fixing audit rule ordering mess, part 1
[linux-2.6/verdex.git] / kernel / auditsc.c
blob19d2c2747c8d8bb4be318033047c6ab416e5176e
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
70 #include "audit.h"
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
82 /* number of audit rules */
83 int audit_n_rules;
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
122 #define AUDIT_AUX_IPCPERM 0
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
127 struct audit_aux_data_execve {
128 struct audit_aux_data d;
129 int argc;
130 int envc;
131 struct mm_struct *mm;
134 struct audit_aux_data_pids {
135 struct audit_aux_data d;
136 pid_t target_pid[AUDIT_AUX_PIDS];
137 uid_t target_auid[AUDIT_AUX_PIDS];
138 uid_t target_uid[AUDIT_AUX_PIDS];
139 unsigned int target_sessionid[AUDIT_AUX_PIDS];
140 u32 target_sid[AUDIT_AUX_PIDS];
141 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
142 int pid_count;
145 struct audit_aux_data_bprm_fcaps {
146 struct audit_aux_data d;
147 struct audit_cap_data fcap;
148 unsigned int fcap_ver;
149 struct audit_cap_data old_pcap;
150 struct audit_cap_data new_pcap;
153 struct audit_aux_data_capset {
154 struct audit_aux_data d;
155 pid_t pid;
156 struct audit_cap_data cap;
159 struct audit_tree_refs {
160 struct audit_tree_refs *next;
161 struct audit_chunk *c[31];
164 /* The per-task audit context. */
165 struct audit_context {
166 int dummy; /* must be the first element */
167 int in_syscall; /* 1 if task is in a syscall */
168 enum audit_state state, current_state;
169 unsigned int serial; /* serial number for record */
170 struct timespec ctime; /* time of syscall entry */
171 int major; /* syscall number */
172 unsigned long argv[4]; /* syscall arguments */
173 int return_valid; /* return code is valid */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int name_count;
177 struct audit_names names[AUDIT_NAMES];
178 char * filterkey; /* key for rule that triggered record */
179 struct path pwd;
180 struct audit_context *previous; /* For nested syscalls */
181 struct audit_aux_data *aux;
182 struct audit_aux_data *aux_pids;
183 struct sockaddr_storage *sockaddr;
184 size_t sockaddr_len;
185 /* Save things to print about task_struct */
186 pid_t pid, ppid;
187 uid_t uid, euid, suid, fsuid;
188 gid_t gid, egid, sgid, fsgid;
189 unsigned long personality;
190 int arch;
192 pid_t target_pid;
193 uid_t target_auid;
194 uid_t target_uid;
195 unsigned int target_sessionid;
196 u32 target_sid;
197 char target_comm[TASK_COMM_LEN];
199 struct audit_tree_refs *trees, *first_trees;
200 int tree_count;
202 int type;
203 union {
204 struct {
205 int nargs;
206 long args[6];
207 } socketcall;
208 struct {
209 uid_t uid;
210 gid_t gid;
211 mode_t mode;
212 u32 osid;
213 int has_perm;
214 uid_t perm_uid;
215 gid_t perm_gid;
216 mode_t perm_mode;
217 unsigned long qbytes;
218 } ipc;
219 struct {
220 mqd_t mqdes;
221 struct mq_attr mqstat;
222 } mq_getsetattr;
223 struct {
224 mqd_t mqdes;
225 int sigev_signo;
226 } mq_notify;
227 struct {
228 mqd_t mqdes;
229 size_t msg_len;
230 unsigned int msg_prio;
231 struct timespec abs_timeout;
232 } mq_sendrecv;
233 struct {
234 int oflag;
235 mode_t mode;
236 struct mq_attr attr;
237 } mq_open;
238 struct {
239 pid_t pid;
240 struct audit_cap_data cap;
241 } capset;
243 int fds[2];
245 #if AUDIT_DEBUG
246 int put_count;
247 int ino_count;
248 #endif
251 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
252 static inline int open_arg(int flags, int mask)
254 int n = ACC_MODE(flags);
255 if (flags & (O_TRUNC | O_CREAT))
256 n |= AUDIT_PERM_WRITE;
257 return n & mask;
260 static int audit_match_perm(struct audit_context *ctx, int mask)
262 unsigned n;
263 if (unlikely(!ctx))
264 return 0;
265 n = ctx->major;
267 switch (audit_classify_syscall(ctx->arch, n)) {
268 case 0: /* native */
269 if ((mask & AUDIT_PERM_WRITE) &&
270 audit_match_class(AUDIT_CLASS_WRITE, n))
271 return 1;
272 if ((mask & AUDIT_PERM_READ) &&
273 audit_match_class(AUDIT_CLASS_READ, n))
274 return 1;
275 if ((mask & AUDIT_PERM_ATTR) &&
276 audit_match_class(AUDIT_CLASS_CHATTR, n))
277 return 1;
278 return 0;
279 case 1: /* 32bit on biarch */
280 if ((mask & AUDIT_PERM_WRITE) &&
281 audit_match_class(AUDIT_CLASS_WRITE_32, n))
282 return 1;
283 if ((mask & AUDIT_PERM_READ) &&
284 audit_match_class(AUDIT_CLASS_READ_32, n))
285 return 1;
286 if ((mask & AUDIT_PERM_ATTR) &&
287 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
288 return 1;
289 return 0;
290 case 2: /* open */
291 return mask & ACC_MODE(ctx->argv[1]);
292 case 3: /* openat */
293 return mask & ACC_MODE(ctx->argv[2]);
294 case 4: /* socketcall */
295 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
296 case 5: /* execve */
297 return mask & AUDIT_PERM_EXEC;
298 default:
299 return 0;
303 static int audit_match_filetype(struct audit_context *ctx, int which)
305 unsigned index = which & ~S_IFMT;
306 mode_t mode = which & S_IFMT;
308 if (unlikely(!ctx))
309 return 0;
311 if (index >= ctx->name_count)
312 return 0;
313 if (ctx->names[index].ino == -1)
314 return 0;
315 if ((ctx->names[index].mode ^ mode) & S_IFMT)
316 return 0;
317 return 1;
321 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
322 * ->first_trees points to its beginning, ->trees - to the current end of data.
323 * ->tree_count is the number of free entries in array pointed to by ->trees.
324 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
325 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
326 * it's going to remain 1-element for almost any setup) until we free context itself.
327 * References in it _are_ dropped - at the same time we free/drop aux stuff.
330 #ifdef CONFIG_AUDIT_TREE
331 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
333 struct audit_tree_refs *p = ctx->trees;
334 int left = ctx->tree_count;
335 if (likely(left)) {
336 p->c[--left] = chunk;
337 ctx->tree_count = left;
338 return 1;
340 if (!p)
341 return 0;
342 p = p->next;
343 if (p) {
344 p->c[30] = chunk;
345 ctx->trees = p;
346 ctx->tree_count = 30;
347 return 1;
349 return 0;
352 static int grow_tree_refs(struct audit_context *ctx)
354 struct audit_tree_refs *p = ctx->trees;
355 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
356 if (!ctx->trees) {
357 ctx->trees = p;
358 return 0;
360 if (p)
361 p->next = ctx->trees;
362 else
363 ctx->first_trees = ctx->trees;
364 ctx->tree_count = 31;
365 return 1;
367 #endif
369 static void unroll_tree_refs(struct audit_context *ctx,
370 struct audit_tree_refs *p, int count)
372 #ifdef CONFIG_AUDIT_TREE
373 struct audit_tree_refs *q;
374 int n;
375 if (!p) {
376 /* we started with empty chain */
377 p = ctx->first_trees;
378 count = 31;
379 /* if the very first allocation has failed, nothing to do */
380 if (!p)
381 return;
383 n = count;
384 for (q = p; q != ctx->trees; q = q->next, n = 31) {
385 while (n--) {
386 audit_put_chunk(q->c[n]);
387 q->c[n] = NULL;
390 while (n-- > ctx->tree_count) {
391 audit_put_chunk(q->c[n]);
392 q->c[n] = NULL;
394 ctx->trees = p;
395 ctx->tree_count = count;
396 #endif
399 static void free_tree_refs(struct audit_context *ctx)
401 struct audit_tree_refs *p, *q;
402 for (p = ctx->first_trees; p; p = q) {
403 q = p->next;
404 kfree(p);
408 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
410 #ifdef CONFIG_AUDIT_TREE
411 struct audit_tree_refs *p;
412 int n;
413 if (!tree)
414 return 0;
415 /* full ones */
416 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
417 for (n = 0; n < 31; n++)
418 if (audit_tree_match(p->c[n], tree))
419 return 1;
421 /* partial */
422 if (p) {
423 for (n = ctx->tree_count; n < 31; n++)
424 if (audit_tree_match(p->c[n], tree))
425 return 1;
427 #endif
428 return 0;
431 /* Determine if any context name data matches a rule's watch data */
432 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * otherwise. */
434 static int audit_filter_rules(struct task_struct *tsk,
435 struct audit_krule *rule,
436 struct audit_context *ctx,
437 struct audit_names *name,
438 enum audit_state *state)
440 const struct cred *cred = get_task_cred(tsk);
441 int i, j, need_sid = 1;
442 u32 sid;
444 for (i = 0; i < rule->field_count; i++) {
445 struct audit_field *f = &rule->fields[i];
446 int result = 0;
448 switch (f->type) {
449 case AUDIT_PID:
450 result = audit_comparator(tsk->pid, f->op, f->val);
451 break;
452 case AUDIT_PPID:
453 if (ctx) {
454 if (!ctx->ppid)
455 ctx->ppid = sys_getppid();
456 result = audit_comparator(ctx->ppid, f->op, f->val);
458 break;
459 case AUDIT_UID:
460 result = audit_comparator(cred->uid, f->op, f->val);
461 break;
462 case AUDIT_EUID:
463 result = audit_comparator(cred->euid, f->op, f->val);
464 break;
465 case AUDIT_SUID:
466 result = audit_comparator(cred->suid, f->op, f->val);
467 break;
468 case AUDIT_FSUID:
469 result = audit_comparator(cred->fsuid, f->op, f->val);
470 break;
471 case AUDIT_GID:
472 result = audit_comparator(cred->gid, f->op, f->val);
473 break;
474 case AUDIT_EGID:
475 result = audit_comparator(cred->egid, f->op, f->val);
476 break;
477 case AUDIT_SGID:
478 result = audit_comparator(cred->sgid, f->op, f->val);
479 break;
480 case AUDIT_FSGID:
481 result = audit_comparator(cred->fsgid, f->op, f->val);
482 break;
483 case AUDIT_PERS:
484 result = audit_comparator(tsk->personality, f->op, f->val);
485 break;
486 case AUDIT_ARCH:
487 if (ctx)
488 result = audit_comparator(ctx->arch, f->op, f->val);
489 break;
491 case AUDIT_EXIT:
492 if (ctx && ctx->return_valid)
493 result = audit_comparator(ctx->return_code, f->op, f->val);
494 break;
495 case AUDIT_SUCCESS:
496 if (ctx && ctx->return_valid) {
497 if (f->val)
498 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
499 else
500 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
502 break;
503 case AUDIT_DEVMAJOR:
504 if (name)
505 result = audit_comparator(MAJOR(name->dev),
506 f->op, f->val);
507 else if (ctx) {
508 for (j = 0; j < ctx->name_count; j++) {
509 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
510 ++result;
511 break;
515 break;
516 case AUDIT_DEVMINOR:
517 if (name)
518 result = audit_comparator(MINOR(name->dev),
519 f->op, f->val);
520 else if (ctx) {
521 for (j = 0; j < ctx->name_count; j++) {
522 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
523 ++result;
524 break;
528 break;
529 case AUDIT_INODE:
530 if (name)
531 result = (name->ino == f->val);
532 else if (ctx) {
533 for (j = 0; j < ctx->name_count; j++) {
534 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
535 ++result;
536 break;
540 break;
541 case AUDIT_WATCH:
542 if (name && rule->watch->ino != (unsigned long)-1)
543 result = (name->dev == rule->watch->dev &&
544 name->ino == rule->watch->ino);
545 break;
546 case AUDIT_DIR:
547 if (ctx)
548 result = match_tree_refs(ctx, rule->tree);
549 break;
550 case AUDIT_LOGINUID:
551 result = 0;
552 if (ctx)
553 result = audit_comparator(tsk->loginuid, f->op, f->val);
554 break;
555 case AUDIT_SUBJ_USER:
556 case AUDIT_SUBJ_ROLE:
557 case AUDIT_SUBJ_TYPE:
558 case AUDIT_SUBJ_SEN:
559 case AUDIT_SUBJ_CLR:
560 /* NOTE: this may return negative values indicating
561 a temporary error. We simply treat this as a
562 match for now to avoid losing information that
563 may be wanted. An error message will also be
564 logged upon error */
565 if (f->lsm_rule) {
566 if (need_sid) {
567 security_task_getsecid(tsk, &sid);
568 need_sid = 0;
570 result = security_audit_rule_match(sid, f->type,
571 f->op,
572 f->lsm_rule,
573 ctx);
575 break;
576 case AUDIT_OBJ_USER:
577 case AUDIT_OBJ_ROLE:
578 case AUDIT_OBJ_TYPE:
579 case AUDIT_OBJ_LEV_LOW:
580 case AUDIT_OBJ_LEV_HIGH:
581 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
582 also applies here */
583 if (f->lsm_rule) {
584 /* Find files that match */
585 if (name) {
586 result = security_audit_rule_match(
587 name->osid, f->type, f->op,
588 f->lsm_rule, ctx);
589 } else if (ctx) {
590 for (j = 0; j < ctx->name_count; j++) {
591 if (security_audit_rule_match(
592 ctx->names[j].osid,
593 f->type, f->op,
594 f->lsm_rule, ctx)) {
595 ++result;
596 break;
600 /* Find ipc objects that match */
601 if (!ctx || ctx->type != AUDIT_IPC)
602 break;
603 if (security_audit_rule_match(ctx->ipc.osid,
604 f->type, f->op,
605 f->lsm_rule, ctx))
606 ++result;
608 break;
609 case AUDIT_ARG0:
610 case AUDIT_ARG1:
611 case AUDIT_ARG2:
612 case AUDIT_ARG3:
613 if (ctx)
614 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
615 break;
616 case AUDIT_FILTERKEY:
617 /* ignore this field for filtering */
618 result = 1;
619 break;
620 case AUDIT_PERM:
621 result = audit_match_perm(ctx, f->val);
622 break;
623 case AUDIT_FILETYPE:
624 result = audit_match_filetype(ctx, f->val);
625 break;
628 if (!result) {
629 put_cred(cred);
630 return 0;
634 if (ctx) {
635 if (rule->prio <= ctx->prio)
636 return 0;
637 if (rule->filterkey) {
638 kfree(ctx->filterkey);
639 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
641 ctx->prio = rule->prio;
643 switch (rule->action) {
644 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
645 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
647 put_cred(cred);
648 return 1;
651 /* At process creation time, we can determine if system-call auditing is
652 * completely disabled for this task. Since we only have the task
653 * structure at this point, we can only check uid and gid.
655 static enum audit_state audit_filter_task(struct task_struct *tsk)
657 struct audit_entry *e;
658 enum audit_state state;
660 rcu_read_lock();
661 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
662 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
663 rcu_read_unlock();
664 return state;
667 rcu_read_unlock();
668 return AUDIT_BUILD_CONTEXT;
671 /* At syscall entry and exit time, this filter is called if the
672 * audit_state is not low enough that auditing cannot take place, but is
673 * also not high enough that we already know we have to write an audit
674 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
676 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
677 struct audit_context *ctx,
678 struct list_head *list)
680 struct audit_entry *e;
681 enum audit_state state;
683 if (audit_pid && tsk->tgid == audit_pid)
684 return AUDIT_DISABLED;
686 rcu_read_lock();
687 if (!list_empty(list)) {
688 int word = AUDIT_WORD(ctx->major);
689 int bit = AUDIT_BIT(ctx->major);
691 list_for_each_entry_rcu(e, list, list) {
692 if ((e->rule.mask[word] & bit) == bit &&
693 audit_filter_rules(tsk, &e->rule, ctx, NULL,
694 &state)) {
695 rcu_read_unlock();
696 ctx->current_state = state;
697 return state;
701 rcu_read_unlock();
702 return AUDIT_BUILD_CONTEXT;
705 /* At syscall exit time, this filter is called if any audit_names[] have been
706 * collected during syscall processing. We only check rules in sublists at hash
707 * buckets applicable to the inode numbers in audit_names[].
708 * Regarding audit_state, same rules apply as for audit_filter_syscall().
710 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
712 int i;
713 struct audit_entry *e;
714 enum audit_state state;
716 if (audit_pid && tsk->tgid == audit_pid)
717 return;
719 rcu_read_lock();
720 for (i = 0; i < ctx->name_count; i++) {
721 int word = AUDIT_WORD(ctx->major);
722 int bit = AUDIT_BIT(ctx->major);
723 struct audit_names *n = &ctx->names[i];
724 int h = audit_hash_ino((u32)n->ino);
725 struct list_head *list = &audit_inode_hash[h];
727 if (list_empty(list))
728 continue;
730 list_for_each_entry_rcu(e, list, list) {
731 if ((e->rule.mask[word] & bit) == bit &&
732 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
733 rcu_read_unlock();
734 ctx->current_state = state;
735 return;
739 rcu_read_unlock();
742 static void audit_set_auditable(struct audit_context *ctx)
744 if (!ctx->prio) {
745 ctx->prio = 1;
746 ctx->current_state = AUDIT_RECORD_CONTEXT;
750 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
751 int return_valid,
752 int return_code)
754 struct audit_context *context = tsk->audit_context;
756 if (likely(!context))
757 return NULL;
758 context->return_valid = return_valid;
761 * we need to fix up the return code in the audit logs if the actual
762 * return codes are later going to be fixed up by the arch specific
763 * signal handlers
765 * This is actually a test for:
766 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
767 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
769 * but is faster than a bunch of ||
771 if (unlikely(return_code <= -ERESTARTSYS) &&
772 (return_code >= -ERESTART_RESTARTBLOCK) &&
773 (return_code != -ENOIOCTLCMD))
774 context->return_code = -EINTR;
775 else
776 context->return_code = return_code;
778 if (context->in_syscall && !context->dummy) {
779 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
780 audit_filter_inodes(tsk, context);
783 tsk->audit_context = NULL;
784 return context;
787 static inline void audit_free_names(struct audit_context *context)
789 int i;
791 #if AUDIT_DEBUG == 2
792 if (context->put_count + context->ino_count != context->name_count) {
793 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
794 " name_count=%d put_count=%d"
795 " ino_count=%d [NOT freeing]\n",
796 __FILE__, __LINE__,
797 context->serial, context->major, context->in_syscall,
798 context->name_count, context->put_count,
799 context->ino_count);
800 for (i = 0; i < context->name_count; i++) {
801 printk(KERN_ERR "names[%d] = %p = %s\n", i,
802 context->names[i].name,
803 context->names[i].name ?: "(null)");
805 dump_stack();
806 return;
808 #endif
809 #if AUDIT_DEBUG
810 context->put_count = 0;
811 context->ino_count = 0;
812 #endif
814 for (i = 0; i < context->name_count; i++) {
815 if (context->names[i].name && context->names[i].name_put)
816 __putname(context->names[i].name);
818 context->name_count = 0;
819 path_put(&context->pwd);
820 context->pwd.dentry = NULL;
821 context->pwd.mnt = NULL;
824 static inline void audit_free_aux(struct audit_context *context)
826 struct audit_aux_data *aux;
828 while ((aux = context->aux)) {
829 context->aux = aux->next;
830 kfree(aux);
832 while ((aux = context->aux_pids)) {
833 context->aux_pids = aux->next;
834 kfree(aux);
838 static inline void audit_zero_context(struct audit_context *context,
839 enum audit_state state)
841 memset(context, 0, sizeof(*context));
842 context->state = state;
843 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
846 static inline struct audit_context *audit_alloc_context(enum audit_state state)
848 struct audit_context *context;
850 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
851 return NULL;
852 audit_zero_context(context, state);
853 return context;
857 * audit_alloc - allocate an audit context block for a task
858 * @tsk: task
860 * Filter on the task information and allocate a per-task audit context
861 * if necessary. Doing so turns on system call auditing for the
862 * specified task. This is called from copy_process, so no lock is
863 * needed.
865 int audit_alloc(struct task_struct *tsk)
867 struct audit_context *context;
868 enum audit_state state;
870 if (likely(!audit_ever_enabled))
871 return 0; /* Return if not auditing. */
873 state = audit_filter_task(tsk);
874 if (likely(state == AUDIT_DISABLED))
875 return 0;
877 if (!(context = audit_alloc_context(state))) {
878 audit_log_lost("out of memory in audit_alloc");
879 return -ENOMEM;
882 tsk->audit_context = context;
883 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
884 return 0;
887 static inline void audit_free_context(struct audit_context *context)
889 struct audit_context *previous;
890 int count = 0;
892 do {
893 previous = context->previous;
894 if (previous || (count && count < 10)) {
895 ++count;
896 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
897 " freeing multiple contexts (%d)\n",
898 context->serial, context->major,
899 context->name_count, count);
901 audit_free_names(context);
902 unroll_tree_refs(context, NULL, 0);
903 free_tree_refs(context);
904 audit_free_aux(context);
905 kfree(context->filterkey);
906 kfree(context->sockaddr);
907 kfree(context);
908 context = previous;
909 } while (context);
910 if (count >= 10)
911 printk(KERN_ERR "audit: freed %d contexts\n", count);
914 void audit_log_task_context(struct audit_buffer *ab)
916 char *ctx = NULL;
917 unsigned len;
918 int error;
919 u32 sid;
921 security_task_getsecid(current, &sid);
922 if (!sid)
923 return;
925 error = security_secid_to_secctx(sid, &ctx, &len);
926 if (error) {
927 if (error != -EINVAL)
928 goto error_path;
929 return;
932 audit_log_format(ab, " subj=%s", ctx);
933 security_release_secctx(ctx, len);
934 return;
936 error_path:
937 audit_panic("error in audit_log_task_context");
938 return;
941 EXPORT_SYMBOL(audit_log_task_context);
943 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
945 char name[sizeof(tsk->comm)];
946 struct mm_struct *mm = tsk->mm;
947 struct vm_area_struct *vma;
949 /* tsk == current */
951 get_task_comm(name, tsk);
952 audit_log_format(ab, " comm=");
953 audit_log_untrustedstring(ab, name);
955 if (mm) {
956 down_read(&mm->mmap_sem);
957 vma = mm->mmap;
958 while (vma) {
959 if ((vma->vm_flags & VM_EXECUTABLE) &&
960 vma->vm_file) {
961 audit_log_d_path(ab, "exe=",
962 &vma->vm_file->f_path);
963 break;
965 vma = vma->vm_next;
967 up_read(&mm->mmap_sem);
969 audit_log_task_context(ab);
972 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
973 uid_t auid, uid_t uid, unsigned int sessionid,
974 u32 sid, char *comm)
976 struct audit_buffer *ab;
977 char *ctx = NULL;
978 u32 len;
979 int rc = 0;
981 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
982 if (!ab)
983 return rc;
985 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
986 uid, sessionid);
987 if (security_secid_to_secctx(sid, &ctx, &len)) {
988 audit_log_format(ab, " obj=(none)");
989 rc = 1;
990 } else {
991 audit_log_format(ab, " obj=%s", ctx);
992 security_release_secctx(ctx, len);
994 audit_log_format(ab, " ocomm=");
995 audit_log_untrustedstring(ab, comm);
996 audit_log_end(ab);
998 return rc;
1002 * to_send and len_sent accounting are very loose estimates. We aren't
1003 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1004 * within about 500 bytes (next page boundry)
1006 * why snprintf? an int is up to 12 digits long. if we just assumed when
1007 * logging that a[%d]= was going to be 16 characters long we would be wasting
1008 * space in every audit message. In one 7500 byte message we can log up to
1009 * about 1000 min size arguments. That comes down to about 50% waste of space
1010 * if we didn't do the snprintf to find out how long arg_num_len was.
1012 static int audit_log_single_execve_arg(struct audit_context *context,
1013 struct audit_buffer **ab,
1014 int arg_num,
1015 size_t *len_sent,
1016 const char __user *p,
1017 char *buf)
1019 char arg_num_len_buf[12];
1020 const char __user *tmp_p = p;
1021 /* how many digits are in arg_num? 3 is the length of a=\n */
1022 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1023 size_t len, len_left, to_send;
1024 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1025 unsigned int i, has_cntl = 0, too_long = 0;
1026 int ret;
1028 /* strnlen_user includes the null we don't want to send */
1029 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1032 * We just created this mm, if we can't find the strings
1033 * we just copied into it something is _very_ wrong. Similar
1034 * for strings that are too long, we should not have created
1035 * any.
1037 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1038 WARN_ON(1);
1039 send_sig(SIGKILL, current, 0);
1040 return -1;
1043 /* walk the whole argument looking for non-ascii chars */
1044 do {
1045 if (len_left > MAX_EXECVE_AUDIT_LEN)
1046 to_send = MAX_EXECVE_AUDIT_LEN;
1047 else
1048 to_send = len_left;
1049 ret = copy_from_user(buf, tmp_p, to_send);
1051 * There is no reason for this copy to be short. We just
1052 * copied them here, and the mm hasn't been exposed to user-
1053 * space yet.
1055 if (ret) {
1056 WARN_ON(1);
1057 send_sig(SIGKILL, current, 0);
1058 return -1;
1060 buf[to_send] = '\0';
1061 has_cntl = audit_string_contains_control(buf, to_send);
1062 if (has_cntl) {
1064 * hex messages get logged as 2 bytes, so we can only
1065 * send half as much in each message
1067 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1068 break;
1070 len_left -= to_send;
1071 tmp_p += to_send;
1072 } while (len_left > 0);
1074 len_left = len;
1076 if (len > max_execve_audit_len)
1077 too_long = 1;
1079 /* rewalk the argument actually logging the message */
1080 for (i = 0; len_left > 0; i++) {
1081 int room_left;
1083 if (len_left > max_execve_audit_len)
1084 to_send = max_execve_audit_len;
1085 else
1086 to_send = len_left;
1088 /* do we have space left to send this argument in this ab? */
1089 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1090 if (has_cntl)
1091 room_left -= (to_send * 2);
1092 else
1093 room_left -= to_send;
1094 if (room_left < 0) {
1095 *len_sent = 0;
1096 audit_log_end(*ab);
1097 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1098 if (!*ab)
1099 return 0;
1103 * first record needs to say how long the original string was
1104 * so we can be sure nothing was lost.
1106 if ((i == 0) && (too_long))
1107 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1108 has_cntl ? 2*len : len);
1111 * normally arguments are small enough to fit and we already
1112 * filled buf above when we checked for control characters
1113 * so don't bother with another copy_from_user
1115 if (len >= max_execve_audit_len)
1116 ret = copy_from_user(buf, p, to_send);
1117 else
1118 ret = 0;
1119 if (ret) {
1120 WARN_ON(1);
1121 send_sig(SIGKILL, current, 0);
1122 return -1;
1124 buf[to_send] = '\0';
1126 /* actually log it */
1127 audit_log_format(*ab, "a%d", arg_num);
1128 if (too_long)
1129 audit_log_format(*ab, "[%d]", i);
1130 audit_log_format(*ab, "=");
1131 if (has_cntl)
1132 audit_log_n_hex(*ab, buf, to_send);
1133 else
1134 audit_log_format(*ab, "\"%s\"", buf);
1135 audit_log_format(*ab, "\n");
1137 p += to_send;
1138 len_left -= to_send;
1139 *len_sent += arg_num_len;
1140 if (has_cntl)
1141 *len_sent += to_send * 2;
1142 else
1143 *len_sent += to_send;
1145 /* include the null we didn't log */
1146 return len + 1;
1149 static void audit_log_execve_info(struct audit_context *context,
1150 struct audit_buffer **ab,
1151 struct audit_aux_data_execve *axi)
1153 int i;
1154 size_t len, len_sent = 0;
1155 const char __user *p;
1156 char *buf;
1158 if (axi->mm != current->mm)
1159 return; /* execve failed, no additional info */
1161 p = (const char __user *)axi->mm->arg_start;
1163 audit_log_format(*ab, "argc=%d ", axi->argc);
1166 * we need some kernel buffer to hold the userspace args. Just
1167 * allocate one big one rather than allocating one of the right size
1168 * for every single argument inside audit_log_single_execve_arg()
1169 * should be <8k allocation so should be pretty safe.
1171 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1172 if (!buf) {
1173 audit_panic("out of memory for argv string\n");
1174 return;
1177 for (i = 0; i < axi->argc; i++) {
1178 len = audit_log_single_execve_arg(context, ab, i,
1179 &len_sent, p, buf);
1180 if (len <= 0)
1181 break;
1182 p += len;
1184 kfree(buf);
1187 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1189 int i;
1191 audit_log_format(ab, " %s=", prefix);
1192 CAP_FOR_EACH_U32(i) {
1193 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1197 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1199 kernel_cap_t *perm = &name->fcap.permitted;
1200 kernel_cap_t *inh = &name->fcap.inheritable;
1201 int log = 0;
1203 if (!cap_isclear(*perm)) {
1204 audit_log_cap(ab, "cap_fp", perm);
1205 log = 1;
1207 if (!cap_isclear(*inh)) {
1208 audit_log_cap(ab, "cap_fi", inh);
1209 log = 1;
1212 if (log)
1213 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1216 static void show_special(struct audit_context *context, int *call_panic)
1218 struct audit_buffer *ab;
1219 int i;
1221 ab = audit_log_start(context, GFP_KERNEL, context->type);
1222 if (!ab)
1223 return;
1225 switch (context->type) {
1226 case AUDIT_SOCKETCALL: {
1227 int nargs = context->socketcall.nargs;
1228 audit_log_format(ab, "nargs=%d", nargs);
1229 for (i = 0; i < nargs; i++)
1230 audit_log_format(ab, " a%d=%lx", i,
1231 context->socketcall.args[i]);
1232 break; }
1233 case AUDIT_IPC: {
1234 u32 osid = context->ipc.osid;
1236 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1237 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1238 if (osid) {
1239 char *ctx = NULL;
1240 u32 len;
1241 if (security_secid_to_secctx(osid, &ctx, &len)) {
1242 audit_log_format(ab, " osid=%u", osid);
1243 *call_panic = 1;
1244 } else {
1245 audit_log_format(ab, " obj=%s", ctx);
1246 security_release_secctx(ctx, len);
1249 if (context->ipc.has_perm) {
1250 audit_log_end(ab);
1251 ab = audit_log_start(context, GFP_KERNEL,
1252 AUDIT_IPC_SET_PERM);
1253 audit_log_format(ab,
1254 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1255 context->ipc.qbytes,
1256 context->ipc.perm_uid,
1257 context->ipc.perm_gid,
1258 context->ipc.perm_mode);
1259 if (!ab)
1260 return;
1262 break; }
1263 case AUDIT_MQ_OPEN: {
1264 audit_log_format(ab,
1265 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1266 "mq_msgsize=%ld mq_curmsgs=%ld",
1267 context->mq_open.oflag, context->mq_open.mode,
1268 context->mq_open.attr.mq_flags,
1269 context->mq_open.attr.mq_maxmsg,
1270 context->mq_open.attr.mq_msgsize,
1271 context->mq_open.attr.mq_curmsgs);
1272 break; }
1273 case AUDIT_MQ_SENDRECV: {
1274 audit_log_format(ab,
1275 "mqdes=%d msg_len=%zd msg_prio=%u "
1276 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1277 context->mq_sendrecv.mqdes,
1278 context->mq_sendrecv.msg_len,
1279 context->mq_sendrecv.msg_prio,
1280 context->mq_sendrecv.abs_timeout.tv_sec,
1281 context->mq_sendrecv.abs_timeout.tv_nsec);
1282 break; }
1283 case AUDIT_MQ_NOTIFY: {
1284 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1285 context->mq_notify.mqdes,
1286 context->mq_notify.sigev_signo);
1287 break; }
1288 case AUDIT_MQ_GETSETATTR: {
1289 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1290 audit_log_format(ab,
1291 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1292 "mq_curmsgs=%ld ",
1293 context->mq_getsetattr.mqdes,
1294 attr->mq_flags, attr->mq_maxmsg,
1295 attr->mq_msgsize, attr->mq_curmsgs);
1296 break; }
1297 case AUDIT_CAPSET: {
1298 audit_log_format(ab, "pid=%d", context->capset.pid);
1299 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1300 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1301 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1302 break; }
1304 audit_log_end(ab);
1307 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1309 const struct cred *cred;
1310 int i, call_panic = 0;
1311 struct audit_buffer *ab;
1312 struct audit_aux_data *aux;
1313 const char *tty;
1315 /* tsk == current */
1316 context->pid = tsk->pid;
1317 if (!context->ppid)
1318 context->ppid = sys_getppid();
1319 cred = current_cred();
1320 context->uid = cred->uid;
1321 context->gid = cred->gid;
1322 context->euid = cred->euid;
1323 context->suid = cred->suid;
1324 context->fsuid = cred->fsuid;
1325 context->egid = cred->egid;
1326 context->sgid = cred->sgid;
1327 context->fsgid = cred->fsgid;
1328 context->personality = tsk->personality;
1330 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1331 if (!ab)
1332 return; /* audit_panic has been called */
1333 audit_log_format(ab, "arch=%x syscall=%d",
1334 context->arch, context->major);
1335 if (context->personality != PER_LINUX)
1336 audit_log_format(ab, " per=%lx", context->personality);
1337 if (context->return_valid)
1338 audit_log_format(ab, " success=%s exit=%ld",
1339 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1340 context->return_code);
1342 spin_lock_irq(&tsk->sighand->siglock);
1343 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1344 tty = tsk->signal->tty->name;
1345 else
1346 tty = "(none)";
1347 spin_unlock_irq(&tsk->sighand->siglock);
1349 audit_log_format(ab,
1350 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1351 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1352 " euid=%u suid=%u fsuid=%u"
1353 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1354 context->argv[0],
1355 context->argv[1],
1356 context->argv[2],
1357 context->argv[3],
1358 context->name_count,
1359 context->ppid,
1360 context->pid,
1361 tsk->loginuid,
1362 context->uid,
1363 context->gid,
1364 context->euid, context->suid, context->fsuid,
1365 context->egid, context->sgid, context->fsgid, tty,
1366 tsk->sessionid);
1369 audit_log_task_info(ab, tsk);
1370 if (context->filterkey) {
1371 audit_log_format(ab, " key=");
1372 audit_log_untrustedstring(ab, context->filterkey);
1373 } else
1374 audit_log_format(ab, " key=(null)");
1375 audit_log_end(ab);
1377 for (aux = context->aux; aux; aux = aux->next) {
1379 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1380 if (!ab)
1381 continue; /* audit_panic has been called */
1383 switch (aux->type) {
1385 case AUDIT_EXECVE: {
1386 struct audit_aux_data_execve *axi = (void *)aux;
1387 audit_log_execve_info(context, &ab, axi);
1388 break; }
1390 case AUDIT_BPRM_FCAPS: {
1391 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1392 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1393 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1394 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1395 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1396 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1397 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1398 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1399 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1400 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1401 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1402 break; }
1405 audit_log_end(ab);
1408 if (context->type)
1409 show_special(context, &call_panic);
1411 if (context->fds[0] >= 0) {
1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1413 if (ab) {
1414 audit_log_format(ab, "fd0=%d fd1=%d",
1415 context->fds[0], context->fds[1]);
1416 audit_log_end(ab);
1420 if (context->sockaddr_len) {
1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1422 if (ab) {
1423 audit_log_format(ab, "saddr=");
1424 audit_log_n_hex(ab, (void *)context->sockaddr,
1425 context->sockaddr_len);
1426 audit_log_end(ab);
1430 for (aux = context->aux_pids; aux; aux = aux->next) {
1431 struct audit_aux_data_pids *axs = (void *)aux;
1433 for (i = 0; i < axs->pid_count; i++)
1434 if (audit_log_pid_context(context, axs->target_pid[i],
1435 axs->target_auid[i],
1436 axs->target_uid[i],
1437 axs->target_sessionid[i],
1438 axs->target_sid[i],
1439 axs->target_comm[i]))
1440 call_panic = 1;
1443 if (context->target_pid &&
1444 audit_log_pid_context(context, context->target_pid,
1445 context->target_auid, context->target_uid,
1446 context->target_sessionid,
1447 context->target_sid, context->target_comm))
1448 call_panic = 1;
1450 if (context->pwd.dentry && context->pwd.mnt) {
1451 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1452 if (ab) {
1453 audit_log_d_path(ab, "cwd=", &context->pwd);
1454 audit_log_end(ab);
1457 for (i = 0; i < context->name_count; i++) {
1458 struct audit_names *n = &context->names[i];
1460 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1461 if (!ab)
1462 continue; /* audit_panic has been called */
1464 audit_log_format(ab, "item=%d", i);
1466 if (n->name) {
1467 switch(n->name_len) {
1468 case AUDIT_NAME_FULL:
1469 /* log the full path */
1470 audit_log_format(ab, " name=");
1471 audit_log_untrustedstring(ab, n->name);
1472 break;
1473 case 0:
1474 /* name was specified as a relative path and the
1475 * directory component is the cwd */
1476 audit_log_d_path(ab, " name=", &context->pwd);
1477 break;
1478 default:
1479 /* log the name's directory component */
1480 audit_log_format(ab, " name=");
1481 audit_log_n_untrustedstring(ab, n->name,
1482 n->name_len);
1484 } else
1485 audit_log_format(ab, " name=(null)");
1487 if (n->ino != (unsigned long)-1) {
1488 audit_log_format(ab, " inode=%lu"
1489 " dev=%02x:%02x mode=%#o"
1490 " ouid=%u ogid=%u rdev=%02x:%02x",
1491 n->ino,
1492 MAJOR(n->dev),
1493 MINOR(n->dev),
1494 n->mode,
1495 n->uid,
1496 n->gid,
1497 MAJOR(n->rdev),
1498 MINOR(n->rdev));
1500 if (n->osid != 0) {
1501 char *ctx = NULL;
1502 u32 len;
1503 if (security_secid_to_secctx(
1504 n->osid, &ctx, &len)) {
1505 audit_log_format(ab, " osid=%u", n->osid);
1506 call_panic = 2;
1507 } else {
1508 audit_log_format(ab, " obj=%s", ctx);
1509 security_release_secctx(ctx, len);
1513 audit_log_fcaps(ab, n);
1515 audit_log_end(ab);
1518 /* Send end of event record to help user space know we are finished */
1519 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1520 if (ab)
1521 audit_log_end(ab);
1522 if (call_panic)
1523 audit_panic("error converting sid to string");
1527 * audit_free - free a per-task audit context
1528 * @tsk: task whose audit context block to free
1530 * Called from copy_process and do_exit
1532 void audit_free(struct task_struct *tsk)
1534 struct audit_context *context;
1536 context = audit_get_context(tsk, 0, 0);
1537 if (likely(!context))
1538 return;
1540 /* Check for system calls that do not go through the exit
1541 * function (e.g., exit_group), then free context block.
1542 * We use GFP_ATOMIC here because we might be doing this
1543 * in the context of the idle thread */
1544 /* that can happen only if we are called from do_exit() */
1545 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1546 audit_log_exit(context, tsk);
1548 audit_free_context(context);
1552 * audit_syscall_entry - fill in an audit record at syscall entry
1553 * @arch: architecture type
1554 * @major: major syscall type (function)
1555 * @a1: additional syscall register 1
1556 * @a2: additional syscall register 2
1557 * @a3: additional syscall register 3
1558 * @a4: additional syscall register 4
1560 * Fill in audit context at syscall entry. This only happens if the
1561 * audit context was created when the task was created and the state or
1562 * filters demand the audit context be built. If the state from the
1563 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1564 * then the record will be written at syscall exit time (otherwise, it
1565 * will only be written if another part of the kernel requests that it
1566 * be written).
1568 void audit_syscall_entry(int arch, int major,
1569 unsigned long a1, unsigned long a2,
1570 unsigned long a3, unsigned long a4)
1572 struct task_struct *tsk = current;
1573 struct audit_context *context = tsk->audit_context;
1574 enum audit_state state;
1576 if (unlikely(!context))
1577 return;
1580 * This happens only on certain architectures that make system
1581 * calls in kernel_thread via the entry.S interface, instead of
1582 * with direct calls. (If you are porting to a new
1583 * architecture, hitting this condition can indicate that you
1584 * got the _exit/_leave calls backward in entry.S.)
1586 * i386 no
1587 * x86_64 no
1588 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1590 * This also happens with vm86 emulation in a non-nested manner
1591 * (entries without exits), so this case must be caught.
1593 if (context->in_syscall) {
1594 struct audit_context *newctx;
1596 #if AUDIT_DEBUG
1597 printk(KERN_ERR
1598 "audit(:%d) pid=%d in syscall=%d;"
1599 " entering syscall=%d\n",
1600 context->serial, tsk->pid, context->major, major);
1601 #endif
1602 newctx = audit_alloc_context(context->state);
1603 if (newctx) {
1604 newctx->previous = context;
1605 context = newctx;
1606 tsk->audit_context = newctx;
1607 } else {
1608 /* If we can't alloc a new context, the best we
1609 * can do is to leak memory (any pending putname
1610 * will be lost). The only other alternative is
1611 * to abandon auditing. */
1612 audit_zero_context(context, context->state);
1615 BUG_ON(context->in_syscall || context->name_count);
1617 if (!audit_enabled)
1618 return;
1620 context->arch = arch;
1621 context->major = major;
1622 context->argv[0] = a1;
1623 context->argv[1] = a2;
1624 context->argv[2] = a3;
1625 context->argv[3] = a4;
1627 state = context->state;
1628 context->dummy = !audit_n_rules;
1629 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1630 context->prio = 0;
1631 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1633 if (likely(state == AUDIT_DISABLED))
1634 return;
1636 context->serial = 0;
1637 context->ctime = CURRENT_TIME;
1638 context->in_syscall = 1;
1639 context->current_state = state;
1640 context->ppid = 0;
1643 void audit_finish_fork(struct task_struct *child)
1645 struct audit_context *ctx = current->audit_context;
1646 struct audit_context *p = child->audit_context;
1647 if (!p || !ctx)
1648 return;
1649 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1650 return;
1651 p->arch = ctx->arch;
1652 p->major = ctx->major;
1653 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1654 p->ctime = ctx->ctime;
1655 p->dummy = ctx->dummy;
1656 p->in_syscall = ctx->in_syscall;
1657 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1658 p->ppid = current->pid;
1659 p->prio = ctx->prio;
1660 p->current_state = ctx->current_state;
1664 * audit_syscall_exit - deallocate audit context after a system call
1665 * @valid: success/failure flag
1666 * @return_code: syscall return value
1668 * Tear down after system call. If the audit context has been marked as
1669 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1670 * filtering, or because some other part of the kernel write an audit
1671 * message), then write out the syscall information. In call cases,
1672 * free the names stored from getname().
1674 void audit_syscall_exit(int valid, long return_code)
1676 struct task_struct *tsk = current;
1677 struct audit_context *context;
1679 context = audit_get_context(tsk, valid, return_code);
1681 if (likely(!context))
1682 return;
1684 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1685 audit_log_exit(context, tsk);
1687 context->in_syscall = 0;
1688 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1690 if (context->previous) {
1691 struct audit_context *new_context = context->previous;
1692 context->previous = NULL;
1693 audit_free_context(context);
1694 tsk->audit_context = new_context;
1695 } else {
1696 audit_free_names(context);
1697 unroll_tree_refs(context, NULL, 0);
1698 audit_free_aux(context);
1699 context->aux = NULL;
1700 context->aux_pids = NULL;
1701 context->target_pid = 0;
1702 context->target_sid = 0;
1703 context->sockaddr_len = 0;
1704 context->type = 0;
1705 context->fds[0] = -1;
1706 kfree(context->filterkey);
1707 context->filterkey = NULL;
1708 tsk->audit_context = context;
1712 static inline void handle_one(const struct inode *inode)
1714 #ifdef CONFIG_AUDIT_TREE
1715 struct audit_context *context;
1716 struct audit_tree_refs *p;
1717 struct audit_chunk *chunk;
1718 int count;
1719 if (likely(list_empty(&inode->inotify_watches)))
1720 return;
1721 context = current->audit_context;
1722 p = context->trees;
1723 count = context->tree_count;
1724 rcu_read_lock();
1725 chunk = audit_tree_lookup(inode);
1726 rcu_read_unlock();
1727 if (!chunk)
1728 return;
1729 if (likely(put_tree_ref(context, chunk)))
1730 return;
1731 if (unlikely(!grow_tree_refs(context))) {
1732 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1733 audit_set_auditable(context);
1734 audit_put_chunk(chunk);
1735 unroll_tree_refs(context, p, count);
1736 return;
1738 put_tree_ref(context, chunk);
1739 #endif
1742 static void handle_path(const struct dentry *dentry)
1744 #ifdef CONFIG_AUDIT_TREE
1745 struct audit_context *context;
1746 struct audit_tree_refs *p;
1747 const struct dentry *d, *parent;
1748 struct audit_chunk *drop;
1749 unsigned long seq;
1750 int count;
1752 context = current->audit_context;
1753 p = context->trees;
1754 count = context->tree_count;
1755 retry:
1756 drop = NULL;
1757 d = dentry;
1758 rcu_read_lock();
1759 seq = read_seqbegin(&rename_lock);
1760 for(;;) {
1761 struct inode *inode = d->d_inode;
1762 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1763 struct audit_chunk *chunk;
1764 chunk = audit_tree_lookup(inode);
1765 if (chunk) {
1766 if (unlikely(!put_tree_ref(context, chunk))) {
1767 drop = chunk;
1768 break;
1772 parent = d->d_parent;
1773 if (parent == d)
1774 break;
1775 d = parent;
1777 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1778 rcu_read_unlock();
1779 if (!drop) {
1780 /* just a race with rename */
1781 unroll_tree_refs(context, p, count);
1782 goto retry;
1784 audit_put_chunk(drop);
1785 if (grow_tree_refs(context)) {
1786 /* OK, got more space */
1787 unroll_tree_refs(context, p, count);
1788 goto retry;
1790 /* too bad */
1791 printk(KERN_WARNING
1792 "out of memory, audit has lost a tree reference\n");
1793 unroll_tree_refs(context, p, count);
1794 audit_set_auditable(context);
1795 return;
1797 rcu_read_unlock();
1798 #endif
1802 * audit_getname - add a name to the list
1803 * @name: name to add
1805 * Add a name to the list of audit names for this context.
1806 * Called from fs/namei.c:getname().
1808 void __audit_getname(const char *name)
1810 struct audit_context *context = current->audit_context;
1812 if (IS_ERR(name) || !name)
1813 return;
1815 if (!context->in_syscall) {
1816 #if AUDIT_DEBUG == 2
1817 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1818 __FILE__, __LINE__, context->serial, name);
1819 dump_stack();
1820 #endif
1821 return;
1823 BUG_ON(context->name_count >= AUDIT_NAMES);
1824 context->names[context->name_count].name = name;
1825 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1826 context->names[context->name_count].name_put = 1;
1827 context->names[context->name_count].ino = (unsigned long)-1;
1828 context->names[context->name_count].osid = 0;
1829 ++context->name_count;
1830 if (!context->pwd.dentry) {
1831 read_lock(&current->fs->lock);
1832 context->pwd = current->fs->pwd;
1833 path_get(&current->fs->pwd);
1834 read_unlock(&current->fs->lock);
1839 /* audit_putname - intercept a putname request
1840 * @name: name to intercept and delay for putname
1842 * If we have stored the name from getname in the audit context,
1843 * then we delay the putname until syscall exit.
1844 * Called from include/linux/fs.h:putname().
1846 void audit_putname(const char *name)
1848 struct audit_context *context = current->audit_context;
1850 BUG_ON(!context);
1851 if (!context->in_syscall) {
1852 #if AUDIT_DEBUG == 2
1853 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1854 __FILE__, __LINE__, context->serial, name);
1855 if (context->name_count) {
1856 int i;
1857 for (i = 0; i < context->name_count; i++)
1858 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1859 context->names[i].name,
1860 context->names[i].name ?: "(null)");
1862 #endif
1863 __putname(name);
1865 #if AUDIT_DEBUG
1866 else {
1867 ++context->put_count;
1868 if (context->put_count > context->name_count) {
1869 printk(KERN_ERR "%s:%d(:%d): major=%d"
1870 " in_syscall=%d putname(%p) name_count=%d"
1871 " put_count=%d\n",
1872 __FILE__, __LINE__,
1873 context->serial, context->major,
1874 context->in_syscall, name, context->name_count,
1875 context->put_count);
1876 dump_stack();
1879 #endif
1882 static int audit_inc_name_count(struct audit_context *context,
1883 const struct inode *inode)
1885 if (context->name_count >= AUDIT_NAMES) {
1886 if (inode)
1887 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1888 "dev=%02x:%02x, inode=%lu\n",
1889 MAJOR(inode->i_sb->s_dev),
1890 MINOR(inode->i_sb->s_dev),
1891 inode->i_ino);
1893 else
1894 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1895 return 1;
1897 context->name_count++;
1898 #if AUDIT_DEBUG
1899 context->ino_count++;
1900 #endif
1901 return 0;
1905 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1907 struct cpu_vfs_cap_data caps;
1908 int rc;
1910 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1911 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1912 name->fcap.fE = 0;
1913 name->fcap_ver = 0;
1915 if (!dentry)
1916 return 0;
1918 rc = get_vfs_caps_from_disk(dentry, &caps);
1919 if (rc)
1920 return rc;
1922 name->fcap.permitted = caps.permitted;
1923 name->fcap.inheritable = caps.inheritable;
1924 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1925 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1927 return 0;
1931 /* Copy inode data into an audit_names. */
1932 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1933 const struct inode *inode)
1935 name->ino = inode->i_ino;
1936 name->dev = inode->i_sb->s_dev;
1937 name->mode = inode->i_mode;
1938 name->uid = inode->i_uid;
1939 name->gid = inode->i_gid;
1940 name->rdev = inode->i_rdev;
1941 security_inode_getsecid(inode, &name->osid);
1942 audit_copy_fcaps(name, dentry);
1946 * audit_inode - store the inode and device from a lookup
1947 * @name: name being audited
1948 * @dentry: dentry being audited
1950 * Called from fs/namei.c:path_lookup().
1952 void __audit_inode(const char *name, const struct dentry *dentry)
1954 int idx;
1955 struct audit_context *context = current->audit_context;
1956 const struct inode *inode = dentry->d_inode;
1958 if (!context->in_syscall)
1959 return;
1960 if (context->name_count
1961 && context->names[context->name_count-1].name
1962 && context->names[context->name_count-1].name == name)
1963 idx = context->name_count - 1;
1964 else if (context->name_count > 1
1965 && context->names[context->name_count-2].name
1966 && context->names[context->name_count-2].name == name)
1967 idx = context->name_count - 2;
1968 else {
1969 /* FIXME: how much do we care about inodes that have no
1970 * associated name? */
1971 if (audit_inc_name_count(context, inode))
1972 return;
1973 idx = context->name_count - 1;
1974 context->names[idx].name = NULL;
1976 handle_path(dentry);
1977 audit_copy_inode(&context->names[idx], dentry, inode);
1981 * audit_inode_child - collect inode info for created/removed objects
1982 * @dname: inode's dentry name
1983 * @dentry: dentry being audited
1984 * @parent: inode of dentry parent
1986 * For syscalls that create or remove filesystem objects, audit_inode
1987 * can only collect information for the filesystem object's parent.
1988 * This call updates the audit context with the child's information.
1989 * Syscalls that create a new filesystem object must be hooked after
1990 * the object is created. Syscalls that remove a filesystem object
1991 * must be hooked prior, in order to capture the target inode during
1992 * unsuccessful attempts.
1994 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1995 const struct inode *parent)
1997 int idx;
1998 struct audit_context *context = current->audit_context;
1999 const char *found_parent = NULL, *found_child = NULL;
2000 const struct inode *inode = dentry->d_inode;
2001 int dirlen = 0;
2003 if (!context->in_syscall)
2004 return;
2006 if (inode)
2007 handle_one(inode);
2008 /* determine matching parent */
2009 if (!dname)
2010 goto add_names;
2012 /* parent is more likely, look for it first */
2013 for (idx = 0; idx < context->name_count; idx++) {
2014 struct audit_names *n = &context->names[idx];
2016 if (!n->name)
2017 continue;
2019 if (n->ino == parent->i_ino &&
2020 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2021 n->name_len = dirlen; /* update parent data in place */
2022 found_parent = n->name;
2023 goto add_names;
2027 /* no matching parent, look for matching child */
2028 for (idx = 0; idx < context->name_count; idx++) {
2029 struct audit_names *n = &context->names[idx];
2031 if (!n->name)
2032 continue;
2034 /* strcmp() is the more likely scenario */
2035 if (!strcmp(dname, n->name) ||
2036 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2037 if (inode)
2038 audit_copy_inode(n, NULL, inode);
2039 else
2040 n->ino = (unsigned long)-1;
2041 found_child = n->name;
2042 goto add_names;
2046 add_names:
2047 if (!found_parent) {
2048 if (audit_inc_name_count(context, parent))
2049 return;
2050 idx = context->name_count - 1;
2051 context->names[idx].name = NULL;
2052 audit_copy_inode(&context->names[idx], NULL, parent);
2055 if (!found_child) {
2056 if (audit_inc_name_count(context, inode))
2057 return;
2058 idx = context->name_count - 1;
2060 /* Re-use the name belonging to the slot for a matching parent
2061 * directory. All names for this context are relinquished in
2062 * audit_free_names() */
2063 if (found_parent) {
2064 context->names[idx].name = found_parent;
2065 context->names[idx].name_len = AUDIT_NAME_FULL;
2066 /* don't call __putname() */
2067 context->names[idx].name_put = 0;
2068 } else {
2069 context->names[idx].name = NULL;
2072 if (inode)
2073 audit_copy_inode(&context->names[idx], NULL, inode);
2074 else
2075 context->names[idx].ino = (unsigned long)-1;
2078 EXPORT_SYMBOL_GPL(__audit_inode_child);
2081 * auditsc_get_stamp - get local copies of audit_context values
2082 * @ctx: audit_context for the task
2083 * @t: timespec to store time recorded in the audit_context
2084 * @serial: serial value that is recorded in the audit_context
2086 * Also sets the context as auditable.
2088 int auditsc_get_stamp(struct audit_context *ctx,
2089 struct timespec *t, unsigned int *serial)
2091 if (!ctx->in_syscall)
2092 return 0;
2093 if (!ctx->serial)
2094 ctx->serial = audit_serial();
2095 t->tv_sec = ctx->ctime.tv_sec;
2096 t->tv_nsec = ctx->ctime.tv_nsec;
2097 *serial = ctx->serial;
2098 if (!ctx->prio) {
2099 ctx->prio = 1;
2100 ctx->current_state = AUDIT_RECORD_CONTEXT;
2102 return 1;
2105 /* global counter which is incremented every time something logs in */
2106 static atomic_t session_id = ATOMIC_INIT(0);
2109 * audit_set_loginuid - set a task's audit_context loginuid
2110 * @task: task whose audit context is being modified
2111 * @loginuid: loginuid value
2113 * Returns 0.
2115 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2117 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2119 unsigned int sessionid = atomic_inc_return(&session_id);
2120 struct audit_context *context = task->audit_context;
2122 if (context && context->in_syscall) {
2123 struct audit_buffer *ab;
2125 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2126 if (ab) {
2127 audit_log_format(ab, "login pid=%d uid=%u "
2128 "old auid=%u new auid=%u"
2129 " old ses=%u new ses=%u",
2130 task->pid, task_uid(task),
2131 task->loginuid, loginuid,
2132 task->sessionid, sessionid);
2133 audit_log_end(ab);
2136 task->sessionid = sessionid;
2137 task->loginuid = loginuid;
2138 return 0;
2142 * __audit_mq_open - record audit data for a POSIX MQ open
2143 * @oflag: open flag
2144 * @mode: mode bits
2145 * @u_attr: queue attributes
2148 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2150 struct audit_context *context = current->audit_context;
2152 if (attr)
2153 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2154 else
2155 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2157 context->mq_open.oflag = oflag;
2158 context->mq_open.mode = mode;
2160 context->type = AUDIT_MQ_OPEN;
2164 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2165 * @mqdes: MQ descriptor
2166 * @msg_len: Message length
2167 * @msg_prio: Message priority
2168 * @abs_timeout: Message timeout in absolute time
2171 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2172 const struct timespec *abs_timeout)
2174 struct audit_context *context = current->audit_context;
2175 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2177 if (abs_timeout)
2178 memcpy(p, abs_timeout, sizeof(struct timespec));
2179 else
2180 memset(p, 0, sizeof(struct timespec));
2182 context->mq_sendrecv.mqdes = mqdes;
2183 context->mq_sendrecv.msg_len = msg_len;
2184 context->mq_sendrecv.msg_prio = msg_prio;
2186 context->type = AUDIT_MQ_SENDRECV;
2190 * __audit_mq_notify - record audit data for a POSIX MQ notify
2191 * @mqdes: MQ descriptor
2192 * @u_notification: Notification event
2196 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2198 struct audit_context *context = current->audit_context;
2200 if (notification)
2201 context->mq_notify.sigev_signo = notification->sigev_signo;
2202 else
2203 context->mq_notify.sigev_signo = 0;
2205 context->mq_notify.mqdes = mqdes;
2206 context->type = AUDIT_MQ_NOTIFY;
2210 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2211 * @mqdes: MQ descriptor
2212 * @mqstat: MQ flags
2215 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2217 struct audit_context *context = current->audit_context;
2218 context->mq_getsetattr.mqdes = mqdes;
2219 context->mq_getsetattr.mqstat = *mqstat;
2220 context->type = AUDIT_MQ_GETSETATTR;
2224 * audit_ipc_obj - record audit data for ipc object
2225 * @ipcp: ipc permissions
2228 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2230 struct audit_context *context = current->audit_context;
2231 context->ipc.uid = ipcp->uid;
2232 context->ipc.gid = ipcp->gid;
2233 context->ipc.mode = ipcp->mode;
2234 context->ipc.has_perm = 0;
2235 security_ipc_getsecid(ipcp, &context->ipc.osid);
2236 context->type = AUDIT_IPC;
2240 * audit_ipc_set_perm - record audit data for new ipc permissions
2241 * @qbytes: msgq bytes
2242 * @uid: msgq user id
2243 * @gid: msgq group id
2244 * @mode: msgq mode (permissions)
2246 * Called only after audit_ipc_obj().
2248 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2250 struct audit_context *context = current->audit_context;
2252 context->ipc.qbytes = qbytes;
2253 context->ipc.perm_uid = uid;
2254 context->ipc.perm_gid = gid;
2255 context->ipc.perm_mode = mode;
2256 context->ipc.has_perm = 1;
2259 int audit_bprm(struct linux_binprm *bprm)
2261 struct audit_aux_data_execve *ax;
2262 struct audit_context *context = current->audit_context;
2264 if (likely(!audit_enabled || !context || context->dummy))
2265 return 0;
2267 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2268 if (!ax)
2269 return -ENOMEM;
2271 ax->argc = bprm->argc;
2272 ax->envc = bprm->envc;
2273 ax->mm = bprm->mm;
2274 ax->d.type = AUDIT_EXECVE;
2275 ax->d.next = context->aux;
2276 context->aux = (void *)ax;
2277 return 0;
2282 * audit_socketcall - record audit data for sys_socketcall
2283 * @nargs: number of args
2284 * @args: args array
2287 void audit_socketcall(int nargs, unsigned long *args)
2289 struct audit_context *context = current->audit_context;
2291 if (likely(!context || context->dummy))
2292 return;
2294 context->type = AUDIT_SOCKETCALL;
2295 context->socketcall.nargs = nargs;
2296 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2300 * __audit_fd_pair - record audit data for pipe and socketpair
2301 * @fd1: the first file descriptor
2302 * @fd2: the second file descriptor
2305 void __audit_fd_pair(int fd1, int fd2)
2307 struct audit_context *context = current->audit_context;
2308 context->fds[0] = fd1;
2309 context->fds[1] = fd2;
2313 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2314 * @len: data length in user space
2315 * @a: data address in kernel space
2317 * Returns 0 for success or NULL context or < 0 on error.
2319 int audit_sockaddr(int len, void *a)
2321 struct audit_context *context = current->audit_context;
2323 if (likely(!context || context->dummy))
2324 return 0;
2326 if (!context->sockaddr) {
2327 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2328 if (!p)
2329 return -ENOMEM;
2330 context->sockaddr = p;
2333 context->sockaddr_len = len;
2334 memcpy(context->sockaddr, a, len);
2335 return 0;
2338 void __audit_ptrace(struct task_struct *t)
2340 struct audit_context *context = current->audit_context;
2342 context->target_pid = t->pid;
2343 context->target_auid = audit_get_loginuid(t);
2344 context->target_uid = task_uid(t);
2345 context->target_sessionid = audit_get_sessionid(t);
2346 security_task_getsecid(t, &context->target_sid);
2347 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2351 * audit_signal_info - record signal info for shutting down audit subsystem
2352 * @sig: signal value
2353 * @t: task being signaled
2355 * If the audit subsystem is being terminated, record the task (pid)
2356 * and uid that is doing that.
2358 int __audit_signal_info(int sig, struct task_struct *t)
2360 struct audit_aux_data_pids *axp;
2361 struct task_struct *tsk = current;
2362 struct audit_context *ctx = tsk->audit_context;
2363 uid_t uid = current_uid(), t_uid = task_uid(t);
2365 if (audit_pid && t->tgid == audit_pid) {
2366 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2367 audit_sig_pid = tsk->pid;
2368 if (tsk->loginuid != -1)
2369 audit_sig_uid = tsk->loginuid;
2370 else
2371 audit_sig_uid = uid;
2372 security_task_getsecid(tsk, &audit_sig_sid);
2374 if (!audit_signals || audit_dummy_context())
2375 return 0;
2378 /* optimize the common case by putting first signal recipient directly
2379 * in audit_context */
2380 if (!ctx->target_pid) {
2381 ctx->target_pid = t->tgid;
2382 ctx->target_auid = audit_get_loginuid(t);
2383 ctx->target_uid = t_uid;
2384 ctx->target_sessionid = audit_get_sessionid(t);
2385 security_task_getsecid(t, &ctx->target_sid);
2386 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2387 return 0;
2390 axp = (void *)ctx->aux_pids;
2391 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2392 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2393 if (!axp)
2394 return -ENOMEM;
2396 axp->d.type = AUDIT_OBJ_PID;
2397 axp->d.next = ctx->aux_pids;
2398 ctx->aux_pids = (void *)axp;
2400 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2402 axp->target_pid[axp->pid_count] = t->tgid;
2403 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2404 axp->target_uid[axp->pid_count] = t_uid;
2405 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2406 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2407 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2408 axp->pid_count++;
2410 return 0;
2414 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2415 * @bprm: pointer to the bprm being processed
2416 * @new: the proposed new credentials
2417 * @old: the old credentials
2419 * Simply check if the proc already has the caps given by the file and if not
2420 * store the priv escalation info for later auditing at the end of the syscall
2422 * -Eric
2424 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2425 const struct cred *new, const struct cred *old)
2427 struct audit_aux_data_bprm_fcaps *ax;
2428 struct audit_context *context = current->audit_context;
2429 struct cpu_vfs_cap_data vcaps;
2430 struct dentry *dentry;
2432 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2433 if (!ax)
2434 return -ENOMEM;
2436 ax->d.type = AUDIT_BPRM_FCAPS;
2437 ax->d.next = context->aux;
2438 context->aux = (void *)ax;
2440 dentry = dget(bprm->file->f_dentry);
2441 get_vfs_caps_from_disk(dentry, &vcaps);
2442 dput(dentry);
2444 ax->fcap.permitted = vcaps.permitted;
2445 ax->fcap.inheritable = vcaps.inheritable;
2446 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2447 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2449 ax->old_pcap.permitted = old->cap_permitted;
2450 ax->old_pcap.inheritable = old->cap_inheritable;
2451 ax->old_pcap.effective = old->cap_effective;
2453 ax->new_pcap.permitted = new->cap_permitted;
2454 ax->new_pcap.inheritable = new->cap_inheritable;
2455 ax->new_pcap.effective = new->cap_effective;
2456 return 0;
2460 * __audit_log_capset - store information about the arguments to the capset syscall
2461 * @pid: target pid of the capset call
2462 * @new: the new credentials
2463 * @old: the old (current) credentials
2465 * Record the aguments userspace sent to sys_capset for later printing by the
2466 * audit system if applicable
2468 void __audit_log_capset(pid_t pid,
2469 const struct cred *new, const struct cred *old)
2471 struct audit_context *context = current->audit_context;
2472 context->capset.pid = pid;
2473 context->capset.cap.effective = new->cap_effective;
2474 context->capset.cap.inheritable = new->cap_effective;
2475 context->capset.cap.permitted = new->cap_permitted;
2476 context->type = AUDIT_CAPSET;
2480 * audit_core_dumps - record information about processes that end abnormally
2481 * @signr: signal value
2483 * If a process ends with a core dump, something fishy is going on and we
2484 * should record the event for investigation.
2486 void audit_core_dumps(long signr)
2488 struct audit_buffer *ab;
2489 u32 sid;
2490 uid_t auid = audit_get_loginuid(current), uid;
2491 gid_t gid;
2492 unsigned int sessionid = audit_get_sessionid(current);
2494 if (!audit_enabled)
2495 return;
2497 if (signr == SIGQUIT) /* don't care for those */
2498 return;
2500 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2501 current_uid_gid(&uid, &gid);
2502 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2503 auid, uid, gid, sessionid);
2504 security_task_getsecid(current, &sid);
2505 if (sid) {
2506 char *ctx = NULL;
2507 u32 len;
2509 if (security_secid_to_secctx(sid, &ctx, &len))
2510 audit_log_format(ab, " ssid=%u", sid);
2511 else {
2512 audit_log_format(ab, " subj=%s", ctx);
2513 security_release_secctx(ctx, len);
2516 audit_log_format(ab, " pid=%d comm=", current->pid);
2517 audit_log_untrustedstring(ab, current->comm);
2518 audit_log_format(ab, " sig=%ld", signr);
2519 audit_log_end(ab);