GRU Driver: export is_uv_system(), zap_page_range() & follow_page()
[linux-2.6/verdex.git] / include / linux / skbuff.h
blob7ea44f6621f265a003ad6eb28c9f3934d1dc94e2
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
104 #endif
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
114 #endif
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
121 __u32 qlen;
122 spinlock_t lock;
125 struct sk_buff;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t;
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
184 SKB_GSO_TCPV6 = 1 << 4,
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @ndisc_nodetype: router type (from link layer)
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
249 * @vlan_tci: vlan tag control information
252 struct sk_buff {
253 /* These two members must be first. */
254 struct sk_buff *next;
255 struct sk_buff *prev;
257 struct sock *sk;
258 ktime_t tstamp;
259 struct net_device *dev;
261 union {
262 struct dst_entry *dst;
263 struct rtable *rtable;
265 struct sec_path *sp;
268 * This is the control buffer. It is free to use for every
269 * layer. Please put your private variables there. If you
270 * want to keep them across layers you have to do a skb_clone()
271 * first. This is owned by whoever has the skb queued ATM.
273 char cb[48];
275 unsigned int len,
276 data_len;
277 __u16 mac_len,
278 hdr_len;
279 union {
280 __wsum csum;
281 struct {
282 __u16 csum_start;
283 __u16 csum_offset;
286 __u32 priority;
287 __u8 local_df:1,
288 cloned:1,
289 ip_summed:2,
290 nohdr:1,
291 nfctinfo:3;
292 __u8 pkt_type:3,
293 fclone:2,
294 ipvs_property:1,
295 peeked:1,
296 nf_trace:1;
297 __be16 protocol;
299 void (*destructor)(struct sk_buff *skb);
300 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
301 struct nf_conntrack *nfct;
302 struct sk_buff *nfct_reasm;
303 #endif
304 #ifdef CONFIG_BRIDGE_NETFILTER
305 struct nf_bridge_info *nf_bridge;
306 #endif
308 int iif;
309 __u16 queue_mapping;
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd; /* traffic control verdict */
314 #endif
315 #endif
316 #ifdef CONFIG_IPV6_NDISC_NODETYPE
317 __u8 ndisc_nodetype:2;
318 #endif
319 /* 14 bit hole */
321 #ifdef CONFIG_NET_DMA
322 dma_cookie_t dma_cookie;
323 #endif
324 #ifdef CONFIG_NETWORK_SECMARK
325 __u32 secmark;
326 #endif
328 __u32 mark;
330 __u16 vlan_tci;
332 sk_buff_data_t transport_header;
333 sk_buff_data_t network_header;
334 sk_buff_data_t mac_header;
335 /* These elements must be at the end, see alloc_skb() for details. */
336 sk_buff_data_t tail;
337 sk_buff_data_t end;
338 unsigned char *head,
339 *data;
340 unsigned int truesize;
341 atomic_t users;
344 #ifdef __KERNEL__
346 * Handling routines are only of interest to the kernel
348 #include <linux/slab.h>
350 #include <asm/system.h>
352 extern void kfree_skb(struct sk_buff *skb);
353 extern void __kfree_skb(struct sk_buff *skb);
354 extern struct sk_buff *__alloc_skb(unsigned int size,
355 gfp_t priority, int fclone, int node);
356 static inline struct sk_buff *alloc_skb(unsigned int size,
357 gfp_t priority)
359 return __alloc_skb(size, priority, 0, -1);
362 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
363 gfp_t priority)
365 return __alloc_skb(size, priority, 1, -1);
368 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
369 extern struct sk_buff *skb_clone(struct sk_buff *skb,
370 gfp_t priority);
371 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
372 gfp_t priority);
373 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
374 gfp_t gfp_mask);
375 extern int pskb_expand_head(struct sk_buff *skb,
376 int nhead, int ntail,
377 gfp_t gfp_mask);
378 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
379 unsigned int headroom);
380 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
381 int newheadroom, int newtailroom,
382 gfp_t priority);
383 extern int skb_to_sgvec(struct sk_buff *skb,
384 struct scatterlist *sg, int offset,
385 int len);
386 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
387 struct sk_buff **trailer);
388 extern int skb_pad(struct sk_buff *skb, int pad);
389 #define dev_kfree_skb(a) kfree_skb(a)
390 extern void skb_over_panic(struct sk_buff *skb, int len,
391 void *here);
392 extern void skb_under_panic(struct sk_buff *skb, int len,
393 void *here);
394 extern void skb_truesize_bug(struct sk_buff *skb);
396 static inline void skb_truesize_check(struct sk_buff *skb)
398 int len = sizeof(struct sk_buff) + skb->len;
400 if (unlikely((int)skb->truesize < len))
401 skb_truesize_bug(skb);
404 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
405 int getfrag(void *from, char *to, int offset,
406 int len,int odd, struct sk_buff *skb),
407 void *from, int length);
409 struct skb_seq_state
411 __u32 lower_offset;
412 __u32 upper_offset;
413 __u32 frag_idx;
414 __u32 stepped_offset;
415 struct sk_buff *root_skb;
416 struct sk_buff *cur_skb;
417 __u8 *frag_data;
420 extern void skb_prepare_seq_read(struct sk_buff *skb,
421 unsigned int from, unsigned int to,
422 struct skb_seq_state *st);
423 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
424 struct skb_seq_state *st);
425 extern void skb_abort_seq_read(struct skb_seq_state *st);
427 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
428 unsigned int to, struct ts_config *config,
429 struct ts_state *state);
431 #ifdef NET_SKBUFF_DATA_USES_OFFSET
432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
434 return skb->head + skb->end;
436 #else
437 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
439 return skb->end;
441 #endif
443 /* Internal */
444 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
447 * skb_queue_empty - check if a queue is empty
448 * @list: queue head
450 * Returns true if the queue is empty, false otherwise.
452 static inline int skb_queue_empty(const struct sk_buff_head *list)
454 return list->next == (struct sk_buff *)list;
458 * skb_get - reference buffer
459 * @skb: buffer to reference
461 * Makes another reference to a socket buffer and returns a pointer
462 * to the buffer.
464 static inline struct sk_buff *skb_get(struct sk_buff *skb)
466 atomic_inc(&skb->users);
467 return skb;
471 * If users == 1, we are the only owner and are can avoid redundant
472 * atomic change.
476 * skb_cloned - is the buffer a clone
477 * @skb: buffer to check
479 * Returns true if the buffer was generated with skb_clone() and is
480 * one of multiple shared copies of the buffer. Cloned buffers are
481 * shared data so must not be written to under normal circumstances.
483 static inline int skb_cloned(const struct sk_buff *skb)
485 return skb->cloned &&
486 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
490 * skb_header_cloned - is the header a clone
491 * @skb: buffer to check
493 * Returns true if modifying the header part of the buffer requires
494 * the data to be copied.
496 static inline int skb_header_cloned(const struct sk_buff *skb)
498 int dataref;
500 if (!skb->cloned)
501 return 0;
503 dataref = atomic_read(&skb_shinfo(skb)->dataref);
504 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
505 return dataref != 1;
509 * skb_header_release - release reference to header
510 * @skb: buffer to operate on
512 * Drop a reference to the header part of the buffer. This is done
513 * by acquiring a payload reference. You must not read from the header
514 * part of skb->data after this.
516 static inline void skb_header_release(struct sk_buff *skb)
518 BUG_ON(skb->nohdr);
519 skb->nohdr = 1;
520 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
524 * skb_shared - is the buffer shared
525 * @skb: buffer to check
527 * Returns true if more than one person has a reference to this
528 * buffer.
530 static inline int skb_shared(const struct sk_buff *skb)
532 return atomic_read(&skb->users) != 1;
536 * skb_share_check - check if buffer is shared and if so clone it
537 * @skb: buffer to check
538 * @pri: priority for memory allocation
540 * If the buffer is shared the buffer is cloned and the old copy
541 * drops a reference. A new clone with a single reference is returned.
542 * If the buffer is not shared the original buffer is returned. When
543 * being called from interrupt status or with spinlocks held pri must
544 * be GFP_ATOMIC.
546 * NULL is returned on a memory allocation failure.
548 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
549 gfp_t pri)
551 might_sleep_if(pri & __GFP_WAIT);
552 if (skb_shared(skb)) {
553 struct sk_buff *nskb = skb_clone(skb, pri);
554 kfree_skb(skb);
555 skb = nskb;
557 return skb;
561 * Copy shared buffers into a new sk_buff. We effectively do COW on
562 * packets to handle cases where we have a local reader and forward
563 * and a couple of other messy ones. The normal one is tcpdumping
564 * a packet thats being forwarded.
568 * skb_unshare - make a copy of a shared buffer
569 * @skb: buffer to check
570 * @pri: priority for memory allocation
572 * If the socket buffer is a clone then this function creates a new
573 * copy of the data, drops a reference count on the old copy and returns
574 * the new copy with the reference count at 1. If the buffer is not a clone
575 * the original buffer is returned. When called with a spinlock held or
576 * from interrupt state @pri must be %GFP_ATOMIC
578 * %NULL is returned on a memory allocation failure.
580 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
581 gfp_t pri)
583 might_sleep_if(pri & __GFP_WAIT);
584 if (skb_cloned(skb)) {
585 struct sk_buff *nskb = skb_copy(skb, pri);
586 kfree_skb(skb); /* Free our shared copy */
587 skb = nskb;
589 return skb;
593 * skb_peek
594 * @list_: list to peek at
596 * Peek an &sk_buff. Unlike most other operations you _MUST_
597 * be careful with this one. A peek leaves the buffer on the
598 * list and someone else may run off with it. You must hold
599 * the appropriate locks or have a private queue to do this.
601 * Returns %NULL for an empty list or a pointer to the head element.
602 * The reference count is not incremented and the reference is therefore
603 * volatile. Use with caution.
605 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
607 struct sk_buff *list = ((struct sk_buff *)list_)->next;
608 if (list == (struct sk_buff *)list_)
609 list = NULL;
610 return list;
614 * skb_peek_tail
615 * @list_: list to peek at
617 * Peek an &sk_buff. Unlike most other operations you _MUST_
618 * be careful with this one. A peek leaves the buffer on the
619 * list and someone else may run off with it. You must hold
620 * the appropriate locks or have a private queue to do this.
622 * Returns %NULL for an empty list or a pointer to the tail element.
623 * The reference count is not incremented and the reference is therefore
624 * volatile. Use with caution.
626 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
628 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
629 if (list == (struct sk_buff *)list_)
630 list = NULL;
631 return list;
635 * skb_queue_len - get queue length
636 * @list_: list to measure
638 * Return the length of an &sk_buff queue.
640 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
642 return list_->qlen;
646 * This function creates a split out lock class for each invocation;
647 * this is needed for now since a whole lot of users of the skb-queue
648 * infrastructure in drivers have different locking usage (in hardirq)
649 * than the networking core (in softirq only). In the long run either the
650 * network layer or drivers should need annotation to consolidate the
651 * main types of usage into 3 classes.
653 static inline void skb_queue_head_init(struct sk_buff_head *list)
655 spin_lock_init(&list->lock);
656 list->prev = list->next = (struct sk_buff *)list;
657 list->qlen = 0;
660 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
661 struct lock_class_key *class)
663 skb_queue_head_init(list);
664 lockdep_set_class(&list->lock, class);
668 * Insert an sk_buff on a list.
670 * The "__skb_xxxx()" functions are the non-atomic ones that
671 * can only be called with interrupts disabled.
673 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
674 static inline void __skb_insert(struct sk_buff *newsk,
675 struct sk_buff *prev, struct sk_buff *next,
676 struct sk_buff_head *list)
678 newsk->next = next;
679 newsk->prev = prev;
680 next->prev = prev->next = newsk;
681 list->qlen++;
685 * __skb_queue_after - queue a buffer at the list head
686 * @list: list to use
687 * @prev: place after this buffer
688 * @newsk: buffer to queue
690 * Queue a buffer int the middle of a list. This function takes no locks
691 * and you must therefore hold required locks before calling it.
693 * A buffer cannot be placed on two lists at the same time.
695 static inline void __skb_queue_after(struct sk_buff_head *list,
696 struct sk_buff *prev,
697 struct sk_buff *newsk)
699 __skb_insert(newsk, prev, prev->next, list);
702 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
703 struct sk_buff_head *list);
705 static inline void __skb_queue_before(struct sk_buff_head *list,
706 struct sk_buff *next,
707 struct sk_buff *newsk)
709 __skb_insert(newsk, next->prev, next, list);
713 * __skb_queue_head - queue a buffer at the list head
714 * @list: list to use
715 * @newsk: buffer to queue
717 * Queue a buffer at the start of a list. This function takes no locks
718 * and you must therefore hold required locks before calling it.
720 * A buffer cannot be placed on two lists at the same time.
722 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
723 static inline void __skb_queue_head(struct sk_buff_head *list,
724 struct sk_buff *newsk)
726 __skb_queue_after(list, (struct sk_buff *)list, newsk);
730 * __skb_queue_tail - queue a buffer at the list tail
731 * @list: list to use
732 * @newsk: buffer to queue
734 * Queue a buffer at the end of a list. This function takes no locks
735 * and you must therefore hold required locks before calling it.
737 * A buffer cannot be placed on two lists at the same time.
739 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
740 static inline void __skb_queue_tail(struct sk_buff_head *list,
741 struct sk_buff *newsk)
743 __skb_queue_before(list, (struct sk_buff *)list, newsk);
747 * remove sk_buff from list. _Must_ be called atomically, and with
748 * the list known..
750 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
751 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
753 struct sk_buff *next, *prev;
755 list->qlen--;
756 next = skb->next;
757 prev = skb->prev;
758 skb->next = skb->prev = NULL;
759 next->prev = prev;
760 prev->next = next;
764 * __skb_dequeue - remove from the head of the queue
765 * @list: list to dequeue from
767 * Remove the head of the list. This function does not take any locks
768 * so must be used with appropriate locks held only. The head item is
769 * returned or %NULL if the list is empty.
771 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
772 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
774 struct sk_buff *skb = skb_peek(list);
775 if (skb)
776 __skb_unlink(skb, list);
777 return skb;
781 * __skb_dequeue_tail - remove from the tail of the queue
782 * @list: list to dequeue from
784 * Remove the tail of the list. This function does not take any locks
785 * so must be used with appropriate locks held only. The tail item is
786 * returned or %NULL if the list is empty.
788 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
789 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
791 struct sk_buff *skb = skb_peek_tail(list);
792 if (skb)
793 __skb_unlink(skb, list);
794 return skb;
798 static inline int skb_is_nonlinear(const struct sk_buff *skb)
800 return skb->data_len;
803 static inline unsigned int skb_headlen(const struct sk_buff *skb)
805 return skb->len - skb->data_len;
808 static inline int skb_pagelen(const struct sk_buff *skb)
810 int i, len = 0;
812 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
813 len += skb_shinfo(skb)->frags[i].size;
814 return len + skb_headlen(skb);
817 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
818 struct page *page, int off, int size)
820 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
822 frag->page = page;
823 frag->page_offset = off;
824 frag->size = size;
825 skb_shinfo(skb)->nr_frags = i + 1;
828 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
829 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
830 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
832 #ifdef NET_SKBUFF_DATA_USES_OFFSET
833 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
835 return skb->head + skb->tail;
838 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
840 skb->tail = skb->data - skb->head;
843 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
845 skb_reset_tail_pointer(skb);
846 skb->tail += offset;
848 #else /* NET_SKBUFF_DATA_USES_OFFSET */
849 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
851 return skb->tail;
854 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
856 skb->tail = skb->data;
859 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
861 skb->tail = skb->data + offset;
864 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
867 * Add data to an sk_buff
869 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
870 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
872 unsigned char *tmp = skb_tail_pointer(skb);
873 SKB_LINEAR_ASSERT(skb);
874 skb->tail += len;
875 skb->len += len;
876 return tmp;
879 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
880 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
882 skb->data -= len;
883 skb->len += len;
884 return skb->data;
887 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
888 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
890 skb->len -= len;
891 BUG_ON(skb->len < skb->data_len);
892 return skb->data += len;
895 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
897 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
899 if (len > skb_headlen(skb) &&
900 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
901 return NULL;
902 skb->len -= len;
903 return skb->data += len;
906 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
908 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
911 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
913 if (likely(len <= skb_headlen(skb)))
914 return 1;
915 if (unlikely(len > skb->len))
916 return 0;
917 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
921 * skb_headroom - bytes at buffer head
922 * @skb: buffer to check
924 * Return the number of bytes of free space at the head of an &sk_buff.
926 static inline unsigned int skb_headroom(const struct sk_buff *skb)
928 return skb->data - skb->head;
932 * skb_tailroom - bytes at buffer end
933 * @skb: buffer to check
935 * Return the number of bytes of free space at the tail of an sk_buff
937 static inline int skb_tailroom(const struct sk_buff *skb)
939 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
943 * skb_reserve - adjust headroom
944 * @skb: buffer to alter
945 * @len: bytes to move
947 * Increase the headroom of an empty &sk_buff by reducing the tail
948 * room. This is only allowed for an empty buffer.
950 static inline void skb_reserve(struct sk_buff *skb, int len)
952 skb->data += len;
953 skb->tail += len;
956 #ifdef NET_SKBUFF_DATA_USES_OFFSET
957 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
959 return skb->head + skb->transport_header;
962 static inline void skb_reset_transport_header(struct sk_buff *skb)
964 skb->transport_header = skb->data - skb->head;
967 static inline void skb_set_transport_header(struct sk_buff *skb,
968 const int offset)
970 skb_reset_transport_header(skb);
971 skb->transport_header += offset;
974 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
976 return skb->head + skb->network_header;
979 static inline void skb_reset_network_header(struct sk_buff *skb)
981 skb->network_header = skb->data - skb->head;
984 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
986 skb_reset_network_header(skb);
987 skb->network_header += offset;
990 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
992 return skb->head + skb->mac_header;
995 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
997 return skb->mac_header != ~0U;
1000 static inline void skb_reset_mac_header(struct sk_buff *skb)
1002 skb->mac_header = skb->data - skb->head;
1005 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1007 skb_reset_mac_header(skb);
1008 skb->mac_header += offset;
1011 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1013 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1015 return skb->transport_header;
1018 static inline void skb_reset_transport_header(struct sk_buff *skb)
1020 skb->transport_header = skb->data;
1023 static inline void skb_set_transport_header(struct sk_buff *skb,
1024 const int offset)
1026 skb->transport_header = skb->data + offset;
1029 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1031 return skb->network_header;
1034 static inline void skb_reset_network_header(struct sk_buff *skb)
1036 skb->network_header = skb->data;
1039 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1041 skb->network_header = skb->data + offset;
1044 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1046 return skb->mac_header;
1049 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1051 return skb->mac_header != NULL;
1054 static inline void skb_reset_mac_header(struct sk_buff *skb)
1056 skb->mac_header = skb->data;
1059 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1061 skb->mac_header = skb->data + offset;
1063 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1065 static inline int skb_transport_offset(const struct sk_buff *skb)
1067 return skb_transport_header(skb) - skb->data;
1070 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1072 return skb->transport_header - skb->network_header;
1075 static inline int skb_network_offset(const struct sk_buff *skb)
1077 return skb_network_header(skb) - skb->data;
1081 * CPUs often take a performance hit when accessing unaligned memory
1082 * locations. The actual performance hit varies, it can be small if the
1083 * hardware handles it or large if we have to take an exception and fix it
1084 * in software.
1086 * Since an ethernet header is 14 bytes network drivers often end up with
1087 * the IP header at an unaligned offset. The IP header can be aligned by
1088 * shifting the start of the packet by 2 bytes. Drivers should do this
1089 * with:
1091 * skb_reserve(NET_IP_ALIGN);
1093 * The downside to this alignment of the IP header is that the DMA is now
1094 * unaligned. On some architectures the cost of an unaligned DMA is high
1095 * and this cost outweighs the gains made by aligning the IP header.
1097 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1098 * to be overridden.
1100 #ifndef NET_IP_ALIGN
1101 #define NET_IP_ALIGN 2
1102 #endif
1105 * The networking layer reserves some headroom in skb data (via
1106 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1107 * the header has to grow. In the default case, if the header has to grow
1108 * 16 bytes or less we avoid the reallocation.
1110 * Unfortunately this headroom changes the DMA alignment of the resulting
1111 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1112 * on some architectures. An architecture can override this value,
1113 * perhaps setting it to a cacheline in size (since that will maintain
1114 * cacheline alignment of the DMA). It must be a power of 2.
1116 * Various parts of the networking layer expect at least 16 bytes of
1117 * headroom, you should not reduce this.
1119 #ifndef NET_SKB_PAD
1120 #define NET_SKB_PAD 16
1121 #endif
1123 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1125 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1127 if (unlikely(skb->data_len)) {
1128 WARN_ON(1);
1129 return;
1131 skb->len = len;
1132 skb_set_tail_pointer(skb, len);
1135 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1137 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1139 if (skb->data_len)
1140 return ___pskb_trim(skb, len);
1141 __skb_trim(skb, len);
1142 return 0;
1145 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1147 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1151 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1152 * @skb: buffer to alter
1153 * @len: new length
1155 * This is identical to pskb_trim except that the caller knows that
1156 * the skb is not cloned so we should never get an error due to out-
1157 * of-memory.
1159 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1161 int err = pskb_trim(skb, len);
1162 BUG_ON(err);
1166 * skb_orphan - orphan a buffer
1167 * @skb: buffer to orphan
1169 * If a buffer currently has an owner then we call the owner's
1170 * destructor function and make the @skb unowned. The buffer continues
1171 * to exist but is no longer charged to its former owner.
1173 static inline void skb_orphan(struct sk_buff *skb)
1175 if (skb->destructor)
1176 skb->destructor(skb);
1177 skb->destructor = NULL;
1178 skb->sk = NULL;
1182 * __skb_queue_purge - empty a list
1183 * @list: list to empty
1185 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1186 * the list and one reference dropped. This function does not take the
1187 * list lock and the caller must hold the relevant locks to use it.
1189 extern void skb_queue_purge(struct sk_buff_head *list);
1190 static inline void __skb_queue_purge(struct sk_buff_head *list)
1192 struct sk_buff *skb;
1193 while ((skb = __skb_dequeue(list)) != NULL)
1194 kfree_skb(skb);
1198 * __dev_alloc_skb - allocate an skbuff for receiving
1199 * @length: length to allocate
1200 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1202 * Allocate a new &sk_buff and assign it a usage count of one. The
1203 * buffer has unspecified headroom built in. Users should allocate
1204 * the headroom they think they need without accounting for the
1205 * built in space. The built in space is used for optimisations.
1207 * %NULL is returned if there is no free memory.
1209 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1210 gfp_t gfp_mask)
1212 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1213 if (likely(skb))
1214 skb_reserve(skb, NET_SKB_PAD);
1215 return skb;
1218 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1220 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1221 unsigned int length, gfp_t gfp_mask);
1224 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1225 * @dev: network device to receive on
1226 * @length: length to allocate
1228 * Allocate a new &sk_buff and assign it a usage count of one. The
1229 * buffer has unspecified headroom built in. Users should allocate
1230 * the headroom they think they need without accounting for the
1231 * built in space. The built in space is used for optimisations.
1233 * %NULL is returned if there is no free memory. Although this function
1234 * allocates memory it can be called from an interrupt.
1236 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1237 unsigned int length)
1239 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1243 * skb_clone_writable - is the header of a clone writable
1244 * @skb: buffer to check
1245 * @len: length up to which to write
1247 * Returns true if modifying the header part of the cloned buffer
1248 * does not requires the data to be copied.
1250 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1252 return !skb_header_cloned(skb) &&
1253 skb_headroom(skb) + len <= skb->hdr_len;
1256 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1257 int cloned)
1259 int delta = 0;
1261 if (headroom < NET_SKB_PAD)
1262 headroom = NET_SKB_PAD;
1263 if (headroom > skb_headroom(skb))
1264 delta = headroom - skb_headroom(skb);
1266 if (delta || cloned)
1267 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1268 GFP_ATOMIC);
1269 return 0;
1273 * skb_cow - copy header of skb when it is required
1274 * @skb: buffer to cow
1275 * @headroom: needed headroom
1277 * If the skb passed lacks sufficient headroom or its data part
1278 * is shared, data is reallocated. If reallocation fails, an error
1279 * is returned and original skb is not changed.
1281 * The result is skb with writable area skb->head...skb->tail
1282 * and at least @headroom of space at head.
1284 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1286 return __skb_cow(skb, headroom, skb_cloned(skb));
1290 * skb_cow_head - skb_cow but only making the head writable
1291 * @skb: buffer to cow
1292 * @headroom: needed headroom
1294 * This function is identical to skb_cow except that we replace the
1295 * skb_cloned check by skb_header_cloned. It should be used when
1296 * you only need to push on some header and do not need to modify
1297 * the data.
1299 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1301 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1305 * skb_padto - pad an skbuff up to a minimal size
1306 * @skb: buffer to pad
1307 * @len: minimal length
1309 * Pads up a buffer to ensure the trailing bytes exist and are
1310 * blanked. If the buffer already contains sufficient data it
1311 * is untouched. Otherwise it is extended. Returns zero on
1312 * success. The skb is freed on error.
1315 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1317 unsigned int size = skb->len;
1318 if (likely(size >= len))
1319 return 0;
1320 return skb_pad(skb, len-size);
1323 static inline int skb_add_data(struct sk_buff *skb,
1324 char __user *from, int copy)
1326 const int off = skb->len;
1328 if (skb->ip_summed == CHECKSUM_NONE) {
1329 int err = 0;
1330 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1331 copy, 0, &err);
1332 if (!err) {
1333 skb->csum = csum_block_add(skb->csum, csum, off);
1334 return 0;
1336 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1337 return 0;
1339 __skb_trim(skb, off);
1340 return -EFAULT;
1343 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1344 struct page *page, int off)
1346 if (i) {
1347 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1349 return page == frag->page &&
1350 off == frag->page_offset + frag->size;
1352 return 0;
1355 static inline int __skb_linearize(struct sk_buff *skb)
1357 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1361 * skb_linearize - convert paged skb to linear one
1362 * @skb: buffer to linarize
1364 * If there is no free memory -ENOMEM is returned, otherwise zero
1365 * is returned and the old skb data released.
1367 static inline int skb_linearize(struct sk_buff *skb)
1369 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1373 * skb_linearize_cow - make sure skb is linear and writable
1374 * @skb: buffer to process
1376 * If there is no free memory -ENOMEM is returned, otherwise zero
1377 * is returned and the old skb data released.
1379 static inline int skb_linearize_cow(struct sk_buff *skb)
1381 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1382 __skb_linearize(skb) : 0;
1386 * skb_postpull_rcsum - update checksum for received skb after pull
1387 * @skb: buffer to update
1388 * @start: start of data before pull
1389 * @len: length of data pulled
1391 * After doing a pull on a received packet, you need to call this to
1392 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1393 * CHECKSUM_NONE so that it can be recomputed from scratch.
1396 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1397 const void *start, unsigned int len)
1399 if (skb->ip_summed == CHECKSUM_COMPLETE)
1400 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1403 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1406 * pskb_trim_rcsum - trim received skb and update checksum
1407 * @skb: buffer to trim
1408 * @len: new length
1410 * This is exactly the same as pskb_trim except that it ensures the
1411 * checksum of received packets are still valid after the operation.
1414 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1416 if (likely(len >= skb->len))
1417 return 0;
1418 if (skb->ip_summed == CHECKSUM_COMPLETE)
1419 skb->ip_summed = CHECKSUM_NONE;
1420 return __pskb_trim(skb, len);
1423 #define skb_queue_walk(queue, skb) \
1424 for (skb = (queue)->next; \
1425 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1426 skb = skb->next)
1428 #define skb_queue_walk_safe(queue, skb, tmp) \
1429 for (skb = (queue)->next, tmp = skb->next; \
1430 skb != (struct sk_buff *)(queue); \
1431 skb = tmp, tmp = skb->next)
1433 #define skb_queue_reverse_walk(queue, skb) \
1434 for (skb = (queue)->prev; \
1435 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1436 skb = skb->prev)
1439 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1440 int *peeked, int *err);
1441 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1442 int noblock, int *err);
1443 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1444 struct poll_table_struct *wait);
1445 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1446 int offset, struct iovec *to,
1447 int size);
1448 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1449 int hlen,
1450 struct iovec *iov);
1451 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1452 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1453 unsigned int flags);
1454 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1455 int len, __wsum csum);
1456 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1457 void *to, int len);
1458 extern int skb_store_bits(struct sk_buff *skb, int offset,
1459 const void *from, int len);
1460 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1461 int offset, u8 *to, int len,
1462 __wsum csum);
1463 extern int skb_splice_bits(struct sk_buff *skb,
1464 unsigned int offset,
1465 struct pipe_inode_info *pipe,
1466 unsigned int len,
1467 unsigned int flags);
1468 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1469 extern void skb_split(struct sk_buff *skb,
1470 struct sk_buff *skb1, const u32 len);
1472 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1474 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1475 int len, void *buffer)
1477 int hlen = skb_headlen(skb);
1479 if (hlen - offset >= len)
1480 return skb->data + offset;
1482 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1483 return NULL;
1485 return buffer;
1488 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1489 void *to,
1490 const unsigned int len)
1492 memcpy(to, skb->data, len);
1495 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1496 const int offset, void *to,
1497 const unsigned int len)
1499 memcpy(to, skb->data + offset, len);
1502 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1503 const void *from,
1504 const unsigned int len)
1506 memcpy(skb->data, from, len);
1509 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1510 const int offset,
1511 const void *from,
1512 const unsigned int len)
1514 memcpy(skb->data + offset, from, len);
1517 extern void skb_init(void);
1520 * skb_get_timestamp - get timestamp from a skb
1521 * @skb: skb to get stamp from
1522 * @stamp: pointer to struct timeval to store stamp in
1524 * Timestamps are stored in the skb as offsets to a base timestamp.
1525 * This function converts the offset back to a struct timeval and stores
1526 * it in stamp.
1528 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1530 *stamp = ktime_to_timeval(skb->tstamp);
1533 static inline void __net_timestamp(struct sk_buff *skb)
1535 skb->tstamp = ktime_get_real();
1538 static inline ktime_t net_timedelta(ktime_t t)
1540 return ktime_sub(ktime_get_real(), t);
1543 static inline ktime_t net_invalid_timestamp(void)
1545 return ktime_set(0, 0);
1548 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1549 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1551 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1553 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1557 * skb_checksum_complete - Calculate checksum of an entire packet
1558 * @skb: packet to process
1560 * This function calculates the checksum over the entire packet plus
1561 * the value of skb->csum. The latter can be used to supply the
1562 * checksum of a pseudo header as used by TCP/UDP. It returns the
1563 * checksum.
1565 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1566 * this function can be used to verify that checksum on received
1567 * packets. In that case the function should return zero if the
1568 * checksum is correct. In particular, this function will return zero
1569 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1570 * hardware has already verified the correctness of the checksum.
1572 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1574 return skb_csum_unnecessary(skb) ?
1575 0 : __skb_checksum_complete(skb);
1578 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1579 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1580 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1582 if (nfct && atomic_dec_and_test(&nfct->use))
1583 nf_conntrack_destroy(nfct);
1585 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1587 if (nfct)
1588 atomic_inc(&nfct->use);
1590 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1592 if (skb)
1593 atomic_inc(&skb->users);
1595 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1597 if (skb)
1598 kfree_skb(skb);
1600 #endif
1601 #ifdef CONFIG_BRIDGE_NETFILTER
1602 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1604 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1605 kfree(nf_bridge);
1607 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1609 if (nf_bridge)
1610 atomic_inc(&nf_bridge->use);
1612 #endif /* CONFIG_BRIDGE_NETFILTER */
1613 static inline void nf_reset(struct sk_buff *skb)
1615 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1616 nf_conntrack_put(skb->nfct);
1617 skb->nfct = NULL;
1618 nf_conntrack_put_reasm(skb->nfct_reasm);
1619 skb->nfct_reasm = NULL;
1620 #endif
1621 #ifdef CONFIG_BRIDGE_NETFILTER
1622 nf_bridge_put(skb->nf_bridge);
1623 skb->nf_bridge = NULL;
1624 #endif
1627 /* Note: This doesn't put any conntrack and bridge info in dst. */
1628 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1630 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1631 dst->nfct = src->nfct;
1632 nf_conntrack_get(src->nfct);
1633 dst->nfctinfo = src->nfctinfo;
1634 dst->nfct_reasm = src->nfct_reasm;
1635 nf_conntrack_get_reasm(src->nfct_reasm);
1636 #endif
1637 #ifdef CONFIG_BRIDGE_NETFILTER
1638 dst->nf_bridge = src->nf_bridge;
1639 nf_bridge_get(src->nf_bridge);
1640 #endif
1643 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1645 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1646 nf_conntrack_put(dst->nfct);
1647 nf_conntrack_put_reasm(dst->nfct_reasm);
1648 #endif
1649 #ifdef CONFIG_BRIDGE_NETFILTER
1650 nf_bridge_put(dst->nf_bridge);
1651 #endif
1652 __nf_copy(dst, src);
1655 #ifdef CONFIG_NETWORK_SECMARK
1656 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1658 to->secmark = from->secmark;
1661 static inline void skb_init_secmark(struct sk_buff *skb)
1663 skb->secmark = 0;
1665 #else
1666 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1669 static inline void skb_init_secmark(struct sk_buff *skb)
1671 #endif
1673 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1675 skb->queue_mapping = queue_mapping;
1678 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1680 return skb->queue_mapping;
1683 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1685 to->queue_mapping = from->queue_mapping;
1688 static inline int skb_is_gso(const struct sk_buff *skb)
1690 return skb_shinfo(skb)->gso_size;
1693 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1695 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1698 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1700 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1702 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1703 * wanted then gso_type will be set. */
1704 struct skb_shared_info *shinfo = skb_shinfo(skb);
1705 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1706 __skb_warn_lro_forwarding(skb);
1707 return true;
1709 return false;
1712 static inline void skb_forward_csum(struct sk_buff *skb)
1714 /* Unfortunately we don't support this one. Any brave souls? */
1715 if (skb->ip_summed == CHECKSUM_COMPLETE)
1716 skb->ip_summed = CHECKSUM_NONE;
1719 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1720 #endif /* __KERNEL__ */
1721 #endif /* _LINUX_SKBUFF_H */