2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/swiotlb.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/types.h>
28 #include <linux/ctype.h>
29 #include <linux/highmem.h>
33 #include <asm/scatterlist.h>
35 #include <linux/init.h>
36 #include <linux/bootmem.h>
37 #include <linux/iommu-helper.h>
39 #define OFFSET(val,align) ((unsigned long) \
40 ( (val) & ( (align) - 1)))
42 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45 * Minimum IO TLB size to bother booting with. Systems with mainly
46 * 64bit capable cards will only lightly use the swiotlb. If we can't
47 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52 * Enumeration for sync targets
54 enum dma_sync_target
{
62 * Used to do a quick range check in swiotlb_unmap_single and
63 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
66 static char *io_tlb_start
, *io_tlb_end
;
69 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
70 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 static unsigned long io_tlb_nslabs
;
75 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 static unsigned long io_tlb_overflow
= 32*1024;
79 void *io_tlb_overflow_buffer
;
82 * This is a free list describing the number of free entries available from
85 static unsigned int *io_tlb_list
;
86 static unsigned int io_tlb_index
;
89 * We need to save away the original address corresponding to a mapped entry
90 * for the sync operations.
92 static struct swiotlb_phys_addr
{
98 * Protect the above data structures in the map and unmap calls
100 static DEFINE_SPINLOCK(io_tlb_lock
);
103 setup_io_tlb_npages(char *str
)
106 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
107 /* avoid tail segment of size < IO_TLB_SEGSIZE */
108 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
112 if (!strcmp(str
, "force"))
116 __setup("swiotlb=", setup_io_tlb_npages
);
117 /* make io_tlb_overflow tunable too? */
119 void * __weak
swiotlb_alloc_boot(size_t size
, unsigned long nslabs
)
121 return alloc_bootmem_low_pages(size
);
124 void * __weak
swiotlb_alloc(unsigned order
, unsigned long nslabs
)
126 return (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
, order
);
129 dma_addr_t __weak
swiotlb_phys_to_bus(phys_addr_t paddr
)
134 phys_addr_t __weak
swiotlb_bus_to_phys(dma_addr_t baddr
)
139 static dma_addr_t
swiotlb_virt_to_bus(volatile void *address
)
141 return swiotlb_phys_to_bus(virt_to_phys(address
));
144 static void *swiotlb_bus_to_virt(dma_addr_t address
)
146 return phys_to_virt(swiotlb_bus_to_phys(address
));
149 int __weak
swiotlb_arch_range_needs_mapping(void *ptr
, size_t size
)
154 static dma_addr_t
swiotlb_sg_to_bus(struct scatterlist
*sg
)
156 return swiotlb_phys_to_bus(page_to_phys(sg_page(sg
)) + sg
->offset
);
159 static void swiotlb_print_info(unsigned long bytes
)
161 phys_addr_t pstart
, pend
;
162 dma_addr_t bstart
, bend
;
164 pstart
= virt_to_phys(io_tlb_start
);
165 pend
= virt_to_phys(io_tlb_end
);
167 bstart
= swiotlb_phys_to_bus(pstart
);
168 bend
= swiotlb_phys_to_bus(pend
);
170 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
171 bytes
>> 20, io_tlb_start
, io_tlb_end
);
172 if (pstart
!= bstart
|| pend
!= bend
)
173 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx"
174 " bus %#llx - %#llx\n",
175 (unsigned long long)pstart
,
176 (unsigned long long)pend
,
177 (unsigned long long)bstart
,
178 (unsigned long long)bend
);
180 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
181 (unsigned long long)pstart
,
182 (unsigned long long)pend
);
186 * Statically reserve bounce buffer space and initialize bounce buffer data
187 * structures for the software IO TLB used to implement the DMA API.
190 swiotlb_init_with_default_size(size_t default_size
)
192 unsigned long i
, bytes
;
194 if (!io_tlb_nslabs
) {
195 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
196 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
199 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
202 * Get IO TLB memory from the low pages
204 io_tlb_start
= swiotlb_alloc_boot(bytes
, io_tlb_nslabs
);
206 panic("Cannot allocate SWIOTLB buffer");
207 io_tlb_end
= io_tlb_start
+ bytes
;
210 * Allocate and initialize the free list array. This array is used
211 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
212 * between io_tlb_start and io_tlb_end.
214 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
215 for (i
= 0; i
< io_tlb_nslabs
; i
++)
216 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
218 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(struct swiotlb_phys_addr
));
221 * Get the overflow emergency buffer
223 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
224 if (!io_tlb_overflow_buffer
)
225 panic("Cannot allocate SWIOTLB overflow buffer!\n");
227 swiotlb_print_info(bytes
);
233 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
237 * Systems with larger DMA zones (those that don't support ISA) can
238 * initialize the swiotlb later using the slab allocator if needed.
239 * This should be just like above, but with some error catching.
242 swiotlb_late_init_with_default_size(size_t default_size
)
244 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
247 if (!io_tlb_nslabs
) {
248 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
249 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
253 * Get IO TLB memory from the low pages
255 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
256 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
257 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
259 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
260 io_tlb_start
= swiotlb_alloc(order
, io_tlb_nslabs
);
269 if (order
!= get_order(bytes
)) {
270 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
271 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
272 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
273 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
275 io_tlb_end
= io_tlb_start
+ bytes
;
276 memset(io_tlb_start
, 0, bytes
);
279 * Allocate and initialize the free list array. This array is used
280 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
281 * between io_tlb_start and io_tlb_end.
283 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
284 get_order(io_tlb_nslabs
* sizeof(int)));
288 for (i
= 0; i
< io_tlb_nslabs
; i
++)
289 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
292 io_tlb_orig_addr
= (struct swiotlb_phys_addr
*)__get_free_pages(GFP_KERNEL
,
293 get_order(io_tlb_nslabs
* sizeof(struct swiotlb_phys_addr
)));
294 if (!io_tlb_orig_addr
)
297 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(struct swiotlb_phys_addr
));
300 * Get the overflow emergency buffer
302 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
303 get_order(io_tlb_overflow
));
304 if (!io_tlb_overflow_buffer
)
307 swiotlb_print_info(bytes
);
312 free_pages((unsigned long)io_tlb_orig_addr
, get_order(io_tlb_nslabs
*
314 io_tlb_orig_addr
= NULL
;
316 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
321 free_pages((unsigned long)io_tlb_start
, order
);
324 io_tlb_nslabs
= req_nslabs
;
329 address_needs_mapping(struct device
*hwdev
, dma_addr_t addr
, size_t size
)
331 return !is_buffer_dma_capable(dma_get_mask(hwdev
), addr
, size
);
334 static inline int range_needs_mapping(void *ptr
, size_t size
)
336 return swiotlb_force
|| swiotlb_arch_range_needs_mapping(ptr
, size
);
339 static int is_swiotlb_buffer(char *addr
)
341 return addr
>= io_tlb_start
&& addr
< io_tlb_end
;
344 static struct swiotlb_phys_addr
swiotlb_bus_to_phys_addr(char *dma_addr
)
346 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
347 struct swiotlb_phys_addr buffer
= io_tlb_orig_addr
[index
];
348 buffer
.offset
+= (long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1);
349 buffer
.page
+= buffer
.offset
>> PAGE_SHIFT
;
350 buffer
.offset
&= PAGE_SIZE
- 1;
355 __sync_single(struct swiotlb_phys_addr buffer
, char *dma_addr
, size_t size
, int dir
)
357 if (PageHighMem(buffer
.page
)) {
359 char *dev
, *host
, *kmp
;
366 if ((bytes
+ buffer
.offset
) > PAGE_SIZE
)
367 bytes
= PAGE_SIZE
- buffer
.offset
;
368 local_irq_save(flags
); /* protects KM_BOUNCE_READ */
369 kmp
= kmap_atomic(buffer
.page
, KM_BOUNCE_READ
);
370 dev
= dma_addr
+ size
- len
;
371 host
= kmp
+ buffer
.offset
;
372 if (dir
== DMA_FROM_DEVICE
)
373 memcpy(host
, dev
, bytes
);
375 memcpy(dev
, host
, bytes
);
376 kunmap_atomic(kmp
, KM_BOUNCE_READ
);
377 local_irq_restore(flags
);
383 void *v
= page_address(buffer
.page
) + buffer
.offset
;
385 if (dir
== DMA_TO_DEVICE
)
386 memcpy(dma_addr
, v
, size
);
388 memcpy(v
, dma_addr
, size
);
393 * Allocates bounce buffer and returns its kernel virtual address.
396 map_single(struct device
*hwdev
, struct swiotlb_phys_addr buffer
, size_t size
, int dir
)
400 unsigned int nslots
, stride
, index
, wrap
;
402 unsigned long start_dma_addr
;
404 unsigned long offset_slots
;
405 unsigned long max_slots
;
406 struct swiotlb_phys_addr slot_buf
;
408 mask
= dma_get_seg_boundary(hwdev
);
409 start_dma_addr
= swiotlb_virt_to_bus(io_tlb_start
) & mask
;
411 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
414 * Carefully handle integer overflow which can occur when mask == ~0UL.
417 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
418 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
421 * For mappings greater than a page, we limit the stride (and
422 * hence alignment) to a page size.
424 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
425 if (size
> PAGE_SIZE
)
426 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
433 * Find suitable number of IO TLB entries size that will fit this
434 * request and allocate a buffer from that IO TLB pool.
436 spin_lock_irqsave(&io_tlb_lock
, flags
);
437 index
= ALIGN(io_tlb_index
, stride
);
438 if (index
>= io_tlb_nslabs
)
443 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
446 if (index
>= io_tlb_nslabs
)
453 * If we find a slot that indicates we have 'nslots' number of
454 * contiguous buffers, we allocate the buffers from that slot
455 * and mark the entries as '0' indicating unavailable.
457 if (io_tlb_list
[index
] >= nslots
) {
460 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
462 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
463 io_tlb_list
[i
] = ++count
;
464 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
467 * Update the indices to avoid searching in the next
470 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
471 ? (index
+ nslots
) : 0);
476 if (index
>= io_tlb_nslabs
)
478 } while (index
!= wrap
);
481 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
484 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
487 * Save away the mapping from the original address to the DMA address.
488 * This is needed when we sync the memory. Then we sync the buffer if
492 for (i
= 0; i
< nslots
; i
++) {
493 slot_buf
.page
+= slot_buf
.offset
>> PAGE_SHIFT
;
494 slot_buf
.offset
&= PAGE_SIZE
- 1;
495 io_tlb_orig_addr
[index
+i
] = slot_buf
;
496 slot_buf
.offset
+= 1 << IO_TLB_SHIFT
;
498 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
499 __sync_single(buffer
, dma_addr
, size
, DMA_TO_DEVICE
);
505 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
508 unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
511 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
512 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
513 struct swiotlb_phys_addr buffer
= swiotlb_bus_to_phys_addr(dma_addr
);
516 * First, sync the memory before unmapping the entry
518 if ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
))
520 * bounce... copy the data back into the original buffer * and
521 * delete the bounce buffer.
523 __sync_single(buffer
, dma_addr
, size
, DMA_FROM_DEVICE
);
526 * Return the buffer to the free list by setting the corresponding
527 * entries to indicate the number of contigous entries available.
528 * While returning the entries to the free list, we merge the entries
529 * with slots below and above the pool being returned.
531 spin_lock_irqsave(&io_tlb_lock
, flags
);
533 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
534 io_tlb_list
[index
+ nslots
] : 0);
536 * Step 1: return the slots to the free list, merging the
537 * slots with superceeding slots
539 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
540 io_tlb_list
[i
] = ++count
;
542 * Step 2: merge the returned slots with the preceding slots,
543 * if available (non zero)
545 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
546 io_tlb_list
[i
] = ++count
;
548 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
552 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
555 struct swiotlb_phys_addr buffer
= swiotlb_bus_to_phys_addr(dma_addr
);
559 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
560 __sync_single(buffer
, dma_addr
, size
, DMA_FROM_DEVICE
);
562 BUG_ON(dir
!= DMA_TO_DEVICE
);
564 case SYNC_FOR_DEVICE
:
565 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
566 __sync_single(buffer
, dma_addr
, size
, DMA_TO_DEVICE
);
568 BUG_ON(dir
!= DMA_FROM_DEVICE
);
576 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
577 dma_addr_t
*dma_handle
, gfp_t flags
)
581 int order
= get_order(size
);
582 u64 dma_mask
= DMA_32BIT_MASK
;
584 if (hwdev
&& hwdev
->coherent_dma_mask
)
585 dma_mask
= hwdev
->coherent_dma_mask
;
587 ret
= (void *)__get_free_pages(flags
, order
);
588 if (ret
&& !is_buffer_dma_capable(dma_mask
, swiotlb_virt_to_bus(ret
), size
)) {
590 * The allocated memory isn't reachable by the device.
591 * Fall back on swiotlb_map_single().
593 free_pages((unsigned long) ret
, order
);
598 * We are either out of memory or the device can't DMA
599 * to GFP_DMA memory; fall back on
600 * swiotlb_map_single(), which will grab memory from
601 * the lowest available address range.
603 struct swiotlb_phys_addr buffer
;
604 buffer
.page
= virt_to_page(NULL
);
606 ret
= map_single(hwdev
, buffer
, size
, DMA_FROM_DEVICE
);
611 memset(ret
, 0, size
);
612 dev_addr
= swiotlb_virt_to_bus(ret
);
614 /* Confirm address can be DMA'd by device */
615 if (!is_buffer_dma_capable(dma_mask
, dev_addr
, size
)) {
616 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
617 (unsigned long long)dma_mask
,
618 (unsigned long long)dev_addr
);
620 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
621 unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
624 *dma_handle
= dev_addr
;
629 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
630 dma_addr_t dma_handle
)
632 WARN_ON(irqs_disabled());
633 if (!is_swiotlb_buffer(vaddr
))
634 free_pages((unsigned long) vaddr
, get_order(size
));
636 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
637 unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
641 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
644 * Ran out of IOMMU space for this operation. This is very bad.
645 * Unfortunately the drivers cannot handle this operation properly.
646 * unless they check for dma_mapping_error (most don't)
647 * When the mapping is small enough return a static buffer to limit
648 * the damage, or panic when the transfer is too big.
650 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
651 "device %s\n", size
, dev
? dev
->bus_id
: "?");
653 if (size
> io_tlb_overflow
&& do_panic
) {
654 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
655 panic("DMA: Memory would be corrupted\n");
656 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
657 panic("DMA: Random memory would be DMAed\n");
662 * Map a single buffer of the indicated size for DMA in streaming mode. The
663 * physical address to use is returned.
665 * Once the device is given the dma address, the device owns this memory until
666 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
669 swiotlb_map_single_attrs(struct device
*hwdev
, void *ptr
, size_t size
,
670 int dir
, struct dma_attrs
*attrs
)
672 dma_addr_t dev_addr
= swiotlb_virt_to_bus(ptr
);
674 struct swiotlb_phys_addr buffer
;
676 BUG_ON(dir
== DMA_NONE
);
678 * If the pointer passed in happens to be in the device's DMA window,
679 * we can safely return the device addr and not worry about bounce
682 if (!address_needs_mapping(hwdev
, dev_addr
, size
) &&
683 !range_needs_mapping(ptr
, size
))
687 * Oh well, have to allocate and map a bounce buffer.
689 buffer
.page
= virt_to_page(ptr
);
690 buffer
.offset
= (unsigned long)ptr
& ~PAGE_MASK
;
691 map
= map_single(hwdev
, buffer
, size
, dir
);
693 swiotlb_full(hwdev
, size
, dir
, 1);
694 map
= io_tlb_overflow_buffer
;
697 dev_addr
= swiotlb_virt_to_bus(map
);
700 * Ensure that the address returned is DMA'ble
702 if (address_needs_mapping(hwdev
, dev_addr
, size
))
703 panic("map_single: bounce buffer is not DMA'ble");
707 EXPORT_SYMBOL(swiotlb_map_single_attrs
);
710 swiotlb_map_single(struct device
*hwdev
, void *ptr
, size_t size
, int dir
)
712 return swiotlb_map_single_attrs(hwdev
, ptr
, size
, dir
, NULL
);
716 * Unmap a single streaming mode DMA translation. The dma_addr and size must
717 * match what was provided for in a previous swiotlb_map_single call. All
718 * other usages are undefined.
720 * After this call, reads by the cpu to the buffer are guaranteed to see
721 * whatever the device wrote there.
724 swiotlb_unmap_single_attrs(struct device
*hwdev
, dma_addr_t dev_addr
,
725 size_t size
, int dir
, struct dma_attrs
*attrs
)
727 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
729 BUG_ON(dir
== DMA_NONE
);
730 if (is_swiotlb_buffer(dma_addr
))
731 unmap_single(hwdev
, dma_addr
, size
, dir
);
732 else if (dir
== DMA_FROM_DEVICE
)
733 dma_mark_clean(dma_addr
, size
);
735 EXPORT_SYMBOL(swiotlb_unmap_single_attrs
);
738 swiotlb_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
, size_t size
,
741 return swiotlb_unmap_single_attrs(hwdev
, dev_addr
, size
, dir
, NULL
);
744 * Make physical memory consistent for a single streaming mode DMA translation
747 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
748 * using the cpu, yet do not wish to teardown the dma mapping, you must
749 * call this function before doing so. At the next point you give the dma
750 * address back to the card, you must first perform a
751 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
754 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
755 size_t size
, int dir
, int target
)
757 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
759 BUG_ON(dir
== DMA_NONE
);
760 if (is_swiotlb_buffer(dma_addr
))
761 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
762 else if (dir
== DMA_FROM_DEVICE
)
763 dma_mark_clean(dma_addr
, size
);
767 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
768 size_t size
, int dir
)
770 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
774 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
775 size_t size
, int dir
)
777 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
781 * Same as above, but for a sub-range of the mapping.
784 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
785 unsigned long offset
, size_t size
,
788 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
) + offset
;
790 BUG_ON(dir
== DMA_NONE
);
791 if (is_swiotlb_buffer(dma_addr
))
792 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
793 else if (dir
== DMA_FROM_DEVICE
)
794 dma_mark_clean(dma_addr
, size
);
798 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
799 unsigned long offset
, size_t size
, int dir
)
801 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
806 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
807 unsigned long offset
, size_t size
, int dir
)
809 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
813 void swiotlb_unmap_sg_attrs(struct device
*, struct scatterlist
*, int, int,
816 * Map a set of buffers described by scatterlist in streaming mode for DMA.
817 * This is the scatter-gather version of the above swiotlb_map_single
818 * interface. Here the scatter gather list elements are each tagged with the
819 * appropriate dma address and length. They are obtained via
820 * sg_dma_{address,length}(SG).
822 * NOTE: An implementation may be able to use a smaller number of
823 * DMA address/length pairs than there are SG table elements.
824 * (for example via virtual mapping capabilities)
825 * The routine returns the number of addr/length pairs actually
826 * used, at most nents.
828 * Device ownership issues as mentioned above for swiotlb_map_single are the
832 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
833 int dir
, struct dma_attrs
*attrs
)
835 struct scatterlist
*sg
;
836 struct swiotlb_phys_addr buffer
;
840 BUG_ON(dir
== DMA_NONE
);
842 for_each_sg(sgl
, sg
, nelems
, i
) {
843 dev_addr
= swiotlb_sg_to_bus(sg
);
844 if (range_needs_mapping(sg_virt(sg
), sg
->length
) ||
845 address_needs_mapping(hwdev
, dev_addr
, sg
->length
)) {
847 buffer
.page
= sg_page(sg
);
848 buffer
.offset
= sg
->offset
;
849 map
= map_single(hwdev
, buffer
, sg
->length
, dir
);
851 /* Don't panic here, we expect map_sg users
852 to do proper error handling. */
853 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
854 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
856 sgl
[0].dma_length
= 0;
859 sg
->dma_address
= swiotlb_virt_to_bus(map
);
861 sg
->dma_address
= dev_addr
;
862 sg
->dma_length
= sg
->length
;
866 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
869 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
872 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
876 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
877 * concerning calls here are the same as for swiotlb_unmap_single() above.
880 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
881 int nelems
, int dir
, struct dma_attrs
*attrs
)
883 struct scatterlist
*sg
;
886 BUG_ON(dir
== DMA_NONE
);
888 for_each_sg(sgl
, sg
, nelems
, i
) {
889 if (sg
->dma_address
!= swiotlb_sg_to_bus(sg
))
890 unmap_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
891 sg
->dma_length
, dir
);
892 else if (dir
== DMA_FROM_DEVICE
)
893 dma_mark_clean(swiotlb_bus_to_virt(sg
->dma_address
), sg
->dma_length
);
896 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
899 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
902 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
906 * Make physical memory consistent for a set of streaming mode DMA translations
909 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
913 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
914 int nelems
, int dir
, int target
)
916 struct scatterlist
*sg
;
919 BUG_ON(dir
== DMA_NONE
);
921 for_each_sg(sgl
, sg
, nelems
, i
) {
922 if (sg
->dma_address
!= swiotlb_sg_to_bus(sg
))
923 sync_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
924 sg
->dma_length
, dir
, target
);
925 else if (dir
== DMA_FROM_DEVICE
)
926 dma_mark_clean(swiotlb_bus_to_virt(sg
->dma_address
), sg
->dma_length
);
931 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
934 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
938 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
941 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
945 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
947 return (dma_addr
== swiotlb_virt_to_bus(io_tlb_overflow_buffer
));
951 * Return whether the given device DMA address mask can be supported
952 * properly. For example, if your device can only drive the low 24-bits
953 * during bus mastering, then you would pass 0x00ffffff as the mask to
957 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
959 return swiotlb_virt_to_bus(io_tlb_end
- 1) <= mask
;
962 EXPORT_SYMBOL(swiotlb_map_single
);
963 EXPORT_SYMBOL(swiotlb_unmap_single
);
964 EXPORT_SYMBOL(swiotlb_map_sg
);
965 EXPORT_SYMBOL(swiotlb_unmap_sg
);
966 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
967 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
968 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
969 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
970 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
971 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
972 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
973 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
974 EXPORT_SYMBOL(swiotlb_free_coherent
);
975 EXPORT_SYMBOL(swiotlb_dma_supported
);