perf_counter, x86: Fix kernel-space call-chains
[linux-2.6/verdex.git] / arch / x86 / kernel / cpu / perf_counter.c
blob6d5e7cfd97e7fd36b1542d43dbdf18defb425870
1 /*
2 * Performance counter x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
10 * For licencing details see kernel-base/COPYING
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
23 #include <asm/apic.h>
24 #include <asm/stacktrace.h>
25 #include <asm/nmi.h>
27 static u64 perf_counter_mask __read_mostly;
29 struct cpu_hw_counters {
30 struct perf_counter *counters[X86_PMC_IDX_MAX];
31 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
32 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33 unsigned long interrupts;
34 int enabled;
38 * struct x86_pmu - generic x86 pmu
40 struct x86_pmu {
41 const char *name;
42 int version;
43 int (*handle_irq)(struct pt_regs *);
44 void (*disable_all)(void);
45 void (*enable_all)(void);
46 void (*enable)(struct hw_perf_counter *, int);
47 void (*disable)(struct hw_perf_counter *, int);
48 unsigned eventsel;
49 unsigned perfctr;
50 u64 (*event_map)(int);
51 u64 (*raw_event)(u64);
52 int max_events;
53 int num_counters;
54 int num_counters_fixed;
55 int counter_bits;
56 u64 counter_mask;
57 u64 max_period;
58 u64 intel_ctrl;
61 static struct x86_pmu x86_pmu __read_mostly;
63 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
64 .enabled = 1,
68 * Intel PerfMon v3. Used on Core2 and later.
70 static const u64 intel_perfmon_event_map[] =
72 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
73 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
74 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
75 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
76 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
77 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
78 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
81 static u64 intel_pmu_event_map(int event)
83 return intel_perfmon_event_map[event];
87 * Generalized hw caching related event table, filled
88 * in on a per model basis. A value of 0 means
89 * 'not supported', -1 means 'event makes no sense on
90 * this CPU', any other value means the raw event
91 * ID.
94 #define C(x) PERF_COUNT_HW_CACHE_##x
96 static u64 __read_mostly hw_cache_event_ids
97 [PERF_COUNT_HW_CACHE_MAX]
98 [PERF_COUNT_HW_CACHE_OP_MAX]
99 [PERF_COUNT_HW_CACHE_RESULT_MAX];
101 static const u64 nehalem_hw_cache_event_ids
102 [PERF_COUNT_HW_CACHE_MAX]
103 [PERF_COUNT_HW_CACHE_OP_MAX]
104 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
106 [ C(L1D) ] = {
107 [ C(OP_READ) ] = {
108 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
109 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
111 [ C(OP_WRITE) ] = {
112 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
113 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
115 [ C(OP_PREFETCH) ] = {
116 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
117 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
120 [ C(L1I ) ] = {
121 [ C(OP_READ) ] = {
122 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
123 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
125 [ C(OP_WRITE) ] = {
126 [ C(RESULT_ACCESS) ] = -1,
127 [ C(RESULT_MISS) ] = -1,
129 [ C(OP_PREFETCH) ] = {
130 [ C(RESULT_ACCESS) ] = 0x0,
131 [ C(RESULT_MISS) ] = 0x0,
134 [ C(LL ) ] = {
135 [ C(OP_READ) ] = {
136 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
137 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
139 [ C(OP_WRITE) ] = {
140 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
141 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
143 [ C(OP_PREFETCH) ] = {
144 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
145 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
148 [ C(DTLB) ] = {
149 [ C(OP_READ) ] = {
150 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
151 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
153 [ C(OP_WRITE) ] = {
154 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
155 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
157 [ C(OP_PREFETCH) ] = {
158 [ C(RESULT_ACCESS) ] = 0x0,
159 [ C(RESULT_MISS) ] = 0x0,
162 [ C(ITLB) ] = {
163 [ C(OP_READ) ] = {
164 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
165 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
167 [ C(OP_WRITE) ] = {
168 [ C(RESULT_ACCESS) ] = -1,
169 [ C(RESULT_MISS) ] = -1,
171 [ C(OP_PREFETCH) ] = {
172 [ C(RESULT_ACCESS) ] = -1,
173 [ C(RESULT_MISS) ] = -1,
176 [ C(BPU ) ] = {
177 [ C(OP_READ) ] = {
178 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
179 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
181 [ C(OP_WRITE) ] = {
182 [ C(RESULT_ACCESS) ] = -1,
183 [ C(RESULT_MISS) ] = -1,
185 [ C(OP_PREFETCH) ] = {
186 [ C(RESULT_ACCESS) ] = -1,
187 [ C(RESULT_MISS) ] = -1,
192 static const u64 core2_hw_cache_event_ids
193 [PERF_COUNT_HW_CACHE_MAX]
194 [PERF_COUNT_HW_CACHE_OP_MAX]
195 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
197 [ C(L1D) ] = {
198 [ C(OP_READ) ] = {
199 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
200 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
202 [ C(OP_WRITE) ] = {
203 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
204 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
206 [ C(OP_PREFETCH) ] = {
207 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
208 [ C(RESULT_MISS) ] = 0,
211 [ C(L1I ) ] = {
212 [ C(OP_READ) ] = {
213 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
214 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
216 [ C(OP_WRITE) ] = {
217 [ C(RESULT_ACCESS) ] = -1,
218 [ C(RESULT_MISS) ] = -1,
220 [ C(OP_PREFETCH) ] = {
221 [ C(RESULT_ACCESS) ] = 0,
222 [ C(RESULT_MISS) ] = 0,
225 [ C(LL ) ] = {
226 [ C(OP_READ) ] = {
227 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
228 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
230 [ C(OP_WRITE) ] = {
231 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
232 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
234 [ C(OP_PREFETCH) ] = {
235 [ C(RESULT_ACCESS) ] = 0,
236 [ C(RESULT_MISS) ] = 0,
239 [ C(DTLB) ] = {
240 [ C(OP_READ) ] = {
241 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
242 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
244 [ C(OP_WRITE) ] = {
245 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
246 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
248 [ C(OP_PREFETCH) ] = {
249 [ C(RESULT_ACCESS) ] = 0,
250 [ C(RESULT_MISS) ] = 0,
253 [ C(ITLB) ] = {
254 [ C(OP_READ) ] = {
255 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
256 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
258 [ C(OP_WRITE) ] = {
259 [ C(RESULT_ACCESS) ] = -1,
260 [ C(RESULT_MISS) ] = -1,
262 [ C(OP_PREFETCH) ] = {
263 [ C(RESULT_ACCESS) ] = -1,
264 [ C(RESULT_MISS) ] = -1,
267 [ C(BPU ) ] = {
268 [ C(OP_READ) ] = {
269 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
270 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
272 [ C(OP_WRITE) ] = {
273 [ C(RESULT_ACCESS) ] = -1,
274 [ C(RESULT_MISS) ] = -1,
276 [ C(OP_PREFETCH) ] = {
277 [ C(RESULT_ACCESS) ] = -1,
278 [ C(RESULT_MISS) ] = -1,
283 static const u64 atom_hw_cache_event_ids
284 [PERF_COUNT_HW_CACHE_MAX]
285 [PERF_COUNT_HW_CACHE_OP_MAX]
286 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
288 [ C(L1D) ] = {
289 [ C(OP_READ) ] = {
290 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
291 [ C(RESULT_MISS) ] = 0,
293 [ C(OP_WRITE) ] = {
294 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
295 [ C(RESULT_MISS) ] = 0,
297 [ C(OP_PREFETCH) ] = {
298 [ C(RESULT_ACCESS) ] = 0x0,
299 [ C(RESULT_MISS) ] = 0,
302 [ C(L1I ) ] = {
303 [ C(OP_READ) ] = {
304 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
305 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
307 [ C(OP_WRITE) ] = {
308 [ C(RESULT_ACCESS) ] = -1,
309 [ C(RESULT_MISS) ] = -1,
311 [ C(OP_PREFETCH) ] = {
312 [ C(RESULT_ACCESS) ] = 0,
313 [ C(RESULT_MISS) ] = 0,
316 [ C(LL ) ] = {
317 [ C(OP_READ) ] = {
318 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
319 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
321 [ C(OP_WRITE) ] = {
322 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
323 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
325 [ C(OP_PREFETCH) ] = {
326 [ C(RESULT_ACCESS) ] = 0,
327 [ C(RESULT_MISS) ] = 0,
330 [ C(DTLB) ] = {
331 [ C(OP_READ) ] = {
332 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
333 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
335 [ C(OP_WRITE) ] = {
336 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
337 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
339 [ C(OP_PREFETCH) ] = {
340 [ C(RESULT_ACCESS) ] = 0,
341 [ C(RESULT_MISS) ] = 0,
344 [ C(ITLB) ] = {
345 [ C(OP_READ) ] = {
346 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
347 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
349 [ C(OP_WRITE) ] = {
350 [ C(RESULT_ACCESS) ] = -1,
351 [ C(RESULT_MISS) ] = -1,
353 [ C(OP_PREFETCH) ] = {
354 [ C(RESULT_ACCESS) ] = -1,
355 [ C(RESULT_MISS) ] = -1,
358 [ C(BPU ) ] = {
359 [ C(OP_READ) ] = {
360 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
361 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
363 [ C(OP_WRITE) ] = {
364 [ C(RESULT_ACCESS) ] = -1,
365 [ C(RESULT_MISS) ] = -1,
367 [ C(OP_PREFETCH) ] = {
368 [ C(RESULT_ACCESS) ] = -1,
369 [ C(RESULT_MISS) ] = -1,
374 static u64 intel_pmu_raw_event(u64 event)
376 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
377 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
378 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
379 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
380 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
382 #define CORE_EVNTSEL_MASK \
383 (CORE_EVNTSEL_EVENT_MASK | \
384 CORE_EVNTSEL_UNIT_MASK | \
385 CORE_EVNTSEL_EDGE_MASK | \
386 CORE_EVNTSEL_INV_MASK | \
387 CORE_EVNTSEL_COUNTER_MASK)
389 return event & CORE_EVNTSEL_MASK;
392 static const u64 amd_hw_cache_event_ids
393 [PERF_COUNT_HW_CACHE_MAX]
394 [PERF_COUNT_HW_CACHE_OP_MAX]
395 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
397 [ C(L1D) ] = {
398 [ C(OP_READ) ] = {
399 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
400 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
402 [ C(OP_WRITE) ] = {
403 [ C(RESULT_ACCESS) ] = 0x0042, /* Data Cache Refills from L2 */
404 [ C(RESULT_MISS) ] = 0,
406 [ C(OP_PREFETCH) ] = {
407 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
408 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
411 [ C(L1I ) ] = {
412 [ C(OP_READ) ] = {
413 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
414 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
416 [ C(OP_WRITE) ] = {
417 [ C(RESULT_ACCESS) ] = -1,
418 [ C(RESULT_MISS) ] = -1,
420 [ C(OP_PREFETCH) ] = {
421 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
422 [ C(RESULT_MISS) ] = 0,
425 [ C(LL ) ] = {
426 [ C(OP_READ) ] = {
427 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
428 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
430 [ C(OP_WRITE) ] = {
431 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
432 [ C(RESULT_MISS) ] = 0,
434 [ C(OP_PREFETCH) ] = {
435 [ C(RESULT_ACCESS) ] = 0,
436 [ C(RESULT_MISS) ] = 0,
439 [ C(DTLB) ] = {
440 [ C(OP_READ) ] = {
441 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
442 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
444 [ C(OP_WRITE) ] = {
445 [ C(RESULT_ACCESS) ] = 0,
446 [ C(RESULT_MISS) ] = 0,
448 [ C(OP_PREFETCH) ] = {
449 [ C(RESULT_ACCESS) ] = 0,
450 [ C(RESULT_MISS) ] = 0,
453 [ C(ITLB) ] = {
454 [ C(OP_READ) ] = {
455 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
456 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
458 [ C(OP_WRITE) ] = {
459 [ C(RESULT_ACCESS) ] = -1,
460 [ C(RESULT_MISS) ] = -1,
462 [ C(OP_PREFETCH) ] = {
463 [ C(RESULT_ACCESS) ] = -1,
464 [ C(RESULT_MISS) ] = -1,
467 [ C(BPU ) ] = {
468 [ C(OP_READ) ] = {
469 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
470 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
472 [ C(OP_WRITE) ] = {
473 [ C(RESULT_ACCESS) ] = -1,
474 [ C(RESULT_MISS) ] = -1,
476 [ C(OP_PREFETCH) ] = {
477 [ C(RESULT_ACCESS) ] = -1,
478 [ C(RESULT_MISS) ] = -1,
484 * AMD Performance Monitor K7 and later.
486 static const u64 amd_perfmon_event_map[] =
488 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
489 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
490 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
491 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
492 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
493 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
496 static u64 amd_pmu_event_map(int event)
498 return amd_perfmon_event_map[event];
501 static u64 amd_pmu_raw_event(u64 event)
503 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
504 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
505 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
506 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
507 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
509 #define K7_EVNTSEL_MASK \
510 (K7_EVNTSEL_EVENT_MASK | \
511 K7_EVNTSEL_UNIT_MASK | \
512 K7_EVNTSEL_EDGE_MASK | \
513 K7_EVNTSEL_INV_MASK | \
514 K7_EVNTSEL_COUNTER_MASK)
516 return event & K7_EVNTSEL_MASK;
520 * Propagate counter elapsed time into the generic counter.
521 * Can only be executed on the CPU where the counter is active.
522 * Returns the delta events processed.
524 static u64
525 x86_perf_counter_update(struct perf_counter *counter,
526 struct hw_perf_counter *hwc, int idx)
528 int shift = 64 - x86_pmu.counter_bits;
529 u64 prev_raw_count, new_raw_count;
530 s64 delta;
533 * Careful: an NMI might modify the previous counter value.
535 * Our tactic to handle this is to first atomically read and
536 * exchange a new raw count - then add that new-prev delta
537 * count to the generic counter atomically:
539 again:
540 prev_raw_count = atomic64_read(&hwc->prev_count);
541 rdmsrl(hwc->counter_base + idx, new_raw_count);
543 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
544 new_raw_count) != prev_raw_count)
545 goto again;
548 * Now we have the new raw value and have updated the prev
549 * timestamp already. We can now calculate the elapsed delta
550 * (counter-)time and add that to the generic counter.
552 * Careful, not all hw sign-extends above the physical width
553 * of the count.
555 delta = (new_raw_count << shift) - (prev_raw_count << shift);
556 delta >>= shift;
558 atomic64_add(delta, &counter->count);
559 atomic64_sub(delta, &hwc->period_left);
561 return new_raw_count;
564 static atomic_t active_counters;
565 static DEFINE_MUTEX(pmc_reserve_mutex);
567 static bool reserve_pmc_hardware(void)
569 int i;
571 if (nmi_watchdog == NMI_LOCAL_APIC)
572 disable_lapic_nmi_watchdog();
574 for (i = 0; i < x86_pmu.num_counters; i++) {
575 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
576 goto perfctr_fail;
579 for (i = 0; i < x86_pmu.num_counters; i++) {
580 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
581 goto eventsel_fail;
584 return true;
586 eventsel_fail:
587 for (i--; i >= 0; i--)
588 release_evntsel_nmi(x86_pmu.eventsel + i);
590 i = x86_pmu.num_counters;
592 perfctr_fail:
593 for (i--; i >= 0; i--)
594 release_perfctr_nmi(x86_pmu.perfctr + i);
596 if (nmi_watchdog == NMI_LOCAL_APIC)
597 enable_lapic_nmi_watchdog();
599 return false;
602 static void release_pmc_hardware(void)
604 int i;
606 for (i = 0; i < x86_pmu.num_counters; i++) {
607 release_perfctr_nmi(x86_pmu.perfctr + i);
608 release_evntsel_nmi(x86_pmu.eventsel + i);
611 if (nmi_watchdog == NMI_LOCAL_APIC)
612 enable_lapic_nmi_watchdog();
615 static void hw_perf_counter_destroy(struct perf_counter *counter)
617 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
618 release_pmc_hardware();
619 mutex_unlock(&pmc_reserve_mutex);
623 static inline int x86_pmu_initialized(void)
625 return x86_pmu.handle_irq != NULL;
628 static inline int
629 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
631 unsigned int cache_type, cache_op, cache_result;
632 u64 config, val;
634 config = attr->config;
636 cache_type = (config >> 0) & 0xff;
637 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
638 return -EINVAL;
640 cache_op = (config >> 8) & 0xff;
641 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
642 return -EINVAL;
644 cache_result = (config >> 16) & 0xff;
645 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
646 return -EINVAL;
648 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
650 if (val == 0)
651 return -ENOENT;
653 if (val == -1)
654 return -EINVAL;
656 hwc->config |= val;
658 return 0;
662 * Setup the hardware configuration for a given attr_type
664 static int __hw_perf_counter_init(struct perf_counter *counter)
666 struct perf_counter_attr *attr = &counter->attr;
667 struct hw_perf_counter *hwc = &counter->hw;
668 int err;
670 if (!x86_pmu_initialized())
671 return -ENODEV;
673 err = 0;
674 if (!atomic_inc_not_zero(&active_counters)) {
675 mutex_lock(&pmc_reserve_mutex);
676 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
677 err = -EBUSY;
678 else
679 atomic_inc(&active_counters);
680 mutex_unlock(&pmc_reserve_mutex);
682 if (err)
683 return err;
686 * Generate PMC IRQs:
687 * (keep 'enabled' bit clear for now)
689 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
692 * Count user and OS events unless requested not to.
694 if (!attr->exclude_user)
695 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
696 if (!attr->exclude_kernel)
697 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
699 if (!hwc->sample_period) {
700 hwc->sample_period = x86_pmu.max_period;
701 hwc->last_period = hwc->sample_period;
702 atomic64_set(&hwc->period_left, hwc->sample_period);
705 counter->destroy = hw_perf_counter_destroy;
708 * Raw event type provide the config in the event structure
710 if (attr->type == PERF_TYPE_RAW) {
711 hwc->config |= x86_pmu.raw_event(attr->config);
712 return 0;
715 if (attr->type == PERF_TYPE_HW_CACHE)
716 return set_ext_hw_attr(hwc, attr);
718 if (attr->config >= x86_pmu.max_events)
719 return -EINVAL;
721 * The generic map:
723 hwc->config |= x86_pmu.event_map(attr->config);
725 return 0;
728 static void intel_pmu_disable_all(void)
730 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
733 static void amd_pmu_disable_all(void)
735 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
736 int idx;
738 if (!cpuc->enabled)
739 return;
741 cpuc->enabled = 0;
743 * ensure we write the disable before we start disabling the
744 * counters proper, so that amd_pmu_enable_counter() does the
745 * right thing.
747 barrier();
749 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
750 u64 val;
752 if (!test_bit(idx, cpuc->active_mask))
753 continue;
754 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
755 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
756 continue;
757 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
758 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
762 void hw_perf_disable(void)
764 if (!x86_pmu_initialized())
765 return;
766 return x86_pmu.disable_all();
769 static void intel_pmu_enable_all(void)
771 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
774 static void amd_pmu_enable_all(void)
776 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
777 int idx;
779 if (cpuc->enabled)
780 return;
782 cpuc->enabled = 1;
783 barrier();
785 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
786 u64 val;
788 if (!test_bit(idx, cpuc->active_mask))
789 continue;
790 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
791 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
792 continue;
793 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
794 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
798 void hw_perf_enable(void)
800 if (!x86_pmu_initialized())
801 return;
802 x86_pmu.enable_all();
805 static inline u64 intel_pmu_get_status(void)
807 u64 status;
809 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
811 return status;
814 static inline void intel_pmu_ack_status(u64 ack)
816 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
819 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
821 int err;
822 err = checking_wrmsrl(hwc->config_base + idx,
823 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
826 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
828 int err;
829 err = checking_wrmsrl(hwc->config_base + idx,
830 hwc->config);
833 static inline void
834 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
836 int idx = __idx - X86_PMC_IDX_FIXED;
837 u64 ctrl_val, mask;
838 int err;
840 mask = 0xfULL << (idx * 4);
842 rdmsrl(hwc->config_base, ctrl_val);
843 ctrl_val &= ~mask;
844 err = checking_wrmsrl(hwc->config_base, ctrl_val);
847 static inline void
848 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
850 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
851 intel_pmu_disable_fixed(hwc, idx);
852 return;
855 x86_pmu_disable_counter(hwc, idx);
858 static inline void
859 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
861 x86_pmu_disable_counter(hwc, idx);
864 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
867 * Set the next IRQ period, based on the hwc->period_left value.
868 * To be called with the counter disabled in hw:
870 static int
871 x86_perf_counter_set_period(struct perf_counter *counter,
872 struct hw_perf_counter *hwc, int idx)
874 s64 left = atomic64_read(&hwc->period_left);
875 s64 period = hwc->sample_period;
876 int err, ret = 0;
879 * If we are way outside a reasoable range then just skip forward:
881 if (unlikely(left <= -period)) {
882 left = period;
883 atomic64_set(&hwc->period_left, left);
884 hwc->last_period = period;
885 ret = 1;
888 if (unlikely(left <= 0)) {
889 left += period;
890 atomic64_set(&hwc->period_left, left);
891 hwc->last_period = period;
892 ret = 1;
895 * Quirk: certain CPUs dont like it if just 1 event is left:
897 if (unlikely(left < 2))
898 left = 2;
900 if (left > x86_pmu.max_period)
901 left = x86_pmu.max_period;
903 per_cpu(prev_left[idx], smp_processor_id()) = left;
906 * The hw counter starts counting from this counter offset,
907 * mark it to be able to extra future deltas:
909 atomic64_set(&hwc->prev_count, (u64)-left);
911 err = checking_wrmsrl(hwc->counter_base + idx,
912 (u64)(-left) & x86_pmu.counter_mask);
914 return ret;
917 static inline void
918 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
920 int idx = __idx - X86_PMC_IDX_FIXED;
921 u64 ctrl_val, bits, mask;
922 int err;
925 * Enable IRQ generation (0x8),
926 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
927 * if requested:
929 bits = 0x8ULL;
930 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
931 bits |= 0x2;
932 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
933 bits |= 0x1;
934 bits <<= (idx * 4);
935 mask = 0xfULL << (idx * 4);
937 rdmsrl(hwc->config_base, ctrl_val);
938 ctrl_val &= ~mask;
939 ctrl_val |= bits;
940 err = checking_wrmsrl(hwc->config_base, ctrl_val);
943 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
945 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
946 intel_pmu_enable_fixed(hwc, idx);
947 return;
950 x86_pmu_enable_counter(hwc, idx);
953 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
955 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
957 if (cpuc->enabled)
958 x86_pmu_enable_counter(hwc, idx);
959 else
960 x86_pmu_disable_counter(hwc, idx);
963 static int
964 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
966 unsigned int event;
968 if (!x86_pmu.num_counters_fixed)
969 return -1;
972 * Quirk, IA32_FIXED_CTRs do not work on current Atom processors:
974 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
975 boot_cpu_data.x86_model == 28)
976 return -1;
978 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
980 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
981 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
982 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
983 return X86_PMC_IDX_FIXED_CPU_CYCLES;
984 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
985 return X86_PMC_IDX_FIXED_BUS_CYCLES;
987 return -1;
991 * Find a PMC slot for the freshly enabled / scheduled in counter:
993 static int x86_pmu_enable(struct perf_counter *counter)
995 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
996 struct hw_perf_counter *hwc = &counter->hw;
997 int idx;
999 idx = fixed_mode_idx(counter, hwc);
1000 if (idx >= 0) {
1002 * Try to get the fixed counter, if that is already taken
1003 * then try to get a generic counter:
1005 if (test_and_set_bit(idx, cpuc->used_mask))
1006 goto try_generic;
1008 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1010 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1011 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1013 hwc->counter_base =
1014 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1015 hwc->idx = idx;
1016 } else {
1017 idx = hwc->idx;
1018 /* Try to get the previous generic counter again */
1019 if (test_and_set_bit(idx, cpuc->used_mask)) {
1020 try_generic:
1021 idx = find_first_zero_bit(cpuc->used_mask,
1022 x86_pmu.num_counters);
1023 if (idx == x86_pmu.num_counters)
1024 return -EAGAIN;
1026 set_bit(idx, cpuc->used_mask);
1027 hwc->idx = idx;
1029 hwc->config_base = x86_pmu.eventsel;
1030 hwc->counter_base = x86_pmu.perfctr;
1033 perf_counters_lapic_init();
1035 x86_pmu.disable(hwc, idx);
1037 cpuc->counters[idx] = counter;
1038 set_bit(idx, cpuc->active_mask);
1040 x86_perf_counter_set_period(counter, hwc, idx);
1041 x86_pmu.enable(hwc, idx);
1043 return 0;
1046 static void x86_pmu_unthrottle(struct perf_counter *counter)
1048 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1049 struct hw_perf_counter *hwc = &counter->hw;
1051 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1052 cpuc->counters[hwc->idx] != counter))
1053 return;
1055 x86_pmu.enable(hwc, hwc->idx);
1058 void perf_counter_print_debug(void)
1060 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1061 struct cpu_hw_counters *cpuc;
1062 unsigned long flags;
1063 int cpu, idx;
1065 if (!x86_pmu.num_counters)
1066 return;
1068 local_irq_save(flags);
1070 cpu = smp_processor_id();
1071 cpuc = &per_cpu(cpu_hw_counters, cpu);
1073 if (x86_pmu.version >= 2) {
1074 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1075 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1076 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1077 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1079 pr_info("\n");
1080 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1081 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1082 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1083 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1085 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1087 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1088 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1089 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1091 prev_left = per_cpu(prev_left[idx], cpu);
1093 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1094 cpu, idx, pmc_ctrl);
1095 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1096 cpu, idx, pmc_count);
1097 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1098 cpu, idx, prev_left);
1100 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1101 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1103 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1104 cpu, idx, pmc_count);
1106 local_irq_restore(flags);
1109 static void x86_pmu_disable(struct perf_counter *counter)
1111 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1112 struct hw_perf_counter *hwc = &counter->hw;
1113 int idx = hwc->idx;
1116 * Must be done before we disable, otherwise the nmi handler
1117 * could reenable again:
1119 clear_bit(idx, cpuc->active_mask);
1120 x86_pmu.disable(hwc, idx);
1123 * Make sure the cleared pointer becomes visible before we
1124 * (potentially) free the counter:
1126 barrier();
1129 * Drain the remaining delta count out of a counter
1130 * that we are disabling:
1132 x86_perf_counter_update(counter, hwc, idx);
1133 cpuc->counters[idx] = NULL;
1134 clear_bit(idx, cpuc->used_mask);
1138 * Save and restart an expired counter. Called by NMI contexts,
1139 * so it has to be careful about preempting normal counter ops:
1141 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1143 struct hw_perf_counter *hwc = &counter->hw;
1144 int idx = hwc->idx;
1145 int ret;
1147 x86_perf_counter_update(counter, hwc, idx);
1148 ret = x86_perf_counter_set_period(counter, hwc, idx);
1150 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1151 intel_pmu_enable_counter(hwc, idx);
1153 return ret;
1156 static void intel_pmu_reset(void)
1158 unsigned long flags;
1159 int idx;
1161 if (!x86_pmu.num_counters)
1162 return;
1164 local_irq_save(flags);
1166 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1168 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1169 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1170 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1172 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1173 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1176 local_irq_restore(flags);
1181 * This handler is triggered by the local APIC, so the APIC IRQ handling
1182 * rules apply:
1184 static int intel_pmu_handle_irq(struct pt_regs *regs)
1186 struct perf_sample_data data;
1187 struct cpu_hw_counters *cpuc;
1188 int bit, cpu, loops;
1189 u64 ack, status;
1191 data.regs = regs;
1192 data.addr = 0;
1194 cpu = smp_processor_id();
1195 cpuc = &per_cpu(cpu_hw_counters, cpu);
1197 perf_disable();
1198 status = intel_pmu_get_status();
1199 if (!status) {
1200 perf_enable();
1201 return 0;
1204 loops = 0;
1205 again:
1206 if (++loops > 100) {
1207 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1208 perf_counter_print_debug();
1209 intel_pmu_reset();
1210 perf_enable();
1211 return 1;
1214 inc_irq_stat(apic_perf_irqs);
1215 ack = status;
1216 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1217 struct perf_counter *counter = cpuc->counters[bit];
1219 clear_bit(bit, (unsigned long *) &status);
1220 if (!test_bit(bit, cpuc->active_mask))
1221 continue;
1223 if (!intel_pmu_save_and_restart(counter))
1224 continue;
1226 if (perf_counter_overflow(counter, 1, &data))
1227 intel_pmu_disable_counter(&counter->hw, bit);
1230 intel_pmu_ack_status(ack);
1233 * Repeat if there is more work to be done:
1235 status = intel_pmu_get_status();
1236 if (status)
1237 goto again;
1239 perf_enable();
1241 return 1;
1244 static int amd_pmu_handle_irq(struct pt_regs *regs)
1246 struct perf_sample_data data;
1247 struct cpu_hw_counters *cpuc;
1248 struct perf_counter *counter;
1249 struct hw_perf_counter *hwc;
1250 int cpu, idx, handled = 0;
1251 u64 val;
1253 data.regs = regs;
1254 data.addr = 0;
1256 cpu = smp_processor_id();
1257 cpuc = &per_cpu(cpu_hw_counters, cpu);
1259 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1260 if (!test_bit(idx, cpuc->active_mask))
1261 continue;
1263 counter = cpuc->counters[idx];
1264 hwc = &counter->hw;
1266 val = x86_perf_counter_update(counter, hwc, idx);
1267 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1268 continue;
1271 * counter overflow
1273 handled = 1;
1274 data.period = counter->hw.last_period;
1276 if (!x86_perf_counter_set_period(counter, hwc, idx))
1277 continue;
1279 if (perf_counter_overflow(counter, 1, &data))
1280 amd_pmu_disable_counter(hwc, idx);
1283 if (handled)
1284 inc_irq_stat(apic_perf_irqs);
1286 return handled;
1289 void smp_perf_pending_interrupt(struct pt_regs *regs)
1291 irq_enter();
1292 ack_APIC_irq();
1293 inc_irq_stat(apic_pending_irqs);
1294 perf_counter_do_pending();
1295 irq_exit();
1298 void set_perf_counter_pending(void)
1300 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1303 void perf_counters_lapic_init(void)
1305 if (!x86_pmu_initialized())
1306 return;
1309 * Always use NMI for PMU
1311 apic_write(APIC_LVTPC, APIC_DM_NMI);
1314 static int __kprobes
1315 perf_counter_nmi_handler(struct notifier_block *self,
1316 unsigned long cmd, void *__args)
1318 struct die_args *args = __args;
1319 struct pt_regs *regs;
1321 if (!atomic_read(&active_counters))
1322 return NOTIFY_DONE;
1324 switch (cmd) {
1325 case DIE_NMI:
1326 case DIE_NMI_IPI:
1327 break;
1329 default:
1330 return NOTIFY_DONE;
1333 regs = args->regs;
1335 apic_write(APIC_LVTPC, APIC_DM_NMI);
1337 * Can't rely on the handled return value to say it was our NMI, two
1338 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1340 * If the first NMI handles both, the latter will be empty and daze
1341 * the CPU.
1343 x86_pmu.handle_irq(regs);
1345 return NOTIFY_STOP;
1348 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1349 .notifier_call = perf_counter_nmi_handler,
1350 .next = NULL,
1351 .priority = 1
1354 static struct x86_pmu intel_pmu = {
1355 .name = "Intel",
1356 .handle_irq = intel_pmu_handle_irq,
1357 .disable_all = intel_pmu_disable_all,
1358 .enable_all = intel_pmu_enable_all,
1359 .enable = intel_pmu_enable_counter,
1360 .disable = intel_pmu_disable_counter,
1361 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1362 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1363 .event_map = intel_pmu_event_map,
1364 .raw_event = intel_pmu_raw_event,
1365 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1367 * Intel PMCs cannot be accessed sanely above 32 bit width,
1368 * so we install an artificial 1<<31 period regardless of
1369 * the generic counter period:
1371 .max_period = (1ULL << 31) - 1,
1374 static struct x86_pmu amd_pmu = {
1375 .name = "AMD",
1376 .handle_irq = amd_pmu_handle_irq,
1377 .disable_all = amd_pmu_disable_all,
1378 .enable_all = amd_pmu_enable_all,
1379 .enable = amd_pmu_enable_counter,
1380 .disable = amd_pmu_disable_counter,
1381 .eventsel = MSR_K7_EVNTSEL0,
1382 .perfctr = MSR_K7_PERFCTR0,
1383 .event_map = amd_pmu_event_map,
1384 .raw_event = amd_pmu_raw_event,
1385 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1386 .num_counters = 4,
1387 .counter_bits = 48,
1388 .counter_mask = (1ULL << 48) - 1,
1389 /* use highest bit to detect overflow */
1390 .max_period = (1ULL << 47) - 1,
1393 static int intel_pmu_init(void)
1395 union cpuid10_edx edx;
1396 union cpuid10_eax eax;
1397 unsigned int unused;
1398 unsigned int ebx;
1399 int version;
1401 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1402 return -ENODEV;
1405 * Check whether the Architectural PerfMon supports
1406 * Branch Misses Retired Event or not.
1408 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1409 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1410 return -ENODEV;
1412 version = eax.split.version_id;
1413 if (version < 2)
1414 return -ENODEV;
1416 x86_pmu = intel_pmu;
1417 x86_pmu.version = version;
1418 x86_pmu.num_counters = eax.split.num_counters;
1419 x86_pmu.counter_bits = eax.split.bit_width;
1420 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1423 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1424 * assume at least 3 counters:
1426 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1428 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1431 * Install the hw-cache-events table:
1433 switch (boot_cpu_data.x86_model) {
1434 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1435 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1436 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1437 case 29: /* six-core 45 nm xeon "Dunnington" */
1438 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1439 sizeof(hw_cache_event_ids));
1441 pr_cont("Core2 events, ");
1442 break;
1443 default:
1444 case 26:
1445 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1446 sizeof(hw_cache_event_ids));
1448 pr_cont("Nehalem/Corei7 events, ");
1449 break;
1450 case 28:
1451 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1452 sizeof(hw_cache_event_ids));
1454 pr_cont("Atom events, ");
1455 break;
1457 return 0;
1460 static int amd_pmu_init(void)
1462 /* Performance-monitoring supported from K7 and later: */
1463 if (boot_cpu_data.x86 < 6)
1464 return -ENODEV;
1466 x86_pmu = amd_pmu;
1468 /* Events are common for all AMDs */
1469 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
1470 sizeof(hw_cache_event_ids));
1472 return 0;
1475 void __init init_hw_perf_counters(void)
1477 int err;
1479 pr_info("Performance Counters: ");
1481 switch (boot_cpu_data.x86_vendor) {
1482 case X86_VENDOR_INTEL:
1483 err = intel_pmu_init();
1484 break;
1485 case X86_VENDOR_AMD:
1486 err = amd_pmu_init();
1487 break;
1488 default:
1489 return;
1491 if (err != 0) {
1492 pr_cont("no PMU driver, software counters only.\n");
1493 return;
1496 pr_cont("%s PMU driver.\n", x86_pmu.name);
1498 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1499 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1500 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1501 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1503 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1504 perf_max_counters = x86_pmu.num_counters;
1506 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1507 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1508 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1509 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1512 perf_counter_mask |=
1513 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1515 perf_counters_lapic_init();
1516 register_die_notifier(&perf_counter_nmi_notifier);
1518 pr_info("... version: %d\n", x86_pmu.version);
1519 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
1520 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
1521 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
1522 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1523 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
1524 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
1527 static inline void x86_pmu_read(struct perf_counter *counter)
1529 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1532 static const struct pmu pmu = {
1533 .enable = x86_pmu_enable,
1534 .disable = x86_pmu_disable,
1535 .read = x86_pmu_read,
1536 .unthrottle = x86_pmu_unthrottle,
1539 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1541 int err;
1543 err = __hw_perf_counter_init(counter);
1544 if (err)
1545 return ERR_PTR(err);
1547 return &pmu;
1551 * callchain support
1554 static inline
1555 void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
1557 if (entry->nr < MAX_STACK_DEPTH)
1558 entry->ip[entry->nr++] = ip;
1561 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1562 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1565 static void
1566 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1568 /* Ignore warnings */
1571 static void backtrace_warning(void *data, char *msg)
1573 /* Ignore warnings */
1576 static int backtrace_stack(void *data, char *name)
1578 /* Process all stacks: */
1579 return 0;
1582 static void backtrace_address(void *data, unsigned long addr, int reliable)
1584 struct perf_callchain_entry *entry = data;
1586 if (reliable)
1587 callchain_store(entry, addr);
1590 static const struct stacktrace_ops backtrace_ops = {
1591 .warning = backtrace_warning,
1592 .warning_symbol = backtrace_warning_symbol,
1593 .stack = backtrace_stack,
1594 .address = backtrace_address,
1597 #include "../dumpstack.h"
1599 static void
1600 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1602 unsigned long bp;
1603 char *stack;
1604 int nr = entry->nr;
1606 callchain_store(entry, regs->ip);
1608 stack = ((char *)regs + sizeof(struct pt_regs));
1609 #ifdef CONFIG_FRAME_POINTER
1610 get_bp(bp);
1611 #else
1612 bp = 0;
1613 #endif
1615 dump_trace(NULL, regs, (void *)&stack, bp, &backtrace_ops, entry);
1617 entry->kernel = entry->nr - nr;
1620 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1622 int ret;
1624 if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
1625 return 0;
1627 ret = 1;
1628 pagefault_disable();
1629 if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
1630 ret = 0;
1631 pagefault_enable();
1633 return ret;
1636 static void
1637 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1639 struct stack_frame frame;
1640 const void __user *fp;
1641 int nr = entry->nr;
1643 if (!user_mode(regs))
1644 regs = task_pt_regs(current);
1646 fp = (void __user *)regs->bp;
1648 callchain_store(entry, regs->ip);
1650 while (entry->nr < MAX_STACK_DEPTH) {
1651 frame.next_frame = NULL;
1652 frame.return_address = 0;
1654 if (!copy_stack_frame(fp, &frame))
1655 break;
1657 if ((unsigned long)fp < regs->sp)
1658 break;
1660 callchain_store(entry, frame.return_address);
1661 fp = frame.next_frame;
1664 entry->user = entry->nr - nr;
1667 static void
1668 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1670 int is_user;
1672 if (!regs)
1673 return;
1675 is_user = user_mode(regs);
1677 if (!current || current->pid == 0)
1678 return;
1680 if (is_user && current->state != TASK_RUNNING)
1681 return;
1683 if (!is_user)
1684 perf_callchain_kernel(regs, entry);
1686 if (current->mm)
1687 perf_callchain_user(regs, entry);
1690 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1692 struct perf_callchain_entry *entry;
1694 if (in_nmi())
1695 entry = &__get_cpu_var(nmi_entry);
1696 else
1697 entry = &__get_cpu_var(irq_entry);
1699 entry->nr = 0;
1700 entry->hv = 0;
1701 entry->kernel = 0;
1702 entry->user = 0;
1704 perf_do_callchain(regs, entry);
1706 return entry;