2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate
;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct
*work
);
60 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
62 struct cpu_dbs_info_s
{
63 cputime64_t prev_cpu_idle
;
64 cputime64_t prev_cpu_wall
;
65 cputime64_t prev_cpu_nice
;
66 struct cpufreq_policy
*cur_policy
;
67 struct delayed_work work
;
68 struct cpufreq_frequency_table
*freq_table
;
70 unsigned int freq_lo_jiffies
;
71 unsigned int freq_hi_jiffies
;
73 unsigned int sample_type
:1;
75 * percpu mutex that serializes governor limit change with
76 * do_dbs_timer invocation. We do not want do_dbs_timer to run
77 * when user is changing the governor or limits.
79 struct mutex timer_mutex
;
81 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
83 static unsigned int dbs_enable
; /* number of CPUs using this policy */
86 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
87 * different CPUs. It protects dbs_enable in governor start/stop.
89 static DEFINE_MUTEX(dbs_mutex
);
91 static struct workqueue_struct
*kondemand_wq
;
93 static struct dbs_tuners
{
94 unsigned int sampling_rate
;
95 unsigned int up_threshold
;
96 unsigned int down_differential
;
97 unsigned int ignore_nice
;
98 unsigned int powersave_bias
;
100 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
101 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
106 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
109 cputime64_t idle_time
;
110 cputime64_t cur_wall_time
;
111 cputime64_t busy_time
;
113 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
114 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
115 kstat_cpu(cpu
).cpustat
.system
);
117 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
118 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
119 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
120 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
122 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
124 *wall
= cur_wall_time
;
129 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
131 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
133 if (idle_time
== -1ULL)
134 return get_cpu_idle_time_jiffy(cpu
, wall
);
140 * Find right freq to be set now with powersave_bias on.
141 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
142 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
144 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
145 unsigned int freq_next
,
146 unsigned int relation
)
148 unsigned int freq_req
, freq_reduc
, freq_avg
;
149 unsigned int freq_hi
, freq_lo
;
150 unsigned int index
= 0;
151 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
152 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, policy
->cpu
);
154 if (!dbs_info
->freq_table
) {
155 dbs_info
->freq_lo
= 0;
156 dbs_info
->freq_lo_jiffies
= 0;
160 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
162 freq_req
= dbs_info
->freq_table
[index
].frequency
;
163 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
164 freq_avg
= freq_req
- freq_reduc
;
166 /* Find freq bounds for freq_avg in freq_table */
168 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
169 CPUFREQ_RELATION_H
, &index
);
170 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
172 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
173 CPUFREQ_RELATION_L
, &index
);
174 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
176 /* Find out how long we have to be in hi and lo freqs */
177 if (freq_hi
== freq_lo
) {
178 dbs_info
->freq_lo
= 0;
179 dbs_info
->freq_lo_jiffies
= 0;
182 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
183 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
184 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
185 jiffies_hi
/= (freq_hi
- freq_lo
);
186 jiffies_lo
= jiffies_total
- jiffies_hi
;
187 dbs_info
->freq_lo
= freq_lo
;
188 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
189 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
193 static void ondemand_powersave_bias_init_cpu(int cpu
)
195 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
196 dbs_info
->freq_table
= cpufreq_frequency_get_table(cpu
);
197 dbs_info
->freq_lo
= 0;
200 static void ondemand_powersave_bias_init(void)
203 for_each_online_cpu(i
) {
204 ondemand_powersave_bias_init_cpu(i
);
208 /************************** sysfs interface ************************/
209 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
211 printk_once(KERN_INFO
"CPUFREQ: ondemand sampling_rate_max "
212 "sysfs file is deprecated - used by: %s\n", current
->comm
);
213 return sprintf(buf
, "%u\n", -1U);
216 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
218 return sprintf(buf
, "%u\n", min_sampling_rate
);
221 #define define_one_ro(_name) \
222 static struct freq_attr _name = \
223 __ATTR(_name, 0444, show_##_name, NULL)
225 define_one_ro(sampling_rate_max
);
226 define_one_ro(sampling_rate_min
);
228 /* cpufreq_ondemand Governor Tunables */
229 #define show_one(file_name, object) \
230 static ssize_t show_##file_name \
231 (struct cpufreq_policy *unused, char *buf) \
233 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
235 show_one(sampling_rate
, sampling_rate
);
236 show_one(up_threshold
, up_threshold
);
237 show_one(ignore_nice_load
, ignore_nice
);
238 show_one(powersave_bias
, powersave_bias
);
240 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
241 const char *buf
, size_t count
)
245 ret
= sscanf(buf
, "%u", &input
);
249 mutex_lock(&dbs_mutex
);
250 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
251 mutex_unlock(&dbs_mutex
);
256 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
257 const char *buf
, size_t count
)
261 ret
= sscanf(buf
, "%u", &input
);
263 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
264 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
268 mutex_lock(&dbs_mutex
);
269 dbs_tuners_ins
.up_threshold
= input
;
270 mutex_unlock(&dbs_mutex
);
275 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
276 const char *buf
, size_t count
)
283 ret
= sscanf(buf
, "%u", &input
);
290 mutex_lock(&dbs_mutex
);
291 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
292 mutex_unlock(&dbs_mutex
);
295 dbs_tuners_ins
.ignore_nice
= input
;
297 /* we need to re-evaluate prev_cpu_idle */
298 for_each_online_cpu(j
) {
299 struct cpu_dbs_info_s
*dbs_info
;
300 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
301 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
302 &dbs_info
->prev_cpu_wall
);
303 if (dbs_tuners_ins
.ignore_nice
)
304 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
307 mutex_unlock(&dbs_mutex
);
312 static ssize_t
store_powersave_bias(struct cpufreq_policy
*unused
,
313 const char *buf
, size_t count
)
317 ret
= sscanf(buf
, "%u", &input
);
325 mutex_lock(&dbs_mutex
);
326 dbs_tuners_ins
.powersave_bias
= input
;
327 ondemand_powersave_bias_init();
328 mutex_unlock(&dbs_mutex
);
333 #define define_one_rw(_name) \
334 static struct freq_attr _name = \
335 __ATTR(_name, 0644, show_##_name, store_##_name)
337 define_one_rw(sampling_rate
);
338 define_one_rw(up_threshold
);
339 define_one_rw(ignore_nice_load
);
340 define_one_rw(powersave_bias
);
342 static struct attribute
*dbs_attributes
[] = {
343 &sampling_rate_max
.attr
,
344 &sampling_rate_min
.attr
,
347 &ignore_nice_load
.attr
,
348 &powersave_bias
.attr
,
352 static struct attribute_group dbs_attr_group
= {
353 .attrs
= dbs_attributes
,
357 /************************** sysfs end ************************/
359 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
361 unsigned int max_load_freq
;
363 struct cpufreq_policy
*policy
;
366 this_dbs_info
->freq_lo
= 0;
367 policy
= this_dbs_info
->cur_policy
;
370 * Every sampling_rate, we check, if current idle time is less
371 * than 20% (default), then we try to increase frequency
372 * Every sampling_rate, we look for a the lowest
373 * frequency which can sustain the load while keeping idle time over
374 * 30%. If such a frequency exist, we try to decrease to this frequency.
376 * Any frequency increase takes it to the maximum frequency.
377 * Frequency reduction happens at minimum steps of
378 * 5% (default) of current frequency
381 /* Get Absolute Load - in terms of freq */
384 for_each_cpu(j
, policy
->cpus
) {
385 struct cpu_dbs_info_s
*j_dbs_info
;
386 cputime64_t cur_wall_time
, cur_idle_time
;
387 unsigned int idle_time
, wall_time
;
388 unsigned int load
, load_freq
;
391 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
393 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
395 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
396 j_dbs_info
->prev_cpu_wall
);
397 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
399 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
400 j_dbs_info
->prev_cpu_idle
);
401 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
403 if (dbs_tuners_ins
.ignore_nice
) {
404 cputime64_t cur_nice
;
405 unsigned long cur_nice_jiffies
;
407 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
408 j_dbs_info
->prev_cpu_nice
);
410 * Assumption: nice time between sampling periods will
411 * be less than 2^32 jiffies for 32 bit sys
413 cur_nice_jiffies
= (unsigned long)
414 cputime64_to_jiffies64(cur_nice
);
416 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
417 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
420 if (unlikely(!wall_time
|| wall_time
< idle_time
))
423 load
= 100 * (wall_time
- idle_time
) / wall_time
;
425 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
427 freq_avg
= policy
->cur
;
429 load_freq
= load
* freq_avg
;
430 if (load_freq
> max_load_freq
)
431 max_load_freq
= load_freq
;
434 /* Check for frequency increase */
435 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
436 /* if we are already at full speed then break out early */
437 if (!dbs_tuners_ins
.powersave_bias
) {
438 if (policy
->cur
== policy
->max
)
441 __cpufreq_driver_target(policy
, policy
->max
,
444 int freq
= powersave_bias_target(policy
, policy
->max
,
446 __cpufreq_driver_target(policy
, freq
,
452 /* Check for frequency decrease */
453 /* if we cannot reduce the frequency anymore, break out early */
454 if (policy
->cur
== policy
->min
)
458 * The optimal frequency is the frequency that is the lowest that
459 * can support the current CPU usage without triggering the up
460 * policy. To be safe, we focus 10 points under the threshold.
463 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
465 unsigned int freq_next
;
466 freq_next
= max_load_freq
/
467 (dbs_tuners_ins
.up_threshold
-
468 dbs_tuners_ins
.down_differential
);
470 if (!dbs_tuners_ins
.powersave_bias
) {
471 __cpufreq_driver_target(policy
, freq_next
,
474 int freq
= powersave_bias_target(policy
, freq_next
,
476 __cpufreq_driver_target(policy
, freq
,
482 static void do_dbs_timer(struct work_struct
*work
)
484 struct cpu_dbs_info_s
*dbs_info
=
485 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
486 unsigned int cpu
= dbs_info
->cpu
;
487 int sample_type
= dbs_info
->sample_type
;
489 /* We want all CPUs to do sampling nearly on same jiffy */
490 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
492 delay
-= jiffies
% delay
;
493 mutex_lock(&dbs_info
->timer_mutex
);
495 /* Common NORMAL_SAMPLE setup */
496 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
497 if (!dbs_tuners_ins
.powersave_bias
||
498 sample_type
== DBS_NORMAL_SAMPLE
) {
499 dbs_check_cpu(dbs_info
);
500 if (dbs_info
->freq_lo
) {
501 /* Setup timer for SUB_SAMPLE */
502 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
503 delay
= dbs_info
->freq_hi_jiffies
;
506 __cpufreq_driver_target(dbs_info
->cur_policy
,
507 dbs_info
->freq_lo
, CPUFREQ_RELATION_H
);
509 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
510 mutex_unlock(&dbs_info
->timer_mutex
);
513 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
515 /* We want all CPUs to do sampling nearly on same jiffy */
516 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
517 delay
-= jiffies
% delay
;
519 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
520 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
521 queue_delayed_work_on(dbs_info
->cpu
, kondemand_wq
, &dbs_info
->work
,
525 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
527 cancel_delayed_work_sync(&dbs_info
->work
);
530 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
533 unsigned int cpu
= policy
->cpu
;
534 struct cpu_dbs_info_s
*this_dbs_info
;
538 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
541 case CPUFREQ_GOV_START
:
542 if ((!cpu_online(cpu
)) || (!policy
->cur
))
545 mutex_lock(&dbs_mutex
);
547 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
549 mutex_unlock(&dbs_mutex
);
554 for_each_cpu(j
, policy
->cpus
) {
555 struct cpu_dbs_info_s
*j_dbs_info
;
556 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
557 j_dbs_info
->cur_policy
= policy
;
559 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
560 &j_dbs_info
->prev_cpu_wall
);
561 if (dbs_tuners_ins
.ignore_nice
) {
562 j_dbs_info
->prev_cpu_nice
=
563 kstat_cpu(j
).cpustat
.nice
;
566 this_dbs_info
->cpu
= cpu
;
567 ondemand_powersave_bias_init_cpu(cpu
);
568 mutex_init(&this_dbs_info
->timer_mutex
);
570 * Start the timerschedule work, when this governor
571 * is used for first time
573 if (dbs_enable
== 1) {
574 unsigned int latency
;
575 /* policy latency is in nS. Convert it to uS first */
576 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
579 /* Bring kernel and HW constraints together */
580 min_sampling_rate
= max(min_sampling_rate
,
581 MIN_LATENCY_MULTIPLIER
* latency
);
582 dbs_tuners_ins
.sampling_rate
=
583 max(min_sampling_rate
,
584 latency
* LATENCY_MULTIPLIER
);
586 mutex_unlock(&dbs_mutex
);
588 dbs_timer_init(this_dbs_info
);
591 case CPUFREQ_GOV_STOP
:
592 dbs_timer_exit(this_dbs_info
);
594 mutex_lock(&dbs_mutex
);
595 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
596 mutex_destroy(&this_dbs_info
->timer_mutex
);
598 mutex_unlock(&dbs_mutex
);
602 case CPUFREQ_GOV_LIMITS
:
603 mutex_lock(&this_dbs_info
->timer_mutex
);
604 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
605 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
606 policy
->max
, CPUFREQ_RELATION_H
);
607 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
608 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
609 policy
->min
, CPUFREQ_RELATION_L
);
610 mutex_unlock(&this_dbs_info
->timer_mutex
);
616 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
619 struct cpufreq_governor cpufreq_gov_ondemand
= {
621 .governor
= cpufreq_governor_dbs
,
622 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
623 .owner
= THIS_MODULE
,
626 static int __init
cpufreq_gov_dbs_init(void)
633 idle_time
= get_cpu_idle_time_us(cpu
, &wall
);
635 if (idle_time
!= -1ULL) {
636 /* Idle micro accounting is supported. Use finer thresholds */
637 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
638 dbs_tuners_ins
.down_differential
=
639 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
641 * In no_hz/micro accounting case we set the minimum frequency
642 * not depending on HZ, but fixed (very low). The deferred
643 * timer might skip some samples if idle/sleeping as needed.
645 min_sampling_rate
= MICRO_FREQUENCY_MIN_SAMPLE_RATE
;
647 /* For correct statistics, we need 10 ticks for each measure */
649 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
652 kondemand_wq
= create_workqueue("kondemand");
654 printk(KERN_ERR
"Creation of kondemand failed\n");
657 err
= cpufreq_register_governor(&cpufreq_gov_ondemand
);
659 destroy_workqueue(kondemand_wq
);
664 static void __exit
cpufreq_gov_dbs_exit(void)
666 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
667 destroy_workqueue(kondemand_wq
);
671 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
672 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
673 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
674 "Low Latency Frequency Transition capable processors");
675 MODULE_LICENSE("GPL");
677 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
678 fs_initcall(cpufreq_gov_dbs_init
);
680 module_init(cpufreq_gov_dbs_init
);
682 module_exit(cpufreq_gov_dbs_exit
);