1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly
;
50 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
52 #define do_swap_account (0)
55 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index
{
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
69 MEM_CGROUP_STAT_NSTATS
,
72 struct mem_cgroup_stat_cpu
{
73 s64 count
[MEM_CGROUP_STAT_NSTATS
];
74 } ____cacheline_aligned_in_smp
;
76 struct mem_cgroup_stat
{
77 struct mem_cgroup_stat_cpu cpustat
[0];
81 * For accounting under irq disable, no need for increment preempt count.
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
84 enum mem_cgroup_stat_index idx
, int val
)
86 stat
->count
[idx
] += val
;
89 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
90 enum mem_cgroup_stat_index idx
)
94 for_each_possible_cpu(cpu
)
95 ret
+= stat
->cpustat
[cpu
].count
[idx
];
99 static s64
mem_cgroup_local_usage(struct mem_cgroup_stat
*stat
)
103 ret
= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_CACHE
);
104 ret
+= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_RSS
);
109 * per-zone information in memory controller.
111 struct mem_cgroup_per_zone
{
113 * spin_lock to protect the per cgroup LRU
115 struct list_head lists
[NR_LRU_LISTS
];
116 unsigned long count
[NR_LRU_LISTS
];
118 struct zone_reclaim_stat reclaim_stat
;
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123 struct mem_cgroup_per_node
{
124 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
127 struct mem_cgroup_lru_info
{
128 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
143 struct cgroup_subsys_state css
;
145 * the counter to account for memory usage
147 struct res_counter res
;
149 * the counter to account for mem+swap usage.
151 struct res_counter memsw
;
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
156 struct mem_cgroup_lru_info info
;
159 protect against reclaim related member.
161 spinlock_t reclaim_param_lock
;
163 int prev_priority
; /* for recording reclaim priority */
166 * While reclaiming in a hiearchy, we cache the last child we
169 int last_scanned_child
;
171 * Should the accounting and control be hierarchical, per subtree?
174 unsigned long last_oom_jiffies
;
177 unsigned int swappiness
;
180 * statistics. This must be placed at the end of memcg.
182 struct mem_cgroup_stat stat
;
186 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags
[NR_CHARGE_TYPE
] = {
200 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
201 PCGF_USED
| PCGF_LOCK
, /* Anon */
202 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
206 /* for encoding cft->private value on file */
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213 static void mem_cgroup_get(struct mem_cgroup
*mem
);
214 static void mem_cgroup_put(struct mem_cgroup
*mem
);
215 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
217 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
218 struct page_cgroup
*pc
,
221 int val
= (charge
)? 1 : -1;
222 struct mem_cgroup_stat
*stat
= &mem
->stat
;
223 struct mem_cgroup_stat_cpu
*cpustat
;
226 cpustat
= &stat
->cpustat
[cpu
];
227 if (PageCgroupCache(pc
))
228 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
230 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
233 __mem_cgroup_stat_add_safe(cpustat
,
234 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
236 __mem_cgroup_stat_add_safe(cpustat
,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
241 static struct mem_cgroup_per_zone
*
242 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
244 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
247 static struct mem_cgroup_per_zone
*
248 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
250 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
251 int nid
= page_cgroup_nid(pc
);
252 int zid
= page_cgroup_zid(pc
);
257 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
264 struct mem_cgroup_per_zone
*mz
;
267 for_each_online_node(nid
)
268 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
269 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
270 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
275 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
277 return container_of(cgroup_subsys_state(cont
,
278 mem_cgroup_subsys_id
), struct mem_cgroup
,
282 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
292 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
293 struct mem_cgroup
, css
);
296 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
298 struct mem_cgroup
*mem
= NULL
;
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
309 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
312 } while (!css_tryget(&mem
->css
));
317 static bool mem_cgroup_is_obsolete(struct mem_cgroup
*mem
)
321 return css_is_removed(&mem
->css
);
326 * Call callback function against all cgroup under hierarchy tree.
328 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
329 int (*func
)(struct mem_cgroup
*, void *))
331 int found
, ret
, nextid
;
332 struct cgroup_subsys_state
*css
;
333 struct mem_cgroup
*mem
;
335 if (!root
->use_hierarchy
)
336 return (*func
)(root
, data
);
344 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
346 if (css
&& css_tryget(css
))
347 mem
= container_of(css
, struct mem_cgroup
, css
);
351 ret
= (*func
)(mem
, data
);
355 } while (!ret
&& css
);
361 * Following LRU functions are allowed to be used without PCG_LOCK.
362 * Operations are called by routine of global LRU independently from memcg.
363 * What we have to take care of here is validness of pc->mem_cgroup.
365 * Changes to pc->mem_cgroup happens when
368 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369 * It is added to LRU before charge.
370 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371 * When moving account, the page is not on LRU. It's isolated.
374 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
376 struct page_cgroup
*pc
;
377 struct mem_cgroup
*mem
;
378 struct mem_cgroup_per_zone
*mz
;
380 if (mem_cgroup_disabled())
382 pc
= lookup_page_cgroup(page
);
383 /* can happen while we handle swapcache. */
384 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
387 * We don't check PCG_USED bit. It's cleared when the "page" is finally
388 * removed from global LRU.
390 mz
= page_cgroup_zoneinfo(pc
);
391 mem
= pc
->mem_cgroup
;
392 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
393 list_del_init(&pc
->lru
);
397 void mem_cgroup_del_lru(struct page
*page
)
399 mem_cgroup_del_lru_list(page
, page_lru(page
));
402 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
404 struct mem_cgroup_per_zone
*mz
;
405 struct page_cgroup
*pc
;
407 if (mem_cgroup_disabled())
410 pc
= lookup_page_cgroup(page
);
412 * Used bit is set without atomic ops but after smp_wmb().
413 * For making pc->mem_cgroup visible, insert smp_rmb() here.
416 /* unused page is not rotated. */
417 if (!PageCgroupUsed(pc
))
419 mz
= page_cgroup_zoneinfo(pc
);
420 list_move(&pc
->lru
, &mz
->lists
[lru
]);
423 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
425 struct page_cgroup
*pc
;
426 struct mem_cgroup_per_zone
*mz
;
428 if (mem_cgroup_disabled())
430 pc
= lookup_page_cgroup(page
);
432 * Used bit is set without atomic ops but after smp_wmb().
433 * For making pc->mem_cgroup visible, insert smp_rmb() here.
436 if (!PageCgroupUsed(pc
))
439 mz
= page_cgroup_zoneinfo(pc
);
440 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
441 list_add(&pc
->lru
, &mz
->lists
[lru
]);
445 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446 * lru because the page may.be reused after it's fully uncharged (because of
447 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448 * it again. This function is only used to charge SwapCache. It's done under
449 * lock_page and expected that zone->lru_lock is never held.
451 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
454 struct zone
*zone
= page_zone(page
);
455 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
457 spin_lock_irqsave(&zone
->lru_lock
, flags
);
459 * Forget old LRU when this page_cgroup is *not* used. This Used bit
460 * is guarded by lock_page() because the page is SwapCache.
462 if (!PageCgroupUsed(pc
))
463 mem_cgroup_del_lru_list(page
, page_lru(page
));
464 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
467 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
470 struct zone
*zone
= page_zone(page
);
471 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
473 spin_lock_irqsave(&zone
->lru_lock
, flags
);
474 /* link when the page is linked to LRU but page_cgroup isn't */
475 if (PageLRU(page
) && list_empty(&pc
->lru
))
476 mem_cgroup_add_lru_list(page
, page_lru(page
));
477 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
481 void mem_cgroup_move_lists(struct page
*page
,
482 enum lru_list from
, enum lru_list to
)
484 if (mem_cgroup_disabled())
486 mem_cgroup_del_lru_list(page
, from
);
487 mem_cgroup_add_lru_list(page
, to
);
490 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
493 struct mem_cgroup
*curr
= NULL
;
497 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
502 if (curr
->use_hierarchy
)
503 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
511 * prev_priority control...this will be used in memory reclaim path.
513 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
517 spin_lock(&mem
->reclaim_param_lock
);
518 prev_priority
= mem
->prev_priority
;
519 spin_unlock(&mem
->reclaim_param_lock
);
521 return prev_priority
;
524 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
526 spin_lock(&mem
->reclaim_param_lock
);
527 if (priority
< mem
->prev_priority
)
528 mem
->prev_priority
= priority
;
529 spin_unlock(&mem
->reclaim_param_lock
);
532 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
534 spin_lock(&mem
->reclaim_param_lock
);
535 mem
->prev_priority
= priority
;
536 spin_unlock(&mem
->reclaim_param_lock
);
539 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
541 unsigned long active
;
542 unsigned long inactive
;
544 unsigned long inactive_ratio
;
546 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
547 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
549 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
551 inactive_ratio
= int_sqrt(10 * gb
);
556 present_pages
[0] = inactive
;
557 present_pages
[1] = active
;
560 return inactive_ratio
;
563 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
565 unsigned long active
;
566 unsigned long inactive
;
567 unsigned long present_pages
[2];
568 unsigned long inactive_ratio
;
570 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
572 inactive
= present_pages
[0];
573 active
= present_pages
[1];
575 if (inactive
* inactive_ratio
< active
)
581 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
585 int nid
= zone
->zone_pgdat
->node_id
;
586 int zid
= zone_idx(zone
);
587 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
589 return MEM_CGROUP_ZSTAT(mz
, lru
);
592 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
595 int nid
= zone
->zone_pgdat
->node_id
;
596 int zid
= zone_idx(zone
);
597 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
599 return &mz
->reclaim_stat
;
602 struct zone_reclaim_stat
*
603 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
605 struct page_cgroup
*pc
;
606 struct mem_cgroup_per_zone
*mz
;
608 if (mem_cgroup_disabled())
611 pc
= lookup_page_cgroup(page
);
613 * Used bit is set without atomic ops but after smp_wmb().
614 * For making pc->mem_cgroup visible, insert smp_rmb() here.
617 if (!PageCgroupUsed(pc
))
620 mz
= page_cgroup_zoneinfo(pc
);
624 return &mz
->reclaim_stat
;
627 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
628 struct list_head
*dst
,
629 unsigned long *scanned
, int order
,
630 int mode
, struct zone
*z
,
631 struct mem_cgroup
*mem_cont
,
632 int active
, int file
)
634 unsigned long nr_taken
= 0;
638 struct list_head
*src
;
639 struct page_cgroup
*pc
, *tmp
;
640 int nid
= z
->zone_pgdat
->node_id
;
641 int zid
= zone_idx(z
);
642 struct mem_cgroup_per_zone
*mz
;
643 int lru
= LRU_FILE
* !!file
+ !!active
;
646 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
647 src
= &mz
->lists
[lru
];
650 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
651 if (scan
>= nr_to_scan
)
655 if (unlikely(!PageCgroupUsed(pc
)))
657 if (unlikely(!PageLRU(page
)))
661 if (__isolate_lru_page(page
, mode
, file
) == 0) {
662 list_move(&page
->lru
, dst
);
671 #define mem_cgroup_from_res_counter(counter, member) \
672 container_of(counter, struct mem_cgroup, member)
674 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
676 if (do_swap_account
) {
677 if (res_counter_check_under_limit(&mem
->res
) &&
678 res_counter_check_under_limit(&mem
->memsw
))
681 if (res_counter_check_under_limit(&mem
->res
))
686 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
688 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
689 unsigned int swappiness
;
692 if (cgrp
->parent
== NULL
)
693 return vm_swappiness
;
695 spin_lock(&memcg
->reclaim_param_lock
);
696 swappiness
= memcg
->swappiness
;
697 spin_unlock(&memcg
->reclaim_param_lock
);
702 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711 * @memcg: The memory cgroup that went over limit
712 * @p: Task that is going to be killed
714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
717 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
719 struct cgroup
*task_cgrp
;
720 struct cgroup
*mem_cgrp
;
722 * Need a buffer in BSS, can't rely on allocations. The code relies
723 * on the assumption that OOM is serialized for memory controller.
724 * If this assumption is broken, revisit this code.
726 static char memcg_name
[PATH_MAX
];
735 mem_cgrp
= memcg
->css
.cgroup
;
736 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
738 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
741 * Unfortunately, we are unable to convert to a useful name
742 * But we'll still print out the usage information
749 printk(KERN_INFO
"Task in %s killed", memcg_name
);
752 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
760 * Continues from above, so we don't need an KERN_ level
762 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
765 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
766 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
767 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
768 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
769 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
771 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
772 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
773 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
777 * This function returns the number of memcg under hierarchy tree. Returns
778 * 1(self count) if no children.
780 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
783 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
788 * Visit the first child (need not be the first child as per the ordering
789 * of the cgroup list, since we track last_scanned_child) of @mem and use
790 * that to reclaim free pages from.
792 static struct mem_cgroup
*
793 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
795 struct mem_cgroup
*ret
= NULL
;
796 struct cgroup_subsys_state
*css
;
799 if (!root_mem
->use_hierarchy
) {
800 css_get(&root_mem
->css
);
806 nextid
= root_mem
->last_scanned_child
+ 1;
807 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
809 if (css
&& css_tryget(css
))
810 ret
= container_of(css
, struct mem_cgroup
, css
);
813 /* Updates scanning parameter */
814 spin_lock(&root_mem
->reclaim_param_lock
);
816 /* this means start scan from ID:1 */
817 root_mem
->last_scanned_child
= 0;
819 root_mem
->last_scanned_child
= found
;
820 spin_unlock(&root_mem
->reclaim_param_lock
);
827 * Scan the hierarchy if needed to reclaim memory. We remember the last child
828 * we reclaimed from, so that we don't end up penalizing one child extensively
829 * based on its position in the children list.
831 * root_mem is the original ancestor that we've been reclaim from.
833 * We give up and return to the caller when we visit root_mem twice.
834 * (other groups can be removed while we're walking....)
836 * If shrink==true, for avoiding to free too much, this returns immedieately.
838 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
839 gfp_t gfp_mask
, bool noswap
, bool shrink
)
841 struct mem_cgroup
*victim
;
846 victim
= mem_cgroup_select_victim(root_mem
);
847 if (victim
== root_mem
)
849 if (!mem_cgroup_local_usage(&victim
->stat
)) {
850 /* this cgroup's local usage == 0 */
851 css_put(&victim
->css
);
854 /* we use swappiness of local cgroup */
855 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
, noswap
,
856 get_swappiness(victim
));
857 css_put(&victim
->css
);
859 * At shrinking usage, we can't check we should stop here or
860 * reclaim more. It's depends on callers. last_scanned_child
861 * will work enough for keeping fairness under tree.
866 if (mem_cgroup_check_under_limit(root_mem
))
872 bool mem_cgroup_oom_called(struct task_struct
*task
)
875 struct mem_cgroup
*mem
;
876 struct mm_struct
*mm
;
882 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
883 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
889 static int record_last_oom_cb(struct mem_cgroup
*mem
, void *data
)
891 mem
->last_oom_jiffies
= jiffies
;
895 static void record_last_oom(struct mem_cgroup
*mem
)
897 mem_cgroup_walk_tree(mem
, NULL
, record_last_oom_cb
);
902 * Unlike exported interface, "oom" parameter is added. if oom==true,
903 * oom-killer can be invoked.
905 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
906 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
909 struct mem_cgroup
*mem
, *mem_over_limit
;
910 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
911 struct res_counter
*fail_res
;
913 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
914 /* Don't account this! */
920 * We always charge the cgroup the mm_struct belongs to.
921 * The mm_struct's mem_cgroup changes on task migration if the
922 * thread group leader migrates. It's possible that mm is not
923 * set, if so charge the init_mm (happens for pagecache usage).
927 mem
= try_get_mem_cgroup_from_mm(mm
);
935 VM_BUG_ON(!mem
|| mem_cgroup_is_obsolete(mem
));
941 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
943 if (!do_swap_account
)
945 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
949 /* mem+swap counter fails */
950 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
952 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
955 /* mem counter fails */
956 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
959 if (!(gfp_mask
& __GFP_WAIT
))
962 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
968 * try_to_free_mem_cgroup_pages() might not give us a full
969 * picture of reclaim. Some pages are reclaimed and might be
970 * moved to swap cache or just unmapped from the cgroup.
971 * Check the limit again to see if the reclaim reduced the
972 * current usage of the cgroup before giving up
975 if (mem_cgroup_check_under_limit(mem_over_limit
))
980 mutex_lock(&memcg_tasklist
);
981 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
982 mutex_unlock(&memcg_tasklist
);
983 record_last_oom(mem_over_limit
);
996 * A helper function to get mem_cgroup from ID. must be called under
997 * rcu_read_lock(). The caller must check css_is_removed() or some if
998 * it's concern. (dropping refcnt from swap can be called against removed
1001 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1003 struct cgroup_subsys_state
*css
;
1005 /* ID 0 is unused ID */
1008 css
= css_lookup(&mem_cgroup_subsys
, id
);
1011 return container_of(css
, struct mem_cgroup
, css
);
1014 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
1016 struct mem_cgroup
*mem
;
1017 struct page_cgroup
*pc
;
1021 VM_BUG_ON(!PageLocked(page
));
1023 if (!PageSwapCache(page
))
1026 pc
= lookup_page_cgroup(page
);
1027 lock_page_cgroup(pc
);
1028 if (PageCgroupUsed(pc
)) {
1029 mem
= pc
->mem_cgroup
;
1030 if (mem
&& !css_tryget(&mem
->css
))
1033 ent
.val
= page_private(page
);
1034 id
= lookup_swap_cgroup(ent
);
1036 mem
= mem_cgroup_lookup(id
);
1037 if (mem
&& !css_tryget(&mem
->css
))
1041 unlock_page_cgroup(pc
);
1046 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1047 * USED state. If already USED, uncharge and return.
1050 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1051 struct page_cgroup
*pc
,
1052 enum charge_type ctype
)
1054 /* try_charge() can return NULL to *memcg, taking care of it. */
1058 lock_page_cgroup(pc
);
1059 if (unlikely(PageCgroupUsed(pc
))) {
1060 unlock_page_cgroup(pc
);
1061 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1062 if (do_swap_account
)
1063 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1067 pc
->mem_cgroup
= mem
;
1069 pc
->flags
= pcg_default_flags
[ctype
];
1071 mem_cgroup_charge_statistics(mem
, pc
, true);
1073 unlock_page_cgroup(pc
);
1077 * mem_cgroup_move_account - move account of the page
1078 * @pc: page_cgroup of the page.
1079 * @from: mem_cgroup which the page is moved from.
1080 * @to: mem_cgroup which the page is moved to. @from != @to.
1082 * The caller must confirm following.
1083 * - page is not on LRU (isolate_page() is useful.)
1085 * returns 0 at success,
1086 * returns -EBUSY when lock is busy or "pc" is unstable.
1088 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1089 * new cgroup. It should be done by a caller.
1092 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1093 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1095 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
1099 VM_BUG_ON(from
== to
);
1100 VM_BUG_ON(PageLRU(pc
->page
));
1102 nid
= page_cgroup_nid(pc
);
1103 zid
= page_cgroup_zid(pc
);
1104 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
1105 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
1107 if (!trylock_page_cgroup(pc
))
1110 if (!PageCgroupUsed(pc
))
1113 if (pc
->mem_cgroup
!= from
)
1116 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
1117 mem_cgroup_charge_statistics(from
, pc
, false);
1118 if (do_swap_account
)
1119 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1120 css_put(&from
->css
);
1123 pc
->mem_cgroup
= to
;
1124 mem_cgroup_charge_statistics(to
, pc
, true);
1127 unlock_page_cgroup(pc
);
1132 * move charges to its parent.
1135 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1136 struct mem_cgroup
*child
,
1139 struct page
*page
= pc
->page
;
1140 struct cgroup
*cg
= child
->css
.cgroup
;
1141 struct cgroup
*pcg
= cg
->parent
;
1142 struct mem_cgroup
*parent
;
1150 parent
= mem_cgroup_from_cont(pcg
);
1153 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1157 if (!get_page_unless_zero(page
)) {
1162 ret
= isolate_lru_page(page
);
1167 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1169 putback_lru_page(page
);
1172 /* drop extra refcnt by try_charge() */
1173 css_put(&parent
->css
);
1180 /* drop extra refcnt by try_charge() */
1181 css_put(&parent
->css
);
1182 /* uncharge if move fails */
1183 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1184 if (do_swap_account
)
1185 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1190 * Charge the memory controller for page usage.
1192 * 0 if the charge was successful
1193 * < 0 if the cgroup is over its limit
1195 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1196 gfp_t gfp_mask
, enum charge_type ctype
,
1197 struct mem_cgroup
*memcg
)
1199 struct mem_cgroup
*mem
;
1200 struct page_cgroup
*pc
;
1203 pc
= lookup_page_cgroup(page
);
1204 /* can happen at boot */
1210 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1214 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1218 int mem_cgroup_newpage_charge(struct page
*page
,
1219 struct mm_struct
*mm
, gfp_t gfp_mask
)
1221 if (mem_cgroup_disabled())
1223 if (PageCompound(page
))
1226 * If already mapped, we don't have to account.
1227 * If page cache, page->mapping has address_space.
1228 * But page->mapping may have out-of-use anon_vma pointer,
1229 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1232 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1236 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1237 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1241 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1242 enum charge_type ctype
);
1244 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1247 struct mem_cgroup
*mem
= NULL
;
1250 if (mem_cgroup_disabled())
1252 if (PageCompound(page
))
1255 * Corner case handling. This is called from add_to_page_cache()
1256 * in usual. But some FS (shmem) precharges this page before calling it
1257 * and call add_to_page_cache() with GFP_NOWAIT.
1259 * For GFP_NOWAIT case, the page may be pre-charged before calling
1260 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1261 * charge twice. (It works but has to pay a bit larger cost.)
1262 * And when the page is SwapCache, it should take swap information
1263 * into account. This is under lock_page() now.
1265 if (!(gfp_mask
& __GFP_WAIT
)) {
1266 struct page_cgroup
*pc
;
1269 pc
= lookup_page_cgroup(page
);
1272 lock_page_cgroup(pc
);
1273 if (PageCgroupUsed(pc
)) {
1274 unlock_page_cgroup(pc
);
1277 unlock_page_cgroup(pc
);
1280 if (unlikely(!mm
&& !mem
))
1283 if (page_is_file_cache(page
))
1284 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1285 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1288 if (PageSwapCache(page
)) {
1289 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1291 __mem_cgroup_commit_charge_swapin(page
, mem
,
1292 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
1294 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1295 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1301 * While swap-in, try_charge -> commit or cancel, the page is locked.
1302 * And when try_charge() successfully returns, one refcnt to memcg without
1303 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1304 * "commit()" or removed by "cancel()"
1306 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1308 gfp_t mask
, struct mem_cgroup
**ptr
)
1310 struct mem_cgroup
*mem
;
1313 if (mem_cgroup_disabled())
1316 if (!do_swap_account
)
1319 * A racing thread's fault, or swapoff, may have already updated
1320 * the pte, and even removed page from swap cache: return success
1321 * to go on to do_swap_page()'s pte_same() test, which should fail.
1323 if (!PageSwapCache(page
))
1325 mem
= try_get_mem_cgroup_from_swapcache(page
);
1329 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1330 /* drop extra refcnt from tryget */
1336 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1340 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1341 enum charge_type ctype
)
1343 struct page_cgroup
*pc
;
1345 if (mem_cgroup_disabled())
1349 pc
= lookup_page_cgroup(page
);
1350 mem_cgroup_lru_del_before_commit_swapcache(page
);
1351 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
1352 mem_cgroup_lru_add_after_commit_swapcache(page
);
1354 * Now swap is on-memory. This means this page may be
1355 * counted both as mem and swap....double count.
1356 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1357 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1358 * may call delete_from_swap_cache() before reach here.
1360 if (do_swap_account
&& PageSwapCache(page
)) {
1361 swp_entry_t ent
= {.val
= page_private(page
)};
1363 struct mem_cgroup
*memcg
;
1365 id
= swap_cgroup_record(ent
, 0);
1367 memcg
= mem_cgroup_lookup(id
);
1370 * This recorded memcg can be obsolete one. So, avoid
1371 * calling css_tryget
1373 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1374 mem_cgroup_put(memcg
);
1378 /* add this page(page_cgroup) to the LRU we want. */
1382 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1384 __mem_cgroup_commit_charge_swapin(page
, ptr
,
1385 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1388 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1390 if (mem_cgroup_disabled())
1394 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1395 if (do_swap_account
)
1396 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1402 * uncharge if !page_mapped(page)
1404 static struct mem_cgroup
*
1405 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1407 struct page_cgroup
*pc
;
1408 struct mem_cgroup
*mem
= NULL
;
1409 struct mem_cgroup_per_zone
*mz
;
1411 if (mem_cgroup_disabled())
1414 if (PageSwapCache(page
))
1418 * Check if our page_cgroup is valid
1420 pc
= lookup_page_cgroup(page
);
1421 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1424 lock_page_cgroup(pc
);
1426 mem
= pc
->mem_cgroup
;
1428 if (!PageCgroupUsed(pc
))
1432 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1433 if (page_mapped(page
))
1436 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1437 if (!PageAnon(page
)) { /* Shared memory */
1438 if (page
->mapping
&& !page_is_file_cache(page
))
1440 } else if (page_mapped(page
)) /* Anon */
1447 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1448 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1449 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1450 mem_cgroup_charge_statistics(mem
, pc
, false);
1452 ClearPageCgroupUsed(pc
);
1454 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1455 * freed from LRU. This is safe because uncharged page is expected not
1456 * to be reused (freed soon). Exception is SwapCache, it's handled by
1457 * special functions.
1460 mz
= page_cgroup_zoneinfo(pc
);
1461 unlock_page_cgroup(pc
);
1463 /* at swapout, this memcg will be accessed to record to swap */
1464 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1470 unlock_page_cgroup(pc
);
1474 void mem_cgroup_uncharge_page(struct page
*page
)
1477 if (page_mapped(page
))
1479 if (page
->mapping
&& !PageAnon(page
))
1481 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1484 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1486 VM_BUG_ON(page_mapped(page
));
1487 VM_BUG_ON(page
->mapping
);
1488 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1492 * called from __delete_from_swap_cache() and drop "page" account.
1493 * memcg information is recorded to swap_cgroup of "ent"
1495 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1497 struct mem_cgroup
*memcg
;
1499 memcg
= __mem_cgroup_uncharge_common(page
,
1500 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1501 /* record memcg information */
1502 if (do_swap_account
&& memcg
) {
1503 swap_cgroup_record(ent
, css_id(&memcg
->css
));
1504 mem_cgroup_get(memcg
);
1507 css_put(&memcg
->css
);
1510 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1512 * called from swap_entry_free(). remove record in swap_cgroup and
1513 * uncharge "memsw" account.
1515 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1517 struct mem_cgroup
*memcg
;
1520 if (!do_swap_account
)
1523 id
= swap_cgroup_record(ent
, 0);
1525 memcg
= mem_cgroup_lookup(id
);
1528 * We uncharge this because swap is freed.
1529 * This memcg can be obsolete one. We avoid calling css_tryget
1531 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1532 mem_cgroup_put(memcg
);
1539 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1542 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1544 struct page_cgroup
*pc
;
1545 struct mem_cgroup
*mem
= NULL
;
1548 if (mem_cgroup_disabled())
1551 pc
= lookup_page_cgroup(page
);
1552 lock_page_cgroup(pc
);
1553 if (PageCgroupUsed(pc
)) {
1554 mem
= pc
->mem_cgroup
;
1557 unlock_page_cgroup(pc
);
1560 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1567 /* remove redundant charge if migration failed*/
1568 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1569 struct page
*oldpage
, struct page
*newpage
)
1571 struct page
*target
, *unused
;
1572 struct page_cgroup
*pc
;
1573 enum charge_type ctype
;
1578 /* at migration success, oldpage->mapping is NULL. */
1579 if (oldpage
->mapping
) {
1587 if (PageAnon(target
))
1588 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1589 else if (page_is_file_cache(target
))
1590 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1592 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1594 /* unused page is not on radix-tree now. */
1596 __mem_cgroup_uncharge_common(unused
, ctype
);
1598 pc
= lookup_page_cgroup(target
);
1600 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1601 * So, double-counting is effectively avoided.
1603 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1606 * Both of oldpage and newpage are still under lock_page().
1607 * Then, we don't have to care about race in radix-tree.
1608 * But we have to be careful that this page is unmapped or not.
1610 * There is a case for !page_mapped(). At the start of
1611 * migration, oldpage was mapped. But now, it's zapped.
1612 * But we know *target* page is not freed/reused under us.
1613 * mem_cgroup_uncharge_page() does all necessary checks.
1615 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1616 mem_cgroup_uncharge_page(target
);
1620 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1621 * Calling hierarchical_reclaim is not enough because we should update
1622 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1623 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1624 * not from the memcg which this page would be charged to.
1625 * try_charge_swapin does all of these works properly.
1627 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
1628 struct mm_struct
*mm
,
1631 struct mem_cgroup
*mem
= NULL
;
1634 if (mem_cgroup_disabled())
1637 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1639 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
1644 static DEFINE_MUTEX(set_limit_mutex
);
1646 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1647 unsigned long long val
)
1653 int children
= mem_cgroup_count_children(memcg
);
1654 u64 curusage
, oldusage
;
1657 * For keeping hierarchical_reclaim simple, how long we should retry
1658 * is depends on callers. We set our retry-count to be function
1659 * of # of children which we should visit in this loop.
1661 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
1663 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1665 while (retry_count
) {
1666 if (signal_pending(current
)) {
1671 * Rather than hide all in some function, I do this in
1672 * open coded manner. You see what this really does.
1673 * We have to guarantee mem->res.limit < mem->memsw.limit.
1675 mutex_lock(&set_limit_mutex
);
1676 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1677 if (memswlimit
< val
) {
1679 mutex_unlock(&set_limit_mutex
);
1682 ret
= res_counter_set_limit(&memcg
->res
, val
);
1683 mutex_unlock(&set_limit_mutex
);
1688 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1690 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1691 /* Usage is reduced ? */
1692 if (curusage
>= oldusage
)
1695 oldusage
= curusage
;
1701 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1702 unsigned long long val
)
1705 u64 memlimit
, oldusage
, curusage
;
1706 int children
= mem_cgroup_count_children(memcg
);
1709 if (!do_swap_account
)
1711 /* see mem_cgroup_resize_res_limit */
1712 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
1713 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1714 while (retry_count
) {
1715 if (signal_pending(current
)) {
1720 * Rather than hide all in some function, I do this in
1721 * open coded manner. You see what this really does.
1722 * We have to guarantee mem->res.limit < mem->memsw.limit.
1724 mutex_lock(&set_limit_mutex
);
1725 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1726 if (memlimit
> val
) {
1728 mutex_unlock(&set_limit_mutex
);
1731 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1732 mutex_unlock(&set_limit_mutex
);
1737 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true, true);
1738 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1739 /* Usage is reduced ? */
1740 if (curusage
>= oldusage
)
1743 oldusage
= curusage
;
1749 * This routine traverse page_cgroup in given list and drop them all.
1750 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1752 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1753 int node
, int zid
, enum lru_list lru
)
1756 struct mem_cgroup_per_zone
*mz
;
1757 struct page_cgroup
*pc
, *busy
;
1758 unsigned long flags
, loop
;
1759 struct list_head
*list
;
1762 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1763 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1764 list
= &mz
->lists
[lru
];
1766 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1767 /* give some margin against EBUSY etc...*/
1772 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1773 if (list_empty(list
)) {
1774 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1777 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1779 list_move(&pc
->lru
, list
);
1781 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1784 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1786 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1790 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1791 /* found lock contention or "pc" is obsolete. */
1798 if (!ret
&& !list_empty(list
))
1804 * make mem_cgroup's charge to be 0 if there is no task.
1805 * This enables deleting this mem_cgroup.
1807 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1810 int node
, zid
, shrink
;
1811 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1812 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1817 /* should free all ? */
1821 while (mem
->res
.usage
> 0) {
1823 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1826 if (signal_pending(current
))
1828 /* This is for making all *used* pages to be on LRU. */
1829 lru_add_drain_all();
1831 for_each_node_state(node
, N_HIGH_MEMORY
) {
1832 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1835 ret
= mem_cgroup_force_empty_list(mem
,
1844 /* it seems parent cgroup doesn't have enough mem */
1855 /* returns EBUSY if there is a task or if we come here twice. */
1856 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1860 /* we call try-to-free pages for make this cgroup empty */
1861 lru_add_drain_all();
1862 /* try to free all pages in this cgroup */
1864 while (nr_retries
&& mem
->res
.usage
> 0) {
1867 if (signal_pending(current
)) {
1871 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1872 false, get_swappiness(mem
));
1875 /* maybe some writeback is necessary */
1876 congestion_wait(WRITE
, HZ
/10);
1881 /* try move_account...there may be some *locked* pages. */
1888 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1890 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1894 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1896 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1899 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1903 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1904 struct cgroup
*parent
= cont
->parent
;
1905 struct mem_cgroup
*parent_mem
= NULL
;
1908 parent_mem
= mem_cgroup_from_cont(parent
);
1912 * If parent's use_hiearchy is set, we can't make any modifications
1913 * in the child subtrees. If it is unset, then the change can
1914 * occur, provided the current cgroup has no children.
1916 * For the root cgroup, parent_mem is NULL, we allow value to be
1917 * set if there are no children.
1919 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1920 (val
== 1 || val
== 0)) {
1921 if (list_empty(&cont
->children
))
1922 mem
->use_hierarchy
= val
;
1932 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1934 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1938 type
= MEMFILE_TYPE(cft
->private);
1939 name
= MEMFILE_ATTR(cft
->private);
1942 val
= res_counter_read_u64(&mem
->res
, name
);
1945 if (do_swap_account
)
1946 val
= res_counter_read_u64(&mem
->memsw
, name
);
1955 * The user of this function is...
1958 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1961 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1963 unsigned long long val
;
1966 type
= MEMFILE_TYPE(cft
->private);
1967 name
= MEMFILE_ATTR(cft
->private);
1970 /* This function does all necessary parse...reuse it */
1971 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1975 ret
= mem_cgroup_resize_limit(memcg
, val
);
1977 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1980 ret
= -EINVAL
; /* should be BUG() ? */
1986 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1987 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1989 struct cgroup
*cgroup
;
1990 unsigned long long min_limit
, min_memsw_limit
, tmp
;
1992 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1993 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1994 cgroup
= memcg
->css
.cgroup
;
1995 if (!memcg
->use_hierarchy
)
1998 while (cgroup
->parent
) {
1999 cgroup
= cgroup
->parent
;
2000 memcg
= mem_cgroup_from_cont(cgroup
);
2001 if (!memcg
->use_hierarchy
)
2003 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2004 min_limit
= min(min_limit
, tmp
);
2005 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2006 min_memsw_limit
= min(min_memsw_limit
, tmp
);
2009 *mem_limit
= min_limit
;
2010 *memsw_limit
= min_memsw_limit
;
2014 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
2016 struct mem_cgroup
*mem
;
2019 mem
= mem_cgroup_from_cont(cont
);
2020 type
= MEMFILE_TYPE(event
);
2021 name
= MEMFILE_ATTR(event
);
2025 res_counter_reset_max(&mem
->res
);
2027 res_counter_reset_max(&mem
->memsw
);
2031 res_counter_reset_failcnt(&mem
->res
);
2033 res_counter_reset_failcnt(&mem
->memsw
);
2040 /* For read statistics */
2054 struct mcs_total_stat
{
2055 s64 stat
[NR_MCS_STAT
];
2061 } memcg_stat_strings
[NR_MCS_STAT
] = {
2062 {"cache", "total_cache"},
2063 {"rss", "total_rss"},
2064 {"pgpgin", "total_pgpgin"},
2065 {"pgpgout", "total_pgpgout"},
2066 {"inactive_anon", "total_inactive_anon"},
2067 {"active_anon", "total_active_anon"},
2068 {"inactive_file", "total_inactive_file"},
2069 {"active_file", "total_active_file"},
2070 {"unevictable", "total_unevictable"}
2074 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
2076 struct mcs_total_stat
*s
= data
;
2080 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_CACHE
);
2081 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
2082 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
2083 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
2084 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
2085 s
->stat
[MCS_PGPGIN
] += val
;
2086 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
2087 s
->stat
[MCS_PGPGOUT
] += val
;
2090 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
2091 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
2092 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
2093 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
2094 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
2095 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
2096 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
2097 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
2098 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
2099 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
2104 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
2106 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
2109 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
2110 struct cgroup_map_cb
*cb
)
2112 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
2113 struct mcs_total_stat mystat
;
2116 memset(&mystat
, 0, sizeof(mystat
));
2117 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
2119 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2120 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
2122 /* Hierarchical information */
2124 unsigned long long limit
, memsw_limit
;
2125 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
2126 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
2127 if (do_swap_account
)
2128 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
2131 memset(&mystat
, 0, sizeof(mystat
));
2132 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
2133 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2134 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
2137 #ifdef CONFIG_DEBUG_VM
2138 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
2142 struct mem_cgroup_per_zone
*mz
;
2143 unsigned long recent_rotated
[2] = {0, 0};
2144 unsigned long recent_scanned
[2] = {0, 0};
2146 for_each_online_node(nid
)
2147 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
2148 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
2150 recent_rotated
[0] +=
2151 mz
->reclaim_stat
.recent_rotated
[0];
2152 recent_rotated
[1] +=
2153 mz
->reclaim_stat
.recent_rotated
[1];
2154 recent_scanned
[0] +=
2155 mz
->reclaim_stat
.recent_scanned
[0];
2156 recent_scanned
[1] +=
2157 mz
->reclaim_stat
.recent_scanned
[1];
2159 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
2160 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
2161 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
2162 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
2169 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
2171 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2173 return get_swappiness(memcg
);
2176 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2179 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2180 struct mem_cgroup
*parent
;
2185 if (cgrp
->parent
== NULL
)
2188 parent
= mem_cgroup_from_cont(cgrp
->parent
);
2192 /* If under hierarchy, only empty-root can set this value */
2193 if ((parent
->use_hierarchy
) ||
2194 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
2199 spin_lock(&memcg
->reclaim_param_lock
);
2200 memcg
->swappiness
= val
;
2201 spin_unlock(&memcg
->reclaim_param_lock
);
2209 static struct cftype mem_cgroup_files
[] = {
2211 .name
= "usage_in_bytes",
2212 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
2213 .read_u64
= mem_cgroup_read
,
2216 .name
= "max_usage_in_bytes",
2217 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2218 .trigger
= mem_cgroup_reset
,
2219 .read_u64
= mem_cgroup_read
,
2222 .name
= "limit_in_bytes",
2223 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2224 .write_string
= mem_cgroup_write
,
2225 .read_u64
= mem_cgroup_read
,
2229 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2230 .trigger
= mem_cgroup_reset
,
2231 .read_u64
= mem_cgroup_read
,
2235 .read_map
= mem_control_stat_show
,
2238 .name
= "force_empty",
2239 .trigger
= mem_cgroup_force_empty_write
,
2242 .name
= "use_hierarchy",
2243 .write_u64
= mem_cgroup_hierarchy_write
,
2244 .read_u64
= mem_cgroup_hierarchy_read
,
2247 .name
= "swappiness",
2248 .read_u64
= mem_cgroup_swappiness_read
,
2249 .write_u64
= mem_cgroup_swappiness_write
,
2253 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2254 static struct cftype memsw_cgroup_files
[] = {
2256 .name
= "memsw.usage_in_bytes",
2257 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2258 .read_u64
= mem_cgroup_read
,
2261 .name
= "memsw.max_usage_in_bytes",
2262 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2263 .trigger
= mem_cgroup_reset
,
2264 .read_u64
= mem_cgroup_read
,
2267 .name
= "memsw.limit_in_bytes",
2268 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2269 .write_string
= mem_cgroup_write
,
2270 .read_u64
= mem_cgroup_read
,
2273 .name
= "memsw.failcnt",
2274 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2275 .trigger
= mem_cgroup_reset
,
2276 .read_u64
= mem_cgroup_read
,
2280 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2282 if (!do_swap_account
)
2284 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2285 ARRAY_SIZE(memsw_cgroup_files
));
2288 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2294 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2296 struct mem_cgroup_per_node
*pn
;
2297 struct mem_cgroup_per_zone
*mz
;
2299 int zone
, tmp
= node
;
2301 * This routine is called against possible nodes.
2302 * But it's BUG to call kmalloc() against offline node.
2304 * TODO: this routine can waste much memory for nodes which will
2305 * never be onlined. It's better to use memory hotplug callback
2308 if (!node_state(node
, N_NORMAL_MEMORY
))
2310 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2314 mem
->info
.nodeinfo
[node
] = pn
;
2315 memset(pn
, 0, sizeof(*pn
));
2317 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2318 mz
= &pn
->zoneinfo
[zone
];
2320 INIT_LIST_HEAD(&mz
->lists
[l
]);
2325 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2327 kfree(mem
->info
.nodeinfo
[node
]);
2330 static int mem_cgroup_size(void)
2332 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2333 return sizeof(struct mem_cgroup
) + cpustat_size
;
2336 static struct mem_cgroup
*mem_cgroup_alloc(void)
2338 struct mem_cgroup
*mem
;
2339 int size
= mem_cgroup_size();
2341 if (size
< PAGE_SIZE
)
2342 mem
= kmalloc(size
, GFP_KERNEL
);
2344 mem
= vmalloc(size
);
2347 memset(mem
, 0, size
);
2352 * At destroying mem_cgroup, references from swap_cgroup can remain.
2353 * (scanning all at force_empty is too costly...)
2355 * Instead of clearing all references at force_empty, we remember
2356 * the number of reference from swap_cgroup and free mem_cgroup when
2357 * it goes down to 0.
2359 * Removal of cgroup itself succeeds regardless of refs from swap.
2362 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2366 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
2368 for_each_node_state(node
, N_POSSIBLE
)
2369 free_mem_cgroup_per_zone_info(mem
, node
);
2371 if (mem_cgroup_size() < PAGE_SIZE
)
2377 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2379 atomic_inc(&mem
->refcnt
);
2382 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2384 if (atomic_dec_and_test(&mem
->refcnt
)) {
2385 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
2386 __mem_cgroup_free(mem
);
2388 mem_cgroup_put(parent
);
2393 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2395 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
2397 if (!mem
->res
.parent
)
2399 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
2402 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2403 static void __init
enable_swap_cgroup(void)
2405 if (!mem_cgroup_disabled() && really_do_swap_account
)
2406 do_swap_account
= 1;
2409 static void __init
enable_swap_cgroup(void)
2414 static struct cgroup_subsys_state
* __ref
2415 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2417 struct mem_cgroup
*mem
, *parent
;
2418 long error
= -ENOMEM
;
2421 mem
= mem_cgroup_alloc();
2423 return ERR_PTR(error
);
2425 for_each_node_state(node
, N_POSSIBLE
)
2426 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2429 if (cont
->parent
== NULL
) {
2430 enable_swap_cgroup();
2433 parent
= mem_cgroup_from_cont(cont
->parent
);
2434 mem
->use_hierarchy
= parent
->use_hierarchy
;
2437 if (parent
&& parent
->use_hierarchy
) {
2438 res_counter_init(&mem
->res
, &parent
->res
);
2439 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2441 * We increment refcnt of the parent to ensure that we can
2442 * safely access it on res_counter_charge/uncharge.
2443 * This refcnt will be decremented when freeing this
2444 * mem_cgroup(see mem_cgroup_put).
2446 mem_cgroup_get(parent
);
2448 res_counter_init(&mem
->res
, NULL
);
2449 res_counter_init(&mem
->memsw
, NULL
);
2451 mem
->last_scanned_child
= 0;
2452 spin_lock_init(&mem
->reclaim_param_lock
);
2455 mem
->swappiness
= get_swappiness(parent
);
2456 atomic_set(&mem
->refcnt
, 1);
2459 __mem_cgroup_free(mem
);
2460 return ERR_PTR(error
);
2463 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2464 struct cgroup
*cont
)
2466 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2468 return mem_cgroup_force_empty(mem
, false);
2471 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2472 struct cgroup
*cont
)
2474 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2476 mem_cgroup_put(mem
);
2479 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2480 struct cgroup
*cont
)
2484 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2485 ARRAY_SIZE(mem_cgroup_files
));
2488 ret
= register_memsw_files(cont
, ss
);
2492 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2493 struct cgroup
*cont
,
2494 struct cgroup
*old_cont
,
2495 struct task_struct
*p
)
2497 mutex_lock(&memcg_tasklist
);
2499 * FIXME: It's better to move charges of this process from old
2500 * memcg to new memcg. But it's just on TODO-List now.
2502 mutex_unlock(&memcg_tasklist
);
2505 struct cgroup_subsys mem_cgroup_subsys
= {
2507 .subsys_id
= mem_cgroup_subsys_id
,
2508 .create
= mem_cgroup_create
,
2509 .pre_destroy
= mem_cgroup_pre_destroy
,
2510 .destroy
= mem_cgroup_destroy
,
2511 .populate
= mem_cgroup_populate
,
2512 .attach
= mem_cgroup_move_task
,
2517 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2519 static int __init
disable_swap_account(char *s
)
2521 really_do_swap_account
= 0;
2524 __setup("noswapaccount", disable_swap_account
);