rt2x00: Don't switch to antenna with low rssi
[linux-2.6/verdex.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob7294c75272d09d3f8c3d4da90e99c26475779190
1 /*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
34 * Ring handler.
36 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
37 const unsigned int queue)
39 int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
42 * Check if we are requesting a reqular TX ring,
43 * or if we are requesting a Beacon or Atim ring.
44 * For Atim rings, we should check if it is supported.
46 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
47 return &rt2x00dev->tx[queue];
49 if (!rt2x00dev->bcn || !beacon)
50 return NULL;
52 if (queue == IEEE80211_TX_QUEUE_BEACON)
53 return &rt2x00dev->bcn[0];
54 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
55 return &rt2x00dev->bcn[1];
57 return NULL;
59 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
62 * Link tuning handlers
64 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
66 rt2x00dev->link.count = 0;
67 rt2x00dev->link.vgc_level = 0;
69 memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
72 * The RX and TX percentage should start at 50%
73 * this will assure we will get at least get some
74 * decent value when the link tuner starts.
75 * The value will be dropped and overwritten with
76 * the correct (measured )value anyway during the
77 * first run of the link tuner.
79 rt2x00dev->link.qual.rx_percentage = 50;
80 rt2x00dev->link.qual.tx_percentage = 50;
83 * Reset the link tuner.
85 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
87 queue_delayed_work(rt2x00dev->hw->workqueue,
88 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
91 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
93 cancel_delayed_work_sync(&rt2x00dev->link.work);
96 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
98 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
99 return;
101 rt2x00lib_stop_link_tuner(rt2x00dev);
102 rt2x00lib_start_link_tuner(rt2x00dev);
106 * Ring initialization
108 static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev)
110 struct data_ring *ring = rt2x00dev->rx;
111 unsigned int i;
113 if (!rt2x00dev->ops->lib->init_rxentry)
114 return;
116 if (ring->data_addr)
117 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
119 for (i = 0; i < ring->stats.limit; i++)
120 rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]);
122 rt2x00_ring_index_clear(ring);
125 static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev)
127 struct data_ring *ring;
128 unsigned int i;
130 if (!rt2x00dev->ops->lib->init_txentry)
131 return;
133 txringall_for_each(rt2x00dev, ring) {
134 if (ring->data_addr)
135 memset(ring->data_addr, 0, rt2x00_get_ring_size(ring));
137 for (i = 0; i < ring->stats.limit; i++)
138 rt2x00dev->ops->lib->init_txentry(rt2x00dev,
139 &ring->entry[i]);
141 rt2x00_ring_index_clear(ring);
146 * Radio control handlers.
148 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
150 int status;
153 * Don't enable the radio twice.
154 * And check if the hardware button has been disabled.
156 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
157 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
158 return 0;
161 * Initialize all data rings.
163 rt2x00lib_init_rxrings(rt2x00dev);
164 rt2x00lib_init_txrings(rt2x00dev);
167 * Enable radio.
169 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
170 STATE_RADIO_ON);
171 if (status)
172 return status;
174 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
177 * Enable RX.
179 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
182 * Start the TX queues.
184 ieee80211_start_queues(rt2x00dev->hw);
186 return 0;
189 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
191 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
192 return;
195 * Stop all scheduled work.
197 if (work_pending(&rt2x00dev->beacon_work))
198 cancel_work_sync(&rt2x00dev->beacon_work);
199 if (work_pending(&rt2x00dev->filter_work))
200 cancel_work_sync(&rt2x00dev->filter_work);
201 if (work_pending(&rt2x00dev->config_work))
202 cancel_work_sync(&rt2x00dev->config_work);
205 * Stop the TX queues.
207 ieee80211_stop_queues(rt2x00dev->hw);
210 * Disable RX.
212 rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
215 * Disable radio.
217 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
220 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
223 * When we are disabling the RX, we should also stop the link tuner.
225 if (state == STATE_RADIO_RX_OFF)
226 rt2x00lib_stop_link_tuner(rt2x00dev);
228 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
231 * When we are enabling the RX, we should also start the link tuner.
233 if (state == STATE_RADIO_RX_ON &&
234 is_interface_present(&rt2x00dev->interface))
235 rt2x00lib_start_link_tuner(rt2x00dev);
238 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
240 enum antenna rx = rt2x00dev->link.ant.active.rx;
241 enum antenna tx = rt2x00dev->link.ant.active.tx;
242 int sample_a =
243 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
244 int sample_b =
245 rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
248 * We are done sampling. Now we should evaluate the results.
250 rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
253 * During the last period we have sampled the RSSI
254 * from both antenna's. It now is time to determine
255 * which antenna demonstrated the best performance.
256 * When we are already on the antenna with the best
257 * performance, then there really is nothing for us
258 * left to do.
260 if (sample_a == sample_b)
261 return;
263 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
264 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
266 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
267 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
269 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
272 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
274 enum antenna rx = rt2x00dev->link.ant.active.rx;
275 enum antenna tx = rt2x00dev->link.ant.active.tx;
276 int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
277 int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
280 * Legacy driver indicates that we should swap antenna's
281 * when the difference in RSSI is greater that 5. This
282 * also should be done when the RSSI was actually better
283 * then the previous sample.
284 * When the difference exceeds the threshold we should
285 * sample the rssi from the other antenna to make a valid
286 * comparison between the 2 antennas.
288 if (abs(rssi_curr - rssi_old) < 5)
289 return;
291 rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
293 if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
294 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
296 if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
297 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
299 rt2x00lib_config_antenna(rt2x00dev, rx, tx);
302 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
305 * Determine if software diversity is enabled for
306 * either the TX or RX antenna (or both).
307 * Always perform this check since within the link
308 * tuner interval the configuration might have changed.
310 rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
311 rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
313 if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
314 rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
315 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
316 if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
317 rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
318 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
320 if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
321 !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
322 rt2x00dev->link.ant.flags = 0;
323 return;
327 * If we have only sampled the data over the last period
328 * we should now harvest the data. Otherwise just evaluate
329 * the data. The latter should only be performed once
330 * every 2 seconds.
332 if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
333 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
334 else if (rt2x00dev->link.count & 1)
335 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
338 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
340 int avg_rssi = rssi;
343 * Update global RSSI
345 if (link->qual.avg_rssi)
346 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
347 link->qual.avg_rssi = avg_rssi;
350 * Update antenna RSSI
352 if (link->ant.rssi_ant)
353 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
354 link->ant.rssi_ant = rssi;
357 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
359 if (qual->rx_failed || qual->rx_success)
360 qual->rx_percentage =
361 (qual->rx_success * 100) /
362 (qual->rx_failed + qual->rx_success);
363 else
364 qual->rx_percentage = 50;
366 if (qual->tx_failed || qual->tx_success)
367 qual->tx_percentage =
368 (qual->tx_success * 100) /
369 (qual->tx_failed + qual->tx_success);
370 else
371 qual->tx_percentage = 50;
373 qual->rx_success = 0;
374 qual->rx_failed = 0;
375 qual->tx_success = 0;
376 qual->tx_failed = 0;
379 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
380 int rssi)
382 int rssi_percentage = 0;
383 int signal;
386 * We need a positive value for the RSSI.
388 if (rssi < 0)
389 rssi += rt2x00dev->rssi_offset;
392 * Calculate the different percentages,
393 * which will be used for the signal.
395 if (rt2x00dev->rssi_offset)
396 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
399 * Add the individual percentages and use the WEIGHT
400 * defines to calculate the current link signal.
402 signal = ((WEIGHT_RSSI * rssi_percentage) +
403 (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
404 (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
406 return (signal > 100) ? 100 : signal;
409 static void rt2x00lib_link_tuner(struct work_struct *work)
411 struct rt2x00_dev *rt2x00dev =
412 container_of(work, struct rt2x00_dev, link.work.work);
415 * When the radio is shutting down we should
416 * immediately cease all link tuning.
418 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
419 return;
422 * Update statistics.
424 rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
425 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
426 rt2x00dev->link.qual.rx_failed;
429 * Only perform the link tuning when Link tuning
430 * has been enabled (This could have been disabled from the EEPROM).
432 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
433 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
436 * Evaluate antenna setup.
438 rt2x00lib_evaluate_antenna(rt2x00dev);
441 * Precalculate a portion of the link signal which is
442 * in based on the tx/rx success/failure counters.
444 rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
447 * Increase tuner counter, and reschedule the next link tuner run.
449 rt2x00dev->link.count++;
450 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
451 LINK_TUNE_INTERVAL);
454 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
456 struct rt2x00_dev *rt2x00dev =
457 container_of(work, struct rt2x00_dev, filter_work);
458 unsigned int filter = rt2x00dev->packet_filter;
461 * Since we had stored the filter inside interface.filter,
462 * we should now clear that field. Otherwise the driver will
463 * assume nothing has changed (*total_flags will be compared
464 * to interface.filter to determine if any action is required).
466 rt2x00dev->packet_filter = 0;
468 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
469 filter, &filter, 0, NULL);
472 static void rt2x00lib_configuration_scheduled(struct work_struct *work)
474 struct rt2x00_dev *rt2x00dev =
475 container_of(work, struct rt2x00_dev, config_work);
476 struct ieee80211_bss_conf bss_conf;
478 bss_conf.use_short_preamble =
479 test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags);
482 * FIXME: shouldn't invoke it this way because all other contents
483 * of bss_conf is invalid.
485 rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id,
486 &bss_conf, BSS_CHANGED_ERP_PREAMBLE);
490 * Interrupt context handlers.
492 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
494 struct rt2x00_dev *rt2x00dev =
495 container_of(work, struct rt2x00_dev, beacon_work);
496 struct data_ring *ring =
497 rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
498 struct data_entry *entry = rt2x00_get_data_entry(ring);
499 struct sk_buff *skb;
501 skb = ieee80211_beacon_get(rt2x00dev->hw,
502 rt2x00dev->interface.id,
503 &entry->tx_status.control);
504 if (!skb)
505 return;
507 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
508 &entry->tx_status.control);
510 dev_kfree_skb(skb);
513 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
515 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
516 return;
518 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
520 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
522 void rt2x00lib_txdone(struct data_entry *entry,
523 const int status, const int retry)
525 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
526 struct ieee80211_tx_status *tx_status = &entry->tx_status;
527 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
528 int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
529 int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
530 status == TX_FAIL_OTHER);
533 * Update TX statistics.
535 tx_status->flags = 0;
536 tx_status->ack_signal = 0;
537 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
538 tx_status->retry_count = retry;
539 rt2x00dev->link.qual.tx_success += success;
540 rt2x00dev->link.qual.tx_failed += retry + fail;
542 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
543 if (success)
544 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
545 else
546 stats->dot11ACKFailureCount++;
549 tx_status->queue_length = entry->ring->stats.limit;
550 tx_status->queue_number = tx_status->control.queue;
552 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
553 if (success)
554 stats->dot11RTSSuccessCount++;
555 else
556 stats->dot11RTSFailureCount++;
560 * Send the tx_status to mac80211 & debugfs.
561 * mac80211 will clean up the skb structure.
563 get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE;
564 rt2x00debug_dump_frame(rt2x00dev, entry->skb);
565 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
566 entry->skb = NULL;
568 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
570 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
571 struct rxdata_entry_desc *desc)
573 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
574 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
575 struct ieee80211_hw_mode *mode;
576 struct ieee80211_rate *rate;
577 struct ieee80211_hdr *hdr;
578 unsigned int i;
579 int val = 0;
580 u16 fc;
583 * Update RX statistics.
585 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
586 for (i = 0; i < mode->num_rates; i++) {
587 rate = &mode->rates[i];
590 * When frame was received with an OFDM bitrate,
591 * the signal is the PLCP value. If it was received with
592 * a CCK bitrate the signal is the rate in 0.5kbit/s.
594 if (!desc->ofdm)
595 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
596 else
597 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
599 if (val == desc->signal) {
600 val = rate->val;
601 break;
606 * Only update link status if this is a beacon frame carrying our bssid.
608 hdr = (struct ieee80211_hdr*)skb->data;
609 fc = le16_to_cpu(hdr->frame_control);
610 if (is_beacon(fc) && desc->my_bss)
611 rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi);
613 rt2x00dev->link.qual.rx_success++;
615 rx_status->rate = val;
616 rx_status->signal =
617 rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
618 rx_status->ssi = desc->rssi;
619 rx_status->flag = desc->flags;
620 rx_status->antenna = rt2x00dev->link.ant.active.rx;
623 * Send frame to mac80211 & debugfs
625 get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE;
626 rt2x00debug_dump_frame(rt2x00dev, skb);
627 ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
629 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
632 * TX descriptor initializer
634 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
635 struct sk_buff *skb,
636 struct ieee80211_tx_control *control)
638 struct txdata_entry_desc desc;
639 struct skb_desc *skbdesc = get_skb_desc(skb);
640 struct ieee80211_hdr *ieee80211hdr = skbdesc->data;
641 int tx_rate;
642 int bitrate;
643 int length;
644 int duration;
645 int residual;
646 u16 frame_control;
647 u16 seq_ctrl;
649 memset(&desc, 0, sizeof(desc));
651 desc.cw_min = skbdesc->ring->tx_params.cw_min;
652 desc.cw_max = skbdesc->ring->tx_params.cw_max;
653 desc.aifs = skbdesc->ring->tx_params.aifs;
656 * Identify queue
658 if (control->queue < rt2x00dev->hw->queues)
659 desc.queue = control->queue;
660 else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
661 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
662 desc.queue = QUEUE_MGMT;
663 else
664 desc.queue = QUEUE_OTHER;
667 * Read required fields from ieee80211 header.
669 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
670 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
672 tx_rate = control->tx_rate;
675 * Check whether this frame is to be acked
677 if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
678 __set_bit(ENTRY_TXD_ACK, &desc.flags);
681 * Check if this is a RTS/CTS frame
683 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
684 __set_bit(ENTRY_TXD_BURST, &desc.flags);
685 if (is_rts_frame(frame_control)) {
686 __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
687 __set_bit(ENTRY_TXD_ACK, &desc.flags);
688 } else
689 __clear_bit(ENTRY_TXD_ACK, &desc.flags);
690 if (control->rts_cts_rate)
691 tx_rate = control->rts_cts_rate;
695 * Check for OFDM
697 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
698 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
701 * Check if more fragments are pending
703 if (ieee80211_get_morefrag(ieee80211hdr)) {
704 __set_bit(ENTRY_TXD_BURST, &desc.flags);
705 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
709 * Beacons and probe responses require the tsf timestamp
710 * to be inserted into the frame.
712 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
713 is_probe_resp(frame_control))
714 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
717 * Determine with what IFS priority this frame should be send.
718 * Set ifs to IFS_SIFS when the this is not the first fragment,
719 * or this fragment came after RTS/CTS.
721 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
722 test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
723 desc.ifs = IFS_SIFS;
724 else
725 desc.ifs = IFS_BACKOFF;
728 * PLCP setup
729 * Length calculation depends on OFDM/CCK rate.
731 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
732 desc.service = 0x04;
734 length = skbdesc->data_len + FCS_LEN;
735 if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
736 desc.length_high = (length >> 6) & 0x3f;
737 desc.length_low = length & 0x3f;
738 } else {
739 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
742 * Convert length to microseconds.
744 residual = get_duration_res(length, bitrate);
745 duration = get_duration(length, bitrate);
747 if (residual != 0) {
748 duration++;
751 * Check if we need to set the Length Extension
753 if (bitrate == 110 && residual <= 30)
754 desc.service |= 0x80;
757 desc.length_high = (duration >> 8) & 0xff;
758 desc.length_low = duration & 0xff;
761 * When preamble is enabled we should set the
762 * preamble bit for the signal.
764 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
765 desc.signal |= 0x08;
768 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control);
771 * Update ring entry.
773 skbdesc->entry->skb = skb;
774 memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control));
777 * The frame has been completely initialized and ready
778 * for sending to the device. The caller will push the
779 * frame to the device, but we are going to push the
780 * frame to debugfs here.
782 skbdesc->frame_type = DUMP_FRAME_TX;
783 rt2x00debug_dump_frame(rt2x00dev, skb);
785 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
788 * Driver initialization handlers.
790 static void rt2x00lib_channel(struct ieee80211_channel *entry,
791 const int channel, const int tx_power,
792 const int value)
794 entry->chan = channel;
795 if (channel <= 14)
796 entry->freq = 2407 + (5 * channel);
797 else
798 entry->freq = 5000 + (5 * channel);
799 entry->val = value;
800 entry->flag =
801 IEEE80211_CHAN_W_IBSS |
802 IEEE80211_CHAN_W_ACTIVE_SCAN |
803 IEEE80211_CHAN_W_SCAN;
804 entry->power_level = tx_power;
805 entry->antenna_max = 0xff;
808 static void rt2x00lib_rate(struct ieee80211_rate *entry,
809 const int rate, const int mask,
810 const int plcp, const int flags)
812 entry->rate = rate;
813 entry->val =
814 DEVICE_SET_RATE_FIELD(rate, RATE) |
815 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
816 DEVICE_SET_RATE_FIELD(plcp, PLCP);
817 entry->flags = flags;
818 entry->val2 = entry->val;
819 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
820 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
821 entry->min_rssi_ack = 0;
822 entry->min_rssi_ack_delta = 0;
825 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
826 struct hw_mode_spec *spec)
828 struct ieee80211_hw *hw = rt2x00dev->hw;
829 struct ieee80211_hw_mode *hwmodes;
830 struct ieee80211_channel *channels;
831 struct ieee80211_rate *rates;
832 unsigned int i;
833 unsigned char tx_power;
835 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
836 if (!hwmodes)
837 goto exit;
839 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
840 if (!channels)
841 goto exit_free_modes;
843 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
844 if (!rates)
845 goto exit_free_channels;
848 * Initialize Rate list.
850 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
851 0x00, IEEE80211_RATE_CCK);
852 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
853 0x01, IEEE80211_RATE_CCK_2);
854 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
855 0x02, IEEE80211_RATE_CCK_2);
856 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
857 0x03, IEEE80211_RATE_CCK_2);
859 if (spec->num_rates > 4) {
860 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
861 0x0b, IEEE80211_RATE_OFDM);
862 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
863 0x0f, IEEE80211_RATE_OFDM);
864 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
865 0x0a, IEEE80211_RATE_OFDM);
866 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
867 0x0e, IEEE80211_RATE_OFDM);
868 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
869 0x09, IEEE80211_RATE_OFDM);
870 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
871 0x0d, IEEE80211_RATE_OFDM);
872 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
873 0x08, IEEE80211_RATE_OFDM);
874 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
875 0x0c, IEEE80211_RATE_OFDM);
879 * Initialize Channel list.
881 for (i = 0; i < spec->num_channels; i++) {
882 if (spec->channels[i].channel <= 14)
883 tx_power = spec->tx_power_bg[i];
884 else if (spec->tx_power_a)
885 tx_power = spec->tx_power_a[i];
886 else
887 tx_power = spec->tx_power_default;
889 rt2x00lib_channel(&channels[i],
890 spec->channels[i].channel, tx_power, i);
894 * Intitialize 802.11b
895 * Rates: CCK.
896 * Channels: OFDM.
898 if (spec->num_modes > HWMODE_B) {
899 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
900 hwmodes[HWMODE_B].num_channels = 14;
901 hwmodes[HWMODE_B].num_rates = 4;
902 hwmodes[HWMODE_B].channels = channels;
903 hwmodes[HWMODE_B].rates = rates;
907 * Intitialize 802.11g
908 * Rates: CCK, OFDM.
909 * Channels: OFDM.
911 if (spec->num_modes > HWMODE_G) {
912 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
913 hwmodes[HWMODE_G].num_channels = 14;
914 hwmodes[HWMODE_G].num_rates = spec->num_rates;
915 hwmodes[HWMODE_G].channels = channels;
916 hwmodes[HWMODE_G].rates = rates;
920 * Intitialize 802.11a
921 * Rates: OFDM.
922 * Channels: OFDM, UNII, HiperLAN2.
924 if (spec->num_modes > HWMODE_A) {
925 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
926 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
927 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
928 hwmodes[HWMODE_A].channels = &channels[14];
929 hwmodes[HWMODE_A].rates = &rates[4];
932 if (spec->num_modes > HWMODE_G &&
933 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
934 goto exit_free_rates;
936 if (spec->num_modes > HWMODE_B &&
937 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
938 goto exit_free_rates;
940 if (spec->num_modes > HWMODE_A &&
941 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
942 goto exit_free_rates;
944 rt2x00dev->hwmodes = hwmodes;
946 return 0;
948 exit_free_rates:
949 kfree(rates);
951 exit_free_channels:
952 kfree(channels);
954 exit_free_modes:
955 kfree(hwmodes);
957 exit:
958 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
959 return -ENOMEM;
962 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
964 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
965 ieee80211_unregister_hw(rt2x00dev->hw);
967 if (likely(rt2x00dev->hwmodes)) {
968 kfree(rt2x00dev->hwmodes->channels);
969 kfree(rt2x00dev->hwmodes->rates);
970 kfree(rt2x00dev->hwmodes);
971 rt2x00dev->hwmodes = NULL;
975 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
977 struct hw_mode_spec *spec = &rt2x00dev->spec;
978 int status;
981 * Initialize HW modes.
983 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
984 if (status)
985 return status;
988 * Register HW.
990 status = ieee80211_register_hw(rt2x00dev->hw);
991 if (status) {
992 rt2x00lib_remove_hw(rt2x00dev);
993 return status;
996 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
998 return 0;
1002 * Initialization/uninitialization handlers.
1004 static int rt2x00lib_alloc_entries(struct data_ring *ring,
1005 const u16 max_entries, const u16 data_size,
1006 const u16 desc_size)
1008 struct data_entry *entry;
1009 unsigned int i;
1011 ring->stats.limit = max_entries;
1012 ring->data_size = data_size;
1013 ring->desc_size = desc_size;
1016 * Allocate all ring entries.
1018 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
1019 if (!entry)
1020 return -ENOMEM;
1022 for (i = 0; i < ring->stats.limit; i++) {
1023 entry[i].flags = 0;
1024 entry[i].ring = ring;
1025 entry[i].skb = NULL;
1026 entry[i].entry_idx = i;
1029 ring->entry = entry;
1031 return 0;
1034 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
1036 struct data_ring *ring;
1039 * Allocate the RX ring.
1041 if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
1042 rt2x00dev->ops->rxd_size))
1043 return -ENOMEM;
1046 * First allocate the TX rings.
1048 txring_for_each(rt2x00dev, ring) {
1049 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
1050 rt2x00dev->ops->txd_size))
1051 return -ENOMEM;
1054 if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1055 return 0;
1058 * Allocate the BEACON ring.
1060 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
1061 MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
1062 return -ENOMEM;
1065 * Allocate the Atim ring.
1067 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
1068 DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
1069 return -ENOMEM;
1071 return 0;
1074 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
1076 struct data_ring *ring;
1078 ring_for_each(rt2x00dev, ring) {
1079 kfree(ring->entry);
1080 ring->entry = NULL;
1084 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1086 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1087 return;
1090 * Unregister rfkill.
1092 rt2x00rfkill_unregister(rt2x00dev);
1095 * Allow the HW to uninitialize.
1097 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1100 * Free allocated ring entries.
1102 rt2x00lib_free_ring_entries(rt2x00dev);
1105 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1107 int status;
1109 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1110 return 0;
1113 * Allocate all ring entries.
1115 status = rt2x00lib_alloc_ring_entries(rt2x00dev);
1116 if (status) {
1117 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
1118 return status;
1122 * Initialize the device.
1124 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1125 if (status)
1126 goto exit;
1128 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1131 * Register the rfkill handler.
1133 status = rt2x00rfkill_register(rt2x00dev);
1134 if (status)
1135 goto exit_unitialize;
1137 return 0;
1139 exit_unitialize:
1140 rt2x00lib_uninitialize(rt2x00dev);
1142 exit:
1143 rt2x00lib_free_ring_entries(rt2x00dev);
1145 return status;
1148 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1150 int retval;
1152 if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1153 return 0;
1156 * If this is the first interface which is added,
1157 * we should load the firmware now.
1159 if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) {
1160 retval = rt2x00lib_load_firmware(rt2x00dev);
1161 if (retval)
1162 return retval;
1166 * Initialize the device.
1168 retval = rt2x00lib_initialize(rt2x00dev);
1169 if (retval)
1170 return retval;
1173 * Enable radio.
1175 retval = rt2x00lib_enable_radio(rt2x00dev);
1176 if (retval) {
1177 rt2x00lib_uninitialize(rt2x00dev);
1178 return retval;
1181 __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1183 return 0;
1186 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1188 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1189 return;
1192 * Perhaps we can add something smarter here,
1193 * but for now just disabling the radio should do.
1195 rt2x00lib_disable_radio(rt2x00dev);
1197 __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1201 * driver allocation handlers.
1203 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
1205 struct data_ring *ring;
1206 unsigned int index;
1209 * We need the following rings:
1210 * RX: 1
1211 * TX: hw->queues
1212 * Beacon: 1 (if required)
1213 * Atim: 1 (if required)
1215 rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
1216 (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
1218 ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
1219 if (!ring) {
1220 ERROR(rt2x00dev, "Ring allocation failed.\n");
1221 return -ENOMEM;
1225 * Initialize pointers
1227 rt2x00dev->rx = ring;
1228 rt2x00dev->tx = &rt2x00dev->rx[1];
1229 if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
1230 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
1233 * Initialize ring parameters.
1234 * RX: queue_idx = 0
1235 * TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index
1236 * TX: cw_min: 2^5 = 32.
1237 * TX: cw_max: 2^10 = 1024.
1239 rt2x00dev->rx->rt2x00dev = rt2x00dev;
1240 rt2x00dev->rx->queue_idx = 0;
1242 index = IEEE80211_TX_QUEUE_DATA0;
1243 txring_for_each(rt2x00dev, ring) {
1244 ring->rt2x00dev = rt2x00dev;
1245 ring->queue_idx = index++;
1246 ring->tx_params.aifs = 2;
1247 ring->tx_params.cw_min = 5;
1248 ring->tx_params.cw_max = 10;
1251 return 0;
1254 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
1256 kfree(rt2x00dev->rx);
1257 rt2x00dev->rx = NULL;
1258 rt2x00dev->tx = NULL;
1259 rt2x00dev->bcn = NULL;
1262 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1264 int retval = -ENOMEM;
1267 * Let the driver probe the device to detect the capabilities.
1269 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1270 if (retval) {
1271 ERROR(rt2x00dev, "Failed to allocate device.\n");
1272 goto exit;
1276 * Initialize configuration work.
1278 INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
1279 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1280 INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled);
1281 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1284 * Reset current working type.
1286 rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID;
1289 * Allocate ring array.
1291 retval = rt2x00lib_alloc_rings(rt2x00dev);
1292 if (retval)
1293 goto exit;
1296 * Initialize ieee80211 structure.
1298 retval = rt2x00lib_probe_hw(rt2x00dev);
1299 if (retval) {
1300 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1301 goto exit;
1305 * Allocatie rfkill.
1307 retval = rt2x00rfkill_allocate(rt2x00dev);
1308 if (retval)
1309 goto exit;
1312 * Open the debugfs entry.
1314 rt2x00debug_register(rt2x00dev);
1316 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1318 return 0;
1320 exit:
1321 rt2x00lib_remove_dev(rt2x00dev);
1323 return retval;
1325 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1327 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1329 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1332 * Disable radio.
1334 rt2x00lib_disable_radio(rt2x00dev);
1337 * Uninitialize device.
1339 rt2x00lib_uninitialize(rt2x00dev);
1342 * Close debugfs entry.
1344 rt2x00debug_deregister(rt2x00dev);
1347 * Free rfkill
1349 rt2x00rfkill_free(rt2x00dev);
1352 * Free ieee80211_hw memory.
1354 rt2x00lib_remove_hw(rt2x00dev);
1357 * Free firmware image.
1359 rt2x00lib_free_firmware(rt2x00dev);
1362 * Free ring structures.
1364 rt2x00lib_free_rings(rt2x00dev);
1366 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1369 * Device state handlers
1371 #ifdef CONFIG_PM
1372 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1374 int retval;
1376 NOTICE(rt2x00dev, "Going to sleep.\n");
1377 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1380 * Only continue if mac80211 has open interfaces.
1382 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1383 goto exit;
1384 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1387 * Disable radio and unitialize all items
1388 * that must be recreated on resume.
1390 rt2x00lib_stop(rt2x00dev);
1391 rt2x00lib_uninitialize(rt2x00dev);
1392 rt2x00debug_deregister(rt2x00dev);
1394 exit:
1396 * Set device mode to sleep for power management.
1398 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1399 if (retval)
1400 return retval;
1402 return 0;
1404 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1406 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1408 struct interface *intf = &rt2x00dev->interface;
1409 int retval;
1411 NOTICE(rt2x00dev, "Waking up.\n");
1414 * Open the debugfs entry.
1416 rt2x00debug_register(rt2x00dev);
1419 * Only continue if mac80211 had open interfaces.
1421 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1422 return 0;
1425 * Reinitialize device and all active interfaces.
1427 retval = rt2x00lib_start(rt2x00dev);
1428 if (retval)
1429 goto exit;
1432 * Reconfigure device.
1434 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1435 if (!rt2x00dev->hw->conf.radio_enabled)
1436 rt2x00lib_disable_radio(rt2x00dev);
1438 rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1439 rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1440 rt2x00lib_config_type(rt2x00dev, intf->type);
1443 * We are ready again to receive requests from mac80211.
1445 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1448 * It is possible that during that mac80211 has attempted
1449 * to send frames while we were suspending or resuming.
1450 * In that case we have disabled the TX queue and should
1451 * now enable it again
1453 ieee80211_start_queues(rt2x00dev->hw);
1456 * When in Master or Ad-hoc mode,
1457 * restart Beacon transmitting by faking a beacondone event.
1459 if (intf->type == IEEE80211_IF_TYPE_AP ||
1460 intf->type == IEEE80211_IF_TYPE_IBSS)
1461 rt2x00lib_beacondone(rt2x00dev);
1463 return 0;
1465 exit:
1466 rt2x00lib_disable_radio(rt2x00dev);
1467 rt2x00lib_uninitialize(rt2x00dev);
1468 rt2x00debug_deregister(rt2x00dev);
1470 return retval;
1472 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1473 #endif /* CONFIG_PM */
1476 * rt2x00lib module information.
1478 MODULE_AUTHOR(DRV_PROJECT);
1479 MODULE_VERSION(DRV_VERSION);
1480 MODULE_DESCRIPTION("rt2x00 library");
1481 MODULE_LICENSE("GPL");