[XFS] fix error handling in xlog_recover_process_one_iunlink
[linux-2.6/verdex.git] / fs / xfs / xfs_log_recover.c
blob51412cced010f13a63ce84aa746e3bc2e34adf33
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
47 #include "xfs_rw.h"
48 #include "xfs_utils.h"
50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void xlog_recover_check_summary(xlog_t *);
56 #else
57 #define xlog_recover_check_summary(log)
58 #endif
62 * Sector aligned buffer routines for buffer create/read/write/access
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
70 xfs_buf_t *
71 xlog_get_bp(
72 xlog_t *log,
73 int num_bblks)
75 ASSERT(num_bblks > 0);
77 if (log->l_sectbb_log) {
78 if (num_bblks > 1)
79 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
80 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
82 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 void
86 xlog_put_bp(
87 xfs_buf_t *bp)
89 xfs_buf_free(bp);
94 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
96 int
97 xlog_bread(
98 xlog_t *log,
99 xfs_daddr_t blk_no,
100 int nbblks,
101 xfs_buf_t *bp)
103 int error;
105 if (log->l_sectbb_log) {
106 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
107 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110 ASSERT(nbblks > 0);
111 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
112 ASSERT(bp);
114 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
115 XFS_BUF_READ(bp);
116 XFS_BUF_BUSY(bp);
117 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
118 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
120 xfsbdstrat(log->l_mp, bp);
121 error = xfs_iowait(bp);
122 if (error)
123 xfs_ioerror_alert("xlog_bread", log->l_mp,
124 bp, XFS_BUF_ADDR(bp));
125 return error;
129 * Write out the buffer at the given block for the given number of blocks.
130 * The buffer is kept locked across the write and is returned locked.
131 * This can only be used for synchronous log writes.
133 STATIC int
134 xlog_bwrite(
135 xlog_t *log,
136 xfs_daddr_t blk_no,
137 int nbblks,
138 xfs_buf_t *bp)
140 int error;
142 if (log->l_sectbb_log) {
143 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
144 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
147 ASSERT(nbblks > 0);
148 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
151 XFS_BUF_ZEROFLAGS(bp);
152 XFS_BUF_BUSY(bp);
153 XFS_BUF_HOLD(bp);
154 XFS_BUF_PSEMA(bp, PRIBIO);
155 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
156 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158 if ((error = xfs_bwrite(log->l_mp, bp)))
159 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
160 bp, XFS_BUF_ADDR(bp));
161 return error;
164 STATIC xfs_caddr_t
165 xlog_align(
166 xlog_t *log,
167 xfs_daddr_t blk_no,
168 int nbblks,
169 xfs_buf_t *bp)
171 xfs_caddr_t ptr;
173 if (!log->l_sectbb_log)
174 return XFS_BUF_PTR(bp);
176 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
177 ASSERT(XFS_BUF_SIZE(bp) >=
178 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
179 return ptr;
182 #ifdef DEBUG
184 * dump debug superblock and log record information
186 STATIC void
187 xlog_header_check_dump(
188 xfs_mount_t *mp,
189 xlog_rec_header_t *head)
191 int b;
193 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
194 for (b = 0; b < 16; b++)
195 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
196 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
197 cmn_err(CE_DEBUG, " log : uuid = ");
198 for (b = 0; b < 16; b++)
199 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
200 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
202 #else
203 #define xlog_header_check_dump(mp, head)
204 #endif
207 * check log record header for recovery
209 STATIC int
210 xlog_header_check_recover(
211 xfs_mount_t *mp,
212 xlog_rec_header_t *head)
214 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
217 * IRIX doesn't write the h_fmt field and leaves it zeroed
218 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
219 * a dirty log created in IRIX.
221 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
222 xlog_warn(
223 "XFS: dirty log written in incompatible format - can't recover");
224 xlog_header_check_dump(mp, head);
225 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
226 XFS_ERRLEVEL_HIGH, mp);
227 return XFS_ERROR(EFSCORRUPTED);
228 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
229 xlog_warn(
230 "XFS: dirty log entry has mismatched uuid - can't recover");
231 xlog_header_check_dump(mp, head);
232 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
233 XFS_ERRLEVEL_HIGH, mp);
234 return XFS_ERROR(EFSCORRUPTED);
236 return 0;
240 * read the head block of the log and check the header
242 STATIC int
243 xlog_header_check_mount(
244 xfs_mount_t *mp,
245 xlog_rec_header_t *head)
247 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
249 if (uuid_is_nil(&head->h_fs_uuid)) {
251 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
252 * h_fs_uuid is nil, we assume this log was last mounted
253 * by IRIX and continue.
255 xlog_warn("XFS: nil uuid in log - IRIX style log");
256 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
257 xlog_warn("XFS: log has mismatched uuid - can't recover");
258 xlog_header_check_dump(mp, head);
259 XFS_ERROR_REPORT("xlog_header_check_mount",
260 XFS_ERRLEVEL_HIGH, mp);
261 return XFS_ERROR(EFSCORRUPTED);
263 return 0;
266 STATIC void
267 xlog_recover_iodone(
268 struct xfs_buf *bp)
270 xfs_mount_t *mp;
272 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274 if (XFS_BUF_GETERROR(bp)) {
276 * We're not going to bother about retrying
277 * this during recovery. One strike!
279 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
280 xfs_ioerror_alert("xlog_recover_iodone",
281 mp, bp, XFS_BUF_ADDR(bp));
282 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284 XFS_BUF_SET_FSPRIVATE(bp, NULL);
285 XFS_BUF_CLR_IODONE_FUNC(bp);
286 xfs_biodone(bp);
290 * This routine finds (to an approximation) the first block in the physical
291 * log which contains the given cycle. It uses a binary search algorithm.
292 * Note that the algorithm can not be perfect because the disk will not
293 * necessarily be perfect.
295 STATIC int
296 xlog_find_cycle_start(
297 xlog_t *log,
298 xfs_buf_t *bp,
299 xfs_daddr_t first_blk,
300 xfs_daddr_t *last_blk,
301 uint cycle)
303 xfs_caddr_t offset;
304 xfs_daddr_t mid_blk;
305 uint mid_cycle;
306 int error;
308 mid_blk = BLK_AVG(first_blk, *last_blk);
309 while (mid_blk != first_blk && mid_blk != *last_blk) {
310 if ((error = xlog_bread(log, mid_blk, 1, bp)))
311 return error;
312 offset = xlog_align(log, mid_blk, 1, bp);
313 mid_cycle = xlog_get_cycle(offset);
314 if (mid_cycle == cycle) {
315 *last_blk = mid_blk;
316 /* last_half_cycle == mid_cycle */
317 } else {
318 first_blk = mid_blk;
319 /* first_half_cycle == mid_cycle */
321 mid_blk = BLK_AVG(first_blk, *last_blk);
323 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
324 (mid_blk == *last_blk && mid_blk-1 == first_blk));
326 return 0;
330 * Check that the range of blocks does not contain the cycle number
331 * given. The scan needs to occur from front to back and the ptr into the
332 * region must be updated since a later routine will need to perform another
333 * test. If the region is completely good, we end up returning the same
334 * last block number.
336 * Set blkno to -1 if we encounter no errors. This is an invalid block number
337 * since we don't ever expect logs to get this large.
339 STATIC int
340 xlog_find_verify_cycle(
341 xlog_t *log,
342 xfs_daddr_t start_blk,
343 int nbblks,
344 uint stop_on_cycle_no,
345 xfs_daddr_t *new_blk)
347 xfs_daddr_t i, j;
348 uint cycle;
349 xfs_buf_t *bp;
350 xfs_daddr_t bufblks;
351 xfs_caddr_t buf = NULL;
352 int error = 0;
354 bufblks = 1 << ffs(nbblks);
356 while (!(bp = xlog_get_bp(log, bufblks))) {
357 /* can't get enough memory to do everything in one big buffer */
358 bufblks >>= 1;
359 if (bufblks <= log->l_sectbb_log)
360 return ENOMEM;
363 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
364 int bcount;
366 bcount = min(bufblks, (start_blk + nbblks - i));
368 if ((error = xlog_bread(log, i, bcount, bp)))
369 goto out;
371 buf = xlog_align(log, i, bcount, bp);
372 for (j = 0; j < bcount; j++) {
373 cycle = xlog_get_cycle(buf);
374 if (cycle == stop_on_cycle_no) {
375 *new_blk = i+j;
376 goto out;
379 buf += BBSIZE;
383 *new_blk = -1;
385 out:
386 xlog_put_bp(bp);
387 return error;
391 * Potentially backup over partial log record write.
393 * In the typical case, last_blk is the number of the block directly after
394 * a good log record. Therefore, we subtract one to get the block number
395 * of the last block in the given buffer. extra_bblks contains the number
396 * of blocks we would have read on a previous read. This happens when the
397 * last log record is split over the end of the physical log.
399 * extra_bblks is the number of blocks potentially verified on a previous
400 * call to this routine.
402 STATIC int
403 xlog_find_verify_log_record(
404 xlog_t *log,
405 xfs_daddr_t start_blk,
406 xfs_daddr_t *last_blk,
407 int extra_bblks)
409 xfs_daddr_t i;
410 xfs_buf_t *bp;
411 xfs_caddr_t offset = NULL;
412 xlog_rec_header_t *head = NULL;
413 int error = 0;
414 int smallmem = 0;
415 int num_blks = *last_blk - start_blk;
416 int xhdrs;
418 ASSERT(start_blk != 0 || *last_blk != start_blk);
420 if (!(bp = xlog_get_bp(log, num_blks))) {
421 if (!(bp = xlog_get_bp(log, 1)))
422 return ENOMEM;
423 smallmem = 1;
424 } else {
425 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
426 goto out;
427 offset = xlog_align(log, start_blk, num_blks, bp);
428 offset += ((num_blks - 1) << BBSHIFT);
431 for (i = (*last_blk) - 1; i >= 0; i--) {
432 if (i < start_blk) {
433 /* valid log record not found */
434 xlog_warn(
435 "XFS: Log inconsistent (didn't find previous header)");
436 ASSERT(0);
437 error = XFS_ERROR(EIO);
438 goto out;
441 if (smallmem) {
442 if ((error = xlog_bread(log, i, 1, bp)))
443 goto out;
444 offset = xlog_align(log, i, 1, bp);
447 head = (xlog_rec_header_t *)offset;
449 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
450 break;
452 if (!smallmem)
453 offset -= BBSIZE;
457 * We hit the beginning of the physical log & still no header. Return
458 * to caller. If caller can handle a return of -1, then this routine
459 * will be called again for the end of the physical log.
461 if (i == -1) {
462 error = -1;
463 goto out;
467 * We have the final block of the good log (the first block
468 * of the log record _before_ the head. So we check the uuid.
470 if ((error = xlog_header_check_mount(log->l_mp, head)))
471 goto out;
474 * We may have found a log record header before we expected one.
475 * last_blk will be the 1st block # with a given cycle #. We may end
476 * up reading an entire log record. In this case, we don't want to
477 * reset last_blk. Only when last_blk points in the middle of a log
478 * record do we update last_blk.
480 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
481 uint h_size = be32_to_cpu(head->h_size);
483 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
484 if (h_size % XLOG_HEADER_CYCLE_SIZE)
485 xhdrs++;
486 } else {
487 xhdrs = 1;
490 if (*last_blk - i + extra_bblks !=
491 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
492 *last_blk = i;
494 out:
495 xlog_put_bp(bp);
496 return error;
500 * Head is defined to be the point of the log where the next log write
501 * write could go. This means that incomplete LR writes at the end are
502 * eliminated when calculating the head. We aren't guaranteed that previous
503 * LR have complete transactions. We only know that a cycle number of
504 * current cycle number -1 won't be present in the log if we start writing
505 * from our current block number.
507 * last_blk contains the block number of the first block with a given
508 * cycle number.
510 * Return: zero if normal, non-zero if error.
512 STATIC int
513 xlog_find_head(
514 xlog_t *log,
515 xfs_daddr_t *return_head_blk)
517 xfs_buf_t *bp;
518 xfs_caddr_t offset;
519 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
520 int num_scan_bblks;
521 uint first_half_cycle, last_half_cycle;
522 uint stop_on_cycle;
523 int error, log_bbnum = log->l_logBBsize;
525 /* Is the end of the log device zeroed? */
526 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
527 *return_head_blk = first_blk;
529 /* Is the whole lot zeroed? */
530 if (!first_blk) {
531 /* Linux XFS shouldn't generate totally zeroed logs -
532 * mkfs etc write a dummy unmount record to a fresh
533 * log so we can store the uuid in there
535 xlog_warn("XFS: totally zeroed log");
538 return 0;
539 } else if (error) {
540 xlog_warn("XFS: empty log check failed");
541 return error;
544 first_blk = 0; /* get cycle # of 1st block */
545 bp = xlog_get_bp(log, 1);
546 if (!bp)
547 return ENOMEM;
548 if ((error = xlog_bread(log, 0, 1, bp)))
549 goto bp_err;
550 offset = xlog_align(log, 0, 1, bp);
551 first_half_cycle = xlog_get_cycle(offset);
553 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
554 if ((error = xlog_bread(log, last_blk, 1, bp)))
555 goto bp_err;
556 offset = xlog_align(log, last_blk, 1, bp);
557 last_half_cycle = xlog_get_cycle(offset);
558 ASSERT(last_half_cycle != 0);
561 * If the 1st half cycle number is equal to the last half cycle number,
562 * then the entire log is stamped with the same cycle number. In this
563 * case, head_blk can't be set to zero (which makes sense). The below
564 * math doesn't work out properly with head_blk equal to zero. Instead,
565 * we set it to log_bbnum which is an invalid block number, but this
566 * value makes the math correct. If head_blk doesn't changed through
567 * all the tests below, *head_blk is set to zero at the very end rather
568 * than log_bbnum. In a sense, log_bbnum and zero are the same block
569 * in a circular file.
571 if (first_half_cycle == last_half_cycle) {
573 * In this case we believe that the entire log should have
574 * cycle number last_half_cycle. We need to scan backwards
575 * from the end verifying that there are no holes still
576 * containing last_half_cycle - 1. If we find such a hole,
577 * then the start of that hole will be the new head. The
578 * simple case looks like
579 * x | x ... | x - 1 | x
580 * Another case that fits this picture would be
581 * x | x + 1 | x ... | x
582 * In this case the head really is somewhere at the end of the
583 * log, as one of the latest writes at the beginning was
584 * incomplete.
585 * One more case is
586 * x | x + 1 | x ... | x - 1 | x
587 * This is really the combination of the above two cases, and
588 * the head has to end up at the start of the x-1 hole at the
589 * end of the log.
591 * In the 256k log case, we will read from the beginning to the
592 * end of the log and search for cycle numbers equal to x-1.
593 * We don't worry about the x+1 blocks that we encounter,
594 * because we know that they cannot be the head since the log
595 * started with x.
597 head_blk = log_bbnum;
598 stop_on_cycle = last_half_cycle - 1;
599 } else {
601 * In this case we want to find the first block with cycle
602 * number matching last_half_cycle. We expect the log to be
603 * some variation on
604 * x + 1 ... | x ...
605 * The first block with cycle number x (last_half_cycle) will
606 * be where the new head belongs. First we do a binary search
607 * for the first occurrence of last_half_cycle. The binary
608 * search may not be totally accurate, so then we scan back
609 * from there looking for occurrences of last_half_cycle before
610 * us. If that backwards scan wraps around the beginning of
611 * the log, then we look for occurrences of last_half_cycle - 1
612 * at the end of the log. The cases we're looking for look
613 * like
614 * x + 1 ... | x | x + 1 | x ...
615 * ^ binary search stopped here
616 * or
617 * x + 1 ... | x ... | x - 1 | x
618 * <---------> less than scan distance
620 stop_on_cycle = last_half_cycle;
621 if ((error = xlog_find_cycle_start(log, bp, first_blk,
622 &head_blk, last_half_cycle)))
623 goto bp_err;
627 * Now validate the answer. Scan back some number of maximum possible
628 * blocks and make sure each one has the expected cycle number. The
629 * maximum is determined by the total possible amount of buffering
630 * in the in-core log. The following number can be made tighter if
631 * we actually look at the block size of the filesystem.
633 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
634 if (head_blk >= num_scan_bblks) {
636 * We are guaranteed that the entire check can be performed
637 * in one buffer.
639 start_blk = head_blk - num_scan_bblks;
640 if ((error = xlog_find_verify_cycle(log,
641 start_blk, num_scan_bblks,
642 stop_on_cycle, &new_blk)))
643 goto bp_err;
644 if (new_blk != -1)
645 head_blk = new_blk;
646 } else { /* need to read 2 parts of log */
648 * We are going to scan backwards in the log in two parts.
649 * First we scan the physical end of the log. In this part
650 * of the log, we are looking for blocks with cycle number
651 * last_half_cycle - 1.
652 * If we find one, then we know that the log starts there, as
653 * we've found a hole that didn't get written in going around
654 * the end of the physical log. The simple case for this is
655 * x + 1 ... | x ... | x - 1 | x
656 * <---------> less than scan distance
657 * If all of the blocks at the end of the log have cycle number
658 * last_half_cycle, then we check the blocks at the start of
659 * the log looking for occurrences of last_half_cycle. If we
660 * find one, then our current estimate for the location of the
661 * first occurrence of last_half_cycle is wrong and we move
662 * back to the hole we've found. This case looks like
663 * x + 1 ... | x | x + 1 | x ...
664 * ^ binary search stopped here
665 * Another case we need to handle that only occurs in 256k
666 * logs is
667 * x + 1 ... | x ... | x+1 | x ...
668 * ^ binary search stops here
669 * In a 256k log, the scan at the end of the log will see the
670 * x + 1 blocks. We need to skip past those since that is
671 * certainly not the head of the log. By searching for
672 * last_half_cycle-1 we accomplish that.
674 start_blk = log_bbnum - num_scan_bblks + head_blk;
675 ASSERT(head_blk <= INT_MAX &&
676 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
677 if ((error = xlog_find_verify_cycle(log, start_blk,
678 num_scan_bblks - (int)head_blk,
679 (stop_on_cycle - 1), &new_blk)))
680 goto bp_err;
681 if (new_blk != -1) {
682 head_blk = new_blk;
683 goto bad_blk;
687 * Scan beginning of log now. The last part of the physical
688 * log is good. This scan needs to verify that it doesn't find
689 * the last_half_cycle.
691 start_blk = 0;
692 ASSERT(head_blk <= INT_MAX);
693 if ((error = xlog_find_verify_cycle(log,
694 start_blk, (int)head_blk,
695 stop_on_cycle, &new_blk)))
696 goto bp_err;
697 if (new_blk != -1)
698 head_blk = new_blk;
701 bad_blk:
703 * Now we need to make sure head_blk is not pointing to a block in
704 * the middle of a log record.
706 num_scan_bblks = XLOG_REC_SHIFT(log);
707 if (head_blk >= num_scan_bblks) {
708 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
710 /* start ptr at last block ptr before head_blk */
711 if ((error = xlog_find_verify_log_record(log, start_blk,
712 &head_blk, 0)) == -1) {
713 error = XFS_ERROR(EIO);
714 goto bp_err;
715 } else if (error)
716 goto bp_err;
717 } else {
718 start_blk = 0;
719 ASSERT(head_blk <= INT_MAX);
720 if ((error = xlog_find_verify_log_record(log, start_blk,
721 &head_blk, 0)) == -1) {
722 /* We hit the beginning of the log during our search */
723 start_blk = log_bbnum - num_scan_bblks + head_blk;
724 new_blk = log_bbnum;
725 ASSERT(start_blk <= INT_MAX &&
726 (xfs_daddr_t) log_bbnum-start_blk >= 0);
727 ASSERT(head_blk <= INT_MAX);
728 if ((error = xlog_find_verify_log_record(log,
729 start_blk, &new_blk,
730 (int)head_blk)) == -1) {
731 error = XFS_ERROR(EIO);
732 goto bp_err;
733 } else if (error)
734 goto bp_err;
735 if (new_blk != log_bbnum)
736 head_blk = new_blk;
737 } else if (error)
738 goto bp_err;
741 xlog_put_bp(bp);
742 if (head_blk == log_bbnum)
743 *return_head_blk = 0;
744 else
745 *return_head_blk = head_blk;
747 * When returning here, we have a good block number. Bad block
748 * means that during a previous crash, we didn't have a clean break
749 * from cycle number N to cycle number N-1. In this case, we need
750 * to find the first block with cycle number N-1.
752 return 0;
754 bp_err:
755 xlog_put_bp(bp);
757 if (error)
758 xlog_warn("XFS: failed to find log head");
759 return error;
763 * Find the sync block number or the tail of the log.
765 * This will be the block number of the last record to have its
766 * associated buffers synced to disk. Every log record header has
767 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
768 * to get a sync block number. The only concern is to figure out which
769 * log record header to believe.
771 * The following algorithm uses the log record header with the largest
772 * lsn. The entire log record does not need to be valid. We only care
773 * that the header is valid.
775 * We could speed up search by using current head_blk buffer, but it is not
776 * available.
779 xlog_find_tail(
780 xlog_t *log,
781 xfs_daddr_t *head_blk,
782 xfs_daddr_t *tail_blk)
784 xlog_rec_header_t *rhead;
785 xlog_op_header_t *op_head;
786 xfs_caddr_t offset = NULL;
787 xfs_buf_t *bp;
788 int error, i, found;
789 xfs_daddr_t umount_data_blk;
790 xfs_daddr_t after_umount_blk;
791 xfs_lsn_t tail_lsn;
792 int hblks;
794 found = 0;
797 * Find previous log record
799 if ((error = xlog_find_head(log, head_blk)))
800 return error;
802 bp = xlog_get_bp(log, 1);
803 if (!bp)
804 return ENOMEM;
805 if (*head_blk == 0) { /* special case */
806 if ((error = xlog_bread(log, 0, 1, bp)))
807 goto bread_err;
808 offset = xlog_align(log, 0, 1, bp);
809 if (xlog_get_cycle(offset) == 0) {
810 *tail_blk = 0;
811 /* leave all other log inited values alone */
812 goto exit;
817 * Search backwards looking for log record header block
819 ASSERT(*head_blk < INT_MAX);
820 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
821 if ((error = xlog_bread(log, i, 1, bp)))
822 goto bread_err;
823 offset = xlog_align(log, i, 1, bp);
824 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
825 found = 1;
826 break;
830 * If we haven't found the log record header block, start looking
831 * again from the end of the physical log. XXXmiken: There should be
832 * a check here to make sure we didn't search more than N blocks in
833 * the previous code.
835 if (!found) {
836 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
837 if ((error = xlog_bread(log, i, 1, bp)))
838 goto bread_err;
839 offset = xlog_align(log, i, 1, bp);
840 if (XLOG_HEADER_MAGIC_NUM ==
841 be32_to_cpu(*(__be32 *)offset)) {
842 found = 2;
843 break;
847 if (!found) {
848 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
849 ASSERT(0);
850 return XFS_ERROR(EIO);
853 /* find blk_no of tail of log */
854 rhead = (xlog_rec_header_t *)offset;
855 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
858 * Reset log values according to the state of the log when we
859 * crashed. In the case where head_blk == 0, we bump curr_cycle
860 * one because the next write starts a new cycle rather than
861 * continuing the cycle of the last good log record. At this
862 * point we have guaranteed that all partial log records have been
863 * accounted for. Therefore, we know that the last good log record
864 * written was complete and ended exactly on the end boundary
865 * of the physical log.
867 log->l_prev_block = i;
868 log->l_curr_block = (int)*head_blk;
869 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
870 if (found == 2)
871 log->l_curr_cycle++;
872 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
873 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
874 log->l_grant_reserve_cycle = log->l_curr_cycle;
875 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
876 log->l_grant_write_cycle = log->l_curr_cycle;
877 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
880 * Look for unmount record. If we find it, then we know there
881 * was a clean unmount. Since 'i' could be the last block in
882 * the physical log, we convert to a log block before comparing
883 * to the head_blk.
885 * Save the current tail lsn to use to pass to
886 * xlog_clear_stale_blocks() below. We won't want to clear the
887 * unmount record if there is one, so we pass the lsn of the
888 * unmount record rather than the block after it.
890 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
891 int h_size = be32_to_cpu(rhead->h_size);
892 int h_version = be32_to_cpu(rhead->h_version);
894 if ((h_version & XLOG_VERSION_2) &&
895 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
896 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
897 if (h_size % XLOG_HEADER_CYCLE_SIZE)
898 hblks++;
899 } else {
900 hblks = 1;
902 } else {
903 hblks = 1;
905 after_umount_blk = (i + hblks + (int)
906 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
907 tail_lsn = log->l_tail_lsn;
908 if (*head_blk == after_umount_blk &&
909 be32_to_cpu(rhead->h_num_logops) == 1) {
910 umount_data_blk = (i + hblks) % log->l_logBBsize;
911 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
912 goto bread_err;
914 offset = xlog_align(log, umount_data_blk, 1, bp);
915 op_head = (xlog_op_header_t *)offset;
916 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
918 * Set tail and last sync so that newly written
919 * log records will point recovery to after the
920 * current unmount record.
922 log->l_tail_lsn =
923 xlog_assign_lsn(log->l_curr_cycle,
924 after_umount_blk);
925 log->l_last_sync_lsn =
926 xlog_assign_lsn(log->l_curr_cycle,
927 after_umount_blk);
928 *tail_blk = after_umount_blk;
931 * Note that the unmount was clean. If the unmount
932 * was not clean, we need to know this to rebuild the
933 * superblock counters from the perag headers if we
934 * have a filesystem using non-persistent counters.
936 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
941 * Make sure that there are no blocks in front of the head
942 * with the same cycle number as the head. This can happen
943 * because we allow multiple outstanding log writes concurrently,
944 * and the later writes might make it out before earlier ones.
946 * We use the lsn from before modifying it so that we'll never
947 * overwrite the unmount record after a clean unmount.
949 * Do this only if we are going to recover the filesystem
951 * NOTE: This used to say "if (!readonly)"
952 * However on Linux, we can & do recover a read-only filesystem.
953 * We only skip recovery if NORECOVERY is specified on mount,
954 * in which case we would not be here.
956 * But... if the -device- itself is readonly, just skip this.
957 * We can't recover this device anyway, so it won't matter.
959 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
960 error = xlog_clear_stale_blocks(log, tail_lsn);
963 bread_err:
964 exit:
965 xlog_put_bp(bp);
967 if (error)
968 xlog_warn("XFS: failed to locate log tail");
969 return error;
973 * Is the log zeroed at all?
975 * The last binary search should be changed to perform an X block read
976 * once X becomes small enough. You can then search linearly through
977 * the X blocks. This will cut down on the number of reads we need to do.
979 * If the log is partially zeroed, this routine will pass back the blkno
980 * of the first block with cycle number 0. It won't have a complete LR
981 * preceding it.
983 * Return:
984 * 0 => the log is completely written to
985 * -1 => use *blk_no as the first block of the log
986 * >0 => error has occurred
988 STATIC int
989 xlog_find_zeroed(
990 xlog_t *log,
991 xfs_daddr_t *blk_no)
993 xfs_buf_t *bp;
994 xfs_caddr_t offset;
995 uint first_cycle, last_cycle;
996 xfs_daddr_t new_blk, last_blk, start_blk;
997 xfs_daddr_t num_scan_bblks;
998 int error, log_bbnum = log->l_logBBsize;
1000 *blk_no = 0;
1002 /* check totally zeroed log */
1003 bp = xlog_get_bp(log, 1);
1004 if (!bp)
1005 return ENOMEM;
1006 if ((error = xlog_bread(log, 0, 1, bp)))
1007 goto bp_err;
1008 offset = xlog_align(log, 0, 1, bp);
1009 first_cycle = xlog_get_cycle(offset);
1010 if (first_cycle == 0) { /* completely zeroed log */
1011 *blk_no = 0;
1012 xlog_put_bp(bp);
1013 return -1;
1016 /* check partially zeroed log */
1017 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1018 goto bp_err;
1019 offset = xlog_align(log, log_bbnum-1, 1, bp);
1020 last_cycle = xlog_get_cycle(offset);
1021 if (last_cycle != 0) { /* log completely written to */
1022 xlog_put_bp(bp);
1023 return 0;
1024 } else if (first_cycle != 1) {
1026 * If the cycle of the last block is zero, the cycle of
1027 * the first block must be 1. If it's not, maybe we're
1028 * not looking at a log... Bail out.
1030 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1031 return XFS_ERROR(EINVAL);
1034 /* we have a partially zeroed log */
1035 last_blk = log_bbnum-1;
1036 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1037 goto bp_err;
1040 * Validate the answer. Because there is no way to guarantee that
1041 * the entire log is made up of log records which are the same size,
1042 * we scan over the defined maximum blocks. At this point, the maximum
1043 * is not chosen to mean anything special. XXXmiken
1045 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1046 ASSERT(num_scan_bblks <= INT_MAX);
1048 if (last_blk < num_scan_bblks)
1049 num_scan_bblks = last_blk;
1050 start_blk = last_blk - num_scan_bblks;
1053 * We search for any instances of cycle number 0 that occur before
1054 * our current estimate of the head. What we're trying to detect is
1055 * 1 ... | 0 | 1 | 0...
1056 * ^ binary search ends here
1058 if ((error = xlog_find_verify_cycle(log, start_blk,
1059 (int)num_scan_bblks, 0, &new_blk)))
1060 goto bp_err;
1061 if (new_blk != -1)
1062 last_blk = new_blk;
1065 * Potentially backup over partial log record write. We don't need
1066 * to search the end of the log because we know it is zero.
1068 if ((error = xlog_find_verify_log_record(log, start_blk,
1069 &last_blk, 0)) == -1) {
1070 error = XFS_ERROR(EIO);
1071 goto bp_err;
1072 } else if (error)
1073 goto bp_err;
1075 *blk_no = last_blk;
1076 bp_err:
1077 xlog_put_bp(bp);
1078 if (error)
1079 return error;
1080 return -1;
1084 * These are simple subroutines used by xlog_clear_stale_blocks() below
1085 * to initialize a buffer full of empty log record headers and write
1086 * them into the log.
1088 STATIC void
1089 xlog_add_record(
1090 xlog_t *log,
1091 xfs_caddr_t buf,
1092 int cycle,
1093 int block,
1094 int tail_cycle,
1095 int tail_block)
1097 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1099 memset(buf, 0, BBSIZE);
1100 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1101 recp->h_cycle = cpu_to_be32(cycle);
1102 recp->h_version = cpu_to_be32(
1103 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1104 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1105 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1106 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1107 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1110 STATIC int
1111 xlog_write_log_records(
1112 xlog_t *log,
1113 int cycle,
1114 int start_block,
1115 int blocks,
1116 int tail_cycle,
1117 int tail_block)
1119 xfs_caddr_t offset;
1120 xfs_buf_t *bp;
1121 int balign, ealign;
1122 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1123 int end_block = start_block + blocks;
1124 int bufblks;
1125 int error = 0;
1126 int i, j = 0;
1128 bufblks = 1 << ffs(blocks);
1129 while (!(bp = xlog_get_bp(log, bufblks))) {
1130 bufblks >>= 1;
1131 if (bufblks <= log->l_sectbb_log)
1132 return ENOMEM;
1135 /* We may need to do a read at the start to fill in part of
1136 * the buffer in the starting sector not covered by the first
1137 * write below.
1139 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1140 if (balign != start_block) {
1141 if ((error = xlog_bread(log, start_block, 1, bp))) {
1142 xlog_put_bp(bp);
1143 return error;
1145 j = start_block - balign;
1148 for (i = start_block; i < end_block; i += bufblks) {
1149 int bcount, endcount;
1151 bcount = min(bufblks, end_block - start_block);
1152 endcount = bcount - j;
1154 /* We may need to do a read at the end to fill in part of
1155 * the buffer in the final sector not covered by the write.
1156 * If this is the same sector as the above read, skip it.
1158 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1159 if (j == 0 && (start_block + endcount > ealign)) {
1160 offset = XFS_BUF_PTR(bp);
1161 balign = BBTOB(ealign - start_block);
1162 error = XFS_BUF_SET_PTR(bp, offset + balign,
1163 BBTOB(sectbb));
1164 if (!error)
1165 error = xlog_bread(log, ealign, sectbb, bp);
1166 if (!error)
1167 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1168 if (error)
1169 break;
1172 offset = xlog_align(log, start_block, endcount, bp);
1173 for (; j < endcount; j++) {
1174 xlog_add_record(log, offset, cycle, i+j,
1175 tail_cycle, tail_block);
1176 offset += BBSIZE;
1178 error = xlog_bwrite(log, start_block, endcount, bp);
1179 if (error)
1180 break;
1181 start_block += endcount;
1182 j = 0;
1184 xlog_put_bp(bp);
1185 return error;
1189 * This routine is called to blow away any incomplete log writes out
1190 * in front of the log head. We do this so that we won't become confused
1191 * if we come up, write only a little bit more, and then crash again.
1192 * If we leave the partial log records out there, this situation could
1193 * cause us to think those partial writes are valid blocks since they
1194 * have the current cycle number. We get rid of them by overwriting them
1195 * with empty log records with the old cycle number rather than the
1196 * current one.
1198 * The tail lsn is passed in rather than taken from
1199 * the log so that we will not write over the unmount record after a
1200 * clean unmount in a 512 block log. Doing so would leave the log without
1201 * any valid log records in it until a new one was written. If we crashed
1202 * during that time we would not be able to recover.
1204 STATIC int
1205 xlog_clear_stale_blocks(
1206 xlog_t *log,
1207 xfs_lsn_t tail_lsn)
1209 int tail_cycle, head_cycle;
1210 int tail_block, head_block;
1211 int tail_distance, max_distance;
1212 int distance;
1213 int error;
1215 tail_cycle = CYCLE_LSN(tail_lsn);
1216 tail_block = BLOCK_LSN(tail_lsn);
1217 head_cycle = log->l_curr_cycle;
1218 head_block = log->l_curr_block;
1221 * Figure out the distance between the new head of the log
1222 * and the tail. We want to write over any blocks beyond the
1223 * head that we may have written just before the crash, but
1224 * we don't want to overwrite the tail of the log.
1226 if (head_cycle == tail_cycle) {
1228 * The tail is behind the head in the physical log,
1229 * so the distance from the head to the tail is the
1230 * distance from the head to the end of the log plus
1231 * the distance from the beginning of the log to the
1232 * tail.
1234 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1235 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1236 XFS_ERRLEVEL_LOW, log->l_mp);
1237 return XFS_ERROR(EFSCORRUPTED);
1239 tail_distance = tail_block + (log->l_logBBsize - head_block);
1240 } else {
1242 * The head is behind the tail in the physical log,
1243 * so the distance from the head to the tail is just
1244 * the tail block minus the head block.
1246 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1247 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1248 XFS_ERRLEVEL_LOW, log->l_mp);
1249 return XFS_ERROR(EFSCORRUPTED);
1251 tail_distance = tail_block - head_block;
1255 * If the head is right up against the tail, we can't clear
1256 * anything.
1258 if (tail_distance <= 0) {
1259 ASSERT(tail_distance == 0);
1260 return 0;
1263 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1265 * Take the smaller of the maximum amount of outstanding I/O
1266 * we could have and the distance to the tail to clear out.
1267 * We take the smaller so that we don't overwrite the tail and
1268 * we don't waste all day writing from the head to the tail
1269 * for no reason.
1271 max_distance = MIN(max_distance, tail_distance);
1273 if ((head_block + max_distance) <= log->l_logBBsize) {
1275 * We can stomp all the blocks we need to without
1276 * wrapping around the end of the log. Just do it
1277 * in a single write. Use the cycle number of the
1278 * current cycle minus one so that the log will look like:
1279 * n ... | n - 1 ...
1281 error = xlog_write_log_records(log, (head_cycle - 1),
1282 head_block, max_distance, tail_cycle,
1283 tail_block);
1284 if (error)
1285 return error;
1286 } else {
1288 * We need to wrap around the end of the physical log in
1289 * order to clear all the blocks. Do it in two separate
1290 * I/Os. The first write should be from the head to the
1291 * end of the physical log, and it should use the current
1292 * cycle number minus one just like above.
1294 distance = log->l_logBBsize - head_block;
1295 error = xlog_write_log_records(log, (head_cycle - 1),
1296 head_block, distance, tail_cycle,
1297 tail_block);
1299 if (error)
1300 return error;
1303 * Now write the blocks at the start of the physical log.
1304 * This writes the remainder of the blocks we want to clear.
1305 * It uses the current cycle number since we're now on the
1306 * same cycle as the head so that we get:
1307 * n ... n ... | n - 1 ...
1308 * ^^^^^ blocks we're writing
1310 distance = max_distance - (log->l_logBBsize - head_block);
1311 error = xlog_write_log_records(log, head_cycle, 0, distance,
1312 tail_cycle, tail_block);
1313 if (error)
1314 return error;
1317 return 0;
1320 /******************************************************************************
1322 * Log recover routines
1324 ******************************************************************************
1327 STATIC xlog_recover_t *
1328 xlog_recover_find_tid(
1329 xlog_recover_t *q,
1330 xlog_tid_t tid)
1332 xlog_recover_t *p = q;
1334 while (p != NULL) {
1335 if (p->r_log_tid == tid)
1336 break;
1337 p = p->r_next;
1339 return p;
1342 STATIC void
1343 xlog_recover_put_hashq(
1344 xlog_recover_t **q,
1345 xlog_recover_t *trans)
1347 trans->r_next = *q;
1348 *q = trans;
1351 STATIC void
1352 xlog_recover_add_item(
1353 xlog_recover_item_t **itemq)
1355 xlog_recover_item_t *item;
1357 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1358 xlog_recover_insert_item_backq(itemq, item);
1361 STATIC int
1362 xlog_recover_add_to_cont_trans(
1363 xlog_recover_t *trans,
1364 xfs_caddr_t dp,
1365 int len)
1367 xlog_recover_item_t *item;
1368 xfs_caddr_t ptr, old_ptr;
1369 int old_len;
1371 item = trans->r_itemq;
1372 if (item == NULL) {
1373 /* finish copying rest of trans header */
1374 xlog_recover_add_item(&trans->r_itemq);
1375 ptr = (xfs_caddr_t) &trans->r_theader +
1376 sizeof(xfs_trans_header_t) - len;
1377 memcpy(ptr, dp, len); /* d, s, l */
1378 return 0;
1380 item = item->ri_prev;
1382 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1383 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1385 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1386 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1387 item->ri_buf[item->ri_cnt-1].i_len += len;
1388 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1389 return 0;
1393 * The next region to add is the start of a new region. It could be
1394 * a whole region or it could be the first part of a new region. Because
1395 * of this, the assumption here is that the type and size fields of all
1396 * format structures fit into the first 32 bits of the structure.
1398 * This works because all regions must be 32 bit aligned. Therefore, we
1399 * either have both fields or we have neither field. In the case we have
1400 * neither field, the data part of the region is zero length. We only have
1401 * a log_op_header and can throw away the header since a new one will appear
1402 * later. If we have at least 4 bytes, then we can determine how many regions
1403 * will appear in the current log item.
1405 STATIC int
1406 xlog_recover_add_to_trans(
1407 xlog_recover_t *trans,
1408 xfs_caddr_t dp,
1409 int len)
1411 xfs_inode_log_format_t *in_f; /* any will do */
1412 xlog_recover_item_t *item;
1413 xfs_caddr_t ptr;
1415 if (!len)
1416 return 0;
1417 item = trans->r_itemq;
1418 if (item == NULL) {
1419 /* we need to catch log corruptions here */
1420 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1421 xlog_warn("XFS: xlog_recover_add_to_trans: "
1422 "bad header magic number");
1423 ASSERT(0);
1424 return XFS_ERROR(EIO);
1426 if (len == sizeof(xfs_trans_header_t))
1427 xlog_recover_add_item(&trans->r_itemq);
1428 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1429 return 0;
1432 ptr = kmem_alloc(len, KM_SLEEP);
1433 memcpy(ptr, dp, len);
1434 in_f = (xfs_inode_log_format_t *)ptr;
1436 if (item->ri_prev->ri_total != 0 &&
1437 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1438 xlog_recover_add_item(&trans->r_itemq);
1440 item = trans->r_itemq;
1441 item = item->ri_prev;
1443 if (item->ri_total == 0) { /* first region to be added */
1444 item->ri_total = in_f->ilf_size;
1445 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1446 item->ri_buf = kmem_zalloc((item->ri_total *
1447 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1449 ASSERT(item->ri_total > item->ri_cnt);
1450 /* Description region is ri_buf[0] */
1451 item->ri_buf[item->ri_cnt].i_addr = ptr;
1452 item->ri_buf[item->ri_cnt].i_len = len;
1453 item->ri_cnt++;
1454 return 0;
1457 STATIC void
1458 xlog_recover_new_tid(
1459 xlog_recover_t **q,
1460 xlog_tid_t tid,
1461 xfs_lsn_t lsn)
1463 xlog_recover_t *trans;
1465 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1466 trans->r_log_tid = tid;
1467 trans->r_lsn = lsn;
1468 xlog_recover_put_hashq(q, trans);
1471 STATIC int
1472 xlog_recover_unlink_tid(
1473 xlog_recover_t **q,
1474 xlog_recover_t *trans)
1476 xlog_recover_t *tp;
1477 int found = 0;
1479 ASSERT(trans != NULL);
1480 if (trans == *q) {
1481 *q = (*q)->r_next;
1482 } else {
1483 tp = *q;
1484 while (tp) {
1485 if (tp->r_next == trans) {
1486 found = 1;
1487 break;
1489 tp = tp->r_next;
1491 if (!found) {
1492 xlog_warn(
1493 "XFS: xlog_recover_unlink_tid: trans not found");
1494 ASSERT(0);
1495 return XFS_ERROR(EIO);
1497 tp->r_next = tp->r_next->r_next;
1499 return 0;
1502 STATIC void
1503 xlog_recover_insert_item_backq(
1504 xlog_recover_item_t **q,
1505 xlog_recover_item_t *item)
1507 if (*q == NULL) {
1508 item->ri_prev = item->ri_next = item;
1509 *q = item;
1510 } else {
1511 item->ri_next = *q;
1512 item->ri_prev = (*q)->ri_prev;
1513 (*q)->ri_prev = item;
1514 item->ri_prev->ri_next = item;
1518 STATIC void
1519 xlog_recover_insert_item_frontq(
1520 xlog_recover_item_t **q,
1521 xlog_recover_item_t *item)
1523 xlog_recover_insert_item_backq(q, item);
1524 *q = item;
1527 STATIC int
1528 xlog_recover_reorder_trans(
1529 xlog_recover_t *trans)
1531 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1532 xfs_buf_log_format_t *buf_f;
1533 ushort flags = 0;
1535 first_item = itemq = trans->r_itemq;
1536 trans->r_itemq = NULL;
1537 do {
1538 itemq_next = itemq->ri_next;
1539 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1541 switch (ITEM_TYPE(itemq)) {
1542 case XFS_LI_BUF:
1543 flags = buf_f->blf_flags;
1544 if (!(flags & XFS_BLI_CANCEL)) {
1545 xlog_recover_insert_item_frontq(&trans->r_itemq,
1546 itemq);
1547 break;
1549 case XFS_LI_INODE:
1550 case XFS_LI_DQUOT:
1551 case XFS_LI_QUOTAOFF:
1552 case XFS_LI_EFD:
1553 case XFS_LI_EFI:
1554 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1555 break;
1556 default:
1557 xlog_warn(
1558 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1559 ASSERT(0);
1560 return XFS_ERROR(EIO);
1562 itemq = itemq_next;
1563 } while (first_item != itemq);
1564 return 0;
1568 * Build up the table of buf cancel records so that we don't replay
1569 * cancelled data in the second pass. For buffer records that are
1570 * not cancel records, there is nothing to do here so we just return.
1572 * If we get a cancel record which is already in the table, this indicates
1573 * that the buffer was cancelled multiple times. In order to ensure
1574 * that during pass 2 we keep the record in the table until we reach its
1575 * last occurrence in the log, we keep a reference count in the cancel
1576 * record in the table to tell us how many times we expect to see this
1577 * record during the second pass.
1579 STATIC void
1580 xlog_recover_do_buffer_pass1(
1581 xlog_t *log,
1582 xfs_buf_log_format_t *buf_f)
1584 xfs_buf_cancel_t *bcp;
1585 xfs_buf_cancel_t *nextp;
1586 xfs_buf_cancel_t *prevp;
1587 xfs_buf_cancel_t **bucket;
1588 xfs_daddr_t blkno = 0;
1589 uint len = 0;
1590 ushort flags = 0;
1592 switch (buf_f->blf_type) {
1593 case XFS_LI_BUF:
1594 blkno = buf_f->blf_blkno;
1595 len = buf_f->blf_len;
1596 flags = buf_f->blf_flags;
1597 break;
1601 * If this isn't a cancel buffer item, then just return.
1603 if (!(flags & XFS_BLI_CANCEL))
1604 return;
1607 * Insert an xfs_buf_cancel record into the hash table of
1608 * them. If there is already an identical record, bump
1609 * its reference count.
1611 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1612 XLOG_BC_TABLE_SIZE];
1614 * If the hash bucket is empty then just insert a new record into
1615 * the bucket.
1617 if (*bucket == NULL) {
1618 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1619 KM_SLEEP);
1620 bcp->bc_blkno = blkno;
1621 bcp->bc_len = len;
1622 bcp->bc_refcount = 1;
1623 bcp->bc_next = NULL;
1624 *bucket = bcp;
1625 return;
1629 * The hash bucket is not empty, so search for duplicates of our
1630 * record. If we find one them just bump its refcount. If not
1631 * then add us at the end of the list.
1633 prevp = NULL;
1634 nextp = *bucket;
1635 while (nextp != NULL) {
1636 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1637 nextp->bc_refcount++;
1638 return;
1640 prevp = nextp;
1641 nextp = nextp->bc_next;
1643 ASSERT(prevp != NULL);
1644 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1645 KM_SLEEP);
1646 bcp->bc_blkno = blkno;
1647 bcp->bc_len = len;
1648 bcp->bc_refcount = 1;
1649 bcp->bc_next = NULL;
1650 prevp->bc_next = bcp;
1654 * Check to see whether the buffer being recovered has a corresponding
1655 * entry in the buffer cancel record table. If it does then return 1
1656 * so that it will be cancelled, otherwise return 0. If the buffer is
1657 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1658 * the refcount on the entry in the table and remove it from the table
1659 * if this is the last reference.
1661 * We remove the cancel record from the table when we encounter its
1662 * last occurrence in the log so that if the same buffer is re-used
1663 * again after its last cancellation we actually replay the changes
1664 * made at that point.
1666 STATIC int
1667 xlog_check_buffer_cancelled(
1668 xlog_t *log,
1669 xfs_daddr_t blkno,
1670 uint len,
1671 ushort flags)
1673 xfs_buf_cancel_t *bcp;
1674 xfs_buf_cancel_t *prevp;
1675 xfs_buf_cancel_t **bucket;
1677 if (log->l_buf_cancel_table == NULL) {
1679 * There is nothing in the table built in pass one,
1680 * so this buffer must not be cancelled.
1682 ASSERT(!(flags & XFS_BLI_CANCEL));
1683 return 0;
1686 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1687 XLOG_BC_TABLE_SIZE];
1688 bcp = *bucket;
1689 if (bcp == NULL) {
1691 * There is no corresponding entry in the table built
1692 * in pass one, so this buffer has not been cancelled.
1694 ASSERT(!(flags & XFS_BLI_CANCEL));
1695 return 0;
1699 * Search for an entry in the buffer cancel table that
1700 * matches our buffer.
1702 prevp = NULL;
1703 while (bcp != NULL) {
1704 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1706 * We've go a match, so return 1 so that the
1707 * recovery of this buffer is cancelled.
1708 * If this buffer is actually a buffer cancel
1709 * log item, then decrement the refcount on the
1710 * one in the table and remove it if this is the
1711 * last reference.
1713 if (flags & XFS_BLI_CANCEL) {
1714 bcp->bc_refcount--;
1715 if (bcp->bc_refcount == 0) {
1716 if (prevp == NULL) {
1717 *bucket = bcp->bc_next;
1718 } else {
1719 prevp->bc_next = bcp->bc_next;
1721 kmem_free(bcp);
1724 return 1;
1726 prevp = bcp;
1727 bcp = bcp->bc_next;
1730 * We didn't find a corresponding entry in the table, so
1731 * return 0 so that the buffer is NOT cancelled.
1733 ASSERT(!(flags & XFS_BLI_CANCEL));
1734 return 0;
1737 STATIC int
1738 xlog_recover_do_buffer_pass2(
1739 xlog_t *log,
1740 xfs_buf_log_format_t *buf_f)
1742 xfs_daddr_t blkno = 0;
1743 ushort flags = 0;
1744 uint len = 0;
1746 switch (buf_f->blf_type) {
1747 case XFS_LI_BUF:
1748 blkno = buf_f->blf_blkno;
1749 flags = buf_f->blf_flags;
1750 len = buf_f->blf_len;
1751 break;
1754 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1758 * Perform recovery for a buffer full of inodes. In these buffers,
1759 * the only data which should be recovered is that which corresponds
1760 * to the di_next_unlinked pointers in the on disk inode structures.
1761 * The rest of the data for the inodes is always logged through the
1762 * inodes themselves rather than the inode buffer and is recovered
1763 * in xlog_recover_do_inode_trans().
1765 * The only time when buffers full of inodes are fully recovered is
1766 * when the buffer is full of newly allocated inodes. In this case
1767 * the buffer will not be marked as an inode buffer and so will be
1768 * sent to xlog_recover_do_reg_buffer() below during recovery.
1770 STATIC int
1771 xlog_recover_do_inode_buffer(
1772 xfs_mount_t *mp,
1773 xlog_recover_item_t *item,
1774 xfs_buf_t *bp,
1775 xfs_buf_log_format_t *buf_f)
1777 int i;
1778 int item_index;
1779 int bit;
1780 int nbits;
1781 int reg_buf_offset;
1782 int reg_buf_bytes;
1783 int next_unlinked_offset;
1784 int inodes_per_buf;
1785 xfs_agino_t *logged_nextp;
1786 xfs_agino_t *buffer_nextp;
1787 unsigned int *data_map = NULL;
1788 unsigned int map_size = 0;
1790 switch (buf_f->blf_type) {
1791 case XFS_LI_BUF:
1792 data_map = buf_f->blf_data_map;
1793 map_size = buf_f->blf_map_size;
1794 break;
1797 * Set the variables corresponding to the current region to
1798 * 0 so that we'll initialize them on the first pass through
1799 * the loop.
1801 reg_buf_offset = 0;
1802 reg_buf_bytes = 0;
1803 bit = 0;
1804 nbits = 0;
1805 item_index = 0;
1806 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1807 for (i = 0; i < inodes_per_buf; i++) {
1808 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1809 offsetof(xfs_dinode_t, di_next_unlinked);
1811 while (next_unlinked_offset >=
1812 (reg_buf_offset + reg_buf_bytes)) {
1814 * The next di_next_unlinked field is beyond
1815 * the current logged region. Find the next
1816 * logged region that contains or is beyond
1817 * the current di_next_unlinked field.
1819 bit += nbits;
1820 bit = xfs_next_bit(data_map, map_size, bit);
1823 * If there are no more logged regions in the
1824 * buffer, then we're done.
1826 if (bit == -1) {
1827 return 0;
1830 nbits = xfs_contig_bits(data_map, map_size,
1831 bit);
1832 ASSERT(nbits > 0);
1833 reg_buf_offset = bit << XFS_BLI_SHIFT;
1834 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1835 item_index++;
1839 * If the current logged region starts after the current
1840 * di_next_unlinked field, then move on to the next
1841 * di_next_unlinked field.
1843 if (next_unlinked_offset < reg_buf_offset) {
1844 continue;
1847 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1848 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1849 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1852 * The current logged region contains a copy of the
1853 * current di_next_unlinked field. Extract its value
1854 * and copy it to the buffer copy.
1856 logged_nextp = (xfs_agino_t *)
1857 ((char *)(item->ri_buf[item_index].i_addr) +
1858 (next_unlinked_offset - reg_buf_offset));
1859 if (unlikely(*logged_nextp == 0)) {
1860 xfs_fs_cmn_err(CE_ALERT, mp,
1861 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1862 item, bp);
1863 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1864 XFS_ERRLEVEL_LOW, mp);
1865 return XFS_ERROR(EFSCORRUPTED);
1868 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1869 next_unlinked_offset);
1870 *buffer_nextp = *logged_nextp;
1873 return 0;
1877 * Perform a 'normal' buffer recovery. Each logged region of the
1878 * buffer should be copied over the corresponding region in the
1879 * given buffer. The bitmap in the buf log format structure indicates
1880 * where to place the logged data.
1882 /*ARGSUSED*/
1883 STATIC void
1884 xlog_recover_do_reg_buffer(
1885 xlog_recover_item_t *item,
1886 xfs_buf_t *bp,
1887 xfs_buf_log_format_t *buf_f)
1889 int i;
1890 int bit;
1891 int nbits;
1892 unsigned int *data_map = NULL;
1893 unsigned int map_size = 0;
1894 int error;
1896 switch (buf_f->blf_type) {
1897 case XFS_LI_BUF:
1898 data_map = buf_f->blf_data_map;
1899 map_size = buf_f->blf_map_size;
1900 break;
1902 bit = 0;
1903 i = 1; /* 0 is the buf format structure */
1904 while (1) {
1905 bit = xfs_next_bit(data_map, map_size, bit);
1906 if (bit == -1)
1907 break;
1908 nbits = xfs_contig_bits(data_map, map_size, bit);
1909 ASSERT(nbits > 0);
1910 ASSERT(item->ri_buf[i].i_addr != NULL);
1911 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1912 ASSERT(XFS_BUF_COUNT(bp) >=
1913 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1916 * Do a sanity check if this is a dquot buffer. Just checking
1917 * the first dquot in the buffer should do. XXXThis is
1918 * probably a good thing to do for other buf types also.
1920 error = 0;
1921 if (buf_f->blf_flags &
1922 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1923 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1924 item->ri_buf[i].i_addr,
1925 -1, 0, XFS_QMOPT_DOWARN,
1926 "dquot_buf_recover");
1928 if (!error)
1929 memcpy(xfs_buf_offset(bp,
1930 (uint)bit << XFS_BLI_SHIFT), /* dest */
1931 item->ri_buf[i].i_addr, /* source */
1932 nbits<<XFS_BLI_SHIFT); /* length */
1933 i++;
1934 bit += nbits;
1937 /* Shouldn't be any more regions */
1938 ASSERT(i == item->ri_total);
1942 * Do some primitive error checking on ondisk dquot data structures.
1945 xfs_qm_dqcheck(
1946 xfs_disk_dquot_t *ddq,
1947 xfs_dqid_t id,
1948 uint type, /* used only when IO_dorepair is true */
1949 uint flags,
1950 char *str)
1952 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1953 int errs = 0;
1956 * We can encounter an uninitialized dquot buffer for 2 reasons:
1957 * 1. If we crash while deleting the quotainode(s), and those blks got
1958 * used for user data. This is because we take the path of regular
1959 * file deletion; however, the size field of quotainodes is never
1960 * updated, so all the tricks that we play in itruncate_finish
1961 * don't quite matter.
1963 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1964 * But the allocation will be replayed so we'll end up with an
1965 * uninitialized quota block.
1967 * This is all fine; things are still consistent, and we haven't lost
1968 * any quota information. Just don't complain about bad dquot blks.
1970 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1971 if (flags & XFS_QMOPT_DOWARN)
1972 cmn_err(CE_ALERT,
1973 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1974 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1975 errs++;
1977 if (ddq->d_version != XFS_DQUOT_VERSION) {
1978 if (flags & XFS_QMOPT_DOWARN)
1979 cmn_err(CE_ALERT,
1980 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1981 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1982 errs++;
1985 if (ddq->d_flags != XFS_DQ_USER &&
1986 ddq->d_flags != XFS_DQ_PROJ &&
1987 ddq->d_flags != XFS_DQ_GROUP) {
1988 if (flags & XFS_QMOPT_DOWARN)
1989 cmn_err(CE_ALERT,
1990 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1991 str, id, ddq->d_flags);
1992 errs++;
1995 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1996 if (flags & XFS_QMOPT_DOWARN)
1997 cmn_err(CE_ALERT,
1998 "%s : ondisk-dquot 0x%p, ID mismatch: "
1999 "0x%x expected, found id 0x%x",
2000 str, ddq, id, be32_to_cpu(ddq->d_id));
2001 errs++;
2004 if (!errs && ddq->d_id) {
2005 if (ddq->d_blk_softlimit &&
2006 be64_to_cpu(ddq->d_bcount) >=
2007 be64_to_cpu(ddq->d_blk_softlimit)) {
2008 if (!ddq->d_btimer) {
2009 if (flags & XFS_QMOPT_DOWARN)
2010 cmn_err(CE_ALERT,
2011 "%s : Dquot ID 0x%x (0x%p) "
2012 "BLK TIMER NOT STARTED",
2013 str, (int)be32_to_cpu(ddq->d_id), ddq);
2014 errs++;
2017 if (ddq->d_ino_softlimit &&
2018 be64_to_cpu(ddq->d_icount) >=
2019 be64_to_cpu(ddq->d_ino_softlimit)) {
2020 if (!ddq->d_itimer) {
2021 if (flags & XFS_QMOPT_DOWARN)
2022 cmn_err(CE_ALERT,
2023 "%s : Dquot ID 0x%x (0x%p) "
2024 "INODE TIMER NOT STARTED",
2025 str, (int)be32_to_cpu(ddq->d_id), ddq);
2026 errs++;
2029 if (ddq->d_rtb_softlimit &&
2030 be64_to_cpu(ddq->d_rtbcount) >=
2031 be64_to_cpu(ddq->d_rtb_softlimit)) {
2032 if (!ddq->d_rtbtimer) {
2033 if (flags & XFS_QMOPT_DOWARN)
2034 cmn_err(CE_ALERT,
2035 "%s : Dquot ID 0x%x (0x%p) "
2036 "RTBLK TIMER NOT STARTED",
2037 str, (int)be32_to_cpu(ddq->d_id), ddq);
2038 errs++;
2043 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2044 return errs;
2046 if (flags & XFS_QMOPT_DOWARN)
2047 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2050 * Typically, a repair is only requested by quotacheck.
2052 ASSERT(id != -1);
2053 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2054 memset(d, 0, sizeof(xfs_dqblk_t));
2056 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2057 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2058 d->dd_diskdq.d_flags = type;
2059 d->dd_diskdq.d_id = cpu_to_be32(id);
2061 return errs;
2065 * Perform a dquot buffer recovery.
2066 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2067 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2068 * Else, treat it as a regular buffer and do recovery.
2070 STATIC void
2071 xlog_recover_do_dquot_buffer(
2072 xfs_mount_t *mp,
2073 xlog_t *log,
2074 xlog_recover_item_t *item,
2075 xfs_buf_t *bp,
2076 xfs_buf_log_format_t *buf_f)
2078 uint type;
2081 * Filesystems are required to send in quota flags at mount time.
2083 if (mp->m_qflags == 0) {
2084 return;
2087 type = 0;
2088 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2089 type |= XFS_DQ_USER;
2090 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2091 type |= XFS_DQ_PROJ;
2092 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2093 type |= XFS_DQ_GROUP;
2095 * This type of quotas was turned off, so ignore this buffer
2097 if (log->l_quotaoffs_flag & type)
2098 return;
2100 xlog_recover_do_reg_buffer(item, bp, buf_f);
2104 * This routine replays a modification made to a buffer at runtime.
2105 * There are actually two types of buffer, regular and inode, which
2106 * are handled differently. Inode buffers are handled differently
2107 * in that we only recover a specific set of data from them, namely
2108 * the inode di_next_unlinked fields. This is because all other inode
2109 * data is actually logged via inode records and any data we replay
2110 * here which overlaps that may be stale.
2112 * When meta-data buffers are freed at run time we log a buffer item
2113 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2114 * of the buffer in the log should not be replayed at recovery time.
2115 * This is so that if the blocks covered by the buffer are reused for
2116 * file data before we crash we don't end up replaying old, freed
2117 * meta-data into a user's file.
2119 * To handle the cancellation of buffer log items, we make two passes
2120 * over the log during recovery. During the first we build a table of
2121 * those buffers which have been cancelled, and during the second we
2122 * only replay those buffers which do not have corresponding cancel
2123 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2124 * for more details on the implementation of the table of cancel records.
2126 STATIC int
2127 xlog_recover_do_buffer_trans(
2128 xlog_t *log,
2129 xlog_recover_item_t *item,
2130 int pass)
2132 xfs_buf_log_format_t *buf_f;
2133 xfs_mount_t *mp;
2134 xfs_buf_t *bp;
2135 int error;
2136 int cancel;
2137 xfs_daddr_t blkno;
2138 int len;
2139 ushort flags;
2141 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2143 if (pass == XLOG_RECOVER_PASS1) {
2145 * In this pass we're only looking for buf items
2146 * with the XFS_BLI_CANCEL bit set.
2148 xlog_recover_do_buffer_pass1(log, buf_f);
2149 return 0;
2150 } else {
2152 * In this pass we want to recover all the buffers
2153 * which have not been cancelled and are not
2154 * cancellation buffers themselves. The routine
2155 * we call here will tell us whether or not to
2156 * continue with the replay of this buffer.
2158 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2159 if (cancel) {
2160 return 0;
2163 switch (buf_f->blf_type) {
2164 case XFS_LI_BUF:
2165 blkno = buf_f->blf_blkno;
2166 len = buf_f->blf_len;
2167 flags = buf_f->blf_flags;
2168 break;
2169 default:
2170 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2171 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2172 buf_f->blf_type, log->l_mp->m_logname ?
2173 log->l_mp->m_logname : "internal");
2174 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2175 XFS_ERRLEVEL_LOW, log->l_mp);
2176 return XFS_ERROR(EFSCORRUPTED);
2179 mp = log->l_mp;
2180 if (flags & XFS_BLI_INODE_BUF) {
2181 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2182 XFS_BUF_LOCK);
2183 } else {
2184 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2186 if (XFS_BUF_ISERROR(bp)) {
2187 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2188 bp, blkno);
2189 error = XFS_BUF_GETERROR(bp);
2190 xfs_buf_relse(bp);
2191 return error;
2194 error = 0;
2195 if (flags & XFS_BLI_INODE_BUF) {
2196 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2197 } else if (flags &
2198 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2199 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2200 } else {
2201 xlog_recover_do_reg_buffer(item, bp, buf_f);
2203 if (error)
2204 return XFS_ERROR(error);
2207 * Perform delayed write on the buffer. Asynchronous writes will be
2208 * slower when taking into account all the buffers to be flushed.
2210 * Also make sure that only inode buffers with good sizes stay in
2211 * the buffer cache. The kernel moves inodes in buffers of 1 block
2212 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2213 * buffers in the log can be a different size if the log was generated
2214 * by an older kernel using unclustered inode buffers or a newer kernel
2215 * running with a different inode cluster size. Regardless, if the
2216 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2217 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2218 * the buffer out of the buffer cache so that the buffer won't
2219 * overlap with future reads of those inodes.
2221 if (XFS_DINODE_MAGIC ==
2222 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2223 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2224 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2225 XFS_BUF_STALE(bp);
2226 error = xfs_bwrite(mp, bp);
2227 } else {
2228 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2229 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2230 XFS_BUF_SET_FSPRIVATE(bp, mp);
2231 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2232 xfs_bdwrite(mp, bp);
2235 return (error);
2238 STATIC int
2239 xlog_recover_do_inode_trans(
2240 xlog_t *log,
2241 xlog_recover_item_t *item,
2242 int pass)
2244 xfs_inode_log_format_t *in_f;
2245 xfs_mount_t *mp;
2246 xfs_buf_t *bp;
2247 xfs_dinode_t *dip;
2248 xfs_ino_t ino;
2249 int len;
2250 xfs_caddr_t src;
2251 xfs_caddr_t dest;
2252 int error;
2253 int attr_index;
2254 uint fields;
2255 xfs_icdinode_t *dicp;
2256 int need_free = 0;
2258 if (pass == XLOG_RECOVER_PASS1) {
2259 return 0;
2262 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2263 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2264 } else {
2265 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2266 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2267 need_free = 1;
2268 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2269 if (error)
2270 goto error;
2272 ino = in_f->ilf_ino;
2273 mp = log->l_mp;
2276 * Inode buffers can be freed, look out for it,
2277 * and do not replay the inode.
2279 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2280 in_f->ilf_len, 0)) {
2281 error = 0;
2282 goto error;
2285 bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
2286 in_f->ilf_len, XFS_BUF_LOCK);
2287 if (XFS_BUF_ISERROR(bp)) {
2288 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2289 bp, in_f->ilf_blkno);
2290 error = XFS_BUF_GETERROR(bp);
2291 xfs_buf_relse(bp);
2292 goto error;
2294 error = 0;
2295 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2296 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2299 * Make sure the place we're flushing out to really looks
2300 * like an inode!
2302 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2303 xfs_buf_relse(bp);
2304 xfs_fs_cmn_err(CE_ALERT, mp,
2305 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2306 dip, bp, ino);
2307 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2308 XFS_ERRLEVEL_LOW, mp);
2309 error = EFSCORRUPTED;
2310 goto error;
2312 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2313 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2314 xfs_buf_relse(bp);
2315 xfs_fs_cmn_err(CE_ALERT, mp,
2316 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2317 item, ino);
2318 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2319 XFS_ERRLEVEL_LOW, mp);
2320 error = EFSCORRUPTED;
2321 goto error;
2324 /* Skip replay when the on disk inode is newer than the log one */
2325 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2327 * Deal with the wrap case, DI_MAX_FLUSH is less
2328 * than smaller numbers
2330 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2331 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2332 /* do nothing */
2333 } else {
2334 xfs_buf_relse(bp);
2335 error = 0;
2336 goto error;
2339 /* Take the opportunity to reset the flush iteration count */
2340 dicp->di_flushiter = 0;
2342 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2343 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2344 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2345 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2346 XFS_ERRLEVEL_LOW, mp, dicp);
2347 xfs_buf_relse(bp);
2348 xfs_fs_cmn_err(CE_ALERT, mp,
2349 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2350 item, dip, bp, ino);
2351 error = EFSCORRUPTED;
2352 goto error;
2354 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2355 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2356 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2357 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2358 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2359 XFS_ERRLEVEL_LOW, mp, dicp);
2360 xfs_buf_relse(bp);
2361 xfs_fs_cmn_err(CE_ALERT, mp,
2362 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2363 item, dip, bp, ino);
2364 error = EFSCORRUPTED;
2365 goto error;
2368 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2369 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2370 XFS_ERRLEVEL_LOW, mp, dicp);
2371 xfs_buf_relse(bp);
2372 xfs_fs_cmn_err(CE_ALERT, mp,
2373 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2374 item, dip, bp, ino,
2375 dicp->di_nextents + dicp->di_anextents,
2376 dicp->di_nblocks);
2377 error = EFSCORRUPTED;
2378 goto error;
2380 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2381 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2382 XFS_ERRLEVEL_LOW, mp, dicp);
2383 xfs_buf_relse(bp);
2384 xfs_fs_cmn_err(CE_ALERT, mp,
2385 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2386 item, dip, bp, ino, dicp->di_forkoff);
2387 error = EFSCORRUPTED;
2388 goto error;
2390 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2391 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2392 XFS_ERRLEVEL_LOW, mp, dicp);
2393 xfs_buf_relse(bp);
2394 xfs_fs_cmn_err(CE_ALERT, mp,
2395 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2396 item->ri_buf[1].i_len, item);
2397 error = EFSCORRUPTED;
2398 goto error;
2401 /* The core is in in-core format */
2402 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2404 /* the rest is in on-disk format */
2405 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2406 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2407 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2408 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2411 fields = in_f->ilf_fields;
2412 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2413 case XFS_ILOG_DEV:
2414 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2415 break;
2416 case XFS_ILOG_UUID:
2417 memcpy(XFS_DFORK_DPTR(dip),
2418 &in_f->ilf_u.ilfu_uuid,
2419 sizeof(uuid_t));
2420 break;
2423 if (in_f->ilf_size == 2)
2424 goto write_inode_buffer;
2425 len = item->ri_buf[2].i_len;
2426 src = item->ri_buf[2].i_addr;
2427 ASSERT(in_f->ilf_size <= 4);
2428 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2429 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2430 (len == in_f->ilf_dsize));
2432 switch (fields & XFS_ILOG_DFORK) {
2433 case XFS_ILOG_DDATA:
2434 case XFS_ILOG_DEXT:
2435 memcpy(XFS_DFORK_DPTR(dip), src, len);
2436 break;
2438 case XFS_ILOG_DBROOT:
2439 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2440 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2441 XFS_DFORK_DSIZE(dip, mp));
2442 break;
2444 default:
2446 * There are no data fork flags set.
2448 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2449 break;
2453 * If we logged any attribute data, recover it. There may or
2454 * may not have been any other non-core data logged in this
2455 * transaction.
2457 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2458 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2459 attr_index = 3;
2460 } else {
2461 attr_index = 2;
2463 len = item->ri_buf[attr_index].i_len;
2464 src = item->ri_buf[attr_index].i_addr;
2465 ASSERT(len == in_f->ilf_asize);
2467 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2468 case XFS_ILOG_ADATA:
2469 case XFS_ILOG_AEXT:
2470 dest = XFS_DFORK_APTR(dip);
2471 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2472 memcpy(dest, src, len);
2473 break;
2475 case XFS_ILOG_ABROOT:
2476 dest = XFS_DFORK_APTR(dip);
2477 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2478 len, (xfs_bmdr_block_t*)dest,
2479 XFS_DFORK_ASIZE(dip, mp));
2480 break;
2482 default:
2483 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2484 ASSERT(0);
2485 xfs_buf_relse(bp);
2486 error = EIO;
2487 goto error;
2491 write_inode_buffer:
2492 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2493 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2494 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2495 XFS_BUF_SET_FSPRIVATE(bp, mp);
2496 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2497 xfs_bdwrite(mp, bp);
2498 } else {
2499 XFS_BUF_STALE(bp);
2500 error = xfs_bwrite(mp, bp);
2503 error:
2504 if (need_free)
2505 kmem_free(in_f);
2506 return XFS_ERROR(error);
2510 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2511 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2512 * of that type.
2514 STATIC int
2515 xlog_recover_do_quotaoff_trans(
2516 xlog_t *log,
2517 xlog_recover_item_t *item,
2518 int pass)
2520 xfs_qoff_logformat_t *qoff_f;
2522 if (pass == XLOG_RECOVER_PASS2) {
2523 return (0);
2526 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2527 ASSERT(qoff_f);
2530 * The logitem format's flag tells us if this was user quotaoff,
2531 * group/project quotaoff or both.
2533 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2534 log->l_quotaoffs_flag |= XFS_DQ_USER;
2535 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2536 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2537 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2538 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2540 return (0);
2544 * Recover a dquot record
2546 STATIC int
2547 xlog_recover_do_dquot_trans(
2548 xlog_t *log,
2549 xlog_recover_item_t *item,
2550 int pass)
2552 xfs_mount_t *mp;
2553 xfs_buf_t *bp;
2554 struct xfs_disk_dquot *ddq, *recddq;
2555 int error;
2556 xfs_dq_logformat_t *dq_f;
2557 uint type;
2559 if (pass == XLOG_RECOVER_PASS1) {
2560 return 0;
2562 mp = log->l_mp;
2565 * Filesystems are required to send in quota flags at mount time.
2567 if (mp->m_qflags == 0)
2568 return (0);
2570 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2571 ASSERT(recddq);
2573 * This type of quotas was turned off, so ignore this record.
2575 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2576 ASSERT(type);
2577 if (log->l_quotaoffs_flag & type)
2578 return (0);
2581 * At this point we know that quota was _not_ turned off.
2582 * Since the mount flags are not indicating to us otherwise, this
2583 * must mean that quota is on, and the dquot needs to be replayed.
2584 * Remember that we may not have fully recovered the superblock yet,
2585 * so we can't do the usual trick of looking at the SB quota bits.
2587 * The other possibility, of course, is that the quota subsystem was
2588 * removed since the last mount - ENOSYS.
2590 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2591 ASSERT(dq_f);
2592 if ((error = xfs_qm_dqcheck(recddq,
2593 dq_f->qlf_id,
2594 0, XFS_QMOPT_DOWARN,
2595 "xlog_recover_do_dquot_trans (log copy)"))) {
2596 return XFS_ERROR(EIO);
2598 ASSERT(dq_f->qlf_len == 1);
2600 error = xfs_read_buf(mp, mp->m_ddev_targp,
2601 dq_f->qlf_blkno,
2602 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2603 0, &bp);
2604 if (error) {
2605 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2606 bp, dq_f->qlf_blkno);
2607 return error;
2609 ASSERT(bp);
2610 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2613 * At least the magic num portion should be on disk because this
2614 * was among a chunk of dquots created earlier, and we did some
2615 * minimal initialization then.
2617 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2618 "xlog_recover_do_dquot_trans")) {
2619 xfs_buf_relse(bp);
2620 return XFS_ERROR(EIO);
2623 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2625 ASSERT(dq_f->qlf_size == 2);
2626 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2627 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2628 XFS_BUF_SET_FSPRIVATE(bp, mp);
2629 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2630 xfs_bdwrite(mp, bp);
2632 return (0);
2636 * This routine is called to create an in-core extent free intent
2637 * item from the efi format structure which was logged on disk.
2638 * It allocates an in-core efi, copies the extents from the format
2639 * structure into it, and adds the efi to the AIL with the given
2640 * LSN.
2642 STATIC int
2643 xlog_recover_do_efi_trans(
2644 xlog_t *log,
2645 xlog_recover_item_t *item,
2646 xfs_lsn_t lsn,
2647 int pass)
2649 int error;
2650 xfs_mount_t *mp;
2651 xfs_efi_log_item_t *efip;
2652 xfs_efi_log_format_t *efi_formatp;
2654 if (pass == XLOG_RECOVER_PASS1) {
2655 return 0;
2658 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2660 mp = log->l_mp;
2661 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2662 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2663 &(efip->efi_format)))) {
2664 xfs_efi_item_free(efip);
2665 return error;
2667 efip->efi_next_extent = efi_formatp->efi_nextents;
2668 efip->efi_flags |= XFS_EFI_COMMITTED;
2670 spin_lock(&log->l_ailp->xa_lock);
2672 * xfs_trans_ail_update() drops the AIL lock.
2674 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2675 return 0;
2680 * This routine is called when an efd format structure is found in
2681 * a committed transaction in the log. It's purpose is to cancel
2682 * the corresponding efi if it was still in the log. To do this
2683 * it searches the AIL for the efi with an id equal to that in the
2684 * efd format structure. If we find it, we remove the efi from the
2685 * AIL and free it.
2687 STATIC void
2688 xlog_recover_do_efd_trans(
2689 xlog_t *log,
2690 xlog_recover_item_t *item,
2691 int pass)
2693 xfs_efd_log_format_t *efd_formatp;
2694 xfs_efi_log_item_t *efip = NULL;
2695 xfs_log_item_t *lip;
2696 __uint64_t efi_id;
2697 struct xfs_ail_cursor cur;
2698 struct xfs_ail *ailp = log->l_ailp;
2700 if (pass == XLOG_RECOVER_PASS1) {
2701 return;
2704 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2705 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2706 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2707 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2708 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2709 efi_id = efd_formatp->efd_efi_id;
2712 * Search for the efi with the id in the efd format structure
2713 * in the AIL.
2715 spin_lock(&ailp->xa_lock);
2716 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2717 while (lip != NULL) {
2718 if (lip->li_type == XFS_LI_EFI) {
2719 efip = (xfs_efi_log_item_t *)lip;
2720 if (efip->efi_format.efi_id == efi_id) {
2722 * xfs_trans_ail_delete() drops the
2723 * AIL lock.
2725 xfs_trans_ail_delete(ailp, lip);
2726 xfs_efi_item_free(efip);
2727 spin_lock(&ailp->xa_lock);
2728 break;
2731 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2733 xfs_trans_ail_cursor_done(ailp, &cur);
2734 spin_unlock(&ailp->xa_lock);
2738 * Perform the transaction
2740 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2741 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2743 STATIC int
2744 xlog_recover_do_trans(
2745 xlog_t *log,
2746 xlog_recover_t *trans,
2747 int pass)
2749 int error = 0;
2750 xlog_recover_item_t *item, *first_item;
2752 if ((error = xlog_recover_reorder_trans(trans)))
2753 return error;
2754 first_item = item = trans->r_itemq;
2755 do {
2757 * we don't need to worry about the block number being
2758 * truncated in > 1 TB buffers because in user-land,
2759 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2760 * the blknos will get through the user-mode buffer
2761 * cache properly. The only bad case is o32 kernels
2762 * where xfs_daddr_t is 32-bits but mount will warn us
2763 * off a > 1 TB filesystem before we get here.
2765 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2766 if ((error = xlog_recover_do_buffer_trans(log, item,
2767 pass)))
2768 break;
2769 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2770 if ((error = xlog_recover_do_inode_trans(log, item,
2771 pass)))
2772 break;
2773 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2774 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2775 pass)))
2776 break;
2777 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2778 xlog_recover_do_efd_trans(log, item, pass);
2779 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2780 if ((error = xlog_recover_do_dquot_trans(log, item,
2781 pass)))
2782 break;
2783 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2784 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2785 pass)))
2786 break;
2787 } else {
2788 xlog_warn("XFS: xlog_recover_do_trans");
2789 ASSERT(0);
2790 error = XFS_ERROR(EIO);
2791 break;
2793 item = item->ri_next;
2794 } while (first_item != item);
2796 return error;
2800 * Free up any resources allocated by the transaction
2802 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2804 STATIC void
2805 xlog_recover_free_trans(
2806 xlog_recover_t *trans)
2808 xlog_recover_item_t *first_item, *item, *free_item;
2809 int i;
2811 item = first_item = trans->r_itemq;
2812 do {
2813 free_item = item;
2814 item = item->ri_next;
2815 /* Free the regions in the item. */
2816 for (i = 0; i < free_item->ri_cnt; i++) {
2817 kmem_free(free_item->ri_buf[i].i_addr);
2819 /* Free the item itself */
2820 kmem_free(free_item->ri_buf);
2821 kmem_free(free_item);
2822 } while (first_item != item);
2823 /* Free the transaction recover structure */
2824 kmem_free(trans);
2827 STATIC int
2828 xlog_recover_commit_trans(
2829 xlog_t *log,
2830 xlog_recover_t **q,
2831 xlog_recover_t *trans,
2832 int pass)
2834 int error;
2836 if ((error = xlog_recover_unlink_tid(q, trans)))
2837 return error;
2838 if ((error = xlog_recover_do_trans(log, trans, pass)))
2839 return error;
2840 xlog_recover_free_trans(trans); /* no error */
2841 return 0;
2844 STATIC int
2845 xlog_recover_unmount_trans(
2846 xlog_recover_t *trans)
2848 /* Do nothing now */
2849 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2850 return 0;
2854 * There are two valid states of the r_state field. 0 indicates that the
2855 * transaction structure is in a normal state. We have either seen the
2856 * start of the transaction or the last operation we added was not a partial
2857 * operation. If the last operation we added to the transaction was a
2858 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2860 * NOTE: skip LRs with 0 data length.
2862 STATIC int
2863 xlog_recover_process_data(
2864 xlog_t *log,
2865 xlog_recover_t *rhash[],
2866 xlog_rec_header_t *rhead,
2867 xfs_caddr_t dp,
2868 int pass)
2870 xfs_caddr_t lp;
2871 int num_logops;
2872 xlog_op_header_t *ohead;
2873 xlog_recover_t *trans;
2874 xlog_tid_t tid;
2875 int error;
2876 unsigned long hash;
2877 uint flags;
2879 lp = dp + be32_to_cpu(rhead->h_len);
2880 num_logops = be32_to_cpu(rhead->h_num_logops);
2882 /* check the log format matches our own - else we can't recover */
2883 if (xlog_header_check_recover(log->l_mp, rhead))
2884 return (XFS_ERROR(EIO));
2886 while ((dp < lp) && num_logops) {
2887 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2888 ohead = (xlog_op_header_t *)dp;
2889 dp += sizeof(xlog_op_header_t);
2890 if (ohead->oh_clientid != XFS_TRANSACTION &&
2891 ohead->oh_clientid != XFS_LOG) {
2892 xlog_warn(
2893 "XFS: xlog_recover_process_data: bad clientid");
2894 ASSERT(0);
2895 return (XFS_ERROR(EIO));
2897 tid = be32_to_cpu(ohead->oh_tid);
2898 hash = XLOG_RHASH(tid);
2899 trans = xlog_recover_find_tid(rhash[hash], tid);
2900 if (trans == NULL) { /* not found; add new tid */
2901 if (ohead->oh_flags & XLOG_START_TRANS)
2902 xlog_recover_new_tid(&rhash[hash], tid,
2903 be64_to_cpu(rhead->h_lsn));
2904 } else {
2905 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2906 xlog_warn(
2907 "XFS: xlog_recover_process_data: bad length");
2908 WARN_ON(1);
2909 return (XFS_ERROR(EIO));
2911 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2912 if (flags & XLOG_WAS_CONT_TRANS)
2913 flags &= ~XLOG_CONTINUE_TRANS;
2914 switch (flags) {
2915 case XLOG_COMMIT_TRANS:
2916 error = xlog_recover_commit_trans(log,
2917 &rhash[hash], trans, pass);
2918 break;
2919 case XLOG_UNMOUNT_TRANS:
2920 error = xlog_recover_unmount_trans(trans);
2921 break;
2922 case XLOG_WAS_CONT_TRANS:
2923 error = xlog_recover_add_to_cont_trans(trans,
2924 dp, be32_to_cpu(ohead->oh_len));
2925 break;
2926 case XLOG_START_TRANS:
2927 xlog_warn(
2928 "XFS: xlog_recover_process_data: bad transaction");
2929 ASSERT(0);
2930 error = XFS_ERROR(EIO);
2931 break;
2932 case 0:
2933 case XLOG_CONTINUE_TRANS:
2934 error = xlog_recover_add_to_trans(trans,
2935 dp, be32_to_cpu(ohead->oh_len));
2936 break;
2937 default:
2938 xlog_warn(
2939 "XFS: xlog_recover_process_data: bad flag");
2940 ASSERT(0);
2941 error = XFS_ERROR(EIO);
2942 break;
2944 if (error)
2945 return error;
2947 dp += be32_to_cpu(ohead->oh_len);
2948 num_logops--;
2950 return 0;
2954 * Process an extent free intent item that was recovered from
2955 * the log. We need to free the extents that it describes.
2957 STATIC int
2958 xlog_recover_process_efi(
2959 xfs_mount_t *mp,
2960 xfs_efi_log_item_t *efip)
2962 xfs_efd_log_item_t *efdp;
2963 xfs_trans_t *tp;
2964 int i;
2965 int error = 0;
2966 xfs_extent_t *extp;
2967 xfs_fsblock_t startblock_fsb;
2969 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2972 * First check the validity of the extents described by the
2973 * EFI. If any are bad, then assume that all are bad and
2974 * just toss the EFI.
2976 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2977 extp = &(efip->efi_format.efi_extents[i]);
2978 startblock_fsb = XFS_BB_TO_FSB(mp,
2979 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2980 if ((startblock_fsb == 0) ||
2981 (extp->ext_len == 0) ||
2982 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2983 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2985 * This will pull the EFI from the AIL and
2986 * free the memory associated with it.
2988 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2989 return XFS_ERROR(EIO);
2993 tp = xfs_trans_alloc(mp, 0);
2994 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2995 if (error)
2996 goto abort_error;
2997 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2999 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3000 extp = &(efip->efi_format.efi_extents[i]);
3001 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3002 if (error)
3003 goto abort_error;
3004 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3005 extp->ext_len);
3008 efip->efi_flags |= XFS_EFI_RECOVERED;
3009 error = xfs_trans_commit(tp, 0);
3010 return error;
3012 abort_error:
3013 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3014 return error;
3018 * When this is called, all of the EFIs which did not have
3019 * corresponding EFDs should be in the AIL. What we do now
3020 * is free the extents associated with each one.
3022 * Since we process the EFIs in normal transactions, they
3023 * will be removed at some point after the commit. This prevents
3024 * us from just walking down the list processing each one.
3025 * We'll use a flag in the EFI to skip those that we've already
3026 * processed and use the AIL iteration mechanism's generation
3027 * count to try to speed this up at least a bit.
3029 * When we start, we know that the EFIs are the only things in
3030 * the AIL. As we process them, however, other items are added
3031 * to the AIL. Since everything added to the AIL must come after
3032 * everything already in the AIL, we stop processing as soon as
3033 * we see something other than an EFI in the AIL.
3035 STATIC int
3036 xlog_recover_process_efis(
3037 xlog_t *log)
3039 xfs_log_item_t *lip;
3040 xfs_efi_log_item_t *efip;
3041 int error = 0;
3042 struct xfs_ail_cursor cur;
3043 struct xfs_ail *ailp;
3045 ailp = log->l_ailp;
3046 spin_lock(&ailp->xa_lock);
3047 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3048 while (lip != NULL) {
3050 * We're done when we see something other than an EFI.
3051 * There should be no EFIs left in the AIL now.
3053 if (lip->li_type != XFS_LI_EFI) {
3054 #ifdef DEBUG
3055 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3056 ASSERT(lip->li_type != XFS_LI_EFI);
3057 #endif
3058 break;
3062 * Skip EFIs that we've already processed.
3064 efip = (xfs_efi_log_item_t *)lip;
3065 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3066 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3067 continue;
3070 spin_unlock(&ailp->xa_lock);
3071 error = xlog_recover_process_efi(log->l_mp, efip);
3072 spin_lock(&ailp->xa_lock);
3073 if (error)
3074 goto out;
3075 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3077 out:
3078 xfs_trans_ail_cursor_done(ailp, &cur);
3079 spin_unlock(&ailp->xa_lock);
3080 return error;
3084 * This routine performs a transaction to null out a bad inode pointer
3085 * in an agi unlinked inode hash bucket.
3087 STATIC void
3088 xlog_recover_clear_agi_bucket(
3089 xfs_mount_t *mp,
3090 xfs_agnumber_t agno,
3091 int bucket)
3093 xfs_trans_t *tp;
3094 xfs_agi_t *agi;
3095 xfs_buf_t *agibp;
3096 int offset;
3097 int error;
3099 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3100 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3101 0, 0, 0);
3102 if (error)
3103 goto out_abort;
3105 error = xfs_read_agi(mp, tp, agno, &agibp);
3106 if (error)
3107 goto out_abort;
3109 agi = XFS_BUF_TO_AGI(agibp);
3110 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3111 offset = offsetof(xfs_agi_t, agi_unlinked) +
3112 (sizeof(xfs_agino_t) * bucket);
3113 xfs_trans_log_buf(tp, agibp, offset,
3114 (offset + sizeof(xfs_agino_t) - 1));
3116 error = xfs_trans_commit(tp, 0);
3117 if (error)
3118 goto out_error;
3119 return;
3121 out_abort:
3122 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3123 out_error:
3124 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3125 "failed to clear agi %d. Continuing.", agno);
3126 return;
3129 STATIC xfs_agino_t
3130 xlog_recover_process_one_iunlink(
3131 struct xfs_mount *mp,
3132 xfs_agnumber_t agno,
3133 xfs_agino_t agino,
3134 int bucket)
3136 struct xfs_buf *ibp;
3137 struct xfs_dinode *dip;
3138 struct xfs_inode *ip;
3139 xfs_ino_t ino;
3140 int error;
3142 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3143 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3144 if (error)
3145 goto fail;
3148 * Get the on disk inode to find the next inode in the bucket.
3150 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3151 if (error)
3152 goto fail_iput;
3154 ASSERT(ip->i_d.di_nlink == 0);
3155 ASSERT(ip->i_d.di_mode != 0);
3157 /* setup for the next pass */
3158 agino = be32_to_cpu(dip->di_next_unlinked);
3159 xfs_buf_relse(ibp);
3162 * Prevent any DMAPI event from being sent when the reference on
3163 * the inode is dropped.
3165 ip->i_d.di_dmevmask = 0;
3167 IRELE(ip);
3168 return agino;
3170 fail_iput:
3171 IRELE(ip);
3172 fail:
3174 * We can't read in the inode this bucket points to, or this inode
3175 * is messed up. Just ditch this bucket of inodes. We will lose
3176 * some inodes and space, but at least we won't hang.
3178 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3179 * clear the inode pointer in the bucket.
3181 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3182 return NULLAGINO;
3186 * xlog_iunlink_recover
3188 * This is called during recovery to process any inodes which
3189 * we unlinked but not freed when the system crashed. These
3190 * inodes will be on the lists in the AGI blocks. What we do
3191 * here is scan all the AGIs and fully truncate and free any
3192 * inodes found on the lists. Each inode is removed from the
3193 * lists when it has been fully truncated and is freed. The
3194 * freeing of the inode and its removal from the list must be
3195 * atomic.
3197 void
3198 xlog_recover_process_iunlinks(
3199 xlog_t *log)
3201 xfs_mount_t *mp;
3202 xfs_agnumber_t agno;
3203 xfs_agi_t *agi;
3204 xfs_buf_t *agibp;
3205 xfs_agino_t agino;
3206 int bucket;
3207 int error;
3208 uint mp_dmevmask;
3210 mp = log->l_mp;
3213 * Prevent any DMAPI event from being sent while in this function.
3215 mp_dmevmask = mp->m_dmevmask;
3216 mp->m_dmevmask = 0;
3218 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3220 * Find the agi for this ag.
3222 error = xfs_read_agi(mp, NULL, agno, &agibp);
3223 if (error) {
3225 * AGI is b0rked. Don't process it.
3227 * We should probably mark the filesystem as corrupt
3228 * after we've recovered all the ag's we can....
3230 continue;
3232 agi = XFS_BUF_TO_AGI(agibp);
3234 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3235 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3236 while (agino != NULLAGINO) {
3238 * Release the agi buffer so that it can
3239 * be acquired in the normal course of the
3240 * transaction to truncate and free the inode.
3242 xfs_buf_relse(agibp);
3244 agino = xlog_recover_process_one_iunlink(mp,
3245 agno, agino, bucket);
3248 * Reacquire the agibuffer and continue around
3249 * the loop. This should never fail as we know
3250 * the buffer was good earlier on.
3252 error = xfs_read_agi(mp, NULL, agno, &agibp);
3253 ASSERT(error == 0);
3254 agi = XFS_BUF_TO_AGI(agibp);
3259 * Release the buffer for the current agi so we can
3260 * go on to the next one.
3262 xfs_buf_relse(agibp);
3265 mp->m_dmevmask = mp_dmevmask;
3269 #ifdef DEBUG
3270 STATIC void
3271 xlog_pack_data_checksum(
3272 xlog_t *log,
3273 xlog_in_core_t *iclog,
3274 int size)
3276 int i;
3277 __be32 *up;
3278 uint chksum = 0;
3280 up = (__be32 *)iclog->ic_datap;
3281 /* divide length by 4 to get # words */
3282 for (i = 0; i < (size >> 2); i++) {
3283 chksum ^= be32_to_cpu(*up);
3284 up++;
3286 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3288 #else
3289 #define xlog_pack_data_checksum(log, iclog, size)
3290 #endif
3293 * Stamp cycle number in every block
3295 void
3296 xlog_pack_data(
3297 xlog_t *log,
3298 xlog_in_core_t *iclog,
3299 int roundoff)
3301 int i, j, k;
3302 int size = iclog->ic_offset + roundoff;
3303 __be32 cycle_lsn;
3304 xfs_caddr_t dp;
3306 xlog_pack_data_checksum(log, iclog, size);
3308 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3310 dp = iclog->ic_datap;
3311 for (i = 0; i < BTOBB(size) &&
3312 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3313 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3314 *(__be32 *)dp = cycle_lsn;
3315 dp += BBSIZE;
3318 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3319 xlog_in_core_2_t *xhdr = iclog->ic_data;
3321 for ( ; i < BTOBB(size); i++) {
3322 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3323 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3324 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3325 *(__be32 *)dp = cycle_lsn;
3326 dp += BBSIZE;
3329 for (i = 1; i < log->l_iclog_heads; i++) {
3330 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3335 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3336 STATIC void
3337 xlog_unpack_data_checksum(
3338 xlog_rec_header_t *rhead,
3339 xfs_caddr_t dp,
3340 xlog_t *log)
3342 __be32 *up = (__be32 *)dp;
3343 uint chksum = 0;
3344 int i;
3346 /* divide length by 4 to get # words */
3347 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3348 chksum ^= be32_to_cpu(*up);
3349 up++;
3351 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3352 if (rhead->h_chksum ||
3353 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3354 cmn_err(CE_DEBUG,
3355 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3356 be32_to_cpu(rhead->h_chksum), chksum);
3357 cmn_err(CE_DEBUG,
3358 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3359 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3360 cmn_err(CE_DEBUG,
3361 "XFS: LogR this is a LogV2 filesystem\n");
3363 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3367 #else
3368 #define xlog_unpack_data_checksum(rhead, dp, log)
3369 #endif
3371 STATIC void
3372 xlog_unpack_data(
3373 xlog_rec_header_t *rhead,
3374 xfs_caddr_t dp,
3375 xlog_t *log)
3377 int i, j, k;
3379 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3380 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3381 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3382 dp += BBSIZE;
3385 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3386 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3387 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3388 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3389 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3390 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3391 dp += BBSIZE;
3395 xlog_unpack_data_checksum(rhead, dp, log);
3398 STATIC int
3399 xlog_valid_rec_header(
3400 xlog_t *log,
3401 xlog_rec_header_t *rhead,
3402 xfs_daddr_t blkno)
3404 int hlen;
3406 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3407 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3408 XFS_ERRLEVEL_LOW, log->l_mp);
3409 return XFS_ERROR(EFSCORRUPTED);
3411 if (unlikely(
3412 (!rhead->h_version ||
3413 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3414 xlog_warn("XFS: %s: unrecognised log version (%d).",
3415 __func__, be32_to_cpu(rhead->h_version));
3416 return XFS_ERROR(EIO);
3419 /* LR body must have data or it wouldn't have been written */
3420 hlen = be32_to_cpu(rhead->h_len);
3421 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3422 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3423 XFS_ERRLEVEL_LOW, log->l_mp);
3424 return XFS_ERROR(EFSCORRUPTED);
3426 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3427 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3428 XFS_ERRLEVEL_LOW, log->l_mp);
3429 return XFS_ERROR(EFSCORRUPTED);
3431 return 0;
3435 * Read the log from tail to head and process the log records found.
3436 * Handle the two cases where the tail and head are in the same cycle
3437 * and where the active portion of the log wraps around the end of
3438 * the physical log separately. The pass parameter is passed through
3439 * to the routines called to process the data and is not looked at
3440 * here.
3442 STATIC int
3443 xlog_do_recovery_pass(
3444 xlog_t *log,
3445 xfs_daddr_t head_blk,
3446 xfs_daddr_t tail_blk,
3447 int pass)
3449 xlog_rec_header_t *rhead;
3450 xfs_daddr_t blk_no;
3451 xfs_caddr_t bufaddr, offset;
3452 xfs_buf_t *hbp, *dbp;
3453 int error = 0, h_size;
3454 int bblks, split_bblks;
3455 int hblks, split_hblks, wrapped_hblks;
3456 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3458 ASSERT(head_blk != tail_blk);
3461 * Read the header of the tail block and get the iclog buffer size from
3462 * h_size. Use this to tell how many sectors make up the log header.
3464 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3466 * When using variable length iclogs, read first sector of
3467 * iclog header and extract the header size from it. Get a
3468 * new hbp that is the correct size.
3470 hbp = xlog_get_bp(log, 1);
3471 if (!hbp)
3472 return ENOMEM;
3473 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3474 goto bread_err1;
3475 offset = xlog_align(log, tail_blk, 1, hbp);
3476 rhead = (xlog_rec_header_t *)offset;
3477 error = xlog_valid_rec_header(log, rhead, tail_blk);
3478 if (error)
3479 goto bread_err1;
3480 h_size = be32_to_cpu(rhead->h_size);
3481 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3482 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3483 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3484 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3485 hblks++;
3486 xlog_put_bp(hbp);
3487 hbp = xlog_get_bp(log, hblks);
3488 } else {
3489 hblks = 1;
3491 } else {
3492 ASSERT(log->l_sectbb_log == 0);
3493 hblks = 1;
3494 hbp = xlog_get_bp(log, 1);
3495 h_size = XLOG_BIG_RECORD_BSIZE;
3498 if (!hbp)
3499 return ENOMEM;
3500 dbp = xlog_get_bp(log, BTOBB(h_size));
3501 if (!dbp) {
3502 xlog_put_bp(hbp);
3503 return ENOMEM;
3506 memset(rhash, 0, sizeof(rhash));
3507 if (tail_blk <= head_blk) {
3508 for (blk_no = tail_blk; blk_no < head_blk; ) {
3509 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3510 goto bread_err2;
3511 offset = xlog_align(log, blk_no, hblks, hbp);
3512 rhead = (xlog_rec_header_t *)offset;
3513 error = xlog_valid_rec_header(log, rhead, blk_no);
3514 if (error)
3515 goto bread_err2;
3517 /* blocks in data section */
3518 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3519 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3520 if (error)
3521 goto bread_err2;
3522 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3523 xlog_unpack_data(rhead, offset, log);
3524 if ((error = xlog_recover_process_data(log,
3525 rhash, rhead, offset, pass)))
3526 goto bread_err2;
3527 blk_no += bblks + hblks;
3529 } else {
3531 * Perform recovery around the end of the physical log.
3532 * When the head is not on the same cycle number as the tail,
3533 * we can't do a sequential recovery as above.
3535 blk_no = tail_blk;
3536 while (blk_no < log->l_logBBsize) {
3538 * Check for header wrapping around physical end-of-log
3540 offset = NULL;
3541 split_hblks = 0;
3542 wrapped_hblks = 0;
3543 if (blk_no + hblks <= log->l_logBBsize) {
3544 /* Read header in one read */
3545 error = xlog_bread(log, blk_no, hblks, hbp);
3546 if (error)
3547 goto bread_err2;
3548 offset = xlog_align(log, blk_no, hblks, hbp);
3549 } else {
3550 /* This LR is split across physical log end */
3551 if (blk_no != log->l_logBBsize) {
3552 /* some data before physical log end */
3553 ASSERT(blk_no <= INT_MAX);
3554 split_hblks = log->l_logBBsize - (int)blk_no;
3555 ASSERT(split_hblks > 0);
3556 if ((error = xlog_bread(log, blk_no,
3557 split_hblks, hbp)))
3558 goto bread_err2;
3559 offset = xlog_align(log, blk_no,
3560 split_hblks, hbp);
3563 * Note: this black magic still works with
3564 * large sector sizes (non-512) only because:
3565 * - we increased the buffer size originally
3566 * by 1 sector giving us enough extra space
3567 * for the second read;
3568 * - the log start is guaranteed to be sector
3569 * aligned;
3570 * - we read the log end (LR header start)
3571 * _first_, then the log start (LR header end)
3572 * - order is important.
3574 wrapped_hblks = hblks - split_hblks;
3575 bufaddr = XFS_BUF_PTR(hbp);
3576 error = XFS_BUF_SET_PTR(hbp,
3577 bufaddr + BBTOB(split_hblks),
3578 BBTOB(hblks - split_hblks));
3579 if (!error)
3580 error = xlog_bread(log, 0,
3581 wrapped_hblks, hbp);
3582 if (!error)
3583 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3584 BBTOB(hblks));
3585 if (error)
3586 goto bread_err2;
3587 if (!offset)
3588 offset = xlog_align(log, 0,
3589 wrapped_hblks, hbp);
3591 rhead = (xlog_rec_header_t *)offset;
3592 error = xlog_valid_rec_header(log, rhead,
3593 split_hblks ? blk_no : 0);
3594 if (error)
3595 goto bread_err2;
3597 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3598 blk_no += hblks;
3600 /* Read in data for log record */
3601 if (blk_no + bblks <= log->l_logBBsize) {
3602 error = xlog_bread(log, blk_no, bblks, dbp);
3603 if (error)
3604 goto bread_err2;
3605 offset = xlog_align(log, blk_no, bblks, dbp);
3606 } else {
3607 /* This log record is split across the
3608 * physical end of log */
3609 offset = NULL;
3610 split_bblks = 0;
3611 if (blk_no != log->l_logBBsize) {
3612 /* some data is before the physical
3613 * end of log */
3614 ASSERT(!wrapped_hblks);
3615 ASSERT(blk_no <= INT_MAX);
3616 split_bblks =
3617 log->l_logBBsize - (int)blk_no;
3618 ASSERT(split_bblks > 0);
3619 if ((error = xlog_bread(log, blk_no,
3620 split_bblks, dbp)))
3621 goto bread_err2;
3622 offset = xlog_align(log, blk_no,
3623 split_bblks, dbp);
3626 * Note: this black magic still works with
3627 * large sector sizes (non-512) only because:
3628 * - we increased the buffer size originally
3629 * by 1 sector giving us enough extra space
3630 * for the second read;
3631 * - the log start is guaranteed to be sector
3632 * aligned;
3633 * - we read the log end (LR header start)
3634 * _first_, then the log start (LR header end)
3635 * - order is important.
3637 bufaddr = XFS_BUF_PTR(dbp);
3638 error = XFS_BUF_SET_PTR(dbp,
3639 bufaddr + BBTOB(split_bblks),
3640 BBTOB(bblks - split_bblks));
3641 if (!error)
3642 error = xlog_bread(log, wrapped_hblks,
3643 bblks - split_bblks,
3644 dbp);
3645 if (!error)
3646 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3647 h_size);
3648 if (error)
3649 goto bread_err2;
3650 if (!offset)
3651 offset = xlog_align(log, wrapped_hblks,
3652 bblks - split_bblks, dbp);
3654 xlog_unpack_data(rhead, offset, log);
3655 if ((error = xlog_recover_process_data(log, rhash,
3656 rhead, offset, pass)))
3657 goto bread_err2;
3658 blk_no += bblks;
3661 ASSERT(blk_no >= log->l_logBBsize);
3662 blk_no -= log->l_logBBsize;
3664 /* read first part of physical log */
3665 while (blk_no < head_blk) {
3666 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3667 goto bread_err2;
3668 offset = xlog_align(log, blk_no, hblks, hbp);
3669 rhead = (xlog_rec_header_t *)offset;
3670 error = xlog_valid_rec_header(log, rhead, blk_no);
3671 if (error)
3672 goto bread_err2;
3673 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3674 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3675 goto bread_err2;
3676 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3677 xlog_unpack_data(rhead, offset, log);
3678 if ((error = xlog_recover_process_data(log, rhash,
3679 rhead, offset, pass)))
3680 goto bread_err2;
3681 blk_no += bblks + hblks;
3685 bread_err2:
3686 xlog_put_bp(dbp);
3687 bread_err1:
3688 xlog_put_bp(hbp);
3689 return error;
3693 * Do the recovery of the log. We actually do this in two phases.
3694 * The two passes are necessary in order to implement the function
3695 * of cancelling a record written into the log. The first pass
3696 * determines those things which have been cancelled, and the
3697 * second pass replays log items normally except for those which
3698 * have been cancelled. The handling of the replay and cancellations
3699 * takes place in the log item type specific routines.
3701 * The table of items which have cancel records in the log is allocated
3702 * and freed at this level, since only here do we know when all of
3703 * the log recovery has been completed.
3705 STATIC int
3706 xlog_do_log_recovery(
3707 xlog_t *log,
3708 xfs_daddr_t head_blk,
3709 xfs_daddr_t tail_blk)
3711 int error;
3713 ASSERT(head_blk != tail_blk);
3716 * First do a pass to find all of the cancelled buf log items.
3717 * Store them in the buf_cancel_table for use in the second pass.
3719 log->l_buf_cancel_table =
3720 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3721 sizeof(xfs_buf_cancel_t*),
3722 KM_SLEEP);
3723 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3724 XLOG_RECOVER_PASS1);
3725 if (error != 0) {
3726 kmem_free(log->l_buf_cancel_table);
3727 log->l_buf_cancel_table = NULL;
3728 return error;
3731 * Then do a second pass to actually recover the items in the log.
3732 * When it is complete free the table of buf cancel items.
3734 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3735 XLOG_RECOVER_PASS2);
3736 #ifdef DEBUG
3737 if (!error) {
3738 int i;
3740 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3741 ASSERT(log->l_buf_cancel_table[i] == NULL);
3743 #endif /* DEBUG */
3745 kmem_free(log->l_buf_cancel_table);
3746 log->l_buf_cancel_table = NULL;
3748 return error;
3752 * Do the actual recovery
3754 STATIC int
3755 xlog_do_recover(
3756 xlog_t *log,
3757 xfs_daddr_t head_blk,
3758 xfs_daddr_t tail_blk)
3760 int error;
3761 xfs_buf_t *bp;
3762 xfs_sb_t *sbp;
3765 * First replay the images in the log.
3767 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3768 if (error) {
3769 return error;
3772 XFS_bflush(log->l_mp->m_ddev_targp);
3775 * If IO errors happened during recovery, bail out.
3777 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3778 return (EIO);
3782 * We now update the tail_lsn since much of the recovery has completed
3783 * and there may be space available to use. If there were no extent
3784 * or iunlinks, we can free up the entire log and set the tail_lsn to
3785 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3786 * lsn of the last known good LR on disk. If there are extent frees
3787 * or iunlinks they will have some entries in the AIL; so we look at
3788 * the AIL to determine how to set the tail_lsn.
3790 xlog_assign_tail_lsn(log->l_mp);
3793 * Now that we've finished replaying all buffer and inode
3794 * updates, re-read in the superblock.
3796 bp = xfs_getsb(log->l_mp, 0);
3797 XFS_BUF_UNDONE(bp);
3798 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3799 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3800 XFS_BUF_READ(bp);
3801 XFS_BUF_UNASYNC(bp);
3802 xfsbdstrat(log->l_mp, bp);
3803 error = xfs_iowait(bp);
3804 if (error) {
3805 xfs_ioerror_alert("xlog_do_recover",
3806 log->l_mp, bp, XFS_BUF_ADDR(bp));
3807 ASSERT(0);
3808 xfs_buf_relse(bp);
3809 return error;
3812 /* Convert superblock from on-disk format */
3813 sbp = &log->l_mp->m_sb;
3814 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3815 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3816 ASSERT(xfs_sb_good_version(sbp));
3817 xfs_buf_relse(bp);
3819 /* We've re-read the superblock so re-initialize per-cpu counters */
3820 xfs_icsb_reinit_counters(log->l_mp);
3822 xlog_recover_check_summary(log);
3824 /* Normal transactions can now occur */
3825 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3826 return 0;
3830 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3832 * Return error or zero.
3835 xlog_recover(
3836 xlog_t *log)
3838 xfs_daddr_t head_blk, tail_blk;
3839 int error;
3841 /* find the tail of the log */
3842 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3843 return error;
3845 if (tail_blk != head_blk) {
3846 /* There used to be a comment here:
3848 * disallow recovery on read-only mounts. note -- mount
3849 * checks for ENOSPC and turns it into an intelligent
3850 * error message.
3851 * ...but this is no longer true. Now, unless you specify
3852 * NORECOVERY (in which case this function would never be
3853 * called), we just go ahead and recover. We do this all
3854 * under the vfs layer, so we can get away with it unless
3855 * the device itself is read-only, in which case we fail.
3857 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3858 return error;
3861 cmn_err(CE_NOTE,
3862 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3863 log->l_mp->m_fsname, log->l_mp->m_logname ?
3864 log->l_mp->m_logname : "internal");
3866 error = xlog_do_recover(log, head_blk, tail_blk);
3867 log->l_flags |= XLOG_RECOVERY_NEEDED;
3869 return error;
3873 * In the first part of recovery we replay inodes and buffers and build
3874 * up the list of extent free items which need to be processed. Here
3875 * we process the extent free items and clean up the on disk unlinked
3876 * inode lists. This is separated from the first part of recovery so
3877 * that the root and real-time bitmap inodes can be read in from disk in
3878 * between the two stages. This is necessary so that we can free space
3879 * in the real-time portion of the file system.
3882 xlog_recover_finish(
3883 xlog_t *log)
3886 * Now we're ready to do the transactions needed for the
3887 * rest of recovery. Start with completing all the extent
3888 * free intent records and then process the unlinked inode
3889 * lists. At this point, we essentially run in normal mode
3890 * except that we're still performing recovery actions
3891 * rather than accepting new requests.
3893 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3894 int error;
3895 error = xlog_recover_process_efis(log);
3896 if (error) {
3897 cmn_err(CE_ALERT,
3898 "Failed to recover EFIs on filesystem: %s",
3899 log->l_mp->m_fsname);
3900 return error;
3903 * Sync the log to get all the EFIs out of the AIL.
3904 * This isn't absolutely necessary, but it helps in
3905 * case the unlink transactions would have problems
3906 * pushing the EFIs out of the way.
3908 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3909 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3911 xlog_recover_process_iunlinks(log);
3913 xlog_recover_check_summary(log);
3915 cmn_err(CE_NOTE,
3916 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3917 log->l_mp->m_fsname, log->l_mp->m_logname ?
3918 log->l_mp->m_logname : "internal");
3919 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3920 } else {
3921 cmn_err(CE_DEBUG,
3922 "!Ending clean XFS mount for filesystem: %s\n",
3923 log->l_mp->m_fsname);
3925 return 0;
3929 #if defined(DEBUG)
3931 * Read all of the agf and agi counters and check that they
3932 * are consistent with the superblock counters.
3934 void
3935 xlog_recover_check_summary(
3936 xlog_t *log)
3938 xfs_mount_t *mp;
3939 xfs_agf_t *agfp;
3940 xfs_buf_t *agfbp;
3941 xfs_buf_t *agibp;
3942 xfs_buf_t *sbbp;
3943 #ifdef XFS_LOUD_RECOVERY
3944 xfs_sb_t *sbp;
3945 #endif
3946 xfs_agnumber_t agno;
3947 __uint64_t freeblks;
3948 __uint64_t itotal;
3949 __uint64_t ifree;
3950 int error;
3952 mp = log->l_mp;
3954 freeblks = 0LL;
3955 itotal = 0LL;
3956 ifree = 0LL;
3957 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3958 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3959 if (error) {
3960 xfs_fs_cmn_err(CE_ALERT, mp,
3961 "xlog_recover_check_summary(agf)"
3962 "agf read failed agno %d error %d",
3963 agno, error);
3964 } else {
3965 agfp = XFS_BUF_TO_AGF(agfbp);
3966 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3967 be32_to_cpu(agfp->agf_flcount);
3968 xfs_buf_relse(agfbp);
3971 error = xfs_read_agi(mp, NULL, agno, &agibp);
3972 if (!error) {
3973 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3975 itotal += be32_to_cpu(agi->agi_count);
3976 ifree += be32_to_cpu(agi->agi_freecount);
3977 xfs_buf_relse(agibp);
3981 sbbp = xfs_getsb(mp, 0);
3982 #ifdef XFS_LOUD_RECOVERY
3983 sbp = &mp->m_sb;
3984 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
3985 cmn_err(CE_NOTE,
3986 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
3987 sbp->sb_icount, itotal);
3988 cmn_err(CE_NOTE,
3989 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
3990 sbp->sb_ifree, ifree);
3991 cmn_err(CE_NOTE,
3992 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
3993 sbp->sb_fdblocks, freeblks);
3994 #if 0
3996 * This is turned off until I account for the allocation
3997 * btree blocks which live in free space.
3999 ASSERT(sbp->sb_icount == itotal);
4000 ASSERT(sbp->sb_ifree == ifree);
4001 ASSERT(sbp->sb_fdblocks == freeblks);
4002 #endif
4003 #endif
4004 xfs_buf_relse(sbbp);
4006 #endif /* DEBUG */