usbcore: rename usb_suspend_device to usb_port_suspend
[linux-2.6/verdex.git] / drivers / usb / core / usb.c
blobb28a31b2030830b4b2c7e9e24131feaa1f1b5a4e
1 /*
2 * drivers/usb/usb.c
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/bitops.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h> /* for in_interrupt() */
29 #include <linux/kmod.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/errno.h>
33 #include <linux/smp_lock.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
37 #include <asm/io.h>
38 #include <asm/scatterlist.h>
39 #include <linux/mm.h>
40 #include <linux/dma-mapping.h>
42 #include "hcd.h"
43 #include "usb.h"
46 const char *usbcore_name = "usbcore";
48 static int nousb; /* Disable USB when built into kernel image */
51 /**
52 * usb_ifnum_to_if - get the interface object with a given interface number
53 * @dev: the device whose current configuration is considered
54 * @ifnum: the desired interface
56 * This walks the device descriptor for the currently active configuration
57 * and returns a pointer to the interface with that particular interface
58 * number, or null.
60 * Note that configuration descriptors are not required to assign interface
61 * numbers sequentially, so that it would be incorrect to assume that
62 * the first interface in that descriptor corresponds to interface zero.
63 * This routine helps device drivers avoid such mistakes.
64 * However, you should make sure that you do the right thing with any
65 * alternate settings available for this interfaces.
67 * Don't call this function unless you are bound to one of the interfaces
68 * on this device or you have locked the device!
70 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
72 struct usb_host_config *config = dev->actconfig;
73 int i;
75 if (!config)
76 return NULL;
77 for (i = 0; i < config->desc.bNumInterfaces; i++)
78 if (config->interface[i]->altsetting[0]
79 .desc.bInterfaceNumber == ifnum)
80 return config->interface[i];
82 return NULL;
85 /**
86 * usb_altnum_to_altsetting - get the altsetting structure with a given
87 * alternate setting number.
88 * @intf: the interface containing the altsetting in question
89 * @altnum: the desired alternate setting number
91 * This searches the altsetting array of the specified interface for
92 * an entry with the correct bAlternateSetting value and returns a pointer
93 * to that entry, or null.
95 * Note that altsettings need not be stored sequentially by number, so
96 * it would be incorrect to assume that the first altsetting entry in
97 * the array corresponds to altsetting zero. This routine helps device
98 * drivers avoid such mistakes.
100 * Don't call this function unless you are bound to the intf interface
101 * or you have locked the device!
103 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
104 unsigned int altnum)
106 int i;
108 for (i = 0; i < intf->num_altsetting; i++) {
109 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
110 return &intf->altsetting[i];
112 return NULL;
116 * usb_driver_claim_interface - bind a driver to an interface
117 * @driver: the driver to be bound
118 * @iface: the interface to which it will be bound; must be in the
119 * usb device's active configuration
120 * @priv: driver data associated with that interface
122 * This is used by usb device drivers that need to claim more than one
123 * interface on a device when probing (audio and acm are current examples).
124 * No device driver should directly modify internal usb_interface or
125 * usb_device structure members.
127 * Few drivers should need to use this routine, since the most natural
128 * way to bind to an interface is to return the private data from
129 * the driver's probe() method.
131 * Callers must own the device lock and the driver model's usb_bus_type.subsys
132 * writelock. So driver probe() entries don't need extra locking,
133 * but other call contexts may need to explicitly claim those locks.
135 int usb_driver_claim_interface(struct usb_driver *driver,
136 struct usb_interface *iface, void* priv)
138 struct device *dev = &iface->dev;
140 if (dev->driver)
141 return -EBUSY;
143 dev->driver = &driver->driver;
144 usb_set_intfdata(iface, priv);
145 iface->condition = USB_INTERFACE_BOUND;
146 mark_active(iface);
148 /* if interface was already added, bind now; else let
149 * the future device_add() bind it, bypassing probe()
151 if (device_is_registered(dev))
152 device_bind_driver(dev);
154 return 0;
158 * usb_driver_release_interface - unbind a driver from an interface
159 * @driver: the driver to be unbound
160 * @iface: the interface from which it will be unbound
162 * This can be used by drivers to release an interface without waiting
163 * for their disconnect() methods to be called. In typical cases this
164 * also causes the driver disconnect() method to be called.
166 * This call is synchronous, and may not be used in an interrupt context.
167 * Callers must own the device lock and the driver model's usb_bus_type.subsys
168 * writelock. So driver disconnect() entries don't need extra locking,
169 * but other call contexts may need to explicitly claim those locks.
171 void usb_driver_release_interface(struct usb_driver *driver,
172 struct usb_interface *iface)
174 struct device *dev = &iface->dev;
176 /* this should never happen, don't release something that's not ours */
177 if (!dev->driver || dev->driver != &driver->driver)
178 return;
180 /* don't release from within disconnect() */
181 if (iface->condition != USB_INTERFACE_BOUND)
182 return;
184 /* don't release if the interface hasn't been added yet */
185 if (device_is_registered(dev)) {
186 iface->condition = USB_INTERFACE_UNBINDING;
187 device_release_driver(dev);
190 dev->driver = NULL;
191 usb_set_intfdata(iface, NULL);
192 iface->condition = USB_INTERFACE_UNBOUND;
193 mark_quiesced(iface);
196 struct find_interface_arg {
197 int minor;
198 struct usb_interface *interface;
201 static int __find_interface(struct device * dev, void * data)
203 struct find_interface_arg *arg = data;
204 struct usb_interface *intf;
206 /* can't look at usb devices, only interfaces */
207 if (dev->driver == &usb_generic_driver)
208 return 0;
210 intf = to_usb_interface(dev);
211 if (intf->minor != -1 && intf->minor == arg->minor) {
212 arg->interface = intf;
213 return 1;
215 return 0;
219 * usb_find_interface - find usb_interface pointer for driver and device
220 * @drv: the driver whose current configuration is considered
221 * @minor: the minor number of the desired device
223 * This walks the driver device list and returns a pointer to the interface
224 * with the matching minor. Note, this only works for devices that share the
225 * USB major number.
227 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
229 struct find_interface_arg argb;
231 argb.minor = minor;
232 argb.interface = NULL;
233 driver_for_each_device(&drv->driver, NULL, &argb, __find_interface);
234 return argb.interface;
237 #ifdef CONFIG_HOTPLUG
240 * This sends an uevent to userspace, typically helping to load driver
241 * or other modules, configure the device, and more. Drivers can provide
242 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
244 * We're called either from khubd (the typical case) or from root hub
245 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
246 * delays in event delivery. Use sysfs (and DEVPATH) to make sure the
247 * device (and this configuration!) are still present.
249 static int usb_uevent(struct device *dev, char **envp, int num_envp,
250 char *buffer, int buffer_size)
252 struct usb_interface *intf;
253 struct usb_device *usb_dev;
254 struct usb_host_interface *alt;
255 int i = 0;
256 int length = 0;
258 if (!dev)
259 return -ENODEV;
261 /* driver is often null here; dev_dbg() would oops */
262 pr_debug ("usb %s: uevent\n", dev->bus_id);
264 /* Must check driver_data here, as on remove driver is always NULL */
265 if ((dev->driver == &usb_generic_driver) ||
266 (dev->driver_data == &usb_generic_driver_data))
267 return 0;
269 intf = to_usb_interface(dev);
270 usb_dev = interface_to_usbdev (intf);
271 alt = intf->cur_altsetting;
273 if (usb_dev->devnum < 0) {
274 pr_debug ("usb %s: already deleted?\n", dev->bus_id);
275 return -ENODEV;
277 if (!usb_dev->bus) {
278 pr_debug ("usb %s: bus removed?\n", dev->bus_id);
279 return -ENODEV;
282 #ifdef CONFIG_USB_DEVICEFS
283 /* If this is available, userspace programs can directly read
284 * all the device descriptors we don't tell them about. Or
285 * even act as usermode drivers.
287 * FIXME reduce hardwired intelligence here
289 if (add_uevent_var(envp, num_envp, &i,
290 buffer, buffer_size, &length,
291 "DEVICE=/proc/bus/usb/%03d/%03d",
292 usb_dev->bus->busnum, usb_dev->devnum))
293 return -ENOMEM;
294 #endif
296 /* per-device configurations are common */
297 if (add_uevent_var(envp, num_envp, &i,
298 buffer, buffer_size, &length,
299 "PRODUCT=%x/%x/%x",
300 le16_to_cpu(usb_dev->descriptor.idVendor),
301 le16_to_cpu(usb_dev->descriptor.idProduct),
302 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
303 return -ENOMEM;
305 /* class-based driver binding models */
306 if (add_uevent_var(envp, num_envp, &i,
307 buffer, buffer_size, &length,
308 "TYPE=%d/%d/%d",
309 usb_dev->descriptor.bDeviceClass,
310 usb_dev->descriptor.bDeviceSubClass,
311 usb_dev->descriptor.bDeviceProtocol))
312 return -ENOMEM;
314 if (add_uevent_var(envp, num_envp, &i,
315 buffer, buffer_size, &length,
316 "INTERFACE=%d/%d/%d",
317 alt->desc.bInterfaceClass,
318 alt->desc.bInterfaceSubClass,
319 alt->desc.bInterfaceProtocol))
320 return -ENOMEM;
322 if (add_uevent_var(envp, num_envp, &i,
323 buffer, buffer_size, &length,
324 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
325 le16_to_cpu(usb_dev->descriptor.idVendor),
326 le16_to_cpu(usb_dev->descriptor.idProduct),
327 le16_to_cpu(usb_dev->descriptor.bcdDevice),
328 usb_dev->descriptor.bDeviceClass,
329 usb_dev->descriptor.bDeviceSubClass,
330 usb_dev->descriptor.bDeviceProtocol,
331 alt->desc.bInterfaceClass,
332 alt->desc.bInterfaceSubClass,
333 alt->desc.bInterfaceProtocol))
334 return -ENOMEM;
336 envp[i] = NULL;
338 return 0;
341 #else
343 static int usb_uevent(struct device *dev, char **envp,
344 int num_envp, char *buffer, int buffer_size)
346 return -ENODEV;
349 #endif /* CONFIG_HOTPLUG */
352 * usb_release_dev - free a usb device structure when all users of it are finished.
353 * @dev: device that's been disconnected
355 * Will be called only by the device core when all users of this usb device are
356 * done.
358 static void usb_release_dev(struct device *dev)
360 struct usb_device *udev;
362 udev = to_usb_device(dev);
364 usb_destroy_configuration(udev);
365 usb_bus_put(udev->bus);
366 kfree(udev->product);
367 kfree(udev->manufacturer);
368 kfree(udev->serial);
369 kfree(udev);
373 * usb_alloc_dev - usb device constructor (usbcore-internal)
374 * @parent: hub to which device is connected; null to allocate a root hub
375 * @bus: bus used to access the device
376 * @port1: one-based index of port; ignored for root hubs
377 * Context: !in_interrupt ()
379 * Only hub drivers (including virtual root hub drivers for host
380 * controllers) should ever call this.
382 * This call may not be used in a non-sleeping context.
384 struct usb_device *
385 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
387 struct usb_device *dev;
389 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
390 if (!dev)
391 return NULL;
393 bus = usb_bus_get(bus);
394 if (!bus) {
395 kfree(dev);
396 return NULL;
399 device_initialize(&dev->dev);
400 dev->dev.bus = &usb_bus_type;
401 dev->dev.dma_mask = bus->controller->dma_mask;
402 dev->dev.driver_data = &usb_generic_driver_data;
403 dev->dev.driver = &usb_generic_driver;
404 dev->dev.release = usb_release_dev;
405 dev->state = USB_STATE_ATTACHED;
407 INIT_LIST_HEAD(&dev->ep0.urb_list);
408 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
409 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
410 /* ep0 maxpacket comes later, from device descriptor */
411 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
413 /* Save readable and stable topology id, distinguishing devices
414 * by location for diagnostics, tools, driver model, etc. The
415 * string is a path along hub ports, from the root. Each device's
416 * dev->devpath will be stable until USB is re-cabled, and hubs
417 * are often labeled with these port numbers. The bus_id isn't
418 * as stable: bus->busnum changes easily from modprobe order,
419 * cardbus or pci hotplugging, and so on.
421 if (unlikely (!parent)) {
422 dev->devpath [0] = '0';
424 dev->dev.parent = bus->controller;
425 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
426 } else {
427 /* match any labeling on the hubs; it's one-based */
428 if (parent->devpath [0] == '0')
429 snprintf (dev->devpath, sizeof dev->devpath,
430 "%d", port1);
431 else
432 snprintf (dev->devpath, sizeof dev->devpath,
433 "%s.%d", parent->devpath, port1);
435 dev->dev.parent = &parent->dev;
436 sprintf (&dev->dev.bus_id[0], "%d-%s",
437 bus->busnum, dev->devpath);
439 /* hub driver sets up TT records */
442 dev->portnum = port1;
443 dev->bus = bus;
444 dev->parent = parent;
445 INIT_LIST_HEAD(&dev->filelist);
447 return dev;
451 * usb_get_dev - increments the reference count of the usb device structure
452 * @dev: the device being referenced
454 * Each live reference to a device should be refcounted.
456 * Drivers for USB interfaces should normally record such references in
457 * their probe() methods, when they bind to an interface, and release
458 * them by calling usb_put_dev(), in their disconnect() methods.
460 * A pointer to the device with the incremented reference counter is returned.
462 struct usb_device *usb_get_dev(struct usb_device *dev)
464 if (dev)
465 get_device(&dev->dev);
466 return dev;
470 * usb_put_dev - release a use of the usb device structure
471 * @dev: device that's been disconnected
473 * Must be called when a user of a device is finished with it. When the last
474 * user of the device calls this function, the memory of the device is freed.
476 void usb_put_dev(struct usb_device *dev)
478 if (dev)
479 put_device(&dev->dev);
483 * usb_get_intf - increments the reference count of the usb interface structure
484 * @intf: the interface being referenced
486 * Each live reference to a interface must be refcounted.
488 * Drivers for USB interfaces should normally record such references in
489 * their probe() methods, when they bind to an interface, and release
490 * them by calling usb_put_intf(), in their disconnect() methods.
492 * A pointer to the interface with the incremented reference counter is
493 * returned.
495 struct usb_interface *usb_get_intf(struct usb_interface *intf)
497 if (intf)
498 get_device(&intf->dev);
499 return intf;
503 * usb_put_intf - release a use of the usb interface structure
504 * @intf: interface that's been decremented
506 * Must be called when a user of an interface is finished with it. When the
507 * last user of the interface calls this function, the memory of the interface
508 * is freed.
510 void usb_put_intf(struct usb_interface *intf)
512 if (intf)
513 put_device(&intf->dev);
517 /* USB device locking
519 * USB devices and interfaces are locked using the semaphore in their
520 * embedded struct device. The hub driver guarantees that whenever a
521 * device is connected or disconnected, drivers are called with the
522 * USB device locked as well as their particular interface.
524 * Complications arise when several devices are to be locked at the same
525 * time. Only hub-aware drivers that are part of usbcore ever have to
526 * do this; nobody else needs to worry about it. The rule for locking
527 * is simple:
529 * When locking both a device and its parent, always lock the
530 * the parent first.
534 * usb_lock_device_for_reset - cautiously acquire the lock for a
535 * usb device structure
536 * @udev: device that's being locked
537 * @iface: interface bound to the driver making the request (optional)
539 * Attempts to acquire the device lock, but fails if the device is
540 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
541 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
542 * lock, the routine polls repeatedly. This is to prevent deadlock with
543 * disconnect; in some drivers (such as usb-storage) the disconnect()
544 * or suspend() method will block waiting for a device reset to complete.
546 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
547 * that the device will or will not have to be unlocked. (0 can be
548 * returned when an interface is given and is BINDING, because in that
549 * case the driver already owns the device lock.)
551 int usb_lock_device_for_reset(struct usb_device *udev,
552 struct usb_interface *iface)
554 unsigned long jiffies_expire = jiffies + HZ;
556 if (udev->state == USB_STATE_NOTATTACHED)
557 return -ENODEV;
558 if (udev->state == USB_STATE_SUSPENDED)
559 return -EHOSTUNREACH;
560 if (iface) {
561 switch (iface->condition) {
562 case USB_INTERFACE_BINDING:
563 return 0;
564 case USB_INTERFACE_BOUND:
565 break;
566 default:
567 return -EINTR;
571 while (usb_trylock_device(udev) != 0) {
573 /* If we can't acquire the lock after waiting one second,
574 * we're probably deadlocked */
575 if (time_after(jiffies, jiffies_expire))
576 return -EBUSY;
578 msleep(15);
579 if (udev->state == USB_STATE_NOTATTACHED)
580 return -ENODEV;
581 if (udev->state == USB_STATE_SUSPENDED)
582 return -EHOSTUNREACH;
583 if (iface && iface->condition != USB_INTERFACE_BOUND)
584 return -EINTR;
586 return 1;
590 static struct usb_device *match_device(struct usb_device *dev,
591 u16 vendor_id, u16 product_id)
593 struct usb_device *ret_dev = NULL;
594 int child;
596 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
597 le16_to_cpu(dev->descriptor.idVendor),
598 le16_to_cpu(dev->descriptor.idProduct));
600 /* see if this device matches */
601 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
602 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
603 dev_dbg (&dev->dev, "matched this device!\n");
604 ret_dev = usb_get_dev(dev);
605 goto exit;
608 /* look through all of the children of this device */
609 for (child = 0; child < dev->maxchild; ++child) {
610 if (dev->children[child]) {
611 usb_lock_device(dev->children[child]);
612 ret_dev = match_device(dev->children[child],
613 vendor_id, product_id);
614 usb_unlock_device(dev->children[child]);
615 if (ret_dev)
616 goto exit;
619 exit:
620 return ret_dev;
624 * usb_find_device - find a specific usb device in the system
625 * @vendor_id: the vendor id of the device to find
626 * @product_id: the product id of the device to find
628 * Returns a pointer to a struct usb_device if such a specified usb
629 * device is present in the system currently. The usage count of the
630 * device will be incremented if a device is found. Make sure to call
631 * usb_put_dev() when the caller is finished with the device.
633 * If a device with the specified vendor and product id is not found,
634 * NULL is returned.
636 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
638 struct list_head *buslist;
639 struct usb_bus *bus;
640 struct usb_device *dev = NULL;
642 mutex_lock(&usb_bus_list_lock);
643 for (buslist = usb_bus_list.next;
644 buslist != &usb_bus_list;
645 buslist = buslist->next) {
646 bus = container_of(buslist, struct usb_bus, bus_list);
647 if (!bus->root_hub)
648 continue;
649 usb_lock_device(bus->root_hub);
650 dev = match_device(bus->root_hub, vendor_id, product_id);
651 usb_unlock_device(bus->root_hub);
652 if (dev)
653 goto exit;
655 exit:
656 mutex_unlock(&usb_bus_list_lock);
657 return dev;
661 * usb_get_current_frame_number - return current bus frame number
662 * @dev: the device whose bus is being queried
664 * Returns the current frame number for the USB host controller
665 * used with the given USB device. This can be used when scheduling
666 * isochronous requests.
668 * Note that different kinds of host controller have different
669 * "scheduling horizons". While one type might support scheduling only
670 * 32 frames into the future, others could support scheduling up to
671 * 1024 frames into the future.
673 int usb_get_current_frame_number(struct usb_device *dev)
675 return dev->bus->op->get_frame_number (dev);
678 /*-------------------------------------------------------------------*/
680 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
681 * extra field of the interface and endpoint descriptor structs.
684 int __usb_get_extra_descriptor(char *buffer, unsigned size,
685 unsigned char type, void **ptr)
687 struct usb_descriptor_header *header;
689 while (size >= sizeof(struct usb_descriptor_header)) {
690 header = (struct usb_descriptor_header *)buffer;
692 if (header->bLength < 2) {
693 printk(KERN_ERR
694 "%s: bogus descriptor, type %d length %d\n",
695 usbcore_name,
696 header->bDescriptorType,
697 header->bLength);
698 return -1;
701 if (header->bDescriptorType == type) {
702 *ptr = header;
703 return 0;
706 buffer += header->bLength;
707 size -= header->bLength;
709 return -1;
713 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
714 * @dev: device the buffer will be used with
715 * @size: requested buffer size
716 * @mem_flags: affect whether allocation may block
717 * @dma: used to return DMA address of buffer
719 * Return value is either null (indicating no buffer could be allocated), or
720 * the cpu-space pointer to a buffer that may be used to perform DMA to the
721 * specified device. Such cpu-space buffers are returned along with the DMA
722 * address (through the pointer provided).
724 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
725 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
726 * mapping hardware for long idle periods. The implementation varies between
727 * platforms, depending on details of how DMA will work to this device.
728 * Using these buffers also helps prevent cacheline sharing problems on
729 * architectures where CPU caches are not DMA-coherent.
731 * When the buffer is no longer used, free it with usb_buffer_free().
733 void *usb_buffer_alloc (
734 struct usb_device *dev,
735 size_t size,
736 gfp_t mem_flags,
737 dma_addr_t *dma
740 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
741 return NULL;
742 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
746 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
747 * @dev: device the buffer was used with
748 * @size: requested buffer size
749 * @addr: CPU address of buffer
750 * @dma: DMA address of buffer
752 * This reclaims an I/O buffer, letting it be reused. The memory must have
753 * been allocated using usb_buffer_alloc(), and the parameters must match
754 * those provided in that allocation request.
756 void usb_buffer_free (
757 struct usb_device *dev,
758 size_t size,
759 void *addr,
760 dma_addr_t dma
763 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
764 return;
765 if (!addr)
766 return;
767 dev->bus->op->buffer_free (dev->bus, size, addr, dma);
771 * usb_buffer_map - create DMA mapping(s) for an urb
772 * @urb: urb whose transfer_buffer/setup_packet will be mapped
774 * Return value is either null (indicating no buffer could be mapped), or
775 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
776 * added to urb->transfer_flags if the operation succeeds. If the device
777 * is connected to this system through a non-DMA controller, this operation
778 * always succeeds.
780 * This call would normally be used for an urb which is reused, perhaps
781 * as the target of a large periodic transfer, with usb_buffer_dmasync()
782 * calls to synchronize memory and dma state.
784 * Reverse the effect of this call with usb_buffer_unmap().
786 #if 0
787 struct urb *usb_buffer_map (struct urb *urb)
789 struct usb_bus *bus;
790 struct device *controller;
792 if (!urb
793 || !urb->dev
794 || !(bus = urb->dev->bus)
795 || !(controller = bus->controller))
796 return NULL;
798 if (controller->dma_mask) {
799 urb->transfer_dma = dma_map_single (controller,
800 urb->transfer_buffer, urb->transfer_buffer_length,
801 usb_pipein (urb->pipe)
802 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
803 if (usb_pipecontrol (urb->pipe))
804 urb->setup_dma = dma_map_single (controller,
805 urb->setup_packet,
806 sizeof (struct usb_ctrlrequest),
807 DMA_TO_DEVICE);
808 // FIXME generic api broken like pci, can't report errors
809 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
810 } else
811 urb->transfer_dma = ~0;
812 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
813 | URB_NO_SETUP_DMA_MAP);
814 return urb;
816 #endif /* 0 */
818 /* XXX DISABLED, no users currently. If you wish to re-enable this
819 * XXX please determine whether the sync is to transfer ownership of
820 * XXX the buffer from device to cpu or vice verse, and thusly use the
821 * XXX appropriate _for_{cpu,device}() method. -DaveM
823 #if 0
826 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
827 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
829 void usb_buffer_dmasync (struct urb *urb)
831 struct usb_bus *bus;
832 struct device *controller;
834 if (!urb
835 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
836 || !urb->dev
837 || !(bus = urb->dev->bus)
838 || !(controller = bus->controller))
839 return;
841 if (controller->dma_mask) {
842 dma_sync_single (controller,
843 urb->transfer_dma, urb->transfer_buffer_length,
844 usb_pipein (urb->pipe)
845 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
846 if (usb_pipecontrol (urb->pipe))
847 dma_sync_single (controller,
848 urb->setup_dma,
849 sizeof (struct usb_ctrlrequest),
850 DMA_TO_DEVICE);
853 #endif
856 * usb_buffer_unmap - free DMA mapping(s) for an urb
857 * @urb: urb whose transfer_buffer will be unmapped
859 * Reverses the effect of usb_buffer_map().
861 #if 0
862 void usb_buffer_unmap (struct urb *urb)
864 struct usb_bus *bus;
865 struct device *controller;
867 if (!urb
868 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
869 || !urb->dev
870 || !(bus = urb->dev->bus)
871 || !(controller = bus->controller))
872 return;
874 if (controller->dma_mask) {
875 dma_unmap_single (controller,
876 urb->transfer_dma, urb->transfer_buffer_length,
877 usb_pipein (urb->pipe)
878 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
879 if (usb_pipecontrol (urb->pipe))
880 dma_unmap_single (controller,
881 urb->setup_dma,
882 sizeof (struct usb_ctrlrequest),
883 DMA_TO_DEVICE);
885 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
886 | URB_NO_SETUP_DMA_MAP);
888 #endif /* 0 */
891 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
892 * @dev: device to which the scatterlist will be mapped
893 * @pipe: endpoint defining the mapping direction
894 * @sg: the scatterlist to map
895 * @nents: the number of entries in the scatterlist
897 * Return value is either < 0 (indicating no buffers could be mapped), or
898 * the number of DMA mapping array entries in the scatterlist.
900 * The caller is responsible for placing the resulting DMA addresses from
901 * the scatterlist into URB transfer buffer pointers, and for setting the
902 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
904 * Top I/O rates come from queuing URBs, instead of waiting for each one
905 * to complete before starting the next I/O. This is particularly easy
906 * to do with scatterlists. Just allocate and submit one URB for each DMA
907 * mapping entry returned, stopping on the first error or when all succeed.
908 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
910 * This call would normally be used when translating scatterlist requests,
911 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
912 * may be able to coalesce mappings for improved I/O efficiency.
914 * Reverse the effect of this call with usb_buffer_unmap_sg().
916 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
917 struct scatterlist *sg, int nents)
919 struct usb_bus *bus;
920 struct device *controller;
922 if (!dev
923 || usb_pipecontrol (pipe)
924 || !(bus = dev->bus)
925 || !(controller = bus->controller)
926 || !controller->dma_mask)
927 return -1;
929 // FIXME generic api broken like pci, can't report errors
930 return dma_map_sg (controller, sg, nents,
931 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
934 /* XXX DISABLED, no users currently. If you wish to re-enable this
935 * XXX please determine whether the sync is to transfer ownership of
936 * XXX the buffer from device to cpu or vice verse, and thusly use the
937 * XXX appropriate _for_{cpu,device}() method. -DaveM
939 #if 0
942 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
943 * @dev: device to which the scatterlist will be mapped
944 * @pipe: endpoint defining the mapping direction
945 * @sg: the scatterlist to synchronize
946 * @n_hw_ents: the positive return value from usb_buffer_map_sg
948 * Use this when you are re-using a scatterlist's data buffers for
949 * another USB request.
951 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
952 struct scatterlist *sg, int n_hw_ents)
954 struct usb_bus *bus;
955 struct device *controller;
957 if (!dev
958 || !(bus = dev->bus)
959 || !(controller = bus->controller)
960 || !controller->dma_mask)
961 return;
963 dma_sync_sg (controller, sg, n_hw_ents,
964 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
966 #endif
969 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
970 * @dev: device to which the scatterlist will be mapped
971 * @pipe: endpoint defining the mapping direction
972 * @sg: the scatterlist to unmap
973 * @n_hw_ents: the positive return value from usb_buffer_map_sg
975 * Reverses the effect of usb_buffer_map_sg().
977 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
978 struct scatterlist *sg, int n_hw_ents)
980 struct usb_bus *bus;
981 struct device *controller;
983 if (!dev
984 || !(bus = dev->bus)
985 || !(controller = bus->controller)
986 || !controller->dma_mask)
987 return;
989 dma_unmap_sg (controller, sg, n_hw_ents,
990 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
993 static int verify_suspended(struct device *dev, void *unused)
995 if (dev->driver == NULL)
996 return 0;
997 return (dev->power.power_state.event == PM_EVENT_ON) ? -EBUSY : 0;
1000 static int usb_generic_suspend(struct device *dev, pm_message_t message)
1002 struct usb_interface *intf;
1003 struct usb_driver *driver;
1004 int status;
1006 /* USB devices enter SUSPEND state through their hubs, but can be
1007 * marked for FREEZE as soon as their children are already idled.
1008 * But those semantics are useless, so we equate the two (sigh).
1010 if (dev->driver == &usb_generic_driver) {
1011 if (dev->power.power_state.event == message.event)
1012 return 0;
1013 /* we need to rule out bogus requests through sysfs */
1014 status = device_for_each_child(dev, NULL, verify_suspended);
1015 if (status)
1016 return status;
1017 return usb_port_suspend(to_usb_device(dev));
1020 if ((dev->driver == NULL) ||
1021 (dev->driver_data == &usb_generic_driver_data))
1022 return 0;
1024 intf = to_usb_interface(dev);
1025 driver = to_usb_driver(dev->driver);
1027 /* with no hardware, USB interfaces only use FREEZE and ON states */
1028 if (!is_active(intf))
1029 return 0;
1031 if (driver->suspend && driver->resume) {
1032 status = driver->suspend(intf, message);
1033 if (status)
1034 dev_err(dev, "%s error %d\n", "suspend", status);
1035 else
1036 mark_quiesced(intf);
1037 } else {
1038 // FIXME else if there's no suspend method, disconnect...
1039 dev_warn(dev, "no suspend for driver %s?\n", driver->name);
1040 mark_quiesced(intf);
1041 status = 0;
1043 return status;
1046 static int usb_generic_resume(struct device *dev)
1048 struct usb_interface *intf;
1049 struct usb_driver *driver;
1050 struct usb_device *udev;
1051 int status;
1053 if (dev->power.power_state.event == PM_EVENT_ON)
1054 return 0;
1056 /* mark things as "on" immediately, no matter what errors crop up */
1057 dev->power.power_state.event = PM_EVENT_ON;
1059 /* devices resume through their hubs */
1060 if (dev->driver == &usb_generic_driver) {
1061 udev = to_usb_device(dev);
1062 if (udev->state == USB_STATE_NOTATTACHED)
1063 return 0;
1064 return usb_port_resume(udev);
1067 if ((dev->driver == NULL) ||
1068 (dev->driver_data == &usb_generic_driver_data)) {
1069 dev->power.power_state.event = PM_EVENT_FREEZE;
1070 return 0;
1073 intf = to_usb_interface(dev);
1074 driver = to_usb_driver(dev->driver);
1076 udev = interface_to_usbdev(intf);
1077 if (udev->state == USB_STATE_NOTATTACHED)
1078 return 0;
1080 /* if driver was suspended, it has a resume method;
1081 * however, sysfs can wrongly mark things as suspended
1082 * (on the "no suspend method" FIXME path above)
1084 if (driver->resume) {
1085 status = driver->resume(intf);
1086 if (status) {
1087 dev_err(dev, "%s error %d\n", "resume", status);
1088 mark_quiesced(intf);
1090 } else
1091 dev_warn(dev, "no resume for driver %s?\n", driver->name);
1092 return 0;
1095 struct bus_type usb_bus_type = {
1096 .name = "usb",
1097 .match = usb_device_match,
1098 .uevent = usb_uevent,
1099 .suspend = usb_generic_suspend,
1100 .resume = usb_generic_resume,
1103 /* format to disable USB on kernel command line is: nousb */
1104 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
1107 * for external read access to <nousb>
1109 int usb_disabled(void)
1111 return nousb;
1115 * Init
1117 static int __init usb_init(void)
1119 int retval;
1120 if (nousb) {
1121 pr_info ("%s: USB support disabled\n", usbcore_name);
1122 return 0;
1125 retval = bus_register(&usb_bus_type);
1126 if (retval)
1127 goto out;
1128 retval = usb_host_init();
1129 if (retval)
1130 goto host_init_failed;
1131 retval = usb_major_init();
1132 if (retval)
1133 goto major_init_failed;
1134 retval = usb_register(&usbfs_driver);
1135 if (retval)
1136 goto driver_register_failed;
1137 retval = usbdev_init();
1138 if (retval)
1139 goto usbdevice_init_failed;
1140 retval = usbfs_init();
1141 if (retval)
1142 goto fs_init_failed;
1143 retval = usb_hub_init();
1144 if (retval)
1145 goto hub_init_failed;
1146 retval = driver_register(&usb_generic_driver);
1147 if (!retval)
1148 goto out;
1150 usb_hub_cleanup();
1151 hub_init_failed:
1152 usbfs_cleanup();
1153 fs_init_failed:
1154 usbdev_cleanup();
1155 usbdevice_init_failed:
1156 usb_deregister(&usbfs_driver);
1157 driver_register_failed:
1158 usb_major_cleanup();
1159 major_init_failed:
1160 usb_host_cleanup();
1161 host_init_failed:
1162 bus_unregister(&usb_bus_type);
1163 out:
1164 return retval;
1168 * Cleanup
1170 static void __exit usb_exit(void)
1172 /* This will matter if shutdown/reboot does exitcalls. */
1173 if (nousb)
1174 return;
1176 driver_unregister(&usb_generic_driver);
1177 usb_major_cleanup();
1178 usbfs_cleanup();
1179 usb_deregister(&usbfs_driver);
1180 usbdev_cleanup();
1181 usb_hub_cleanup();
1182 usb_host_cleanup();
1183 bus_unregister(&usb_bus_type);
1186 subsys_initcall(usb_init);
1187 module_exit(usb_exit);
1190 * USB may be built into the kernel or be built as modules.
1191 * These symbols are exported for device (or host controller)
1192 * driver modules to use.
1195 EXPORT_SYMBOL(usb_disabled);
1197 EXPORT_SYMBOL_GPL(usb_get_intf);
1198 EXPORT_SYMBOL_GPL(usb_put_intf);
1200 EXPORT_SYMBOL(usb_put_dev);
1201 EXPORT_SYMBOL(usb_get_dev);
1202 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1204 EXPORT_SYMBOL(usb_lock_device_for_reset);
1206 EXPORT_SYMBOL(usb_driver_claim_interface);
1207 EXPORT_SYMBOL(usb_driver_release_interface);
1208 EXPORT_SYMBOL(usb_find_interface);
1209 EXPORT_SYMBOL(usb_ifnum_to_if);
1210 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1212 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1214 EXPORT_SYMBOL(usb_find_device);
1215 EXPORT_SYMBOL(usb_get_current_frame_number);
1217 EXPORT_SYMBOL (usb_buffer_alloc);
1218 EXPORT_SYMBOL (usb_buffer_free);
1220 #if 0
1221 EXPORT_SYMBOL (usb_buffer_map);
1222 EXPORT_SYMBOL (usb_buffer_dmasync);
1223 EXPORT_SYMBOL (usb_buffer_unmap);
1224 #endif
1226 EXPORT_SYMBOL (usb_buffer_map_sg);
1227 #if 0
1228 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1229 #endif
1230 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1232 MODULE_LICENSE("GPL");