Merge branch 'cfq' into for-linus
[linux-2.6/verdex.git] / net / sunrpc / svcsock.c
blob22f61aee4824cea33b419529f62bb5eee599f5fd
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
50 /* SMP locking strategy:
52 * svc_pool->sp_lock protects most of the fields of that pool.
53 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54 * when both need to be taken (rare), svc_serv->sv_lock is first.
55 * BKL protects svc_serv->sv_nrthread.
56 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * SK_CONN, SK_DATA, can be set or cleared at any time.
63 * after a set, svc_sock_enqueue must be called.
64 * after a clear, the socket must be read/accepted
65 * if this succeeds, it must be set again.
66 * SK_CLOSE can set at any time. It is never cleared.
67 * sk_inuse contains a bias of '1' until SK_DEAD is set.
68 * so when sk_inuse hits zero, we know the socket is dead
69 * and no-one is using it.
70 * SK_DEAD can only be set while SK_BUSY is held which ensures
71 * no other thread will be using the socket or will try to
72 * set SK_DEAD.
76 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
79 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
80 int *errp, int flags);
81 static void svc_delete_socket(struct svc_sock *svsk);
82 static void svc_udp_data_ready(struct sock *, int);
83 static int svc_udp_recvfrom(struct svc_rqst *);
84 static int svc_udp_sendto(struct svc_rqst *);
85 static void svc_close_socket(struct svc_sock *svsk);
87 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
88 static int svc_deferred_recv(struct svc_rqst *rqstp);
89 static struct cache_deferred_req *svc_defer(struct cache_req *req);
91 /* apparently the "standard" is that clients close
92 * idle connections after 5 minutes, servers after
93 * 6 minutes
94 * http://www.connectathon.org/talks96/nfstcp.pdf
96 static int svc_conn_age_period = 6*60;
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 static struct lock_class_key svc_key[2];
100 static struct lock_class_key svc_slock_key[2];
102 static inline void svc_reclassify_socket(struct socket *sock)
104 struct sock *sk = sock->sk;
105 BUG_ON(sk->sk_lock.owner != NULL);
106 switch (sk->sk_family) {
107 case AF_INET:
108 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
109 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
110 break;
112 case AF_INET6:
113 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
114 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
115 break;
117 default:
118 BUG();
121 #else
122 static inline void svc_reclassify_socket(struct socket *sock)
125 #endif
127 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
129 switch (addr->sa_family) {
130 case AF_INET:
131 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
132 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
133 htons(((struct sockaddr_in *) addr)->sin_port));
134 break;
136 case AF_INET6:
137 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
138 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
139 htons(((struct sockaddr_in6 *) addr)->sin6_port));
140 break;
142 default:
143 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
144 break;
146 return buf;
150 * svc_print_addr - Format rq_addr field for printing
151 * @rqstp: svc_rqst struct containing address to print
152 * @buf: target buffer for formatted address
153 * @len: length of target buffer
156 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
158 return __svc_print_addr(svc_addr(rqstp), buf, len);
160 EXPORT_SYMBOL_GPL(svc_print_addr);
163 * Queue up an idle server thread. Must have pool->sp_lock held.
164 * Note: this is really a stack rather than a queue, so that we only
165 * use as many different threads as we need, and the rest don't pollute
166 * the cache.
168 static inline void
169 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
171 list_add(&rqstp->rq_list, &pool->sp_threads);
175 * Dequeue an nfsd thread. Must have pool->sp_lock held.
177 static inline void
178 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
180 list_del(&rqstp->rq_list);
184 * Release an skbuff after use
186 static inline void
187 svc_release_skb(struct svc_rqst *rqstp)
189 struct sk_buff *skb = rqstp->rq_skbuff;
190 struct svc_deferred_req *dr = rqstp->rq_deferred;
192 if (skb) {
193 rqstp->rq_skbuff = NULL;
195 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
196 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
198 if (dr) {
199 rqstp->rq_deferred = NULL;
200 kfree(dr);
205 * Any space to write?
207 static inline unsigned long
208 svc_sock_wspace(struct svc_sock *svsk)
210 int wspace;
212 if (svsk->sk_sock->type == SOCK_STREAM)
213 wspace = sk_stream_wspace(svsk->sk_sk);
214 else
215 wspace = sock_wspace(svsk->sk_sk);
217 return wspace;
221 * Queue up a socket with data pending. If there are idle nfsd
222 * processes, wake 'em up.
225 static void
226 svc_sock_enqueue(struct svc_sock *svsk)
228 struct svc_serv *serv = svsk->sk_server;
229 struct svc_pool *pool;
230 struct svc_rqst *rqstp;
231 int cpu;
233 if (!(svsk->sk_flags &
234 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
235 return;
236 if (test_bit(SK_DEAD, &svsk->sk_flags))
237 return;
239 cpu = get_cpu();
240 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
241 put_cpu();
243 spin_lock_bh(&pool->sp_lock);
245 if (!list_empty(&pool->sp_threads) &&
246 !list_empty(&pool->sp_sockets))
247 printk(KERN_ERR
248 "svc_sock_enqueue: threads and sockets both waiting??\n");
250 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
251 /* Don't enqueue dead sockets */
252 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
253 goto out_unlock;
256 /* Mark socket as busy. It will remain in this state until the
257 * server has processed all pending data and put the socket back
258 * on the idle list. We update SK_BUSY atomically because
259 * it also guards against trying to enqueue the svc_sock twice.
261 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
262 /* Don't enqueue socket while already enqueued */
263 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
264 goto out_unlock;
266 BUG_ON(svsk->sk_pool != NULL);
267 svsk->sk_pool = pool;
269 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
270 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
271 > svc_sock_wspace(svsk))
272 && !test_bit(SK_CLOSE, &svsk->sk_flags)
273 && !test_bit(SK_CONN, &svsk->sk_flags)) {
274 /* Don't enqueue while not enough space for reply */
275 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
276 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
277 svc_sock_wspace(svsk));
278 svsk->sk_pool = NULL;
279 clear_bit(SK_BUSY, &svsk->sk_flags);
280 goto out_unlock;
282 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
285 if (!list_empty(&pool->sp_threads)) {
286 rqstp = list_entry(pool->sp_threads.next,
287 struct svc_rqst,
288 rq_list);
289 dprintk("svc: socket %p served by daemon %p\n",
290 svsk->sk_sk, rqstp);
291 svc_thread_dequeue(pool, rqstp);
292 if (rqstp->rq_sock)
293 printk(KERN_ERR
294 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
295 rqstp, rqstp->rq_sock);
296 rqstp->rq_sock = svsk;
297 atomic_inc(&svsk->sk_inuse);
298 rqstp->rq_reserved = serv->sv_max_mesg;
299 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
300 BUG_ON(svsk->sk_pool != pool);
301 wake_up(&rqstp->rq_wait);
302 } else {
303 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
304 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
305 BUG_ON(svsk->sk_pool != pool);
308 out_unlock:
309 spin_unlock_bh(&pool->sp_lock);
313 * Dequeue the first socket. Must be called with the pool->sp_lock held.
315 static inline struct svc_sock *
316 svc_sock_dequeue(struct svc_pool *pool)
318 struct svc_sock *svsk;
320 if (list_empty(&pool->sp_sockets))
321 return NULL;
323 svsk = list_entry(pool->sp_sockets.next,
324 struct svc_sock, sk_ready);
325 list_del_init(&svsk->sk_ready);
327 dprintk("svc: socket %p dequeued, inuse=%d\n",
328 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
330 return svsk;
334 * Having read something from a socket, check whether it
335 * needs to be re-enqueued.
336 * Note: SK_DATA only gets cleared when a read-attempt finds
337 * no (or insufficient) data.
339 static inline void
340 svc_sock_received(struct svc_sock *svsk)
342 svsk->sk_pool = NULL;
343 clear_bit(SK_BUSY, &svsk->sk_flags);
344 svc_sock_enqueue(svsk);
349 * svc_reserve - change the space reserved for the reply to a request.
350 * @rqstp: The request in question
351 * @space: new max space to reserve
353 * Each request reserves some space on the output queue of the socket
354 * to make sure the reply fits. This function reduces that reserved
355 * space to be the amount of space used already, plus @space.
358 void svc_reserve(struct svc_rqst *rqstp, int space)
360 space += rqstp->rq_res.head[0].iov_len;
362 if (space < rqstp->rq_reserved) {
363 struct svc_sock *svsk = rqstp->rq_sock;
364 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
365 rqstp->rq_reserved = space;
367 svc_sock_enqueue(svsk);
372 * Release a socket after use.
374 static inline void
375 svc_sock_put(struct svc_sock *svsk)
377 if (atomic_dec_and_test(&svsk->sk_inuse)) {
378 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
380 dprintk("svc: releasing dead socket\n");
381 if (svsk->sk_sock->file)
382 sockfd_put(svsk->sk_sock);
383 else
384 sock_release(svsk->sk_sock);
385 if (svsk->sk_info_authunix != NULL)
386 svcauth_unix_info_release(svsk->sk_info_authunix);
387 kfree(svsk);
391 static void
392 svc_sock_release(struct svc_rqst *rqstp)
394 struct svc_sock *svsk = rqstp->rq_sock;
396 svc_release_skb(rqstp);
398 svc_free_res_pages(rqstp);
399 rqstp->rq_res.page_len = 0;
400 rqstp->rq_res.page_base = 0;
403 /* Reset response buffer and release
404 * the reservation.
405 * But first, check that enough space was reserved
406 * for the reply, otherwise we have a bug!
408 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
409 printk(KERN_ERR "RPC request reserved %d but used %d\n",
410 rqstp->rq_reserved,
411 rqstp->rq_res.len);
413 rqstp->rq_res.head[0].iov_len = 0;
414 svc_reserve(rqstp, 0);
415 rqstp->rq_sock = NULL;
417 svc_sock_put(svsk);
421 * External function to wake up a server waiting for data
422 * This really only makes sense for services like lockd
423 * which have exactly one thread anyway.
425 void
426 svc_wake_up(struct svc_serv *serv)
428 struct svc_rqst *rqstp;
429 unsigned int i;
430 struct svc_pool *pool;
432 for (i = 0; i < serv->sv_nrpools; i++) {
433 pool = &serv->sv_pools[i];
435 spin_lock_bh(&pool->sp_lock);
436 if (!list_empty(&pool->sp_threads)) {
437 rqstp = list_entry(pool->sp_threads.next,
438 struct svc_rqst,
439 rq_list);
440 dprintk("svc: daemon %p woken up.\n", rqstp);
442 svc_thread_dequeue(pool, rqstp);
443 rqstp->rq_sock = NULL;
445 wake_up(&rqstp->rq_wait);
447 spin_unlock_bh(&pool->sp_lock);
451 union svc_pktinfo_u {
452 struct in_pktinfo pkti;
453 struct in6_pktinfo pkti6;
455 #define SVC_PKTINFO_SPACE \
456 CMSG_SPACE(sizeof(union svc_pktinfo_u))
458 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
460 switch (rqstp->rq_sock->sk_sk->sk_family) {
461 case AF_INET: {
462 struct in_pktinfo *pki = CMSG_DATA(cmh);
464 cmh->cmsg_level = SOL_IP;
465 cmh->cmsg_type = IP_PKTINFO;
466 pki->ipi_ifindex = 0;
467 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
468 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
470 break;
472 case AF_INET6: {
473 struct in6_pktinfo *pki = CMSG_DATA(cmh);
475 cmh->cmsg_level = SOL_IPV6;
476 cmh->cmsg_type = IPV6_PKTINFO;
477 pki->ipi6_ifindex = 0;
478 ipv6_addr_copy(&pki->ipi6_addr,
479 &rqstp->rq_daddr.addr6);
480 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
482 break;
484 return;
488 * Generic sendto routine
490 static int
491 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
493 struct svc_sock *svsk = rqstp->rq_sock;
494 struct socket *sock = svsk->sk_sock;
495 int slen;
496 union {
497 struct cmsghdr hdr;
498 long all[SVC_PKTINFO_SPACE / sizeof(long)];
499 } buffer;
500 struct cmsghdr *cmh = &buffer.hdr;
501 int len = 0;
502 int result;
503 int size;
504 struct page **ppage = xdr->pages;
505 size_t base = xdr->page_base;
506 unsigned int pglen = xdr->page_len;
507 unsigned int flags = MSG_MORE;
508 char buf[RPC_MAX_ADDRBUFLEN];
510 slen = xdr->len;
512 if (rqstp->rq_prot == IPPROTO_UDP) {
513 struct msghdr msg = {
514 .msg_name = &rqstp->rq_addr,
515 .msg_namelen = rqstp->rq_addrlen,
516 .msg_control = cmh,
517 .msg_controllen = sizeof(buffer),
518 .msg_flags = MSG_MORE,
521 svc_set_cmsg_data(rqstp, cmh);
523 if (sock_sendmsg(sock, &msg, 0) < 0)
524 goto out;
527 /* send head */
528 if (slen == xdr->head[0].iov_len)
529 flags = 0;
530 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
531 xdr->head[0].iov_len, flags);
532 if (len != xdr->head[0].iov_len)
533 goto out;
534 slen -= xdr->head[0].iov_len;
535 if (slen == 0)
536 goto out;
538 /* send page data */
539 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
540 while (pglen > 0) {
541 if (slen == size)
542 flags = 0;
543 result = kernel_sendpage(sock, *ppage, base, size, flags);
544 if (result > 0)
545 len += result;
546 if (result != size)
547 goto out;
548 slen -= size;
549 pglen -= size;
550 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
551 base = 0;
552 ppage++;
554 /* send tail */
555 if (xdr->tail[0].iov_len) {
556 result = kernel_sendpage(sock, rqstp->rq_respages[0],
557 ((unsigned long)xdr->tail[0].iov_base)
558 & (PAGE_SIZE-1),
559 xdr->tail[0].iov_len, 0);
561 if (result > 0)
562 len += result;
564 out:
565 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
566 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
567 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
569 return len;
573 * Report socket names for nfsdfs
575 static int one_sock_name(char *buf, struct svc_sock *svsk)
577 int len;
579 switch(svsk->sk_sk->sk_family) {
580 case AF_INET:
581 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
582 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
583 "udp" : "tcp",
584 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
585 inet_sk(svsk->sk_sk)->num);
586 break;
587 default:
588 len = sprintf(buf, "*unknown-%d*\n",
589 svsk->sk_sk->sk_family);
591 return len;
595 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
597 struct svc_sock *svsk, *closesk = NULL;
598 int len = 0;
600 if (!serv)
601 return 0;
602 spin_lock_bh(&serv->sv_lock);
603 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
604 int onelen = one_sock_name(buf+len, svsk);
605 if (toclose && strcmp(toclose, buf+len) == 0)
606 closesk = svsk;
607 else
608 len += onelen;
610 spin_unlock_bh(&serv->sv_lock);
611 if (closesk)
612 /* Should unregister with portmap, but you cannot
613 * unregister just one protocol...
615 svc_close_socket(closesk);
616 else if (toclose)
617 return -ENOENT;
618 return len;
620 EXPORT_SYMBOL(svc_sock_names);
623 * Check input queue length
625 static int
626 svc_recv_available(struct svc_sock *svsk)
628 struct socket *sock = svsk->sk_sock;
629 int avail, err;
631 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
633 return (err >= 0)? avail : err;
637 * Generic recvfrom routine.
639 static int
640 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
642 struct svc_sock *svsk = rqstp->rq_sock;
643 struct msghdr msg = {
644 .msg_flags = MSG_DONTWAIT,
646 int len;
648 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
649 msg.msg_flags);
651 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
653 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
654 rqstp->rq_addrlen = svsk->sk_remotelen;
656 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
657 svsk, iov[0].iov_base, iov[0].iov_len, len);
659 return len;
663 * Set socket snd and rcv buffer lengths
665 static inline void
666 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
668 #if 0
669 mm_segment_t oldfs;
670 oldfs = get_fs(); set_fs(KERNEL_DS);
671 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
672 (char*)&snd, sizeof(snd));
673 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
674 (char*)&rcv, sizeof(rcv));
675 #else
676 /* sock_setsockopt limits use to sysctl_?mem_max,
677 * which isn't acceptable. Until that is made conditional
678 * on not having CAP_SYS_RESOURCE or similar, we go direct...
679 * DaveM said I could!
681 lock_sock(sock->sk);
682 sock->sk->sk_sndbuf = snd * 2;
683 sock->sk->sk_rcvbuf = rcv * 2;
684 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
685 release_sock(sock->sk);
686 #endif
689 * INET callback when data has been received on the socket.
691 static void
692 svc_udp_data_ready(struct sock *sk, int count)
694 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
696 if (svsk) {
697 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
698 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
699 set_bit(SK_DATA, &svsk->sk_flags);
700 svc_sock_enqueue(svsk);
702 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
703 wake_up_interruptible(sk->sk_sleep);
707 * INET callback when space is newly available on the socket.
709 static void
710 svc_write_space(struct sock *sk)
712 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
714 if (svsk) {
715 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
716 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
717 svc_sock_enqueue(svsk);
720 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
721 dprintk("RPC svc_write_space: someone sleeping on %p\n",
722 svsk);
723 wake_up_interruptible(sk->sk_sleep);
727 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
728 struct cmsghdr *cmh)
730 switch (rqstp->rq_sock->sk_sk->sk_family) {
731 case AF_INET: {
732 struct in_pktinfo *pki = CMSG_DATA(cmh);
733 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
734 break;
736 case AF_INET6: {
737 struct in6_pktinfo *pki = CMSG_DATA(cmh);
738 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
739 break;
745 * Receive a datagram from a UDP socket.
747 static int
748 svc_udp_recvfrom(struct svc_rqst *rqstp)
750 struct svc_sock *svsk = rqstp->rq_sock;
751 struct svc_serv *serv = svsk->sk_server;
752 struct sk_buff *skb;
753 union {
754 struct cmsghdr hdr;
755 long all[SVC_PKTINFO_SPACE / sizeof(long)];
756 } buffer;
757 struct cmsghdr *cmh = &buffer.hdr;
758 int err, len;
759 struct msghdr msg = {
760 .msg_name = svc_addr(rqstp),
761 .msg_control = cmh,
762 .msg_controllen = sizeof(buffer),
763 .msg_flags = MSG_DONTWAIT,
766 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
767 /* udp sockets need large rcvbuf as all pending
768 * requests are still in that buffer. sndbuf must
769 * also be large enough that there is enough space
770 * for one reply per thread. We count all threads
771 * rather than threads in a particular pool, which
772 * provides an upper bound on the number of threads
773 * which will access the socket.
775 svc_sock_setbufsize(svsk->sk_sock,
776 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
777 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
779 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
780 svc_sock_received(svsk);
781 return svc_deferred_recv(rqstp);
784 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
785 svc_delete_socket(svsk);
786 return 0;
789 clear_bit(SK_DATA, &svsk->sk_flags);
790 while ((err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
791 0, 0, MSG_PEEK | MSG_DONTWAIT)) < 0 ||
792 (skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
793 if (err == -EAGAIN) {
794 svc_sock_received(svsk);
795 return err;
797 /* possibly an icmp error */
798 dprintk("svc: recvfrom returned error %d\n", -err);
800 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
801 if (skb->tstamp.tv64 == 0) {
802 skb->tstamp = ktime_get_real();
803 /* Don't enable netstamp, sunrpc doesn't
804 need that much accuracy */
806 svsk->sk_sk->sk_stamp = skb->tstamp;
807 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
810 * Maybe more packets - kick another thread ASAP.
812 svc_sock_received(svsk);
814 len = skb->len - sizeof(struct udphdr);
815 rqstp->rq_arg.len = len;
817 rqstp->rq_prot = IPPROTO_UDP;
819 if (cmh->cmsg_level != IPPROTO_IP ||
820 cmh->cmsg_type != IP_PKTINFO) {
821 if (net_ratelimit())
822 printk("rpcsvc: received unknown control message:"
823 "%d/%d\n",
824 cmh->cmsg_level, cmh->cmsg_type);
825 skb_free_datagram(svsk->sk_sk, skb);
826 return 0;
828 svc_udp_get_dest_address(rqstp, cmh);
830 if (skb_is_nonlinear(skb)) {
831 /* we have to copy */
832 local_bh_disable();
833 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
834 local_bh_enable();
835 /* checksum error */
836 skb_free_datagram(svsk->sk_sk, skb);
837 return 0;
839 local_bh_enable();
840 skb_free_datagram(svsk->sk_sk, skb);
841 } else {
842 /* we can use it in-place */
843 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
844 rqstp->rq_arg.head[0].iov_len = len;
845 if (skb_checksum_complete(skb)) {
846 skb_free_datagram(svsk->sk_sk, skb);
847 return 0;
849 rqstp->rq_skbuff = skb;
852 rqstp->rq_arg.page_base = 0;
853 if (len <= rqstp->rq_arg.head[0].iov_len) {
854 rqstp->rq_arg.head[0].iov_len = len;
855 rqstp->rq_arg.page_len = 0;
856 rqstp->rq_respages = rqstp->rq_pages+1;
857 } else {
858 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
859 rqstp->rq_respages = rqstp->rq_pages + 1 +
860 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
863 if (serv->sv_stats)
864 serv->sv_stats->netudpcnt++;
866 return len;
869 static int
870 svc_udp_sendto(struct svc_rqst *rqstp)
872 int error;
874 error = svc_sendto(rqstp, &rqstp->rq_res);
875 if (error == -ECONNREFUSED)
876 /* ICMP error on earlier request. */
877 error = svc_sendto(rqstp, &rqstp->rq_res);
879 return error;
882 static void
883 svc_udp_init(struct svc_sock *svsk)
885 int one = 1;
886 mm_segment_t oldfs;
888 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
889 svsk->sk_sk->sk_write_space = svc_write_space;
890 svsk->sk_recvfrom = svc_udp_recvfrom;
891 svsk->sk_sendto = svc_udp_sendto;
893 /* initialise setting must have enough space to
894 * receive and respond to one request.
895 * svc_udp_recvfrom will re-adjust if necessary
897 svc_sock_setbufsize(svsk->sk_sock,
898 3 * svsk->sk_server->sv_max_mesg,
899 3 * svsk->sk_server->sv_max_mesg);
901 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
902 set_bit(SK_CHNGBUF, &svsk->sk_flags);
904 oldfs = get_fs();
905 set_fs(KERNEL_DS);
906 /* make sure we get destination address info */
907 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
908 (char __user *)&one, sizeof(one));
909 set_fs(oldfs);
913 * A data_ready event on a listening socket means there's a connection
914 * pending. Do not use state_change as a substitute for it.
916 static void
917 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
919 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
921 dprintk("svc: socket %p TCP (listen) state change %d\n",
922 sk, sk->sk_state);
925 * This callback may called twice when a new connection
926 * is established as a child socket inherits everything
927 * from a parent LISTEN socket.
928 * 1) data_ready method of the parent socket will be called
929 * when one of child sockets become ESTABLISHED.
930 * 2) data_ready method of the child socket may be called
931 * when it receives data before the socket is accepted.
932 * In case of 2, we should ignore it silently.
934 if (sk->sk_state == TCP_LISTEN) {
935 if (svsk) {
936 set_bit(SK_CONN, &svsk->sk_flags);
937 svc_sock_enqueue(svsk);
938 } else
939 printk("svc: socket %p: no user data\n", sk);
942 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
943 wake_up_interruptible_all(sk->sk_sleep);
947 * A state change on a connected socket means it's dying or dead.
949 static void
950 svc_tcp_state_change(struct sock *sk)
952 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
954 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
955 sk, sk->sk_state, sk->sk_user_data);
957 if (!svsk)
958 printk("svc: socket %p: no user data\n", sk);
959 else {
960 set_bit(SK_CLOSE, &svsk->sk_flags);
961 svc_sock_enqueue(svsk);
963 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
964 wake_up_interruptible_all(sk->sk_sleep);
967 static void
968 svc_tcp_data_ready(struct sock *sk, int count)
970 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
972 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
973 sk, sk->sk_user_data);
974 if (svsk) {
975 set_bit(SK_DATA, &svsk->sk_flags);
976 svc_sock_enqueue(svsk);
978 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
979 wake_up_interruptible(sk->sk_sleep);
982 static inline int svc_port_is_privileged(struct sockaddr *sin)
984 switch (sin->sa_family) {
985 case AF_INET:
986 return ntohs(((struct sockaddr_in *)sin)->sin_port)
987 < PROT_SOCK;
988 case AF_INET6:
989 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
990 < PROT_SOCK;
991 default:
992 return 0;
997 * Accept a TCP connection
999 static void
1000 svc_tcp_accept(struct svc_sock *svsk)
1002 struct sockaddr_storage addr;
1003 struct sockaddr *sin = (struct sockaddr *) &addr;
1004 struct svc_serv *serv = svsk->sk_server;
1005 struct socket *sock = svsk->sk_sock;
1006 struct socket *newsock;
1007 struct svc_sock *newsvsk;
1008 int err, slen;
1009 char buf[RPC_MAX_ADDRBUFLEN];
1011 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1012 if (!sock)
1013 return;
1015 clear_bit(SK_CONN, &svsk->sk_flags);
1016 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1017 if (err < 0) {
1018 if (err == -ENOMEM)
1019 printk(KERN_WARNING "%s: no more sockets!\n",
1020 serv->sv_name);
1021 else if (err != -EAGAIN && net_ratelimit())
1022 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1023 serv->sv_name, -err);
1024 return;
1027 set_bit(SK_CONN, &svsk->sk_flags);
1028 svc_sock_enqueue(svsk);
1030 err = kernel_getpeername(newsock, sin, &slen);
1031 if (err < 0) {
1032 if (net_ratelimit())
1033 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1034 serv->sv_name, -err);
1035 goto failed; /* aborted connection or whatever */
1038 /* Ideally, we would want to reject connections from unauthorized
1039 * hosts here, but when we get encryption, the IP of the host won't
1040 * tell us anything. For now just warn about unpriv connections.
1042 if (!svc_port_is_privileged(sin)) {
1043 dprintk(KERN_WARNING
1044 "%s: connect from unprivileged port: %s\n",
1045 serv->sv_name,
1046 __svc_print_addr(sin, buf, sizeof(buf)));
1048 dprintk("%s: connect from %s\n", serv->sv_name,
1049 __svc_print_addr(sin, buf, sizeof(buf)));
1051 /* make sure that a write doesn't block forever when
1052 * low on memory
1054 newsock->sk->sk_sndtimeo = HZ*30;
1056 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1057 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1058 goto failed;
1059 memcpy(&newsvsk->sk_remote, sin, slen);
1060 newsvsk->sk_remotelen = slen;
1062 svc_sock_received(newsvsk);
1064 /* make sure that we don't have too many active connections.
1065 * If we have, something must be dropped.
1067 * There's no point in trying to do random drop here for
1068 * DoS prevention. The NFS clients does 1 reconnect in 15
1069 * seconds. An attacker can easily beat that.
1071 * The only somewhat efficient mechanism would be if drop
1072 * old connections from the same IP first. But right now
1073 * we don't even record the client IP in svc_sock.
1075 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1076 struct svc_sock *svsk = NULL;
1077 spin_lock_bh(&serv->sv_lock);
1078 if (!list_empty(&serv->sv_tempsocks)) {
1079 if (net_ratelimit()) {
1080 /* Try to help the admin */
1081 printk(KERN_NOTICE "%s: too many open TCP "
1082 "sockets, consider increasing the "
1083 "number of nfsd threads\n",
1084 serv->sv_name);
1085 printk(KERN_NOTICE
1086 "%s: last TCP connect from %s\n",
1087 serv->sv_name, buf);
1090 * Always select the oldest socket. It's not fair,
1091 * but so is life
1093 svsk = list_entry(serv->sv_tempsocks.prev,
1094 struct svc_sock,
1095 sk_list);
1096 set_bit(SK_CLOSE, &svsk->sk_flags);
1097 atomic_inc(&svsk->sk_inuse);
1099 spin_unlock_bh(&serv->sv_lock);
1101 if (svsk) {
1102 svc_sock_enqueue(svsk);
1103 svc_sock_put(svsk);
1108 if (serv->sv_stats)
1109 serv->sv_stats->nettcpconn++;
1111 return;
1113 failed:
1114 sock_release(newsock);
1115 return;
1119 * Receive data from a TCP socket.
1121 static int
1122 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1124 struct svc_sock *svsk = rqstp->rq_sock;
1125 struct svc_serv *serv = svsk->sk_server;
1126 int len;
1127 struct kvec *vec;
1128 int pnum, vlen;
1130 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1131 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1132 test_bit(SK_CONN, &svsk->sk_flags),
1133 test_bit(SK_CLOSE, &svsk->sk_flags));
1135 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1136 svc_sock_received(svsk);
1137 return svc_deferred_recv(rqstp);
1140 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1141 svc_delete_socket(svsk);
1142 return 0;
1145 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1146 svc_tcp_accept(svsk);
1147 svc_sock_received(svsk);
1148 return 0;
1151 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1152 /* sndbuf needs to have room for one request
1153 * per thread, otherwise we can stall even when the
1154 * network isn't a bottleneck.
1156 * We count all threads rather than threads in a
1157 * particular pool, which provides an upper bound
1158 * on the number of threads which will access the socket.
1160 * rcvbuf just needs to be able to hold a few requests.
1161 * Normally they will be removed from the queue
1162 * as soon a a complete request arrives.
1164 svc_sock_setbufsize(svsk->sk_sock,
1165 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1166 3 * serv->sv_max_mesg);
1168 clear_bit(SK_DATA, &svsk->sk_flags);
1170 /* Receive data. If we haven't got the record length yet, get
1171 * the next four bytes. Otherwise try to gobble up as much as
1172 * possible up to the complete record length.
1174 if (svsk->sk_tcplen < 4) {
1175 unsigned long want = 4 - svsk->sk_tcplen;
1176 struct kvec iov;
1178 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1179 iov.iov_len = want;
1180 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1181 goto error;
1182 svsk->sk_tcplen += len;
1184 if (len < want) {
1185 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1186 len, want);
1187 svc_sock_received(svsk);
1188 return -EAGAIN; /* record header not complete */
1191 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1192 if (!(svsk->sk_reclen & 0x80000000)) {
1193 /* FIXME: technically, a record can be fragmented,
1194 * and non-terminal fragments will not have the top
1195 * bit set in the fragment length header.
1196 * But apparently no known nfs clients send fragmented
1197 * records. */
1198 if (net_ratelimit())
1199 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1200 " (non-terminal)\n",
1201 (unsigned long) svsk->sk_reclen);
1202 goto err_delete;
1204 svsk->sk_reclen &= 0x7fffffff;
1205 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1206 if (svsk->sk_reclen > serv->sv_max_mesg) {
1207 if (net_ratelimit())
1208 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1209 " (large)\n",
1210 (unsigned long) svsk->sk_reclen);
1211 goto err_delete;
1215 /* Check whether enough data is available */
1216 len = svc_recv_available(svsk);
1217 if (len < 0)
1218 goto error;
1220 if (len < svsk->sk_reclen) {
1221 dprintk("svc: incomplete TCP record (%d of %d)\n",
1222 len, svsk->sk_reclen);
1223 svc_sock_received(svsk);
1224 return -EAGAIN; /* record not complete */
1226 len = svsk->sk_reclen;
1227 set_bit(SK_DATA, &svsk->sk_flags);
1229 vec = rqstp->rq_vec;
1230 vec[0] = rqstp->rq_arg.head[0];
1231 vlen = PAGE_SIZE;
1232 pnum = 1;
1233 while (vlen < len) {
1234 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1235 vec[pnum].iov_len = PAGE_SIZE;
1236 pnum++;
1237 vlen += PAGE_SIZE;
1239 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1241 /* Now receive data */
1242 len = svc_recvfrom(rqstp, vec, pnum, len);
1243 if (len < 0)
1244 goto error;
1246 dprintk("svc: TCP complete record (%d bytes)\n", len);
1247 rqstp->rq_arg.len = len;
1248 rqstp->rq_arg.page_base = 0;
1249 if (len <= rqstp->rq_arg.head[0].iov_len) {
1250 rqstp->rq_arg.head[0].iov_len = len;
1251 rqstp->rq_arg.page_len = 0;
1252 } else {
1253 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1256 rqstp->rq_skbuff = NULL;
1257 rqstp->rq_prot = IPPROTO_TCP;
1259 /* Reset TCP read info */
1260 svsk->sk_reclen = 0;
1261 svsk->sk_tcplen = 0;
1263 svc_sock_received(svsk);
1264 if (serv->sv_stats)
1265 serv->sv_stats->nettcpcnt++;
1267 return len;
1269 err_delete:
1270 svc_delete_socket(svsk);
1271 return -EAGAIN;
1273 error:
1274 if (len == -EAGAIN) {
1275 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1276 svc_sock_received(svsk);
1277 } else {
1278 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1279 svsk->sk_server->sv_name, -len);
1280 goto err_delete;
1283 return len;
1287 * Send out data on TCP socket.
1289 static int
1290 svc_tcp_sendto(struct svc_rqst *rqstp)
1292 struct xdr_buf *xbufp = &rqstp->rq_res;
1293 int sent;
1294 __be32 reclen;
1296 /* Set up the first element of the reply kvec.
1297 * Any other kvecs that may be in use have been taken
1298 * care of by the server implementation itself.
1300 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1301 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1303 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1304 return -ENOTCONN;
1306 sent = svc_sendto(rqstp, &rqstp->rq_res);
1307 if (sent != xbufp->len) {
1308 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1309 rqstp->rq_sock->sk_server->sv_name,
1310 (sent<0)?"got error":"sent only",
1311 sent, xbufp->len);
1312 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1313 svc_sock_enqueue(rqstp->rq_sock);
1314 sent = -EAGAIN;
1316 return sent;
1319 static void
1320 svc_tcp_init(struct svc_sock *svsk)
1322 struct sock *sk = svsk->sk_sk;
1323 struct tcp_sock *tp = tcp_sk(sk);
1325 svsk->sk_recvfrom = svc_tcp_recvfrom;
1326 svsk->sk_sendto = svc_tcp_sendto;
1328 if (sk->sk_state == TCP_LISTEN) {
1329 dprintk("setting up TCP socket for listening\n");
1330 sk->sk_data_ready = svc_tcp_listen_data_ready;
1331 set_bit(SK_CONN, &svsk->sk_flags);
1332 } else {
1333 dprintk("setting up TCP socket for reading\n");
1334 sk->sk_state_change = svc_tcp_state_change;
1335 sk->sk_data_ready = svc_tcp_data_ready;
1336 sk->sk_write_space = svc_write_space;
1338 svsk->sk_reclen = 0;
1339 svsk->sk_tcplen = 0;
1341 tp->nonagle = 1; /* disable Nagle's algorithm */
1343 /* initialise setting must have enough space to
1344 * receive and respond to one request.
1345 * svc_tcp_recvfrom will re-adjust if necessary
1347 svc_sock_setbufsize(svsk->sk_sock,
1348 3 * svsk->sk_server->sv_max_mesg,
1349 3 * svsk->sk_server->sv_max_mesg);
1351 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1352 set_bit(SK_DATA, &svsk->sk_flags);
1353 if (sk->sk_state != TCP_ESTABLISHED)
1354 set_bit(SK_CLOSE, &svsk->sk_flags);
1358 void
1359 svc_sock_update_bufs(struct svc_serv *serv)
1362 * The number of server threads has changed. Update
1363 * rcvbuf and sndbuf accordingly on all sockets
1365 struct list_head *le;
1367 spin_lock_bh(&serv->sv_lock);
1368 list_for_each(le, &serv->sv_permsocks) {
1369 struct svc_sock *svsk =
1370 list_entry(le, struct svc_sock, sk_list);
1371 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1373 list_for_each(le, &serv->sv_tempsocks) {
1374 struct svc_sock *svsk =
1375 list_entry(le, struct svc_sock, sk_list);
1376 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1378 spin_unlock_bh(&serv->sv_lock);
1382 * Receive the next request on any socket. This code is carefully
1383 * organised not to touch any cachelines in the shared svc_serv
1384 * structure, only cachelines in the local svc_pool.
1387 svc_recv(struct svc_rqst *rqstp, long timeout)
1389 struct svc_sock *svsk = NULL;
1390 struct svc_serv *serv = rqstp->rq_server;
1391 struct svc_pool *pool = rqstp->rq_pool;
1392 int len, i;
1393 int pages;
1394 struct xdr_buf *arg;
1395 DECLARE_WAITQUEUE(wait, current);
1397 dprintk("svc: server %p waiting for data (to = %ld)\n",
1398 rqstp, timeout);
1400 if (rqstp->rq_sock)
1401 printk(KERN_ERR
1402 "svc_recv: service %p, socket not NULL!\n",
1403 rqstp);
1404 if (waitqueue_active(&rqstp->rq_wait))
1405 printk(KERN_ERR
1406 "svc_recv: service %p, wait queue active!\n",
1407 rqstp);
1410 /* now allocate needed pages. If we get a failure, sleep briefly */
1411 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1412 for (i=0; i < pages ; i++)
1413 while (rqstp->rq_pages[i] == NULL) {
1414 struct page *p = alloc_page(GFP_KERNEL);
1415 if (!p)
1416 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1417 rqstp->rq_pages[i] = p;
1419 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1420 BUG_ON(pages >= RPCSVC_MAXPAGES);
1422 /* Make arg->head point to first page and arg->pages point to rest */
1423 arg = &rqstp->rq_arg;
1424 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1425 arg->head[0].iov_len = PAGE_SIZE;
1426 arg->pages = rqstp->rq_pages + 1;
1427 arg->page_base = 0;
1428 /* save at least one page for response */
1429 arg->page_len = (pages-2)*PAGE_SIZE;
1430 arg->len = (pages-1)*PAGE_SIZE;
1431 arg->tail[0].iov_len = 0;
1433 try_to_freeze();
1434 cond_resched();
1435 if (signalled())
1436 return -EINTR;
1438 spin_lock_bh(&pool->sp_lock);
1439 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1440 rqstp->rq_sock = svsk;
1441 atomic_inc(&svsk->sk_inuse);
1442 rqstp->rq_reserved = serv->sv_max_mesg;
1443 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1444 } else {
1445 /* No data pending. Go to sleep */
1446 svc_thread_enqueue(pool, rqstp);
1449 * We have to be able to interrupt this wait
1450 * to bring down the daemons ...
1452 set_current_state(TASK_INTERRUPTIBLE);
1453 add_wait_queue(&rqstp->rq_wait, &wait);
1454 spin_unlock_bh(&pool->sp_lock);
1456 schedule_timeout(timeout);
1458 try_to_freeze();
1460 spin_lock_bh(&pool->sp_lock);
1461 remove_wait_queue(&rqstp->rq_wait, &wait);
1463 if (!(svsk = rqstp->rq_sock)) {
1464 svc_thread_dequeue(pool, rqstp);
1465 spin_unlock_bh(&pool->sp_lock);
1466 dprintk("svc: server %p, no data yet\n", rqstp);
1467 return signalled()? -EINTR : -EAGAIN;
1470 spin_unlock_bh(&pool->sp_lock);
1472 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1473 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1474 len = svsk->sk_recvfrom(rqstp);
1475 dprintk("svc: got len=%d\n", len);
1477 /* No data, incomplete (TCP) read, or accept() */
1478 if (len == 0 || len == -EAGAIN) {
1479 rqstp->rq_res.len = 0;
1480 svc_sock_release(rqstp);
1481 return -EAGAIN;
1483 svsk->sk_lastrecv = get_seconds();
1484 clear_bit(SK_OLD, &svsk->sk_flags);
1486 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1487 rqstp->rq_chandle.defer = svc_defer;
1489 if (serv->sv_stats)
1490 serv->sv_stats->netcnt++;
1491 return len;
1495 * Drop request
1497 void
1498 svc_drop(struct svc_rqst *rqstp)
1500 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1501 svc_sock_release(rqstp);
1505 * Return reply to client.
1508 svc_send(struct svc_rqst *rqstp)
1510 struct svc_sock *svsk;
1511 int len;
1512 struct xdr_buf *xb;
1514 if ((svsk = rqstp->rq_sock) == NULL) {
1515 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1516 __FILE__, __LINE__);
1517 return -EFAULT;
1520 /* release the receive skb before sending the reply */
1521 svc_release_skb(rqstp);
1523 /* calculate over-all length */
1524 xb = & rqstp->rq_res;
1525 xb->len = xb->head[0].iov_len +
1526 xb->page_len +
1527 xb->tail[0].iov_len;
1529 /* Grab svsk->sk_mutex to serialize outgoing data. */
1530 mutex_lock(&svsk->sk_mutex);
1531 if (test_bit(SK_DEAD, &svsk->sk_flags))
1532 len = -ENOTCONN;
1533 else
1534 len = svsk->sk_sendto(rqstp);
1535 mutex_unlock(&svsk->sk_mutex);
1536 svc_sock_release(rqstp);
1538 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1539 return 0;
1540 return len;
1544 * Timer function to close old temporary sockets, using
1545 * a mark-and-sweep algorithm.
1547 static void
1548 svc_age_temp_sockets(unsigned long closure)
1550 struct svc_serv *serv = (struct svc_serv *)closure;
1551 struct svc_sock *svsk;
1552 struct list_head *le, *next;
1553 LIST_HEAD(to_be_aged);
1555 dprintk("svc_age_temp_sockets\n");
1557 if (!spin_trylock_bh(&serv->sv_lock)) {
1558 /* busy, try again 1 sec later */
1559 dprintk("svc_age_temp_sockets: busy\n");
1560 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1561 return;
1564 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1565 svsk = list_entry(le, struct svc_sock, sk_list);
1567 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1568 continue;
1569 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1570 continue;
1571 atomic_inc(&svsk->sk_inuse);
1572 list_move(le, &to_be_aged);
1573 set_bit(SK_CLOSE, &svsk->sk_flags);
1574 set_bit(SK_DETACHED, &svsk->sk_flags);
1576 spin_unlock_bh(&serv->sv_lock);
1578 while (!list_empty(&to_be_aged)) {
1579 le = to_be_aged.next;
1580 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1581 list_del_init(le);
1582 svsk = list_entry(le, struct svc_sock, sk_list);
1584 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1585 svsk, get_seconds() - svsk->sk_lastrecv);
1587 /* a thread will dequeue and close it soon */
1588 svc_sock_enqueue(svsk);
1589 svc_sock_put(svsk);
1592 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1596 * Initialize socket for RPC use and create svc_sock struct
1597 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1599 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1600 struct socket *sock,
1601 int *errp, int flags)
1603 struct svc_sock *svsk;
1604 struct sock *inet;
1605 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1606 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1608 dprintk("svc: svc_setup_socket %p\n", sock);
1609 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1610 *errp = -ENOMEM;
1611 return NULL;
1614 inet = sock->sk;
1616 /* Register socket with portmapper */
1617 if (*errp >= 0 && pmap_register)
1618 *errp = svc_register(serv, inet->sk_protocol,
1619 ntohs(inet_sk(inet)->sport));
1621 if (*errp < 0) {
1622 kfree(svsk);
1623 return NULL;
1626 set_bit(SK_BUSY, &svsk->sk_flags);
1627 inet->sk_user_data = svsk;
1628 svsk->sk_sock = sock;
1629 svsk->sk_sk = inet;
1630 svsk->sk_ostate = inet->sk_state_change;
1631 svsk->sk_odata = inet->sk_data_ready;
1632 svsk->sk_owspace = inet->sk_write_space;
1633 svsk->sk_server = serv;
1634 atomic_set(&svsk->sk_inuse, 1);
1635 svsk->sk_lastrecv = get_seconds();
1636 spin_lock_init(&svsk->sk_defer_lock);
1637 INIT_LIST_HEAD(&svsk->sk_deferred);
1638 INIT_LIST_HEAD(&svsk->sk_ready);
1639 mutex_init(&svsk->sk_mutex);
1641 /* Initialize the socket */
1642 if (sock->type == SOCK_DGRAM)
1643 svc_udp_init(svsk);
1644 else
1645 svc_tcp_init(svsk);
1647 spin_lock_bh(&serv->sv_lock);
1648 if (is_temporary) {
1649 set_bit(SK_TEMP, &svsk->sk_flags);
1650 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1651 serv->sv_tmpcnt++;
1652 if (serv->sv_temptimer.function == NULL) {
1653 /* setup timer to age temp sockets */
1654 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1655 (unsigned long)serv);
1656 mod_timer(&serv->sv_temptimer,
1657 jiffies + svc_conn_age_period * HZ);
1659 } else {
1660 clear_bit(SK_TEMP, &svsk->sk_flags);
1661 list_add(&svsk->sk_list, &serv->sv_permsocks);
1663 spin_unlock_bh(&serv->sv_lock);
1665 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1666 svsk, svsk->sk_sk);
1668 return svsk;
1671 int svc_addsock(struct svc_serv *serv,
1672 int fd,
1673 char *name_return,
1674 int *proto)
1676 int err = 0;
1677 struct socket *so = sockfd_lookup(fd, &err);
1678 struct svc_sock *svsk = NULL;
1680 if (!so)
1681 return err;
1682 if (so->sk->sk_family != AF_INET)
1683 err = -EAFNOSUPPORT;
1684 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1685 so->sk->sk_protocol != IPPROTO_UDP)
1686 err = -EPROTONOSUPPORT;
1687 else if (so->state > SS_UNCONNECTED)
1688 err = -EISCONN;
1689 else {
1690 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1691 if (svsk) {
1692 svc_sock_received(svsk);
1693 err = 0;
1696 if (err) {
1697 sockfd_put(so);
1698 return err;
1700 if (proto) *proto = so->sk->sk_protocol;
1701 return one_sock_name(name_return, svsk);
1703 EXPORT_SYMBOL_GPL(svc_addsock);
1706 * Create socket for RPC service.
1708 static int svc_create_socket(struct svc_serv *serv, int protocol,
1709 struct sockaddr *sin, int len, int flags)
1711 struct svc_sock *svsk;
1712 struct socket *sock;
1713 int error;
1714 int type;
1715 char buf[RPC_MAX_ADDRBUFLEN];
1717 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1718 serv->sv_program->pg_name, protocol,
1719 __svc_print_addr(sin, buf, sizeof(buf)));
1721 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1722 printk(KERN_WARNING "svc: only UDP and TCP "
1723 "sockets supported\n");
1724 return -EINVAL;
1726 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1728 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1729 if (error < 0)
1730 return error;
1732 svc_reclassify_socket(sock);
1734 if (type == SOCK_STREAM)
1735 sock->sk->sk_reuse = 1; /* allow address reuse */
1736 error = kernel_bind(sock, sin, len);
1737 if (error < 0)
1738 goto bummer;
1740 if (protocol == IPPROTO_TCP) {
1741 if ((error = kernel_listen(sock, 64)) < 0)
1742 goto bummer;
1745 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1746 svc_sock_received(svsk);
1747 return ntohs(inet_sk(svsk->sk_sk)->sport);
1750 bummer:
1751 dprintk("svc: svc_create_socket error = %d\n", -error);
1752 sock_release(sock);
1753 return error;
1757 * Remove a dead socket
1759 static void
1760 svc_delete_socket(struct svc_sock *svsk)
1762 struct svc_serv *serv;
1763 struct sock *sk;
1765 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1767 serv = svsk->sk_server;
1768 sk = svsk->sk_sk;
1770 sk->sk_state_change = svsk->sk_ostate;
1771 sk->sk_data_ready = svsk->sk_odata;
1772 sk->sk_write_space = svsk->sk_owspace;
1774 spin_lock_bh(&serv->sv_lock);
1776 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1777 list_del_init(&svsk->sk_list);
1779 * We used to delete the svc_sock from whichever list
1780 * it's sk_ready node was on, but we don't actually
1781 * need to. This is because the only time we're called
1782 * while still attached to a queue, the queue itself
1783 * is about to be destroyed (in svc_destroy).
1785 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1786 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1787 atomic_dec(&svsk->sk_inuse);
1788 if (test_bit(SK_TEMP, &svsk->sk_flags))
1789 serv->sv_tmpcnt--;
1792 spin_unlock_bh(&serv->sv_lock);
1795 static void svc_close_socket(struct svc_sock *svsk)
1797 set_bit(SK_CLOSE, &svsk->sk_flags);
1798 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1799 /* someone else will have to effect the close */
1800 return;
1802 atomic_inc(&svsk->sk_inuse);
1803 svc_delete_socket(svsk);
1804 clear_bit(SK_BUSY, &svsk->sk_flags);
1805 svc_sock_put(svsk);
1808 void svc_force_close_socket(struct svc_sock *svsk)
1810 set_bit(SK_CLOSE, &svsk->sk_flags);
1811 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1812 /* Waiting to be processed, but no threads left,
1813 * So just remove it from the waiting list
1815 list_del_init(&svsk->sk_ready);
1816 clear_bit(SK_BUSY, &svsk->sk_flags);
1818 svc_close_socket(svsk);
1822 * svc_makesock - Make a socket for nfsd and lockd
1823 * @serv: RPC server structure
1824 * @protocol: transport protocol to use
1825 * @port: port to use
1826 * @flags: requested socket characteristics
1829 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1830 int flags)
1832 struct sockaddr_in sin = {
1833 .sin_family = AF_INET,
1834 .sin_addr.s_addr = INADDR_ANY,
1835 .sin_port = htons(port),
1838 dprintk("svc: creating socket proto = %d\n", protocol);
1839 return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1840 sizeof(sin), flags);
1844 * Handle defer and revisit of requests
1847 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1849 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1850 struct svc_sock *svsk;
1852 if (too_many) {
1853 svc_sock_put(dr->svsk);
1854 kfree(dr);
1855 return;
1857 dprintk("revisit queued\n");
1858 svsk = dr->svsk;
1859 dr->svsk = NULL;
1860 spin_lock_bh(&svsk->sk_defer_lock);
1861 list_add(&dr->handle.recent, &svsk->sk_deferred);
1862 spin_unlock_bh(&svsk->sk_defer_lock);
1863 set_bit(SK_DEFERRED, &svsk->sk_flags);
1864 svc_sock_enqueue(svsk);
1865 svc_sock_put(svsk);
1868 static struct cache_deferred_req *
1869 svc_defer(struct cache_req *req)
1871 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1872 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1873 struct svc_deferred_req *dr;
1875 if (rqstp->rq_arg.page_len)
1876 return NULL; /* if more than a page, give up FIXME */
1877 if (rqstp->rq_deferred) {
1878 dr = rqstp->rq_deferred;
1879 rqstp->rq_deferred = NULL;
1880 } else {
1881 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1882 /* FIXME maybe discard if size too large */
1883 dr = kmalloc(size, GFP_KERNEL);
1884 if (dr == NULL)
1885 return NULL;
1887 dr->handle.owner = rqstp->rq_server;
1888 dr->prot = rqstp->rq_prot;
1889 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1890 dr->addrlen = rqstp->rq_addrlen;
1891 dr->daddr = rqstp->rq_daddr;
1892 dr->argslen = rqstp->rq_arg.len >> 2;
1893 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1895 atomic_inc(&rqstp->rq_sock->sk_inuse);
1896 dr->svsk = rqstp->rq_sock;
1898 dr->handle.revisit = svc_revisit;
1899 return &dr->handle;
1903 * recv data from a deferred request into an active one
1905 static int svc_deferred_recv(struct svc_rqst *rqstp)
1907 struct svc_deferred_req *dr = rqstp->rq_deferred;
1909 rqstp->rq_arg.head[0].iov_base = dr->args;
1910 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1911 rqstp->rq_arg.page_len = 0;
1912 rqstp->rq_arg.len = dr->argslen<<2;
1913 rqstp->rq_prot = dr->prot;
1914 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1915 rqstp->rq_addrlen = dr->addrlen;
1916 rqstp->rq_daddr = dr->daddr;
1917 rqstp->rq_respages = rqstp->rq_pages;
1918 return dr->argslen<<2;
1922 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1924 struct svc_deferred_req *dr = NULL;
1926 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1927 return NULL;
1928 spin_lock_bh(&svsk->sk_defer_lock);
1929 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1930 if (!list_empty(&svsk->sk_deferred)) {
1931 dr = list_entry(svsk->sk_deferred.next,
1932 struct svc_deferred_req,
1933 handle.recent);
1934 list_del_init(&dr->handle.recent);
1935 set_bit(SK_DEFERRED, &svsk->sk_flags);
1937 spin_unlock_bh(&svsk->sk_defer_lock);
1938 return dr;