[PATCH] Shut up warnings in ipc/shm.c
[linux-2.6/verdex.git] / net / 8021q / vlan_dev.c
blobf2a8750bbf1d7555633c1b2562883dcd02b800bc
1 /* -*- linux-c -*-
2 * INET 802.1Q VLAN
3 * Ethernet-type device handling.
5 * Authors: Ben Greear <greearb@candelatech.com>
6 * Please send support related email to: vlan@scry.wanfear.com
7 * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8 *
9 * Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10 * - reset skb->pkt_type on incoming packets when MAC was changed
11 * - see that changed MAC is saddr for outgoing packets
12 * Oct 20, 2001: Ard van Breeman:
13 * - Fix MC-list, finally.
14 * - Flush MC-list on VLAN destroy.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
41 * Rebuild the Ethernet MAC header. This is called after an ARP
42 * (or in future other address resolution) has completed on this
43 * sk_buff. We now let ARP fill in the other fields.
45 * This routine CANNOT use cached dst->neigh!
46 * Really, it is used only when dst->neigh is wrong.
48 * TODO: This needs a checkup, I'm ignorant here. --BLG
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
52 struct net_device *dev = skb->dev;
53 struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
55 switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57 case __constant_htons(ETH_P_IP):
59 /* TODO: Confirm this will work with VLAN headers... */
60 return arp_find(veth->h_dest, skb);
61 #endif
62 default:
63 printk(VLAN_DBG
64 "%s: unable to resolve type %X addresses.\n",
65 dev->name, (int)veth->h_vlan_encapsulated_proto);
67 memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68 break;
71 return 0;
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
76 if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77 if (skb_shared(skb) || skb_cloned(skb)) {
78 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79 kfree_skb(skb);
80 skb = nskb;
82 if (skb) {
83 /* Lifted from Gleb's VLAN code... */
84 memmove(skb->data - ETH_HLEN,
85 skb->data - VLAN_ETH_HLEN, 12);
86 skb->mac.raw += VLAN_HLEN;
90 return skb;
94 * Determine the packet's protocol ID. The rule here is that we
95 * assume 802.3 if the type field is short enough to be a length.
96 * This is normal practice and works for any 'now in use' protocol.
98 * Also, at this point we assume that we ARE dealing exclusively with
99 * VLAN packets, or packets that should be made into VLAN packets based
100 * on a default VLAN ID.
102 * NOTE: Should be similar to ethernet/eth.c.
104 * SANITY NOTE: This method is called when a packet is moving up the stack
105 * towards userland. To get here, it would have already passed
106 * through the ethernet/eth.c eth_type_trans() method.
107 * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108 * stored UNALIGNED in the memory. RISC systems don't like
109 * such cases very much...
110 * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned,
111 * so there doesn't need to be any of the unaligned stuff. It has
112 * been commented out now... --Ben
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116 struct packet_type* ptype, struct net_device *orig_dev)
118 unsigned char *rawp = NULL;
119 struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120 unsigned short vid;
121 struct net_device_stats *stats;
122 unsigned short vlan_TCI;
123 __be16 proto;
125 /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126 vlan_TCI = ntohs(vhdr->h_vlan_TCI);
128 vid = (vlan_TCI & VLAN_VID_MASK);
130 #ifdef VLAN_DEBUG
131 printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132 __FUNCTION__, skb, vid);
133 #endif
135 /* Ok, we will find the correct VLAN device, strip the header,
136 * and then go on as usual.
139 /* We have 12 bits of vlan ID.
141 * We must not drop allow preempt until we hold a
142 * reference to the device (netif_rx does that) or we
143 * fail.
146 rcu_read_lock();
147 skb->dev = __find_vlan_dev(dev, vid);
148 if (!skb->dev) {
149 rcu_read_unlock();
151 #ifdef VLAN_DEBUG
152 printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153 __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155 kfree_skb(skb);
156 return -1;
159 skb->dev->last_rx = jiffies;
161 /* Bump the rx counters for the VLAN device. */
162 stats = vlan_dev_get_stats(skb->dev);
163 stats->rx_packets++;
164 stats->rx_bytes += skb->len;
166 skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */
168 /* Need to correct hardware checksum */
169 skb_postpull_rcsum(skb, vhdr, VLAN_HLEN);
171 /* Ok, lets check to make sure the device (dev) we
172 * came in on is what this VLAN is attached to.
175 if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
176 rcu_read_unlock();
178 #ifdef VLAN_DEBUG
179 printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n",
180 __FUNCTION__, skb, dev->name,
181 VLAN_DEV_INFO(skb->dev)->real_dev->name,
182 skb->dev->name);
183 #endif
184 kfree_skb(skb);
185 stats->rx_errors++;
186 return -1;
190 * Deal with ingress priority mapping.
192 skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
194 #ifdef VLAN_DEBUG
195 printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n",
196 __FUNCTION__, (unsigned long)(skb->priority),
197 ntohs(vhdr->h_vlan_TCI));
198 #endif
200 /* The ethernet driver already did the pkt_type calculations
201 * for us...
203 switch (skb->pkt_type) {
204 case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
205 // stats->broadcast ++; // no such counter :-(
206 break;
208 case PACKET_MULTICAST:
209 stats->multicast++;
210 break;
212 case PACKET_OTHERHOST:
213 /* Our lower layer thinks this is not local, let's make sure.
214 * This allows the VLAN to have a different MAC than the underlying
215 * device, and still route correctly.
217 if (memcmp(eth_hdr(skb)->h_dest, skb->dev->dev_addr, ETH_ALEN) == 0) {
218 /* It is for our (changed) MAC-address! */
219 skb->pkt_type = PACKET_HOST;
221 break;
222 default:
223 break;
226 /* Was a VLAN packet, grab the encapsulated protocol, which the layer
227 * three protocols care about.
229 /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
230 proto = vhdr->h_vlan_encapsulated_proto;
232 skb->protocol = proto;
233 if (ntohs(proto) >= 1536) {
234 /* place it back on the queue to be handled by
235 * true layer 3 protocols.
238 /* See if we are configured to re-write the VLAN header
239 * to make it look like ethernet...
241 skb = vlan_check_reorder_header(skb);
243 /* Can be null if skb-clone fails when re-ordering */
244 if (skb) {
245 netif_rx(skb);
246 } else {
247 /* TODO: Add a more specific counter here. */
248 stats->rx_errors++;
250 rcu_read_unlock();
251 return 0;
254 rawp = skb->data;
257 * This is a magic hack to spot IPX packets. Older Novell breaks
258 * the protocol design and runs IPX over 802.3 without an 802.2 LLC
259 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
260 * won't work for fault tolerant netware but does for the rest.
262 if (*(unsigned short *)rawp == 0xFFFF) {
263 skb->protocol = __constant_htons(ETH_P_802_3);
264 /* place it back on the queue to be handled by true layer 3 protocols.
267 /* See if we are configured to re-write the VLAN header
268 * to make it look like ethernet...
270 skb = vlan_check_reorder_header(skb);
272 /* Can be null if skb-clone fails when re-ordering */
273 if (skb) {
274 netif_rx(skb);
275 } else {
276 /* TODO: Add a more specific counter here. */
277 stats->rx_errors++;
279 rcu_read_unlock();
280 return 0;
284 * Real 802.2 LLC
286 skb->protocol = __constant_htons(ETH_P_802_2);
287 /* place it back on the queue to be handled by upper layer protocols.
290 /* See if we are configured to re-write the VLAN header
291 * to make it look like ethernet...
293 skb = vlan_check_reorder_header(skb);
295 /* Can be null if skb-clone fails when re-ordering */
296 if (skb) {
297 netif_rx(skb);
298 } else {
299 /* TODO: Add a more specific counter here. */
300 stats->rx_errors++;
302 rcu_read_unlock();
303 return 0;
306 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
307 struct sk_buff* skb)
309 struct vlan_priority_tci_mapping *mp =
310 VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
312 while (mp) {
313 if (mp->priority == skb->priority) {
314 return mp->vlan_qos; /* This should already be shifted to mask
315 * correctly with the VLAN's TCI
318 mp = mp->next;
320 return 0;
324 * Create the VLAN header for an arbitrary protocol layer
326 * saddr=NULL means use device source address
327 * daddr=NULL means leave destination address (eg unresolved arp)
329 * This is called when the SKB is moving down the stack towards the
330 * physical devices.
332 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
333 unsigned short type, void *daddr, void *saddr,
334 unsigned len)
336 struct vlan_hdr *vhdr;
337 unsigned short veth_TCI = 0;
338 int rc = 0;
339 int build_vlan_header = 0;
340 struct net_device *vdev = dev; /* save this for the bottom of the method */
342 #ifdef VLAN_DEBUG
343 printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
344 __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
345 #endif
347 /* build vlan header only if re_order_header flag is NOT set. This
348 * fixes some programs that get confused when they see a VLAN device
349 * sending a frame that is VLAN encoded (the consensus is that the VLAN
350 * device should look completely like an Ethernet device when the
351 * REORDER_HEADER flag is set) The drawback to this is some extra
352 * header shuffling in the hard_start_xmit. Users can turn off this
353 * REORDER behaviour with the vconfig tool.
355 build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
357 if (build_vlan_header) {
358 vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
360 /* build the four bytes that make this a VLAN header. */
362 /* Now, construct the second two bytes. This field looks something
363 * like:
364 * usr_priority: 3 bits (high bits)
365 * CFI 1 bit
366 * VLAN ID 12 bits (low bits)
369 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
370 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
372 vhdr->h_vlan_TCI = htons(veth_TCI);
375 * Set the protocol type.
376 * For a packet of type ETH_P_802_3 we put the length in here instead.
377 * It is up to the 802.2 layer to carry protocol information.
380 if (type != ETH_P_802_3) {
381 vhdr->h_vlan_encapsulated_proto = htons(type);
382 } else {
383 vhdr->h_vlan_encapsulated_proto = htons(len);
387 /* Before delegating work to the lower layer, enter our MAC-address */
388 if (saddr == NULL)
389 saddr = dev->dev_addr;
391 dev = VLAN_DEV_INFO(dev)->real_dev;
393 /* MPLS can send us skbuffs w/out enough space. This check will grow the
394 * skb if it doesn't have enough headroom. Not a beautiful solution, so
395 * I'll tick a counter so that users can know it's happening... If they
396 * care...
399 /* NOTE: This may still break if the underlying device is not the final
400 * device (and thus there are more headers to add...) It should work for
401 * good-ole-ethernet though.
403 if (skb_headroom(skb) < dev->hard_header_len) {
404 struct sk_buff *sk_tmp = skb;
405 skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
406 kfree_skb(sk_tmp);
407 if (skb == NULL) {
408 struct net_device_stats *stats = vlan_dev_get_stats(vdev);
409 stats->tx_dropped++;
410 return -ENOMEM;
412 VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
413 #ifdef VLAN_DEBUG
414 printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
415 #endif
418 if (build_vlan_header) {
419 /* Now make the underlying real hard header */
420 rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
422 if (rc > 0) {
423 rc += VLAN_HLEN;
424 } else if (rc < 0) {
425 rc -= VLAN_HLEN;
427 } else {
428 /* If here, then we'll just make a normal looking ethernet frame,
429 * but, the hard_start_xmit method will insert the tag (it has to
430 * be able to do this for bridged and other skbs that don't come
431 * down the protocol stack in an orderly manner.
433 rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
436 return rc;
439 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
441 struct net_device_stats *stats = vlan_dev_get_stats(dev);
442 struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
444 /* Handle non-VLAN frames if they are sent to us, for example by DHCP.
446 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
447 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
450 if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
451 int orig_headroom = skb_headroom(skb);
452 unsigned short veth_TCI;
454 /* This is not a VLAN frame...but we can fix that! */
455 VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
457 #ifdef VLAN_DEBUG
458 printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
459 __FUNCTION__, htons(veth->h_vlan_proto));
460 #endif
461 /* Construct the second two bytes. This field looks something
462 * like:
463 * usr_priority: 3 bits (high bits)
464 * CFI 1 bit
465 * VLAN ID 12 bits (low bits)
467 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
468 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
470 skb = __vlan_put_tag(skb, veth_TCI);
471 if (!skb) {
472 stats->tx_dropped++;
473 return 0;
476 if (orig_headroom < VLAN_HLEN) {
477 VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
481 #ifdef VLAN_DEBUG
482 printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
483 __FUNCTION__, skb, skb->dev->name);
484 printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
485 veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
486 veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
487 veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
488 #endif
490 stats->tx_packets++; /* for statics only */
491 stats->tx_bytes += skb->len;
493 skb->dev = VLAN_DEV_INFO(dev)->real_dev;
494 dev_queue_xmit(skb);
496 return 0;
499 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
501 struct net_device_stats *stats = vlan_dev_get_stats(dev);
502 unsigned short veth_TCI;
504 /* Construct the second two bytes. This field looks something
505 * like:
506 * usr_priority: 3 bits (high bits)
507 * CFI 1 bit
508 * VLAN ID 12 bits (low bits)
510 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
511 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
512 skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
514 stats->tx_packets++;
515 stats->tx_bytes += skb->len;
517 skb->dev = VLAN_DEV_INFO(dev)->real_dev;
518 dev_queue_xmit(skb);
520 return 0;
523 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
525 /* TODO: gotta make sure the underlying layer can handle it,
526 * maybe an IFF_VLAN_CAPABLE flag for devices?
528 if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
529 return -ERANGE;
531 dev->mtu = new_mtu;
533 return 0;
536 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
538 struct net_device *dev = dev_get_by_name(dev_name);
540 if (dev) {
541 if (dev->priv_flags & IFF_802_1Q_VLAN) {
542 /* see if a priority mapping exists.. */
543 VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
544 dev_put(dev);
545 return 0;
548 dev_put(dev);
550 return -EINVAL;
553 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
555 struct net_device *dev = dev_get_by_name(dev_name);
556 struct vlan_priority_tci_mapping *mp = NULL;
557 struct vlan_priority_tci_mapping *np;
559 if (dev) {
560 if (dev->priv_flags & IFF_802_1Q_VLAN) {
561 /* See if a priority mapping exists.. */
562 mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
563 while (mp) {
564 if (mp->priority == skb_prio) {
565 mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
566 dev_put(dev);
567 return 0;
569 mp = mp->next;
572 /* Create a new mapping then. */
573 mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
574 np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
575 if (np) {
576 np->next = mp;
577 np->priority = skb_prio;
578 np->vlan_qos = ((vlan_prio << 13) & 0xE000);
579 VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
580 dev_put(dev);
581 return 0;
582 } else {
583 dev_put(dev);
584 return -ENOBUFS;
587 dev_put(dev);
589 return -EINVAL;
592 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
593 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
595 struct net_device *dev = dev_get_by_name(dev_name);
597 if (dev) {
598 if (dev->priv_flags & IFF_802_1Q_VLAN) {
599 /* verify flag is supported */
600 if (flag == 1) {
601 if (flag_val) {
602 VLAN_DEV_INFO(dev)->flags |= 1;
603 } else {
604 VLAN_DEV_INFO(dev)->flags &= ~1;
606 dev_put(dev);
607 return 0;
608 } else {
609 printk(KERN_ERR "%s: flag %i is not valid.\n",
610 __FUNCTION__, (int)(flag));
611 dev_put(dev);
612 return -EINVAL;
614 } else {
615 printk(KERN_ERR
616 "%s: %s is not a vlan device, priv_flags: %hX.\n",
617 __FUNCTION__, dev->name, dev->priv_flags);
618 dev_put(dev);
620 } else {
621 printk(KERN_ERR "%s: Could not find device: %s\n",
622 __FUNCTION__, dev_name);
625 return -EINVAL;
629 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
631 struct net_device *dev = dev_get_by_name(dev_name);
632 int rv = 0;
633 if (dev) {
634 if (dev->priv_flags & IFF_802_1Q_VLAN) {
635 strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
636 rv = 0;
637 } else {
638 rv = -EINVAL;
640 dev_put(dev);
641 } else {
642 rv = -ENODEV;
644 return rv;
647 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
649 struct net_device *dev = dev_get_by_name(dev_name);
650 int rv = 0;
651 if (dev) {
652 if (dev->priv_flags & IFF_802_1Q_VLAN) {
653 *result = VLAN_DEV_INFO(dev)->vlan_id;
654 rv = 0;
655 } else {
656 rv = -EINVAL;
658 dev_put(dev);
659 } else {
660 rv = -ENODEV;
662 return rv;
666 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
668 struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
669 int i;
671 if (netif_running(dev))
672 return -EBUSY;
674 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
676 printk("%s: Setting MAC address to ", dev->name);
677 for (i = 0; i < 6; i++)
678 printk(" %2.2x", dev->dev_addr[i]);
679 printk(".\n");
681 if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
682 dev->dev_addr,
683 dev->addr_len) != 0) {
684 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
685 int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
687 /* Increment our in-use promiscuity counter */
688 dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
690 /* Make PROMISC visible to the user. */
691 flgs |= IFF_PROMISC;
692 printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n",
693 dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
694 dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
696 } else {
697 printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n",
698 dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
701 return 0;
704 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
705 struct dev_mc_list *dmi2)
707 return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
708 (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
711 /** dmi is a single entry into a dev_mc_list, a single node. mc_list is
712 * an entire list, and we'll iterate through it.
714 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
716 struct dev_mc_list *idmi;
718 for (idmi = mc_list; idmi != NULL; ) {
719 if (vlan_dmi_equals(dmi, idmi)) {
720 if (dmi->dmi_users > idmi->dmi_users)
721 return 1;
722 else
723 return 0;
724 } else {
725 idmi = idmi->next;
729 return 1;
732 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
734 struct dev_mc_list *dmi = mc_list;
735 struct dev_mc_list *next;
737 while(dmi) {
738 next = dmi->next;
739 kfree(dmi);
740 dmi = next;
744 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
746 struct dev_mc_list *dmi, *new_dmi;
748 vlan_destroy_mc_list(vlan_info->old_mc_list);
749 vlan_info->old_mc_list = NULL;
751 for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
752 new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
753 if (new_dmi == NULL) {
754 printk(KERN_ERR "vlan: cannot allocate memory. "
755 "Multicast may not work properly from now.\n");
756 return;
759 /* Copy whole structure, then make new 'next' pointer */
760 *new_dmi = *dmi;
761 new_dmi->next = vlan_info->old_mc_list;
762 vlan_info->old_mc_list = new_dmi;
766 static void vlan_flush_mc_list(struct net_device *dev)
768 struct dev_mc_list *dmi = dev->mc_list;
770 while (dmi) {
771 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
772 dev->name,
773 dmi->dmi_addr[0],
774 dmi->dmi_addr[1],
775 dmi->dmi_addr[2],
776 dmi->dmi_addr[3],
777 dmi->dmi_addr[4],
778 dmi->dmi_addr[5]);
779 dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
780 dmi = dev->mc_list;
783 /* dev->mc_list is NULL by the time we get here. */
784 vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
785 VLAN_DEV_INFO(dev)->old_mc_list = NULL;
788 int vlan_dev_open(struct net_device *dev)
790 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
791 return -ENETDOWN;
793 return 0;
796 int vlan_dev_stop(struct net_device *dev)
798 vlan_flush_mc_list(dev);
799 return 0;
802 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
804 struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
805 struct ifreq ifrr;
806 int err = -EOPNOTSUPP;
808 strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
809 ifrr.ifr_ifru = ifr->ifr_ifru;
811 switch(cmd) {
812 case SIOCGMIIPHY:
813 case SIOCGMIIREG:
814 case SIOCSMIIREG:
815 if (real_dev->do_ioctl && netif_device_present(real_dev))
816 err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
817 break;
819 case SIOCETHTOOL:
820 err = dev_ethtool(&ifrr);
823 if (!err)
824 ifr->ifr_ifru = ifrr.ifr_ifru;
826 return err;
829 /** Taken from Gleb + Lennert's VLAN code, and modified... */
830 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
832 struct dev_mc_list *dmi;
833 struct net_device *real_dev;
834 int inc;
836 if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
837 /* Then it's a real vlan device, as far as we can tell.. */
838 real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
840 /* compare the current promiscuity to the last promisc we had.. */
841 inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
842 if (inc) {
843 printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
844 vlan_dev->name, inc);
845 dev_set_promiscuity(real_dev, inc); /* found in dev.c */
846 VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
849 inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
850 if (inc) {
851 printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
852 vlan_dev->name, inc);
853 dev_set_allmulti(real_dev, inc); /* dev.c */
854 VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
857 /* looking for addresses to add to master's list */
858 for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
859 if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
860 dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
861 printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
862 vlan_dev->name,
863 dmi->dmi_addr[0],
864 dmi->dmi_addr[1],
865 dmi->dmi_addr[2],
866 dmi->dmi_addr[3],
867 dmi->dmi_addr[4],
868 dmi->dmi_addr[5]);
872 /* looking for addresses to delete from master's list */
873 for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
874 if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
875 /* if we think we should add it to the new list, then we should really
876 * delete it from the real list on the underlying device.
878 dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
879 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
880 vlan_dev->name,
881 dmi->dmi_addr[0],
882 dmi->dmi_addr[1],
883 dmi->dmi_addr[2],
884 dmi->dmi_addr[3],
885 dmi->dmi_addr[4],
886 dmi->dmi_addr[5]);
890 /* save multicast list */
891 vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));