mem, nid, zid);
253 total += MEM_CGROUP_ZSTAT(mz, idx);
255 return total;
258 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
260 return container_of(cgroup_subsys_state(cont,
261 mem_cgroup_subsys_id), struct mem_cgroup,
262 css);
265 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
268 * mm_update_next_owner() may clear mm->owner to NULL
269 * if it races with swapoff, page migration, etc.
270 * So this can be called with p == NULL.
272 if (unlikely(!p))
273 return NULL;
275 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
276 struct mem_cgroup, css);
280 * Following LRU functions are allowed to be used without PCG_LOCK.
281 * Operations are called by routine of global LRU independently from memcg.
282 * What we have to take care of here is validness of pc->mem_cgroup.
284 * Changes to pc->mem_cgroup happens when
285 * 1. charge
286 * 2. moving account
287 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
288 * It is added to LRU before charge.
289 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
290 * When moving account, the page is not on LRU. It's isolated.
293 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
295 struct page_cgroup *pc;
296 struct mem_cgroup *mem;
297 struct mem_cgroup_per_zone *mz;
299 if (mem_cgroup_disabled())
300 return;
301 pc = lookup_page_cgroup(page);
302 /* can happen while we handle swapcache. */
303 if (list_empty(&pc->lru))
304 return;
305 mz = page_cgroup_zoneinfo(pc);
306 mem = pc->mem_cgroup;
307 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
308 list_del_init(&pc->lru);
309 return;
312 void mem_cgroup_del_lru(struct page *page)
314 mem_cgroup_del_lru_list(page, page_lru(page));
317 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
319 struct mem_cgroup_per_zone *mz;
320 struct page_cgroup *pc;
322 if (mem_cgroup_disabled())
323 return;
325 pc = lookup_page_cgroup(page);
326 smp_rmb();
327 /* unused page is not rotated. */
328 if (!PageCgroupUsed(pc))
329 return;
330 mz = page_cgroup_zoneinfo(pc);
331 list_move(&pc->lru, &mz->lists[lru]);
334 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
336 struct page_cgroup *pc;
337 struct mem_cgroup_per_zone *mz;
339 if (mem_cgroup_disabled())
340 return;
341 pc = lookup_page_cgroup(page);
342 /* barrier to sync with "charge" */
343 smp_rmb();
344 if (!PageCgroupUsed(pc))
345 return;
347 mz = page_cgroup_zoneinfo(pc);
348 MEM_CGROUP_ZSTAT(mz, lru) += 1;
349 list_add(&pc->lru, &mz->lists[lru]);
352 * To add swapcache into LRU. Be careful to all this function.
353 * zone->lru_lock shouldn't be held and irq must not be disabled.
355 static void mem_cgroup_lru_fixup(struct page *page)
357 if (!isolate_lru_page(page))
358 putback_lru_page(page);
361 void mem_cgroup_move_lists(struct page *page,
362 enum lru_list from, enum lru_list to)
364 if (mem_cgroup_disabled())
365 return;
366 mem_cgroup_del_lru_list(page, from);
367 mem_cgroup_add_lru_list(page, to);
370 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
372 int ret;
374 task_lock(task);
375 ret = task->mm && mm_match_cgroup(task->mm, mem);
376 task_unlock(task);
377 return ret;
381 * Calculate mapped_ratio under memory controller. This will be used in
382 * vmscan.c for deteremining we have to reclaim mapped pages.
384 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
386 long total, rss;
389 * usage is recorded in bytes. But, here, we assume the number of
390 * physical pages can be represented by "long" on any arch.
392 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
393 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
394 return (int)((rss * 100L) / total);
398 * prev_priority control...this will be used in memory reclaim path.
400 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
402 return mem->prev_priority;
405 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
407 if (priority < mem->prev_priority)
408 mem->prev_priority = priority;
411 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
413 mem->prev_priority = priority;
417 * Calculate # of pages to be scanned in this priority/zone.
418 * See also vmscan.c
420 * priority starts from "DEF_PRIORITY" and decremented in each loop.
421 * (see include/linux/mmzone.h)
424 long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
425 int priority, enum lru_list lru)
427 long nr_pages;
428 int nid = zone->zone_pgdat->node_id;
429 int zid = zone_idx(zone);
430 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
432 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
434 return (nr_pages >> priority);
437 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
439 unsigned long active;
440 unsigned long inactive;
442 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
443 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
445 if (inactive * memcg->inactive_ratio < active)
446 return 1;
448 return 0;
451 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
452 struct list_head *dst,
453 unsigned long *scanned, int order,
454 int mode, struct zone *z,
455 struct mem_cgroup *mem_cont,
456 int active, int file)
458 unsigned long nr_taken = 0;
459 struct page *page;
460 unsigned long scan;
461 LIST_HEAD(pc_list);
462 struct list_head *src;
463 struct page_cgroup *pc, *tmp;
464 int nid = z->zone_pgdat->node_id;
465 int zid = zone_idx(z);
466 struct mem_cgroup_per_zone *mz;
467 int lru = LRU_FILE * !!file + !!active;
469 BUG_ON(!mem_cont);
470 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
471 src = &mz->lists[lru];
473 scan = 0;
474 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
475 if (scan >= nr_to_scan)
476 break;
478 page = pc->page;
479 if (unlikely(!PageCgroupUsed(pc)))
480 continue;
481 if (unlikely(!PageLRU(page)))
482 continue;
484 scan++;
485 if (__isolate_lru_page(page, mode, file) == 0) {
486 list_move(&page->lru, dst);
487 nr_taken++;
491 *scanned = scan;
492 return nr_taken;
495 #define mem_cgroup_from_res_counter(counter, member) \
496 container_of(counter, struct mem_cgroup, member)
499 * This routine finds the DFS walk successor. This routine should be
500 * called with cgroup_mutex held
502 static struct mem_cgroup *
503 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
505 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
507 curr_cgroup = curr->css.cgroup;
508 root_cgroup = root_mem->css.cgroup;
510 if (!list_empty(&curr_cgroup->children)) {
512 * Walk down to children
514 mem_cgroup_put(curr);
515 cgroup = list_entry(curr_cgroup->children.next,
516 struct cgroup, sibling);
517 curr = mem_cgroup_from_cont(cgroup);
518 mem_cgroup_get(curr);
519 goto done;
522 visit_parent:
523 if (curr_cgroup == root_cgroup) {
524 mem_cgroup_put(curr);
525 curr = root_mem;
526 mem_cgroup_get(curr);
527 goto done;
531 * Goto next sibling
533 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
534 mem_cgroup_put(curr);
535 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
536 sibling);
537 curr = mem_cgroup_from_cont(cgroup);
538 mem_cgroup_get(curr);
539 goto done;
543 * Go up to next parent and next parent's sibling if need be
545 curr_cgroup = curr_cgroup->parent;
546 goto visit_parent;
548 done:
549 root_mem->last_scanned_child = curr;
550 return curr;
554 * Visit the first child (need not be the first child as per the ordering
555 * of the cgroup list, since we track last_scanned_child) of @mem and use
556 * that to reclaim free pages from.
558 static struct mem_cgroup *
559 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
561 struct cgroup *cgroup;
562 struct mem_cgroup *ret;
563 bool obsolete = (root_mem->last_scanned_child &&
564 root_mem->last_scanned_child->obsolete);
567 * Scan all children under the mem_cgroup mem
569 cgroup_lock();
570 if (list_empty(&root_mem->css.cgroup->children)) {
571 ret = root_mem;
572 goto done;
575 if (!root_mem->last_scanned_child || obsolete) {
577 if (obsolete)
578 mem_cgroup_put(root_mem->last_scanned_child);
580 cgroup = list_first_entry(&root_mem->css.cgroup->children,
581 struct cgroup, sibling);
582 ret = mem_cgroup_from_cont(cgroup);
583 mem_cgroup_get(ret);
584 } else
585 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
586 root_mem);
588 done:
589 root_mem->last_scanned_child = ret;
590 cgroup_unlock();
591 return ret;
594 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
596 if (do_swap_account) {
597 if (res_counter_check_under_limit(&mem->res) &&
598 res_counter_check_under_limit(&mem->memsw))
599 return true;
600 } else
601 if (res_counter_check_under_limit(&mem->res))
602 return true;
603 return false;
607 * Dance down the hierarchy if needed to reclaim memory. We remember the
608 * last child we reclaimed from, so that we don't end up penalizing
609 * one child extensively based on its position in the children list.
611 * root_mem is the original ancestor that we've been reclaim from.
613 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
614 gfp_t gfp_mask, bool noswap)
616 struct mem_cgroup *next_mem;
617 int ret = 0;
620 * Reclaim unconditionally and don't check for return value.
621 * We need to reclaim in the current group and down the tree.
622 * One might think about checking for children before reclaiming,
623 * but there might be left over accounting, even after children
624 * have left.
626 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
627 if (mem_cgroup_check_under_limit(root_mem))
628 return 0;
629 if (!root_mem->use_hierarchy)
630 return ret;
632 next_mem = mem_cgroup_get_first_node(root_mem);
634 while (next_mem != root_mem) {
635 if (next_mem->obsolete) {
636 mem_cgroup_put(next_mem);
637 cgroup_lock();
638 next_mem = mem_cgroup_get_first_node(root_mem);
639 cgroup_unlock();
640 continue;
642 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
643 if (mem_cgroup_check_under_limit(root_mem))
644 return 0;
645 cgroup_lock();
646 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
647 cgroup_unlock();
649 return ret;
652 bool mem_cgroup_oom_called(struct task_struct *task)
654 bool ret = false;
655 struct mem_cgroup *mem;
656 struct mm_struct *mm;
658 rcu_read_lock();
659 mm = task->mm;
660 if (!mm)
661 mm = &init_mm;
662 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
663 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
664 ret = true;
665 rcu_read_unlock();
666 return ret;
669 * Unlike exported interface, "oom" parameter is added. if oom==true,
670 * oom-killer can be invoked.
672 static int __mem_cgroup_try_charge(struct mm_struct *mm,
673 gfp_t gfp_mask, struct mem_cgroup **memcg,
674 bool oom)
676 struct mem_cgroup *mem, *mem_over_limit;
677 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
678 struct res_counter *fail_res;
680 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
681 /* Don't account this! */
682 *memcg = NULL;
683 return 0;
687 * We always charge the cgroup the mm_struct belongs to.
688 * The mm_struct's mem_cgroup changes on task migration if the
689 * thread group leader migrates. It's possible that mm is not
690 * set, if so charge the init_mm (happens for pagecache usage).
692 if (likely(!*memcg)) {
693 rcu_read_lock();
694 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
695 if (unlikely(!mem)) {
696 rcu_read_unlock();
697 return 0;
700 * For every charge from the cgroup, increment reference count
702 css_get(&mem->css);
703 *memcg = mem;
704 rcu_read_unlock();
705 } else {
706 mem = *memcg;
707 css_get(&mem->css);
710 while (1) {
711 int ret;
712 bool noswap = false;
714 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
715 if (likely(!ret)) {
716 if (!do_swap_account)
717 break;
718 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
719 &fail_res);
720 if (likely(!ret))
721 break;
722 /* mem+swap counter fails */
723 res_counter_uncharge(&mem->res, PAGE_SIZE);
724 noswap = true;
725 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
726 memsw);
727 } else
728 /* mem counter fails */
729 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
730 res);
732 if (!(gfp_mask & __GFP_WAIT))
733 goto nomem;
735 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
736 noswap);
739 * try_to_free_mem_cgroup_pages() might not give us a full
740 * picture of reclaim. Some pages are reclaimed and might be
741 * moved to swap cache or just unmapped from the cgroup.
742 * Check the limit again to see if the reclaim reduced the
743 * current usage of the cgroup before giving up
746 if (mem_cgroup_check_under_limit(mem_over_limit))
747 continue;
749 if (!nr_retries--) {
750 if (oom) {
751 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
752 mem_over_limit->last_oom_jiffies = jiffies;
754 goto nomem;
757 return 0;
758 nomem:
759 css_put(&mem->css);
760 return -ENOMEM;
764 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
765 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
766 * @gfp_mask: gfp_mask for reclaim.
767 * @memcg: a pointer to memory cgroup which is charged against.
769 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
770 * memory cgroup from @mm is got and stored in *memcg.
772 * Returns 0 if success. -ENOMEM at failure.
773 * This call can invoke OOM-Killer.
776 int mem_cgroup_try_charge(struct mm_struct *mm,
777 gfp_t mask, struct mem_cgroup **memcg)
779 return __mem_cgroup_try_charge(mm, mask, memcg, true);
783 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
784 * USED state. If already USED, uncharge and return.
787 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
788 struct page_cgroup *pc,
789 enum charge_type ctype)
791 /* try_charge() can return NULL to *memcg, taking care of it. */
792 if (!mem)
793 return;
795 lock_page_cgroup(pc);
796 if (unlikely(PageCgroupUsed(pc))) {
797 unlock_page_cgroup(pc);
798 res_counter_uncharge(&mem->res, PAGE_SIZE);
799 if (do_swap_account)
800 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
801 css_put(&mem->css);
802 return;
804 pc->mem_cgroup = mem;
805 smp_wmb();
806 pc->flags = pcg_default_flags[ctype];
808 mem_cgroup_charge_statistics(mem, pc, true);
810 unlock_page_cgroup(pc);
814 * mem_cgroup_move_account - move account of the page
815 * @pc: page_cgroup of the page.
816 * @from: mem_cgroup which the page is moved from.
817 * @to: mem_cgroup which the page is moved to. @from != @to.
819 * The caller must confirm following.
820 * - page is not on LRU (isolate_page() is useful.)
822 * returns 0 at success,
823 * returns -EBUSY when lock is busy or "pc" is unstable.
825 * This function does "uncharge" from old cgroup but doesn't do "charge" to
826 * new cgroup. It should be done by a caller.
829 static int mem_cgroup_move_account(struct page_cgroup *pc,
830 struct mem_cgroup *from, struct mem_cgroup *to)
832 struct mem_cgroup_per_zone *from_mz, *to_mz;
833 int nid, zid;
834 int ret = -EBUSY;
836 VM_BUG_ON(from == to);
837 VM_BUG_ON(PageLRU(pc->page));
839 nid = page_cgroup_nid(pc);
840 zid = page_cgroup_zid(pc);
841 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
842 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
844 if (!trylock_page_cgroup(pc))
845 return ret;
847 if (!PageCgroupUsed(pc))
848 goto out;
850 if (pc->mem_cgroup != from)
851 goto out;
853 css_put(&from->css);
854 res_counter_uncharge(&from->res, PAGE_SIZE);
855 mem_cgroup_charge_statistics(from, pc, false);
856 if (do_swap_account)
857 res_counter_uncharge(&from->memsw, PAGE_SIZE);
858 pc->mem_cgroup = to;
859 mem_cgroup_charge_statistics(to, pc, true);
860 css_get(&to->css);
861 ret = 0;
862 out:
863 unlock_page_cgroup(pc);
864 return ret;
868 * move charges to its parent.
871 static int mem_cgroup_move_parent(struct page_cgroup *pc,
872 struct mem_cgroup *child,
873 gfp_t gfp_mask)
875 struct page *page = pc->page;
876 struct cgroup *cg = child->css.cgroup;
877 struct cgroup *pcg = cg->parent;
878 struct mem_cgroup *parent;
879 int ret;
881 /* Is ROOT ? */
882 if (!pcg)
883 return -EINVAL;
886 parent = mem_cgroup_from_cont(pcg);
889 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
890 if (ret || !parent)
891 return ret;
893 if (!get_page_unless_zero(page))
894 return -EBUSY;
896 ret = isolate_lru_page(page);
898 if (ret)
899 goto cancel;
901 ret = mem_cgroup_move_account(pc, child, parent);
903 /* drop extra refcnt by try_charge() (move_account increment one) */
904 css_put(&parent->css);
905 putback_lru_page(page);
906 if (!ret) {
907 put_page(page);
908 return 0;
910 /* uncharge if move fails */
911 cancel:
912 res_counter_uncharge(&parent->res, PAGE_SIZE);
913 if (do_swap_account)
914 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
915 put_page(page);
916 return ret;
920 * Charge the memory controller for page usage.
921 * Return
922 * 0 if the charge was successful
923 * < 0 if the cgroup is over its limit
925 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
926 gfp_t gfp_mask, enum charge_type ctype,
927 struct mem_cgroup *memcg)
929 struct mem_cgroup *mem;
930 struct page_cgroup *pc;
931 int ret;
933 pc = lookup_page_cgroup(page);
934 /* can happen at boot */
935 if (unlikely(!pc))
936 return 0;
937 prefetchw(pc);
939 mem = memcg;
940 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
941 if (ret || !mem)
942 return ret;
944 __mem_cgroup_commit_charge(mem, pc, ctype);
945 return 0;
948 int mem_cgroup_newpage_charge(struct page *page,
949 struct mm_struct *mm, gfp_t gfp_mask)
951 if (mem_cgroup_disabled())
952 return 0;
953 if (PageCompound(page))
954 return 0;
956 * If already mapped, we don't have to account.
957 * If page cache, page->mapping has address_space.
958 * But page->mapping may have out-of-use anon_vma pointer,
959 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
960 * is NULL.
962 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
963 return 0;
964 if (unlikely(!mm))
965 mm = &init_mm;
966 return mem_cgroup_charge_common(page, mm, gfp_mask,
967 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
970 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
971 gfp_t gfp_mask)
973 if (mem_cgroup_disabled())
974 return 0;
975 if (PageCompound(page))
976 return 0;
978 * Corner case handling. This is called from add_to_page_cache()
979 * in usual. But some FS (shmem) precharges this page before calling it
980 * and call add_to_page_cache() with GFP_NOWAIT.
982 * For GFP_NOWAIT case, the page may be pre-charged before calling
983 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
984 * charge twice. (It works but has to pay a bit larger cost.)
986 if (!(gfp_mask & __GFP_WAIT)) {
987 struct page_cgroup *pc;
990 pc = lookup_page_cgroup(page);
991 if (!pc)
992 return 0;
993 lock_page_cgroup(pc);
994 if (PageCgroupUsed(pc)) {
995 unlock_page_cgroup(pc);
996 return 0;
998 unlock_page_cgroup(pc);
1001 if (unlikely(!mm))
1002 mm = &init_mm;
1004 if (page_is_file_cache(page))
1005 return mem_cgroup_charge_common(page, mm, gfp_mask,
1006 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1007 else
1008 return mem_cgroup_charge_common(page, mm, gfp_mask,
1009 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1012 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1013 struct page *page,
1014 gfp_t mask, struct mem_cgroup **ptr)
1016 struct mem_cgroup *mem;
1017 swp_entry_t ent;
1019 if (mem_cgroup_disabled())
1020 return 0;
1022 if (!do_swap_account)
1023 goto charge_cur_mm;
1026 * A racing thread's fault, or swapoff, may have already updated
1027 * the pte, and even removed page from swap cache: return success
1028 * to go on to do_swap_page()'s pte_same() test, which should fail.
1030 if (!PageSwapCache(page))
1031 return 0;
1033 ent.val = page_private(page);
1035 mem = lookup_swap_cgroup(ent);
1036 if (!mem || mem->obsolete)
1037 goto charge_cur_mm;
1038 *ptr = mem;
1039 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1040 charge_cur_mm:
1041 if (unlikely(!mm))
1042 mm = &init_mm;
1043 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1046 #ifdef CONFIG_SWAP
1048 int mem_cgroup_cache_charge_swapin(struct page *page,
1049 struct mm_struct *mm, gfp_t mask, bool locked)
1051 int ret = 0;
1053 if (mem_cgroup_disabled())
1054 return 0;
1055 if (unlikely(!mm))
1056 mm = &init_mm;
1057 if (!locked)
1058 lock_page(page);
1060 * If not locked, the page can be dropped from SwapCache until
1061 * we reach here.
1063 if (PageSwapCache(page)) {
1064 struct mem_cgroup *mem = NULL;
1065 swp_entry_t ent;
1067 ent.val = page_private(page);
1068 if (do_swap_account) {
1069 mem = lookup_swap_cgroup(ent);
1070 if (mem && mem->obsolete)
1071 mem = NULL;
1072 if (mem)
1073 mm = NULL;
1075 ret = mem_cgroup_charge_common(page, mm, mask,
1076 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1078 if (!ret && do_swap_account) {
1079 /* avoid double counting */
1080 mem = swap_cgroup_record(ent, NULL);
1081 if (mem) {
1082 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1083 mem_cgroup_put(mem);
1087 if (!locked)
1088 unlock_page(page);
1089 /* add this page(page_cgroup) to the LRU we want. */
1090 mem_cgroup_lru_fixup(page);
1092 return ret;
1094 #endif
1096 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1098 struct page_cgroup *pc;
1100 if (mem_cgroup_disabled())
1101 return;
1102 if (!ptr)
1103 return;
1104 pc = lookup_page_cgroup(page);
1105 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1107 * Now swap is on-memory. This means this page may be
1108 * counted both as mem and swap....double count.
1109 * Fix it by uncharging from memsw. This SwapCache is stable
1110 * because we're still under lock_page().
1112 if (do_swap_account) {
1113 swp_entry_t ent = {.val = page_private(page)};
1114 struct mem_cgroup *memcg;
1115 memcg = swap_cgroup_record(ent, NULL);
1116 if (memcg) {
1117 /* If memcg is obsolete, memcg can be != ptr */
1118 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1119 mem_cgroup_put(memcg);
1123 /* add this page(page_cgroup) to the LRU we want. */
1124 mem_cgroup_lru_fixup(page);
1127 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1129 if (mem_cgroup_disabled())
1130 return;
1131 if (!mem)
1132 return;
1133 res_counter_uncharge(&mem->res, PAGE_SIZE);
1134 if (do_swap_account)
1135 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1136 css_put(&mem->css);
1141 * uncharge if !page_mapped(page)
1143 static struct mem_cgroup *
1144 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1146 struct page_cgroup *pc;
1147 struct mem_cgroup *mem = NULL;
1148 struct mem_cgroup_per_zone *mz;
1150 if (mem_cgroup_disabled())
1151 return NULL;
1153 if (PageSwapCache(page))
1154 return NULL;
1157 * Check if our page_cgroup is valid
1159 pc = lookup_page_cgroup(page);
1160 if (unlikely(!pc || !PageCgroupUsed(pc)))
1161 return NULL;
1163 lock_page_cgroup(pc);
1165 mem = pc->mem_cgroup;
1167 if (!PageCgroupUsed(pc))
1168 goto unlock_out;
1170 switch (ctype) {
1171 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1172 if (page_mapped(page))
1173 goto unlock_out;
1174 break;
1175 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1176 if (!PageAnon(page)) { /* Shared memory */
1177 if (page->mapping && !page_is_file_cache(page))
1178 goto unlock_out;
1179 } else if (page_mapped(page)) /* Anon */
1180 goto unlock_out;
1181 break;
1182 default:
1183 break;
1186 res_counter_uncharge(&mem->res, PAGE_SIZE);
1187 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1188 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1190 mem_cgroup_charge_statistics(mem, pc, false);
1191 ClearPageCgroupUsed(pc);
1193 mz = page_cgroup_zoneinfo(pc);
1194 unlock_page_cgroup(pc);
1196 /* at swapout, this memcg will be accessed to record to swap */
1197 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1198 css_put(&mem->css);
1200 return mem;
1202 unlock_out:
1203 unlock_page_cgroup(pc);
1204 return NULL;
1207 void mem_cgroup_uncharge_page(struct page *page)
1209 /* early check. */
1210 if (page_mapped(page))
1211 return;
1212 if (page->mapping && !PageAnon(page))
1213 return;
1214 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1217 void mem_cgroup_uncharge_cache_page(struct page *page)
1219 VM_BUG_ON(page_mapped(page));
1220 VM_BUG_ON(page->mapping);
1221 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1225 * called from __delete_from_swap_cache() and drop "page" account.
1226 * memcg information is recorded to swap_cgroup of "ent"
1228 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1230 struct mem_cgroup *memcg;
1232 memcg = __mem_cgroup_uncharge_common(page,
1233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1234 /* record memcg information */
1235 if (do_swap_account && memcg) {
1236 swap_cgroup_record(ent, memcg);
1237 mem_cgroup_get(memcg);
1239 if (memcg)
1240 css_put(&memcg->css);
1243 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1245 * called from swap_entry_free(). remove record in swap_cgroup and
1246 * uncharge "memsw" account.
1248 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1250 struct mem_cgroup *memcg;
1252 if (!do_swap_account)
1253 return;
1255 memcg = swap_cgroup_record(ent, NULL);
1256 if (memcg) {
1257 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1258 mem_cgroup_put(memcg);
1261 #endif
1264 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1265 * page belongs to.
1267 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1269 struct page_cgroup *pc;
1270 struct mem_cgroup *mem = NULL;
1271 int ret = 0;
1273 if (mem_cgroup_disabled())
1274 return 0;
1276 pc = lookup_page_cgroup(page);
1277 lock_page_cgroup(pc);
1278 if (PageCgroupUsed(pc)) {
1279 mem = pc->mem_cgroup;
1280 css_get(&mem->css);
1282 unlock_page_cgroup(pc);
1284 if (mem) {
1285 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1286 css_put(&mem->css);
1288 *ptr = mem;
1289 return ret;
1292 /* remove redundant charge if migration failed*/
1293 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1294 struct page *oldpage, struct page *newpage)
1296 struct page *target, *unused;
1297 struct page_cgroup *pc;
1298 enum charge_type ctype;
1300 if (!mem)
1301 return;
1303 /* at migration success, oldpage->mapping is NULL. */
1304 if (oldpage->mapping) {
1305 target = oldpage;
1306 unused = NULL;
1307 } else {
1308 target = newpage;
1309 unused = oldpage;
1312 if (PageAnon(target))
1313 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1314 else if (page_is_file_cache(target))
1315 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1316 else
1317 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1319 /* unused page is not on radix-tree now. */
1320 if (unused)
1321 __mem_cgroup_uncharge_common(unused, ctype);
1323 pc = lookup_page_cgroup(target);
1325 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1326 * So, double-counting is effectively avoided.
1328 __mem_cgroup_commit_charge(mem, pc, ctype);
1331 * Both of oldpage and newpage are still under lock_page().
1332 * Then, we don't have to care about race in radix-tree.
1333 * But we have to be careful that this page is unmapped or not.
1335 * There is a case for !page_mapped(). At the start of
1336 * migration, oldpage was mapped. But now, it's zapped.
1337 * But we know *target* page is not freed/reused under us.
1338 * mem_cgroup_uncharge_page() does all necessary checks.
1340 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1341 mem_cgroup_uncharge_page(target);
1345 * A call to try to shrink memory usage under specified resource controller.
1346 * This is typically used for page reclaiming for shmem for reducing side
1347 * effect of page allocation from shmem, which is used by some mem_cgroup.
1349 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1351 struct mem_cgroup *mem;
1352 int progress = 0;
1353 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1355 if (mem_cgroup_disabled())
1356 return 0;
1357 if (!mm)
1358 return 0;
1360 rcu_read_lock();
1361 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1362 if (unlikely(!mem)) {
1363 rcu_read_unlock();
1364 return 0;
1366 css_get(&mem->css);
1367 rcu_read_unlock();
1369 do {
1370 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
1371 progress += mem_cgroup_check_under_limit(mem);
1372 } while (!progress && --retry);
1374 css_put(&mem->css);
1375 if (!retry)
1376 return -ENOMEM;
1377 return 0;
1381 * The inactive anon list should be small enough that the VM never has to
1382 * do too much work, but large enough that each inactive page has a chance
1383 * to be referenced again before it is swapped out.
1385 * this calculation is straightforward porting from
1386 * page_alloc.c::setup_per_zone_inactive_ratio().
1387 * it describe more detail.
1389 static void mem_cgroup_set_inactive_ratio(struct mem_cgroup *memcg)
1391 unsigned int gb, ratio;
1393 gb = res_counter_read_u64(&memcg->res, RES_LIMIT) >> 30;
1394 if (gb)
1395 ratio = int_sqrt(10 * gb);
1396 else
1397 ratio = 1;
1399 memcg->inactive_ratio = ratio;
1403 static DEFINE_MUTEX(set_limit_mutex);
1405 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1406 unsigned long long val)
1409 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1410 int progress;
1411 u64 memswlimit;
1412 int ret = 0;
1414 while (retry_count) {
1415 if (signal_pending(current)) {
1416 ret = -EINTR;
1417 break;
1420 * Rather than hide all in some function, I do this in
1421 * open coded manner. You see what this really does.
1422 * We have to guarantee mem->res.limit < mem->memsw.limit.
1424 mutex_lock(&set_limit_mutex);
1425 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1426 if (memswlimit < val) {
1427 ret = -EINVAL;
1428 mutex_unlock(&set_limit_mutex);
1429 break;
1431 ret = res_counter_set_limit(&memcg->res, val);
1432 mutex_unlock(&set_limit_mutex);
1434 if (!ret)
1435 break;
1437 progress = try_to_free_mem_cgroup_pages(memcg,
1438 GFP_KERNEL, false);
1439 if (!progress) retry_count--;
1442 if (!ret)
1443 mem_cgroup_set_inactive_ratio(memcg);
1445 return ret;
1448 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1449 unsigned long long val)
1451 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1452 u64 memlimit, oldusage, curusage;
1453 int ret;
1455 if (!do_swap_account)
1456 return -EINVAL;
1458 while (retry_count) {
1459 if (signal_pending(current)) {
1460 ret = -EINTR;
1461 break;
1464 * Rather than hide all in some function, I do this in
1465 * open coded manner. You see what this really does.
1466 * We have to guarantee mem->res.limit < mem->memsw.limit.
1468 mutex_lock(&set_limit_mutex);
1469 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1470 if (memlimit > val) {
1471 ret = -EINVAL;
1472 mutex_unlock(&set_limit_mutex);
1473 break;
1475 ret = res_counter_set_limit(&memcg->memsw, val);
1476 mutex_unlock(&set_limit_mutex);
1478 if (!ret)
1479 break;
1481 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1482 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
1483 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1484 if (curusage >= oldusage)
1485 retry_count--;
1487 return ret;
1491 * This routine traverse page_cgroup in given list and drop them all.
1492 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1494 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1495 int node, int zid, enum lru_list lru)
1497 struct zone *zone;
1498 struct mem_cgroup_per_zone *mz;
1499 struct page_cgroup *pc, *busy;
1500 unsigned long flags, loop;
1501 struct list_head *list;
1502 int ret = 0;
1504 zone = &NODE_DATA(node)->node_zones[zid];
1505 mz = mem_cgroup_zoneinfo(mem, node, zid);
1506 list = &mz->lists[lru];
1508 loop = MEM_CGROUP_ZSTAT(mz, lru);
1509 /* give some margin against EBUSY etc...*/
1510 loop += 256;
1511 busy = NULL;
1512 while (loop--) {
1513 ret = 0;
1514 spin_lock_irqsave(&zone->lru_lock, flags);
1515 if (list_empty(list)) {
1516 spin_unlock_irqrestore(&zone->lru_lock, flags);
1517 break;
1519 pc = list_entry(list->prev, struct page_cgroup, lru);
1520 if (busy == pc) {
1521 list_move(&pc->lru, list);
1522 busy = 0;
1523 spin_unlock_irqrestore(&zone->lru_lock, flags);
1524 continue;
1526 spin_unlock_irqrestore(&zone->lru_lock, flags);
1528 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1529 if (ret == -ENOMEM)
1530 break;
1532 if (ret == -EBUSY || ret == -EINVAL) {
1533 /* found lock contention or "pc" is obsolete. */
1534 busy = pc;
1535 cond_resched();
1536 } else
1537 busy = NULL;
1540 if (!ret && !list_empty(list))
1541 return -EBUSY;
1542 return ret;
1546 * make mem_cgroup's charge to be 0 if there is no task.
1547 * This enables deleting this mem_cgroup.
1549 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1551 int ret;
1552 int node, zid, shrink;
1553 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1554 struct cgroup *cgrp = mem->css.cgroup;
1556 css_get(&mem->css);
1558 shrink = 0;
1559 /* should free all ? */
1560 if (free_all)
1561 goto try_to_free;
1562 move_account:
1563 while (mem->res.usage > 0) {
1564 ret = -EBUSY;
1565 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1566 goto out;
1567 ret = -EINTR;
1568 if (signal_pending(current))
1569 goto out;
1570 /* This is for making all *used* pages to be on LRU. */
1571 lru_add_drain_all();
1572 ret = 0;
1573 for_each_node_state(node, N_POSSIBLE) {
1574 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1575 enum lru_list l;
1576 for_each_lru(l) {
1577 ret = mem_cgroup_force_empty_list(mem,
1578 node, zid, l);
1579 if (ret)
1580 break;
1583 if (ret)
1584 break;
1586 /* it seems parent cgroup doesn't have enough mem */
1587 if (ret == -ENOMEM)
1588 goto try_to_free;
1589 cond_resched();
1591 ret = 0;
1592 out:
1593 css_put(&mem->css);
1594 return ret;
1596 try_to_free:
1597 /* returns EBUSY if there is a task or if we come here twice. */
1598 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1599 ret = -EBUSY;
1600 goto out;
1602 /* we call try-to-free pages for make this cgroup empty */
1603 lru_add_drain_all();
1604 /* try to free all pages in this cgroup */
1605 shrink = 1;
1606 while (nr_retries && mem->res.usage > 0) {
1607 int progress;
1609 if (signal_pending(current)) {
1610 ret = -EINTR;
1611 goto out;
1613 progress = try_to_free_mem_cgroup_pages(mem,
1614 GFP_KERNEL, false);
1615 if (!progress) {
1616 nr_retries--;
1617 /* maybe some writeback is necessary */
1618 congestion_wait(WRITE, HZ/10);
1622 lru_add_drain();
1623 /* try move_account...there may be some *locked* pages. */
1624 if (mem->res.usage)
1625 goto move_account;
1626 ret = 0;
1627 goto out;
1630 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1632 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1636 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1638 return mem_cgroup_from_cont(cont)->use_hierarchy;
1641 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1642 u64 val)
1644 int retval = 0;
1645 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1646 struct cgroup *parent = cont->parent;
1647 struct mem_cgroup *parent_mem = NULL;
1649 if (parent)
1650 parent_mem = mem_cgroup_from_cont(parent);
1652 cgroup_lock();
1654 * If parent's use_hiearchy is set, we can't make any modifications
1655 * in the child subtrees. If it is unset, then the change can
1656 * occur, provided the current cgroup has no children.
1658 * For the root cgroup, parent_mem is NULL, we allow value to be
1659 * set if there are no children.
1661 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1662 (val == 1 || val == 0)) {
1663 if (list_empty(&cont->children))
1664 mem->use_hierarchy = val;
1665 else
1666 retval = -EBUSY;
1667 } else
1668 retval = -EINVAL;
1669 cgroup_unlock();
1671 return retval;
1674 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1676 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1677 u64 val = 0;
1678 int type, name;
1680 type = MEMFILE_TYPE(cft->private);
1681 name = MEMFILE_ATTR(cft->private);
1682 switch (type) {
1683 case _MEM:
1684 val = res_counter_read_u64(&mem->res, name);
1685 break;
1686 case _MEMSWAP:
1687 if (do_swap_account)
1688 val = res_counter_read_u64(&mem->memsw, name);
1689 break;
1690 default:
1691 BUG();
1692 break;
1694 return val;
1697 * The user of this function is...
1698 * RES_LIMIT.
1700 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1701 const char *buffer)
1703 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1704 int type, name;
1705 unsigned long long val;
1706 int ret;
1708 type = MEMFILE_TYPE(cft->private);
1709 name = MEMFILE_ATTR(cft->private);
1710 switch (name) {
1711 case RES_LIMIT:
1712 /* This function does all necessary parse...reuse it */
1713 ret = res_counter_memparse_write_strategy(buffer, &val);
1714 if (ret)
1715 break;
1716 if (type == _MEM)
1717 ret = mem_cgroup_resize_limit(memcg, val);
1718 else
1719 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1720 break;
1721 default:
1722 ret = -EINVAL; /* should be BUG() ? */
1723 break;
1725 return ret;
1728 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1730 struct mem_cgroup *mem;
1731 int type, name;
1733 mem = mem_cgroup_from_cont(cont);
1734 type = MEMFILE_TYPE(event);
1735 name = MEMFILE_ATTR(event);
1736 switch (name) {
1737 case RES_MAX_USAGE:
1738 if (type == _MEM)
1739 res_counter_reset_max(&mem->res);
1740 else
1741 res_counter_reset_max(&mem->memsw);
1742 break;
1743 case RES_FAILCNT:
1744 if (type == _MEM)
1745 res_counter_reset_failcnt(&mem->res);
1746 else
1747 res_counter_reset_failcnt(&mem->memsw);
1748 break;
1750 return 0;
1753 static const struct mem_cgroup_stat_desc {
1754 const char *msg;
1755 u64 unit;
1756 } mem_cgroup_stat_desc[] = {
1757 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1758 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1759 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1760 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1763 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1764 struct cgroup_map_cb *cb)
1766 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1767 struct mem_cgroup_stat *stat = &mem_cont->stat;
1768 int i;
1770 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1771 s64 val;
1773 val = mem_cgroup_read_stat(stat, i);
1774 val *= mem_cgroup_stat_desc[i].unit;
1775 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1777 /* showing # of active pages */
1779 unsigned long active_anon, inactive_anon;
1780 unsigned long active_file, inactive_file;
1781 unsigned long unevictable;
1783 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1784 LRU_INACTIVE_ANON);
1785 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1786 LRU_ACTIVE_ANON);
1787 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1788 LRU_INACTIVE_FILE);
1789 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1790 LRU_ACTIVE_FILE);
1791 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1792 LRU_UNEVICTABLE);
1794 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1795 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1796 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1797 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1798 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1801 return 0;
1805 static struct cftype mem_cgroup_files[] = {
1807 .name = "usage_in_bytes",
1808 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1809 .read_u64 = mem_cgroup_read,
1812 .name = "max_usage_in_bytes",
1813 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1814 .trigger = mem_cgroup_reset,
1815 .read_u64 = mem_cgroup_read,
1818 .name = "limit_in_bytes",
1819 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1820 .write_string = mem_cgroup_write,
1821 .read_u64 = mem_cgroup_read,
1824 .name = "failcnt",
1825 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1826 .trigger = mem_cgroup_reset,
1827 .read_u64 = mem_cgroup_read,
1830 .name = "stat",
1831 .read_map = mem_control_stat_show,
1834 .name = "force_empty",
1835 .trigger = mem_cgroup_force_empty_write,
1838 .name = "use_hierarchy",
1839 .write_u64 = mem_cgroup_hierarchy_write,
1840 .read_u64 = mem_cgroup_hierarchy_read,
1844 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1845 static struct cftype memsw_cgroup_files[] = {
1847 .name = "memsw.usage_in_bytes",
1848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1849 .read_u64 = mem_cgroup_read,
1852 .name = "memsw.max_usage_in_bytes",
1853 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1854 .trigger = mem_cgroup_reset,
1855 .read_u64 = mem_cgroup_read,
1858 .name = "memsw.limit_in_bytes",
1859 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1860 .write_string = mem_cgroup_write,
1861 .read_u64 = mem_cgroup_read,
1864 .name = "memsw.failcnt",
1865 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1866 .trigger = mem_cgroup_reset,
1867 .read_u64 = mem_cgroup_read,
1871 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1873 if (!do_swap_account)
1874 return 0;
1875 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1876 ARRAY_SIZE(memsw_cgroup_files));
1878 #else
1879 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1881 return 0;
1883 #endif
1885 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1887 struct mem_cgroup_per_node *pn;
1888 struct mem_cgroup_per_zone *mz;
1889 enum lru_list l;
1890 int zone, tmp = node;
1892 * This routine is called against possible nodes.
1893 * But it's BUG to call kmalloc() against offline node.
1895 * TODO: this routine can waste much memory for nodes which will
1896 * never be onlined. It's better to use memory hotplug callback
1897 * function.
1899 if (!node_state(node, N_NORMAL_MEMORY))
1900 tmp = -1;
1901 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1902 if (!pn)
1903 return 1;
1905 mem->info.nodeinfo[node] = pn;
1906 memset(pn, 0, sizeof(*pn));
1908 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1909 mz = &pn->zoneinfo[zone];
1910 for_each_lru(l)
1911 INIT_LIST_HEAD(&mz->lists[l]);
1913 return 0;
1916 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1918 kfree(mem->info.nodeinfo[node]);
1921 static int mem_cgroup_size(void)
1923 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1924 return sizeof(struct mem_cgroup) + cpustat_size;
1927 static struct mem_cgroup *mem_cgroup_alloc(void)
1929 struct mem_cgroup *mem;
1930 int size = mem_cgroup_size();
1932 if (size < PAGE_SIZE)
1933 mem = kmalloc(size, GFP_KERNEL);
1934 else
1935 mem = vmalloc(size);
1937 if (mem)
1938 memset(mem, 0, size);
1939 return mem;
1943 * At destroying mem_cgroup, references from swap_cgroup can remain.
1944 * (scanning all at force_empty is too costly...)
1946 * Instead of clearing all references at force_empty, we remember
1947 * the number of reference from swap_cgroup and free mem_cgroup when
1948 * it goes down to 0.
1950 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1951 * entry which points to this memcg will be ignore at swapin.
1953 * Removal of cgroup itself succeeds regardless of refs from swap.
1956 static void mem_cgroup_free(struct mem_cgroup *mem)
1958 int node;
1960 if (atomic_read(&mem->refcnt) > 0)
1961 return;
1964 for_each_node_state(node, N_POSSIBLE)
1965 free_mem_cgroup_per_zone_info(mem, node);
1967 if (mem_cgroup_size() < PAGE_SIZE)
1968 kfree(mem);
1969 else
1970 vfree(mem);
1973 static void mem_cgroup_get(struct mem_cgroup *mem)
1975 atomic_inc(&mem->refcnt);
1978 static void mem_cgroup_put(struct mem_cgroup *mem)
1980 if (atomic_dec_and_test(&mem->refcnt)) {
1981 if (!mem->obsolete)
1982 return;
1983 mem_cgroup_free(mem);
1988 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1989 static void __init enable_swap_cgroup(void)
1991 if (!mem_cgroup_disabled() && really_do_swap_account)
1992 do_swap_account = 1;
1994 #else
1995 static void __init enable_swap_cgroup(void)
1998 #endif
2000 static struct cgroup_subsys_state *
2001 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2003 struct mem_cgroup *mem, *parent;
2004 int node;
2006 mem = mem_cgroup_alloc();
2007 if (!mem)
2008 return ERR_PTR(-ENOMEM);
2010 for_each_node_state(node, N_POSSIBLE)
2011 if (alloc_mem_cgroup_per_zone_info(mem, node))
2012 goto free_out;
2013 /* root ? */
2014 if (cont->parent == NULL) {
2015 enable_swap_cgroup();
2016 parent = NULL;
2017 } else {
2018 parent = mem_cgroup_from_cont(cont->parent);
2019 mem->use_hierarchy = parent->use_hierarchy;
2022 if (parent && parent->use_hierarchy) {
2023 res_counter_init(&mem->res, &parent->res);
2024 res_counter_init(&mem->memsw, &parent->memsw);
2025 } else {
2026 res_counter_init(&mem->res, NULL);
2027 res_counter_init(&mem->memsw, NULL);
2029 mem_cgroup_set_inactive_ratio(mem);
2030 mem->last_scanned_child = NULL;
2032 return &mem->css;
2033 free_out:
2034 for_each_node_state(node, N_POSSIBLE)
2035 free_mem_cgroup_per_zone_info(mem, node);
2036 mem_cgroup_free(mem);
2037 return ERR_PTR(-ENOMEM);
2040 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2041 struct cgroup *cont)
2043 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2044 mem->obsolete = 1;
2045 mem_cgroup_force_empty(mem, false);
2048 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2049 struct cgroup *cont)
2051 mem_cgroup_free(mem_cgroup_from_cont(cont));
2054 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2055 struct cgroup *cont)
2057 int ret;
2059 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2060 ARRAY_SIZE(mem_cgroup_files));
2062 if (!ret)
2063 ret = register_memsw_files(cont, ss);
2064 return ret;
2067 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2068 struct cgroup *cont,
2069 struct cgroup *old_cont,
2070 struct task_struct *p)
2073 * FIXME: It's better to move charges of this process from old
2074 * memcg to new memcg. But it's just on TODO-List now.
2078 struct cgroup_subsys mem_cgroup_subsys = {
2079 .name = "memory",
2080 .subsys_id = mem_cgroup_subsys_id,
2081 .create = mem_cgroup_create,
2082 .pre_destroy = mem_cgroup_pre_destroy,
2083 .destroy = mem_cgroup_destroy,
2084 .populate = mem_cgroup_populate,
2085 .attach = mem_cgroup_move_task,
2086 .early_init = 0,
2089 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2091 static int __init disable_swap_account(char *s)
2093 really_do_swap_account = 0;
2094 return 1;
2096 __setup("noswapaccount", disable_swap_account);
2097 #endif