sched: documentation, whitespace fixes
[linux-2.6/verdex.git] / kernel / sched.c
blobb9ee0f4db66a07a749a7f774dc0fec1053e9e3ed
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
69 #include <asm/tlb.h>
70 #include <asm/irq_regs.h>
73 * Scheduler clock - returns current time in nanosec units.
74 * This is default implementation.
75 * Architectures and sub-architectures can override this.
77 unsigned long long __attribute__((weak)) sched_clock(void)
79 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
116 #ifdef CONFIG_SMP
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 #endif
137 static inline int rt_policy(int policy)
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
144 static inline int task_has_rt_policy(struct task_struct *p)
146 return rt_policy(p->policy);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
157 #ifdef CONFIG_FAIR_GROUP_SCHED
159 #include <linux/cgroup.h>
161 struct cfs_rq;
163 /* task group related information */
164 struct task_group {
165 #ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167 #endif
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
174 * shares assigned to a task group governs how much of cpu bandwidth
175 * is allocated to the group. The more shares a group has, the more is
176 * the cpu bandwidth allocated to it.
178 * For ex, lets say that there are three task groups, A, B and C which
179 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
180 * cpu bandwidth allocated by the scheduler to task groups A, B and C
181 * should be:
183 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
184 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
185 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
187 * The weight assigned to a task group's schedulable entities on every
188 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
189 * group's shares. For ex: lets say that task group A has been
190 * assigned shares of 1000 and there are two CPUs in a system. Then,
192 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
194 * Note: It's not necessary that each of a task's group schedulable
195 * entity have the same weight on all CPUs. If the group
196 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
197 * better distribution of weight could be:
199 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
200 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
202 * rebalance_shares() is responsible for distributing the shares of a
203 * task groups like this among the group's schedulable entities across
204 * cpus.
207 unsigned long shares;
209 struct rcu_head rcu;
212 /* Default task group's sched entity on each cpu */
213 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
214 /* Default task group's cfs_rq on each cpu */
215 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
217 static struct sched_entity *init_sched_entity_p[NR_CPUS];
218 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
220 /* task_group_mutex serializes add/remove of task groups and also changes to
221 * a task group's cpu shares.
223 static DEFINE_MUTEX(task_group_mutex);
225 /* doms_cur_mutex serializes access to doms_cur[] array */
226 static DEFINE_MUTEX(doms_cur_mutex);
228 #ifdef CONFIG_SMP
229 /* kernel thread that runs rebalance_shares() periodically */
230 static struct task_struct *lb_monitor_task;
231 static int load_balance_monitor(void *unused);
232 #endif
234 static void set_se_shares(struct sched_entity *se, unsigned long shares);
236 /* Default task group.
237 * Every task in system belong to this group at bootup.
239 struct task_group init_task_group = {
240 .se = init_sched_entity_p,
241 .cfs_rq = init_cfs_rq_p,
244 #ifdef CONFIG_FAIR_USER_SCHED
245 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
246 #else
247 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
248 #endif
250 #define MIN_GROUP_SHARES 2
252 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
254 /* return group to which a task belongs */
255 static inline struct task_group *task_group(struct task_struct *p)
257 struct task_group *tg;
259 #ifdef CONFIG_FAIR_USER_SCHED
260 tg = p->user->tg;
261 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
262 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
263 struct task_group, css);
264 #else
265 tg = &init_task_group;
266 #endif
267 return tg;
270 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
271 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
273 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
274 p->se.parent = task_group(p)->se[cpu];
277 static inline void lock_task_group_list(void)
279 mutex_lock(&task_group_mutex);
282 static inline void unlock_task_group_list(void)
284 mutex_unlock(&task_group_mutex);
287 static inline void lock_doms_cur(void)
289 mutex_lock(&doms_cur_mutex);
292 static inline void unlock_doms_cur(void)
294 mutex_unlock(&doms_cur_mutex);
297 #else
299 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
300 static inline void lock_task_group_list(void) { }
301 static inline void unlock_task_group_list(void) { }
302 static inline void lock_doms_cur(void) { }
303 static inline void unlock_doms_cur(void) { }
305 #endif /* CONFIG_FAIR_GROUP_SCHED */
307 /* CFS-related fields in a runqueue */
308 struct cfs_rq {
309 struct load_weight load;
310 unsigned long nr_running;
312 u64 exec_clock;
313 u64 min_vruntime;
315 struct rb_root tasks_timeline;
316 struct rb_node *rb_leftmost;
317 struct rb_node *rb_load_balance_curr;
318 /* 'curr' points to currently running entity on this cfs_rq.
319 * It is set to NULL otherwise (i.e when none are currently running).
321 struct sched_entity *curr;
323 unsigned long nr_spread_over;
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
329 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
330 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
331 * (like users, containers etc.)
333 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
334 * list is used during load balance.
336 struct list_head leaf_cfs_rq_list;
337 struct task_group *tg; /* group that "owns" this runqueue */
338 #endif
341 /* Real-Time classes' related field in a runqueue: */
342 struct rt_rq {
343 struct rt_prio_array active;
344 int rt_load_balance_idx;
345 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
346 unsigned long rt_nr_running;
347 unsigned long rt_nr_migratory;
348 /* highest queued rt task prio */
349 int highest_prio;
350 int overloaded;
353 #ifdef CONFIG_SMP
356 * We add the notion of a root-domain which will be used to define per-domain
357 * variables. Each exclusive cpuset essentially defines an island domain by
358 * fully partitioning the member cpus from any other cpuset. Whenever a new
359 * exclusive cpuset is created, we also create and attach a new root-domain
360 * object.
363 struct root_domain {
364 atomic_t refcount;
365 cpumask_t span;
366 cpumask_t online;
369 * The "RT overload" flag: it gets set if a CPU has more than
370 * one runnable RT task.
372 cpumask_t rto_mask;
373 atomic_t rto_count;
377 * By default the system creates a single root-domain with all cpus as
378 * members (mimicking the global state we have today).
380 static struct root_domain def_root_domain;
382 #endif
385 * This is the main, per-CPU runqueue data structure.
387 * Locking rule: those places that want to lock multiple runqueues
388 * (such as the load balancing or the thread migration code), lock
389 * acquire operations must be ordered by ascending &runqueue.
391 struct rq {
392 /* runqueue lock: */
393 spinlock_t lock;
396 * nr_running and cpu_load should be in the same cacheline because
397 * remote CPUs use both these fields when doing load calculation.
399 unsigned long nr_running;
400 #define CPU_LOAD_IDX_MAX 5
401 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
402 unsigned char idle_at_tick;
403 #ifdef CONFIG_NO_HZ
404 unsigned char in_nohz_recently;
405 #endif
406 /* capture load from *all* tasks on this cpu: */
407 struct load_weight load;
408 unsigned long nr_load_updates;
409 u64 nr_switches;
411 struct cfs_rq cfs;
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 /* list of leaf cfs_rq on this cpu: */
414 struct list_head leaf_cfs_rq_list;
415 #endif
416 struct rt_rq rt;
419 * This is part of a global counter where only the total sum
420 * over all CPUs matters. A task can increase this counter on
421 * one CPU and if it got migrated afterwards it may decrease
422 * it on another CPU. Always updated under the runqueue lock:
424 unsigned long nr_uninterruptible;
426 struct task_struct *curr, *idle;
427 unsigned long next_balance;
428 struct mm_struct *prev_mm;
430 u64 clock, prev_clock_raw;
431 s64 clock_max_delta;
433 unsigned int clock_warps, clock_overflows;
434 u64 idle_clock;
435 unsigned int clock_deep_idle_events;
436 u64 tick_timestamp;
438 atomic_t nr_iowait;
440 #ifdef CONFIG_SMP
441 struct root_domain *rd;
442 struct sched_domain *sd;
444 /* For active balancing */
445 int active_balance;
446 int push_cpu;
447 /* cpu of this runqueue: */
448 int cpu;
450 struct task_struct *migration_thread;
451 struct list_head migration_queue;
452 #endif
454 #ifdef CONFIG_SCHEDSTATS
455 /* latency stats */
456 struct sched_info rq_sched_info;
458 /* sys_sched_yield() stats */
459 unsigned int yld_exp_empty;
460 unsigned int yld_act_empty;
461 unsigned int yld_both_empty;
462 unsigned int yld_count;
464 /* schedule() stats */
465 unsigned int sched_switch;
466 unsigned int sched_count;
467 unsigned int sched_goidle;
469 /* try_to_wake_up() stats */
470 unsigned int ttwu_count;
471 unsigned int ttwu_local;
473 /* BKL stats */
474 unsigned int bkl_count;
475 #endif
476 struct lock_class_key rq_lock_key;
479 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
481 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
483 rq->curr->sched_class->check_preempt_curr(rq, p);
486 static inline int cpu_of(struct rq *rq)
488 #ifdef CONFIG_SMP
489 return rq->cpu;
490 #else
491 return 0;
492 #endif
496 * Update the per-runqueue clock, as finegrained as the platform can give
497 * us, but without assuming monotonicity, etc.:
499 static void __update_rq_clock(struct rq *rq)
501 u64 prev_raw = rq->prev_clock_raw;
502 u64 now = sched_clock();
503 s64 delta = now - prev_raw;
504 u64 clock = rq->clock;
506 #ifdef CONFIG_SCHED_DEBUG
507 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
508 #endif
510 * Protect against sched_clock() occasionally going backwards:
512 if (unlikely(delta < 0)) {
513 clock++;
514 rq->clock_warps++;
515 } else {
517 * Catch too large forward jumps too:
519 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
520 if (clock < rq->tick_timestamp + TICK_NSEC)
521 clock = rq->tick_timestamp + TICK_NSEC;
522 else
523 clock++;
524 rq->clock_overflows++;
525 } else {
526 if (unlikely(delta > rq->clock_max_delta))
527 rq->clock_max_delta = delta;
528 clock += delta;
532 rq->prev_clock_raw = now;
533 rq->clock = clock;
536 static void update_rq_clock(struct rq *rq)
538 if (likely(smp_processor_id() == cpu_of(rq)))
539 __update_rq_clock(rq);
543 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
544 * See detach_destroy_domains: synchronize_sched for details.
546 * The domain tree of any CPU may only be accessed from within
547 * preempt-disabled sections.
549 #define for_each_domain(cpu, __sd) \
550 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
552 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
553 #define this_rq() (&__get_cpu_var(runqueues))
554 #define task_rq(p) cpu_rq(task_cpu(p))
555 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
558 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
560 #ifdef CONFIG_SCHED_DEBUG
561 # define const_debug __read_mostly
562 #else
563 # define const_debug static const
564 #endif
567 * Debugging: various feature bits
569 enum {
570 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
571 SCHED_FEAT_WAKEUP_PREEMPT = 2,
572 SCHED_FEAT_START_DEBIT = 4,
573 SCHED_FEAT_TREE_AVG = 8,
574 SCHED_FEAT_APPROX_AVG = 16,
577 const_debug unsigned int sysctl_sched_features =
578 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
579 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
580 SCHED_FEAT_START_DEBIT * 1 |
581 SCHED_FEAT_TREE_AVG * 0 |
582 SCHED_FEAT_APPROX_AVG * 0;
584 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
587 * Number of tasks to iterate in a single balance run.
588 * Limited because this is done with IRQs disabled.
590 const_debug unsigned int sysctl_sched_nr_migrate = 32;
593 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
594 * clock constructed from sched_clock():
596 unsigned long long cpu_clock(int cpu)
598 unsigned long long now;
599 unsigned long flags;
600 struct rq *rq;
602 local_irq_save(flags);
603 rq = cpu_rq(cpu);
605 * Only call sched_clock() if the scheduler has already been
606 * initialized (some code might call cpu_clock() very early):
608 if (rq->idle)
609 update_rq_clock(rq);
610 now = rq->clock;
611 local_irq_restore(flags);
613 return now;
615 EXPORT_SYMBOL_GPL(cpu_clock);
617 #ifndef prepare_arch_switch
618 # define prepare_arch_switch(next) do { } while (0)
619 #endif
620 #ifndef finish_arch_switch
621 # define finish_arch_switch(prev) do { } while (0)
622 #endif
624 static inline int task_current(struct rq *rq, struct task_struct *p)
626 return rq->curr == p;
629 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
630 static inline int task_running(struct rq *rq, struct task_struct *p)
632 return task_current(rq, p);
635 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
639 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
641 #ifdef CONFIG_DEBUG_SPINLOCK
642 /* this is a valid case when another task releases the spinlock */
643 rq->lock.owner = current;
644 #endif
646 * If we are tracking spinlock dependencies then we have to
647 * fix up the runqueue lock - which gets 'carried over' from
648 * prev into current:
650 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
652 spin_unlock_irq(&rq->lock);
655 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
656 static inline int task_running(struct rq *rq, struct task_struct *p)
658 #ifdef CONFIG_SMP
659 return p->oncpu;
660 #else
661 return task_current(rq, p);
662 #endif
665 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
667 #ifdef CONFIG_SMP
669 * We can optimise this out completely for !SMP, because the
670 * SMP rebalancing from interrupt is the only thing that cares
671 * here.
673 next->oncpu = 1;
674 #endif
675 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
676 spin_unlock_irq(&rq->lock);
677 #else
678 spin_unlock(&rq->lock);
679 #endif
682 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
684 #ifdef CONFIG_SMP
686 * After ->oncpu is cleared, the task can be moved to a different CPU.
687 * We must ensure this doesn't happen until the switch is completely
688 * finished.
690 smp_wmb();
691 prev->oncpu = 0;
692 #endif
693 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
694 local_irq_enable();
695 #endif
697 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
700 * __task_rq_lock - lock the runqueue a given task resides on.
701 * Must be called interrupts disabled.
703 static inline struct rq *__task_rq_lock(struct task_struct *p)
704 __acquires(rq->lock)
706 for (;;) {
707 struct rq *rq = task_rq(p);
708 spin_lock(&rq->lock);
709 if (likely(rq == task_rq(p)))
710 return rq;
711 spin_unlock(&rq->lock);
716 * task_rq_lock - lock the runqueue a given task resides on and disable
717 * interrupts. Note the ordering: we can safely lookup the task_rq without
718 * explicitly disabling preemption.
720 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
721 __acquires(rq->lock)
723 struct rq *rq;
725 for (;;) {
726 local_irq_save(*flags);
727 rq = task_rq(p);
728 spin_lock(&rq->lock);
729 if (likely(rq == task_rq(p)))
730 return rq;
731 spin_unlock_irqrestore(&rq->lock, *flags);
735 static void __task_rq_unlock(struct rq *rq)
736 __releases(rq->lock)
738 spin_unlock(&rq->lock);
741 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
742 __releases(rq->lock)
744 spin_unlock_irqrestore(&rq->lock, *flags);
748 * this_rq_lock - lock this runqueue and disable interrupts.
750 static struct rq *this_rq_lock(void)
751 __acquires(rq->lock)
753 struct rq *rq;
755 local_irq_disable();
756 rq = this_rq();
757 spin_lock(&rq->lock);
759 return rq;
763 * We are going deep-idle (irqs are disabled):
765 void sched_clock_idle_sleep_event(void)
767 struct rq *rq = cpu_rq(smp_processor_id());
769 spin_lock(&rq->lock);
770 __update_rq_clock(rq);
771 spin_unlock(&rq->lock);
772 rq->clock_deep_idle_events++;
774 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
777 * We just idled delta nanoseconds (called with irqs disabled):
779 void sched_clock_idle_wakeup_event(u64 delta_ns)
781 struct rq *rq = cpu_rq(smp_processor_id());
782 u64 now = sched_clock();
784 touch_softlockup_watchdog();
785 rq->idle_clock += delta_ns;
787 * Override the previous timestamp and ignore all
788 * sched_clock() deltas that occured while we idled,
789 * and use the PM-provided delta_ns to advance the
790 * rq clock:
792 spin_lock(&rq->lock);
793 rq->prev_clock_raw = now;
794 rq->clock += delta_ns;
795 spin_unlock(&rq->lock);
797 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
800 * resched_task - mark a task 'to be rescheduled now'.
802 * On UP this means the setting of the need_resched flag, on SMP it
803 * might also involve a cross-CPU call to trigger the scheduler on
804 * the target CPU.
806 #ifdef CONFIG_SMP
808 #ifndef tsk_is_polling
809 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
810 #endif
812 static void resched_task(struct task_struct *p)
814 int cpu;
816 assert_spin_locked(&task_rq(p)->lock);
818 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
819 return;
821 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
823 cpu = task_cpu(p);
824 if (cpu == smp_processor_id())
825 return;
827 /* NEED_RESCHED must be visible before we test polling */
828 smp_mb();
829 if (!tsk_is_polling(p))
830 smp_send_reschedule(cpu);
833 static void resched_cpu(int cpu)
835 struct rq *rq = cpu_rq(cpu);
836 unsigned long flags;
838 if (!spin_trylock_irqsave(&rq->lock, flags))
839 return;
840 resched_task(cpu_curr(cpu));
841 spin_unlock_irqrestore(&rq->lock, flags);
843 #else
844 static inline void resched_task(struct task_struct *p)
846 assert_spin_locked(&task_rq(p)->lock);
847 set_tsk_need_resched(p);
849 #endif
851 #if BITS_PER_LONG == 32
852 # define WMULT_CONST (~0UL)
853 #else
854 # define WMULT_CONST (1UL << 32)
855 #endif
857 #define WMULT_SHIFT 32
860 * Shift right and round:
862 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
864 static unsigned long
865 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
866 struct load_weight *lw)
868 u64 tmp;
870 if (unlikely(!lw->inv_weight))
871 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
873 tmp = (u64)delta_exec * weight;
875 * Check whether we'd overflow the 64-bit multiplication:
877 if (unlikely(tmp > WMULT_CONST))
878 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
879 WMULT_SHIFT/2);
880 else
881 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
883 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
886 static inline unsigned long
887 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
889 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
892 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
894 lw->weight += inc;
897 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
899 lw->weight -= dec;
903 * To aid in avoiding the subversion of "niceness" due to uneven distribution
904 * of tasks with abnormal "nice" values across CPUs the contribution that
905 * each task makes to its run queue's load is weighted according to its
906 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
907 * scaled version of the new time slice allocation that they receive on time
908 * slice expiry etc.
911 #define WEIGHT_IDLEPRIO 2
912 #define WMULT_IDLEPRIO (1 << 31)
915 * Nice levels are multiplicative, with a gentle 10% change for every
916 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
917 * nice 1, it will get ~10% less CPU time than another CPU-bound task
918 * that remained on nice 0.
920 * The "10% effect" is relative and cumulative: from _any_ nice level,
921 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
922 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
923 * If a task goes up by ~10% and another task goes down by ~10% then
924 * the relative distance between them is ~25%.)
926 static const int prio_to_weight[40] = {
927 /* -20 */ 88761, 71755, 56483, 46273, 36291,
928 /* -15 */ 29154, 23254, 18705, 14949, 11916,
929 /* -10 */ 9548, 7620, 6100, 4904, 3906,
930 /* -5 */ 3121, 2501, 1991, 1586, 1277,
931 /* 0 */ 1024, 820, 655, 526, 423,
932 /* 5 */ 335, 272, 215, 172, 137,
933 /* 10 */ 110, 87, 70, 56, 45,
934 /* 15 */ 36, 29, 23, 18, 15,
938 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
940 * In cases where the weight does not change often, we can use the
941 * precalculated inverse to speed up arithmetics by turning divisions
942 * into multiplications:
944 static const u32 prio_to_wmult[40] = {
945 /* -20 */ 48388, 59856, 76040, 92818, 118348,
946 /* -15 */ 147320, 184698, 229616, 287308, 360437,
947 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
948 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
949 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
950 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
951 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
952 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
955 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
958 * runqueue iterator, to support SMP load-balancing between different
959 * scheduling classes, without having to expose their internal data
960 * structures to the load-balancing proper:
962 struct rq_iterator {
963 void *arg;
964 struct task_struct *(*start)(void *);
965 struct task_struct *(*next)(void *);
968 #ifdef CONFIG_SMP
969 static unsigned long
970 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
971 unsigned long max_load_move, struct sched_domain *sd,
972 enum cpu_idle_type idle, int *all_pinned,
973 int *this_best_prio, struct rq_iterator *iterator);
975 static int
976 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
977 struct sched_domain *sd, enum cpu_idle_type idle,
978 struct rq_iterator *iterator);
979 #endif
981 #ifdef CONFIG_CGROUP_CPUACCT
982 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
983 #else
984 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
985 #endif
987 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
989 update_load_add(&rq->load, load);
992 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
994 update_load_sub(&rq->load, load);
997 #ifdef CONFIG_SMP
998 static unsigned long source_load(int cpu, int type);
999 static unsigned long target_load(int cpu, int type);
1000 static unsigned long cpu_avg_load_per_task(int cpu);
1001 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1002 #endif /* CONFIG_SMP */
1004 #include "sched_stats.h"
1005 #include "sched_idletask.c"
1006 #include "sched_fair.c"
1007 #include "sched_rt.c"
1008 #ifdef CONFIG_SCHED_DEBUG
1009 # include "sched_debug.c"
1010 #endif
1012 #define sched_class_highest (&rt_sched_class)
1014 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1016 rq->nr_running++;
1019 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1021 rq->nr_running--;
1024 static void set_load_weight(struct task_struct *p)
1026 if (task_has_rt_policy(p)) {
1027 p->se.load.weight = prio_to_weight[0] * 2;
1028 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1029 return;
1033 * SCHED_IDLE tasks get minimal weight:
1035 if (p->policy == SCHED_IDLE) {
1036 p->se.load.weight = WEIGHT_IDLEPRIO;
1037 p->se.load.inv_weight = WMULT_IDLEPRIO;
1038 return;
1041 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1042 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1045 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1047 sched_info_queued(p);
1048 p->sched_class->enqueue_task(rq, p, wakeup);
1049 p->se.on_rq = 1;
1052 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1054 p->sched_class->dequeue_task(rq, p, sleep);
1055 p->se.on_rq = 0;
1059 * __normal_prio - return the priority that is based on the static prio
1061 static inline int __normal_prio(struct task_struct *p)
1063 return p->static_prio;
1067 * Calculate the expected normal priority: i.e. priority
1068 * without taking RT-inheritance into account. Might be
1069 * boosted by interactivity modifiers. Changes upon fork,
1070 * setprio syscalls, and whenever the interactivity
1071 * estimator recalculates.
1073 static inline int normal_prio(struct task_struct *p)
1075 int prio;
1077 if (task_has_rt_policy(p))
1078 prio = MAX_RT_PRIO-1 - p->rt_priority;
1079 else
1080 prio = __normal_prio(p);
1081 return prio;
1085 * Calculate the current priority, i.e. the priority
1086 * taken into account by the scheduler. This value might
1087 * be boosted by RT tasks, or might be boosted by
1088 * interactivity modifiers. Will be RT if the task got
1089 * RT-boosted. If not then it returns p->normal_prio.
1091 static int effective_prio(struct task_struct *p)
1093 p->normal_prio = normal_prio(p);
1095 * If we are RT tasks or we were boosted to RT priority,
1096 * keep the priority unchanged. Otherwise, update priority
1097 * to the normal priority:
1099 if (!rt_prio(p->prio))
1100 return p->normal_prio;
1101 return p->prio;
1105 * activate_task - move a task to the runqueue.
1107 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1109 if (p->state == TASK_UNINTERRUPTIBLE)
1110 rq->nr_uninterruptible--;
1112 enqueue_task(rq, p, wakeup);
1113 inc_nr_running(p, rq);
1117 * deactivate_task - remove a task from the runqueue.
1119 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1121 if (p->state == TASK_UNINTERRUPTIBLE)
1122 rq->nr_uninterruptible++;
1124 dequeue_task(rq, p, sleep);
1125 dec_nr_running(p, rq);
1129 * task_curr - is this task currently executing on a CPU?
1130 * @p: the task in question.
1132 inline int task_curr(const struct task_struct *p)
1134 return cpu_curr(task_cpu(p)) == p;
1137 /* Used instead of source_load when we know the type == 0 */
1138 unsigned long weighted_cpuload(const int cpu)
1140 return cpu_rq(cpu)->load.weight;
1143 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1145 set_task_cfs_rq(p, cpu);
1146 #ifdef CONFIG_SMP
1148 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1149 * successfuly executed on another CPU. We must ensure that updates of
1150 * per-task data have been completed by this moment.
1152 smp_wmb();
1153 task_thread_info(p)->cpu = cpu;
1154 #endif
1157 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1158 const struct sched_class *prev_class,
1159 int oldprio, int running)
1161 if (prev_class != p->sched_class) {
1162 if (prev_class->switched_from)
1163 prev_class->switched_from(rq, p, running);
1164 p->sched_class->switched_to(rq, p, running);
1165 } else
1166 p->sched_class->prio_changed(rq, p, oldprio, running);
1169 #ifdef CONFIG_SMP
1172 * Is this task likely cache-hot:
1174 static int
1175 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1177 s64 delta;
1179 if (p->sched_class != &fair_sched_class)
1180 return 0;
1182 if (sysctl_sched_migration_cost == -1)
1183 return 1;
1184 if (sysctl_sched_migration_cost == 0)
1185 return 0;
1187 delta = now - p->se.exec_start;
1189 return delta < (s64)sysctl_sched_migration_cost;
1193 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1195 int old_cpu = task_cpu(p);
1196 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1197 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1198 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1199 u64 clock_offset;
1201 clock_offset = old_rq->clock - new_rq->clock;
1203 #ifdef CONFIG_SCHEDSTATS
1204 if (p->se.wait_start)
1205 p->se.wait_start -= clock_offset;
1206 if (p->se.sleep_start)
1207 p->se.sleep_start -= clock_offset;
1208 if (p->se.block_start)
1209 p->se.block_start -= clock_offset;
1210 if (old_cpu != new_cpu) {
1211 schedstat_inc(p, se.nr_migrations);
1212 if (task_hot(p, old_rq->clock, NULL))
1213 schedstat_inc(p, se.nr_forced2_migrations);
1215 #endif
1216 p->se.vruntime -= old_cfsrq->min_vruntime -
1217 new_cfsrq->min_vruntime;
1219 __set_task_cpu(p, new_cpu);
1222 struct migration_req {
1223 struct list_head list;
1225 struct task_struct *task;
1226 int dest_cpu;
1228 struct completion done;
1232 * The task's runqueue lock must be held.
1233 * Returns true if you have to wait for migration thread.
1235 static int
1236 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1238 struct rq *rq = task_rq(p);
1241 * If the task is not on a runqueue (and not running), then
1242 * it is sufficient to simply update the task's cpu field.
1244 if (!p->se.on_rq && !task_running(rq, p)) {
1245 set_task_cpu(p, dest_cpu);
1246 return 0;
1249 init_completion(&req->done);
1250 req->task = p;
1251 req->dest_cpu = dest_cpu;
1252 list_add(&req->list, &rq->migration_queue);
1254 return 1;
1258 * wait_task_inactive - wait for a thread to unschedule.
1260 * The caller must ensure that the task *will* unschedule sometime soon,
1261 * else this function might spin for a *long* time. This function can't
1262 * be called with interrupts off, or it may introduce deadlock with
1263 * smp_call_function() if an IPI is sent by the same process we are
1264 * waiting to become inactive.
1266 void wait_task_inactive(struct task_struct *p)
1268 unsigned long flags;
1269 int running, on_rq;
1270 struct rq *rq;
1272 for (;;) {
1274 * We do the initial early heuristics without holding
1275 * any task-queue locks at all. We'll only try to get
1276 * the runqueue lock when things look like they will
1277 * work out!
1279 rq = task_rq(p);
1282 * If the task is actively running on another CPU
1283 * still, just relax and busy-wait without holding
1284 * any locks.
1286 * NOTE! Since we don't hold any locks, it's not
1287 * even sure that "rq" stays as the right runqueue!
1288 * But we don't care, since "task_running()" will
1289 * return false if the runqueue has changed and p
1290 * is actually now running somewhere else!
1292 while (task_running(rq, p))
1293 cpu_relax();
1296 * Ok, time to look more closely! We need the rq
1297 * lock now, to be *sure*. If we're wrong, we'll
1298 * just go back and repeat.
1300 rq = task_rq_lock(p, &flags);
1301 running = task_running(rq, p);
1302 on_rq = p->se.on_rq;
1303 task_rq_unlock(rq, &flags);
1306 * Was it really running after all now that we
1307 * checked with the proper locks actually held?
1309 * Oops. Go back and try again..
1311 if (unlikely(running)) {
1312 cpu_relax();
1313 continue;
1317 * It's not enough that it's not actively running,
1318 * it must be off the runqueue _entirely_, and not
1319 * preempted!
1321 * So if it wa still runnable (but just not actively
1322 * running right now), it's preempted, and we should
1323 * yield - it could be a while.
1325 if (unlikely(on_rq)) {
1326 schedule_timeout_uninterruptible(1);
1327 continue;
1331 * Ahh, all good. It wasn't running, and it wasn't
1332 * runnable, which means that it will never become
1333 * running in the future either. We're all done!
1335 break;
1339 /***
1340 * kick_process - kick a running thread to enter/exit the kernel
1341 * @p: the to-be-kicked thread
1343 * Cause a process which is running on another CPU to enter
1344 * kernel-mode, without any delay. (to get signals handled.)
1346 * NOTE: this function doesnt have to take the runqueue lock,
1347 * because all it wants to ensure is that the remote task enters
1348 * the kernel. If the IPI races and the task has been migrated
1349 * to another CPU then no harm is done and the purpose has been
1350 * achieved as well.
1352 void kick_process(struct task_struct *p)
1354 int cpu;
1356 preempt_disable();
1357 cpu = task_cpu(p);
1358 if ((cpu != smp_processor_id()) && task_curr(p))
1359 smp_send_reschedule(cpu);
1360 preempt_enable();
1364 * Return a low guess at the load of a migration-source cpu weighted
1365 * according to the scheduling class and "nice" value.
1367 * We want to under-estimate the load of migration sources, to
1368 * balance conservatively.
1370 static unsigned long source_load(int cpu, int type)
1372 struct rq *rq = cpu_rq(cpu);
1373 unsigned long total = weighted_cpuload(cpu);
1375 if (type == 0)
1376 return total;
1378 return min(rq->cpu_load[type-1], total);
1382 * Return a high guess at the load of a migration-target cpu weighted
1383 * according to the scheduling class and "nice" value.
1385 static unsigned long target_load(int cpu, int type)
1387 struct rq *rq = cpu_rq(cpu);
1388 unsigned long total = weighted_cpuload(cpu);
1390 if (type == 0)
1391 return total;
1393 return max(rq->cpu_load[type-1], total);
1397 * Return the average load per task on the cpu's run queue
1399 static unsigned long cpu_avg_load_per_task(int cpu)
1401 struct rq *rq = cpu_rq(cpu);
1402 unsigned long total = weighted_cpuload(cpu);
1403 unsigned long n = rq->nr_running;
1405 return n ? total / n : SCHED_LOAD_SCALE;
1409 * find_idlest_group finds and returns the least busy CPU group within the
1410 * domain.
1412 static struct sched_group *
1413 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1415 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1416 unsigned long min_load = ULONG_MAX, this_load = 0;
1417 int load_idx = sd->forkexec_idx;
1418 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1420 do {
1421 unsigned long load, avg_load;
1422 int local_group;
1423 int i;
1425 /* Skip over this group if it has no CPUs allowed */
1426 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1427 continue;
1429 local_group = cpu_isset(this_cpu, group->cpumask);
1431 /* Tally up the load of all CPUs in the group */
1432 avg_load = 0;
1434 for_each_cpu_mask(i, group->cpumask) {
1435 /* Bias balancing toward cpus of our domain */
1436 if (local_group)
1437 load = source_load(i, load_idx);
1438 else
1439 load = target_load(i, load_idx);
1441 avg_load += load;
1444 /* Adjust by relative CPU power of the group */
1445 avg_load = sg_div_cpu_power(group,
1446 avg_load * SCHED_LOAD_SCALE);
1448 if (local_group) {
1449 this_load = avg_load;
1450 this = group;
1451 } else if (avg_load < min_load) {
1452 min_load = avg_load;
1453 idlest = group;
1455 } while (group = group->next, group != sd->groups);
1457 if (!idlest || 100*this_load < imbalance*min_load)
1458 return NULL;
1459 return idlest;
1463 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1465 static int
1466 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1468 cpumask_t tmp;
1469 unsigned long load, min_load = ULONG_MAX;
1470 int idlest = -1;
1471 int i;
1473 /* Traverse only the allowed CPUs */
1474 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1476 for_each_cpu_mask(i, tmp) {
1477 load = weighted_cpuload(i);
1479 if (load < min_load || (load == min_load && i == this_cpu)) {
1480 min_load = load;
1481 idlest = i;
1485 return idlest;
1489 * sched_balance_self: balance the current task (running on cpu) in domains
1490 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1491 * SD_BALANCE_EXEC.
1493 * Balance, ie. select the least loaded group.
1495 * Returns the target CPU number, or the same CPU if no balancing is needed.
1497 * preempt must be disabled.
1499 static int sched_balance_self(int cpu, int flag)
1501 struct task_struct *t = current;
1502 struct sched_domain *tmp, *sd = NULL;
1504 for_each_domain(cpu, tmp) {
1506 * If power savings logic is enabled for a domain, stop there.
1508 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1509 break;
1510 if (tmp->flags & flag)
1511 sd = tmp;
1514 while (sd) {
1515 cpumask_t span;
1516 struct sched_group *group;
1517 int new_cpu, weight;
1519 if (!(sd->flags & flag)) {
1520 sd = sd->child;
1521 continue;
1524 span = sd->span;
1525 group = find_idlest_group(sd, t, cpu);
1526 if (!group) {
1527 sd = sd->child;
1528 continue;
1531 new_cpu = find_idlest_cpu(group, t, cpu);
1532 if (new_cpu == -1 || new_cpu == cpu) {
1533 /* Now try balancing at a lower domain level of cpu */
1534 sd = sd->child;
1535 continue;
1538 /* Now try balancing at a lower domain level of new_cpu */
1539 cpu = new_cpu;
1540 sd = NULL;
1541 weight = cpus_weight(span);
1542 for_each_domain(cpu, tmp) {
1543 if (weight <= cpus_weight(tmp->span))
1544 break;
1545 if (tmp->flags & flag)
1546 sd = tmp;
1548 /* while loop will break here if sd == NULL */
1551 return cpu;
1554 #endif /* CONFIG_SMP */
1556 /***
1557 * try_to_wake_up - wake up a thread
1558 * @p: the to-be-woken-up thread
1559 * @state: the mask of task states that can be woken
1560 * @sync: do a synchronous wakeup?
1562 * Put it on the run-queue if it's not already there. The "current"
1563 * thread is always on the run-queue (except when the actual
1564 * re-schedule is in progress), and as such you're allowed to do
1565 * the simpler "current->state = TASK_RUNNING" to mark yourself
1566 * runnable without the overhead of this.
1568 * returns failure only if the task is already active.
1570 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1572 int cpu, orig_cpu, this_cpu, success = 0;
1573 unsigned long flags;
1574 long old_state;
1575 struct rq *rq;
1577 rq = task_rq_lock(p, &flags);
1578 old_state = p->state;
1579 if (!(old_state & state))
1580 goto out;
1582 if (p->se.on_rq)
1583 goto out_running;
1585 cpu = task_cpu(p);
1586 orig_cpu = cpu;
1587 this_cpu = smp_processor_id();
1589 #ifdef CONFIG_SMP
1590 if (unlikely(task_running(rq, p)))
1591 goto out_activate;
1593 cpu = p->sched_class->select_task_rq(p, sync);
1594 if (cpu != orig_cpu) {
1595 set_task_cpu(p, cpu);
1596 task_rq_unlock(rq, &flags);
1597 /* might preempt at this point */
1598 rq = task_rq_lock(p, &flags);
1599 old_state = p->state;
1600 if (!(old_state & state))
1601 goto out;
1602 if (p->se.on_rq)
1603 goto out_running;
1605 this_cpu = smp_processor_id();
1606 cpu = task_cpu(p);
1609 #ifdef CONFIG_SCHEDSTATS
1610 schedstat_inc(rq, ttwu_count);
1611 if (cpu == this_cpu)
1612 schedstat_inc(rq, ttwu_local);
1613 else {
1614 struct sched_domain *sd;
1615 for_each_domain(this_cpu, sd) {
1616 if (cpu_isset(cpu, sd->span)) {
1617 schedstat_inc(sd, ttwu_wake_remote);
1618 break;
1622 #endif
1624 out_activate:
1625 #endif /* CONFIG_SMP */
1626 schedstat_inc(p, se.nr_wakeups);
1627 if (sync)
1628 schedstat_inc(p, se.nr_wakeups_sync);
1629 if (orig_cpu != cpu)
1630 schedstat_inc(p, se.nr_wakeups_migrate);
1631 if (cpu == this_cpu)
1632 schedstat_inc(p, se.nr_wakeups_local);
1633 else
1634 schedstat_inc(p, se.nr_wakeups_remote);
1635 update_rq_clock(rq);
1636 activate_task(rq, p, 1);
1637 check_preempt_curr(rq, p);
1638 success = 1;
1640 out_running:
1641 p->state = TASK_RUNNING;
1642 #ifdef CONFIG_SMP
1643 if (p->sched_class->task_wake_up)
1644 p->sched_class->task_wake_up(rq, p);
1645 #endif
1646 out:
1647 task_rq_unlock(rq, &flags);
1649 return success;
1652 int fastcall wake_up_process(struct task_struct *p)
1654 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1655 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1657 EXPORT_SYMBOL(wake_up_process);
1659 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1661 return try_to_wake_up(p, state, 0);
1665 * Perform scheduler related setup for a newly forked process p.
1666 * p is forked by current.
1668 * __sched_fork() is basic setup used by init_idle() too:
1670 static void __sched_fork(struct task_struct *p)
1672 p->se.exec_start = 0;
1673 p->se.sum_exec_runtime = 0;
1674 p->se.prev_sum_exec_runtime = 0;
1676 #ifdef CONFIG_SCHEDSTATS
1677 p->se.wait_start = 0;
1678 p->se.sum_sleep_runtime = 0;
1679 p->se.sleep_start = 0;
1680 p->se.block_start = 0;
1681 p->se.sleep_max = 0;
1682 p->se.block_max = 0;
1683 p->se.exec_max = 0;
1684 p->se.slice_max = 0;
1685 p->se.wait_max = 0;
1686 #endif
1688 INIT_LIST_HEAD(&p->rt.run_list);
1689 p->se.on_rq = 0;
1691 #ifdef CONFIG_PREEMPT_NOTIFIERS
1692 INIT_HLIST_HEAD(&p->preempt_notifiers);
1693 #endif
1696 * We mark the process as running here, but have not actually
1697 * inserted it onto the runqueue yet. This guarantees that
1698 * nobody will actually run it, and a signal or other external
1699 * event cannot wake it up and insert it on the runqueue either.
1701 p->state = TASK_RUNNING;
1705 * fork()/clone()-time setup:
1707 void sched_fork(struct task_struct *p, int clone_flags)
1709 int cpu = get_cpu();
1711 __sched_fork(p);
1713 #ifdef CONFIG_SMP
1714 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1715 #endif
1716 set_task_cpu(p, cpu);
1719 * Make sure we do not leak PI boosting priority to the child:
1721 p->prio = current->normal_prio;
1722 if (!rt_prio(p->prio))
1723 p->sched_class = &fair_sched_class;
1725 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1726 if (likely(sched_info_on()))
1727 memset(&p->sched_info, 0, sizeof(p->sched_info));
1728 #endif
1729 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1730 p->oncpu = 0;
1731 #endif
1732 #ifdef CONFIG_PREEMPT
1733 /* Want to start with kernel preemption disabled. */
1734 task_thread_info(p)->preempt_count = 1;
1735 #endif
1736 put_cpu();
1740 * wake_up_new_task - wake up a newly created task for the first time.
1742 * This function will do some initial scheduler statistics housekeeping
1743 * that must be done for every newly created context, then puts the task
1744 * on the runqueue and wakes it.
1746 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1748 unsigned long flags;
1749 struct rq *rq;
1751 rq = task_rq_lock(p, &flags);
1752 BUG_ON(p->state != TASK_RUNNING);
1753 update_rq_clock(rq);
1755 p->prio = effective_prio(p);
1757 if (!p->sched_class->task_new || !current->se.on_rq) {
1758 activate_task(rq, p, 0);
1759 } else {
1761 * Let the scheduling class do new task startup
1762 * management (if any):
1764 p->sched_class->task_new(rq, p);
1765 inc_nr_running(p, rq);
1767 check_preempt_curr(rq, p);
1768 #ifdef CONFIG_SMP
1769 if (p->sched_class->task_wake_up)
1770 p->sched_class->task_wake_up(rq, p);
1771 #endif
1772 task_rq_unlock(rq, &flags);
1775 #ifdef CONFIG_PREEMPT_NOTIFIERS
1778 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1779 * @notifier: notifier struct to register
1781 void preempt_notifier_register(struct preempt_notifier *notifier)
1783 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1785 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1788 * preempt_notifier_unregister - no longer interested in preemption notifications
1789 * @notifier: notifier struct to unregister
1791 * This is safe to call from within a preemption notifier.
1793 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1795 hlist_del(&notifier->link);
1797 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1799 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1801 struct preempt_notifier *notifier;
1802 struct hlist_node *node;
1804 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1805 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1808 static void
1809 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810 struct task_struct *next)
1812 struct preempt_notifier *notifier;
1813 struct hlist_node *node;
1815 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1816 notifier->ops->sched_out(notifier, next);
1819 #else
1821 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1825 static void
1826 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1827 struct task_struct *next)
1831 #endif
1834 * prepare_task_switch - prepare to switch tasks
1835 * @rq: the runqueue preparing to switch
1836 * @prev: the current task that is being switched out
1837 * @next: the task we are going to switch to.
1839 * This is called with the rq lock held and interrupts off. It must
1840 * be paired with a subsequent finish_task_switch after the context
1841 * switch.
1843 * prepare_task_switch sets up locking and calls architecture specific
1844 * hooks.
1846 static inline void
1847 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1848 struct task_struct *next)
1850 fire_sched_out_preempt_notifiers(prev, next);
1851 prepare_lock_switch(rq, next);
1852 prepare_arch_switch(next);
1856 * finish_task_switch - clean up after a task-switch
1857 * @rq: runqueue associated with task-switch
1858 * @prev: the thread we just switched away from.
1860 * finish_task_switch must be called after the context switch, paired
1861 * with a prepare_task_switch call before the context switch.
1862 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1863 * and do any other architecture-specific cleanup actions.
1865 * Note that we may have delayed dropping an mm in context_switch(). If
1866 * so, we finish that here outside of the runqueue lock. (Doing it
1867 * with the lock held can cause deadlocks; see schedule() for
1868 * details.)
1870 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1871 __releases(rq->lock)
1873 struct mm_struct *mm = rq->prev_mm;
1874 long prev_state;
1876 rq->prev_mm = NULL;
1879 * A task struct has one reference for the use as "current".
1880 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1881 * schedule one last time. The schedule call will never return, and
1882 * the scheduled task must drop that reference.
1883 * The test for TASK_DEAD must occur while the runqueue locks are
1884 * still held, otherwise prev could be scheduled on another cpu, die
1885 * there before we look at prev->state, and then the reference would
1886 * be dropped twice.
1887 * Manfred Spraul <manfred@colorfullife.com>
1889 prev_state = prev->state;
1890 finish_arch_switch(prev);
1891 finish_lock_switch(rq, prev);
1892 #ifdef CONFIG_SMP
1893 if (current->sched_class->post_schedule)
1894 current->sched_class->post_schedule(rq);
1895 #endif
1897 fire_sched_in_preempt_notifiers(current);
1898 if (mm)
1899 mmdrop(mm);
1900 if (unlikely(prev_state == TASK_DEAD)) {
1902 * Remove function-return probe instances associated with this
1903 * task and put them back on the free list.
1905 kprobe_flush_task(prev);
1906 put_task_struct(prev);
1911 * schedule_tail - first thing a freshly forked thread must call.
1912 * @prev: the thread we just switched away from.
1914 asmlinkage void schedule_tail(struct task_struct *prev)
1915 __releases(rq->lock)
1917 struct rq *rq = this_rq();
1919 finish_task_switch(rq, prev);
1920 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1921 /* In this case, finish_task_switch does not reenable preemption */
1922 preempt_enable();
1923 #endif
1924 if (current->set_child_tid)
1925 put_user(task_pid_vnr(current), current->set_child_tid);
1929 * context_switch - switch to the new MM and the new
1930 * thread's register state.
1932 static inline void
1933 context_switch(struct rq *rq, struct task_struct *prev,
1934 struct task_struct *next)
1936 struct mm_struct *mm, *oldmm;
1938 prepare_task_switch(rq, prev, next);
1939 mm = next->mm;
1940 oldmm = prev->active_mm;
1942 * For paravirt, this is coupled with an exit in switch_to to
1943 * combine the page table reload and the switch backend into
1944 * one hypercall.
1946 arch_enter_lazy_cpu_mode();
1948 if (unlikely(!mm)) {
1949 next->active_mm = oldmm;
1950 atomic_inc(&oldmm->mm_count);
1951 enter_lazy_tlb(oldmm, next);
1952 } else
1953 switch_mm(oldmm, mm, next);
1955 if (unlikely(!prev->mm)) {
1956 prev->active_mm = NULL;
1957 rq->prev_mm = oldmm;
1960 * Since the runqueue lock will be released by the next
1961 * task (which is an invalid locking op but in the case
1962 * of the scheduler it's an obvious special-case), so we
1963 * do an early lockdep release here:
1965 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1966 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1967 #endif
1969 /* Here we just switch the register state and the stack. */
1970 switch_to(prev, next, prev);
1972 barrier();
1974 * this_rq must be evaluated again because prev may have moved
1975 * CPUs since it called schedule(), thus the 'rq' on its stack
1976 * frame will be invalid.
1978 finish_task_switch(this_rq(), prev);
1982 * nr_running, nr_uninterruptible and nr_context_switches:
1984 * externally visible scheduler statistics: current number of runnable
1985 * threads, current number of uninterruptible-sleeping threads, total
1986 * number of context switches performed since bootup.
1988 unsigned long nr_running(void)
1990 unsigned long i, sum = 0;
1992 for_each_online_cpu(i)
1993 sum += cpu_rq(i)->nr_running;
1995 return sum;
1998 unsigned long nr_uninterruptible(void)
2000 unsigned long i, sum = 0;
2002 for_each_possible_cpu(i)
2003 sum += cpu_rq(i)->nr_uninterruptible;
2006 * Since we read the counters lockless, it might be slightly
2007 * inaccurate. Do not allow it to go below zero though:
2009 if (unlikely((long)sum < 0))
2010 sum = 0;
2012 return sum;
2015 unsigned long long nr_context_switches(void)
2017 int i;
2018 unsigned long long sum = 0;
2020 for_each_possible_cpu(i)
2021 sum += cpu_rq(i)->nr_switches;
2023 return sum;
2026 unsigned long nr_iowait(void)
2028 unsigned long i, sum = 0;
2030 for_each_possible_cpu(i)
2031 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2033 return sum;
2036 unsigned long nr_active(void)
2038 unsigned long i, running = 0, uninterruptible = 0;
2040 for_each_online_cpu(i) {
2041 running += cpu_rq(i)->nr_running;
2042 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2045 if (unlikely((long)uninterruptible < 0))
2046 uninterruptible = 0;
2048 return running + uninterruptible;
2052 * Update rq->cpu_load[] statistics. This function is usually called every
2053 * scheduler tick (TICK_NSEC).
2055 static void update_cpu_load(struct rq *this_rq)
2057 unsigned long this_load = this_rq->load.weight;
2058 int i, scale;
2060 this_rq->nr_load_updates++;
2062 /* Update our load: */
2063 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2064 unsigned long old_load, new_load;
2066 /* scale is effectively 1 << i now, and >> i divides by scale */
2068 old_load = this_rq->cpu_load[i];
2069 new_load = this_load;
2071 * Round up the averaging division if load is increasing. This
2072 * prevents us from getting stuck on 9 if the load is 10, for
2073 * example.
2075 if (new_load > old_load)
2076 new_load += scale-1;
2077 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2081 #ifdef CONFIG_SMP
2084 * double_rq_lock - safely lock two runqueues
2086 * Note this does not disable interrupts like task_rq_lock,
2087 * you need to do so manually before calling.
2089 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2090 __acquires(rq1->lock)
2091 __acquires(rq2->lock)
2093 BUG_ON(!irqs_disabled());
2094 if (rq1 == rq2) {
2095 spin_lock(&rq1->lock);
2096 __acquire(rq2->lock); /* Fake it out ;) */
2097 } else {
2098 if (rq1 < rq2) {
2099 spin_lock(&rq1->lock);
2100 spin_lock(&rq2->lock);
2101 } else {
2102 spin_lock(&rq2->lock);
2103 spin_lock(&rq1->lock);
2106 update_rq_clock(rq1);
2107 update_rq_clock(rq2);
2111 * double_rq_unlock - safely unlock two runqueues
2113 * Note this does not restore interrupts like task_rq_unlock,
2114 * you need to do so manually after calling.
2116 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2117 __releases(rq1->lock)
2118 __releases(rq2->lock)
2120 spin_unlock(&rq1->lock);
2121 if (rq1 != rq2)
2122 spin_unlock(&rq2->lock);
2123 else
2124 __release(rq2->lock);
2128 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2130 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2131 __releases(this_rq->lock)
2132 __acquires(busiest->lock)
2133 __acquires(this_rq->lock)
2135 int ret = 0;
2137 if (unlikely(!irqs_disabled())) {
2138 /* printk() doesn't work good under rq->lock */
2139 spin_unlock(&this_rq->lock);
2140 BUG_ON(1);
2142 if (unlikely(!spin_trylock(&busiest->lock))) {
2143 if (busiest < this_rq) {
2144 spin_unlock(&this_rq->lock);
2145 spin_lock(&busiest->lock);
2146 spin_lock(&this_rq->lock);
2147 ret = 1;
2148 } else
2149 spin_lock(&busiest->lock);
2151 return ret;
2155 * If dest_cpu is allowed for this process, migrate the task to it.
2156 * This is accomplished by forcing the cpu_allowed mask to only
2157 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2158 * the cpu_allowed mask is restored.
2160 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2162 struct migration_req req;
2163 unsigned long flags;
2164 struct rq *rq;
2166 rq = task_rq_lock(p, &flags);
2167 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2168 || unlikely(cpu_is_offline(dest_cpu)))
2169 goto out;
2171 /* force the process onto the specified CPU */
2172 if (migrate_task(p, dest_cpu, &req)) {
2173 /* Need to wait for migration thread (might exit: take ref). */
2174 struct task_struct *mt = rq->migration_thread;
2176 get_task_struct(mt);
2177 task_rq_unlock(rq, &flags);
2178 wake_up_process(mt);
2179 put_task_struct(mt);
2180 wait_for_completion(&req.done);
2182 return;
2184 out:
2185 task_rq_unlock(rq, &flags);
2189 * sched_exec - execve() is a valuable balancing opportunity, because at
2190 * this point the task has the smallest effective memory and cache footprint.
2192 void sched_exec(void)
2194 int new_cpu, this_cpu = get_cpu();
2195 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2196 put_cpu();
2197 if (new_cpu != this_cpu)
2198 sched_migrate_task(current, new_cpu);
2202 * pull_task - move a task from a remote runqueue to the local runqueue.
2203 * Both runqueues must be locked.
2205 static void pull_task(struct rq *src_rq, struct task_struct *p,
2206 struct rq *this_rq, int this_cpu)
2208 deactivate_task(src_rq, p, 0);
2209 set_task_cpu(p, this_cpu);
2210 activate_task(this_rq, p, 0);
2212 * Note that idle threads have a prio of MAX_PRIO, for this test
2213 * to be always true for them.
2215 check_preempt_curr(this_rq, p);
2219 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2221 static
2222 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2223 struct sched_domain *sd, enum cpu_idle_type idle,
2224 int *all_pinned)
2227 * We do not migrate tasks that are:
2228 * 1) running (obviously), or
2229 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2230 * 3) are cache-hot on their current CPU.
2232 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2233 schedstat_inc(p, se.nr_failed_migrations_affine);
2234 return 0;
2236 *all_pinned = 0;
2238 if (task_running(rq, p)) {
2239 schedstat_inc(p, se.nr_failed_migrations_running);
2240 return 0;
2244 * Aggressive migration if:
2245 * 1) task is cache cold, or
2246 * 2) too many balance attempts have failed.
2249 if (!task_hot(p, rq->clock, sd) ||
2250 sd->nr_balance_failed > sd->cache_nice_tries) {
2251 #ifdef CONFIG_SCHEDSTATS
2252 if (task_hot(p, rq->clock, sd)) {
2253 schedstat_inc(sd, lb_hot_gained[idle]);
2254 schedstat_inc(p, se.nr_forced_migrations);
2256 #endif
2257 return 1;
2260 if (task_hot(p, rq->clock, sd)) {
2261 schedstat_inc(p, se.nr_failed_migrations_hot);
2262 return 0;
2264 return 1;
2267 static unsigned long
2268 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2269 unsigned long max_load_move, struct sched_domain *sd,
2270 enum cpu_idle_type idle, int *all_pinned,
2271 int *this_best_prio, struct rq_iterator *iterator)
2273 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2274 struct task_struct *p;
2275 long rem_load_move = max_load_move;
2277 if (max_load_move == 0)
2278 goto out;
2280 pinned = 1;
2283 * Start the load-balancing iterator:
2285 p = iterator->start(iterator->arg);
2286 next:
2287 if (!p || loops++ > sysctl_sched_nr_migrate)
2288 goto out;
2290 * To help distribute high priority tasks across CPUs we don't
2291 * skip a task if it will be the highest priority task (i.e. smallest
2292 * prio value) on its new queue regardless of its load weight
2294 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2295 SCHED_LOAD_SCALE_FUZZ;
2296 if ((skip_for_load && p->prio >= *this_best_prio) ||
2297 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2298 p = iterator->next(iterator->arg);
2299 goto next;
2302 pull_task(busiest, p, this_rq, this_cpu);
2303 pulled++;
2304 rem_load_move -= p->se.load.weight;
2307 * We only want to steal up to the prescribed amount of weighted load.
2309 if (rem_load_move > 0) {
2310 if (p->prio < *this_best_prio)
2311 *this_best_prio = p->prio;
2312 p = iterator->next(iterator->arg);
2313 goto next;
2315 out:
2317 * Right now, this is one of only two places pull_task() is called,
2318 * so we can safely collect pull_task() stats here rather than
2319 * inside pull_task().
2321 schedstat_add(sd, lb_gained[idle], pulled);
2323 if (all_pinned)
2324 *all_pinned = pinned;
2326 return max_load_move - rem_load_move;
2330 * move_tasks tries to move up to max_load_move weighted load from busiest to
2331 * this_rq, as part of a balancing operation within domain "sd".
2332 * Returns 1 if successful and 0 otherwise.
2334 * Called with both runqueues locked.
2336 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2337 unsigned long max_load_move,
2338 struct sched_domain *sd, enum cpu_idle_type idle,
2339 int *all_pinned)
2341 const struct sched_class *class = sched_class_highest;
2342 unsigned long total_load_moved = 0;
2343 int this_best_prio = this_rq->curr->prio;
2345 do {
2346 total_load_moved +=
2347 class->load_balance(this_rq, this_cpu, busiest,
2348 max_load_move - total_load_moved,
2349 sd, idle, all_pinned, &this_best_prio);
2350 class = class->next;
2351 } while (class && max_load_move > total_load_moved);
2353 return total_load_moved > 0;
2356 static int
2357 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2358 struct sched_domain *sd, enum cpu_idle_type idle,
2359 struct rq_iterator *iterator)
2361 struct task_struct *p = iterator->start(iterator->arg);
2362 int pinned = 0;
2364 while (p) {
2365 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2366 pull_task(busiest, p, this_rq, this_cpu);
2368 * Right now, this is only the second place pull_task()
2369 * is called, so we can safely collect pull_task()
2370 * stats here rather than inside pull_task().
2372 schedstat_inc(sd, lb_gained[idle]);
2374 return 1;
2376 p = iterator->next(iterator->arg);
2379 return 0;
2383 * move_one_task tries to move exactly one task from busiest to this_rq, as
2384 * part of active balancing operations within "domain".
2385 * Returns 1 if successful and 0 otherwise.
2387 * Called with both runqueues locked.
2389 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2390 struct sched_domain *sd, enum cpu_idle_type idle)
2392 const struct sched_class *class;
2394 for (class = sched_class_highest; class; class = class->next)
2395 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2396 return 1;
2398 return 0;
2402 * find_busiest_group finds and returns the busiest CPU group within the
2403 * domain. It calculates and returns the amount of weighted load which
2404 * should be moved to restore balance via the imbalance parameter.
2406 static struct sched_group *
2407 find_busiest_group(struct sched_domain *sd, int this_cpu,
2408 unsigned long *imbalance, enum cpu_idle_type idle,
2409 int *sd_idle, cpumask_t *cpus, int *balance)
2411 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2412 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2413 unsigned long max_pull;
2414 unsigned long busiest_load_per_task, busiest_nr_running;
2415 unsigned long this_load_per_task, this_nr_running;
2416 int load_idx, group_imb = 0;
2417 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2418 int power_savings_balance = 1;
2419 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2420 unsigned long min_nr_running = ULONG_MAX;
2421 struct sched_group *group_min = NULL, *group_leader = NULL;
2422 #endif
2424 max_load = this_load = total_load = total_pwr = 0;
2425 busiest_load_per_task = busiest_nr_running = 0;
2426 this_load_per_task = this_nr_running = 0;
2427 if (idle == CPU_NOT_IDLE)
2428 load_idx = sd->busy_idx;
2429 else if (idle == CPU_NEWLY_IDLE)
2430 load_idx = sd->newidle_idx;
2431 else
2432 load_idx = sd->idle_idx;
2434 do {
2435 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2436 int local_group;
2437 int i;
2438 int __group_imb = 0;
2439 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2440 unsigned long sum_nr_running, sum_weighted_load;
2442 local_group = cpu_isset(this_cpu, group->cpumask);
2444 if (local_group)
2445 balance_cpu = first_cpu(group->cpumask);
2447 /* Tally up the load of all CPUs in the group */
2448 sum_weighted_load = sum_nr_running = avg_load = 0;
2449 max_cpu_load = 0;
2450 min_cpu_load = ~0UL;
2452 for_each_cpu_mask(i, group->cpumask) {
2453 struct rq *rq;
2455 if (!cpu_isset(i, *cpus))
2456 continue;
2458 rq = cpu_rq(i);
2460 if (*sd_idle && rq->nr_running)
2461 *sd_idle = 0;
2463 /* Bias balancing toward cpus of our domain */
2464 if (local_group) {
2465 if (idle_cpu(i) && !first_idle_cpu) {
2466 first_idle_cpu = 1;
2467 balance_cpu = i;
2470 load = target_load(i, load_idx);
2471 } else {
2472 load = source_load(i, load_idx);
2473 if (load > max_cpu_load)
2474 max_cpu_load = load;
2475 if (min_cpu_load > load)
2476 min_cpu_load = load;
2479 avg_load += load;
2480 sum_nr_running += rq->nr_running;
2481 sum_weighted_load += weighted_cpuload(i);
2485 * First idle cpu or the first cpu(busiest) in this sched group
2486 * is eligible for doing load balancing at this and above
2487 * domains. In the newly idle case, we will allow all the cpu's
2488 * to do the newly idle load balance.
2490 if (idle != CPU_NEWLY_IDLE && local_group &&
2491 balance_cpu != this_cpu && balance) {
2492 *balance = 0;
2493 goto ret;
2496 total_load += avg_load;
2497 total_pwr += group->__cpu_power;
2499 /* Adjust by relative CPU power of the group */
2500 avg_load = sg_div_cpu_power(group,
2501 avg_load * SCHED_LOAD_SCALE);
2503 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2504 __group_imb = 1;
2506 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2508 if (local_group) {
2509 this_load = avg_load;
2510 this = group;
2511 this_nr_running = sum_nr_running;
2512 this_load_per_task = sum_weighted_load;
2513 } else if (avg_load > max_load &&
2514 (sum_nr_running > group_capacity || __group_imb)) {
2515 max_load = avg_load;
2516 busiest = group;
2517 busiest_nr_running = sum_nr_running;
2518 busiest_load_per_task = sum_weighted_load;
2519 group_imb = __group_imb;
2522 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2524 * Busy processors will not participate in power savings
2525 * balance.
2527 if (idle == CPU_NOT_IDLE ||
2528 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2529 goto group_next;
2532 * If the local group is idle or completely loaded
2533 * no need to do power savings balance at this domain
2535 if (local_group && (this_nr_running >= group_capacity ||
2536 !this_nr_running))
2537 power_savings_balance = 0;
2540 * If a group is already running at full capacity or idle,
2541 * don't include that group in power savings calculations
2543 if (!power_savings_balance || sum_nr_running >= group_capacity
2544 || !sum_nr_running)
2545 goto group_next;
2548 * Calculate the group which has the least non-idle load.
2549 * This is the group from where we need to pick up the load
2550 * for saving power
2552 if ((sum_nr_running < min_nr_running) ||
2553 (sum_nr_running == min_nr_running &&
2554 first_cpu(group->cpumask) <
2555 first_cpu(group_min->cpumask))) {
2556 group_min = group;
2557 min_nr_running = sum_nr_running;
2558 min_load_per_task = sum_weighted_load /
2559 sum_nr_running;
2563 * Calculate the group which is almost near its
2564 * capacity but still has some space to pick up some load
2565 * from other group and save more power
2567 if (sum_nr_running <= group_capacity - 1) {
2568 if (sum_nr_running > leader_nr_running ||
2569 (sum_nr_running == leader_nr_running &&
2570 first_cpu(group->cpumask) >
2571 first_cpu(group_leader->cpumask))) {
2572 group_leader = group;
2573 leader_nr_running = sum_nr_running;
2576 group_next:
2577 #endif
2578 group = group->next;
2579 } while (group != sd->groups);
2581 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2582 goto out_balanced;
2584 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2586 if (this_load >= avg_load ||
2587 100*max_load <= sd->imbalance_pct*this_load)
2588 goto out_balanced;
2590 busiest_load_per_task /= busiest_nr_running;
2591 if (group_imb)
2592 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2595 * We're trying to get all the cpus to the average_load, so we don't
2596 * want to push ourselves above the average load, nor do we wish to
2597 * reduce the max loaded cpu below the average load, as either of these
2598 * actions would just result in more rebalancing later, and ping-pong
2599 * tasks around. Thus we look for the minimum possible imbalance.
2600 * Negative imbalances (*we* are more loaded than anyone else) will
2601 * be counted as no imbalance for these purposes -- we can't fix that
2602 * by pulling tasks to us. Be careful of negative numbers as they'll
2603 * appear as very large values with unsigned longs.
2605 if (max_load <= busiest_load_per_task)
2606 goto out_balanced;
2609 * In the presence of smp nice balancing, certain scenarios can have
2610 * max load less than avg load(as we skip the groups at or below
2611 * its cpu_power, while calculating max_load..)
2613 if (max_load < avg_load) {
2614 *imbalance = 0;
2615 goto small_imbalance;
2618 /* Don't want to pull so many tasks that a group would go idle */
2619 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2621 /* How much load to actually move to equalise the imbalance */
2622 *imbalance = min(max_pull * busiest->__cpu_power,
2623 (avg_load - this_load) * this->__cpu_power)
2624 / SCHED_LOAD_SCALE;
2627 * if *imbalance is less than the average load per runnable task
2628 * there is no gaurantee that any tasks will be moved so we'll have
2629 * a think about bumping its value to force at least one task to be
2630 * moved
2632 if (*imbalance < busiest_load_per_task) {
2633 unsigned long tmp, pwr_now, pwr_move;
2634 unsigned int imbn;
2636 small_imbalance:
2637 pwr_move = pwr_now = 0;
2638 imbn = 2;
2639 if (this_nr_running) {
2640 this_load_per_task /= this_nr_running;
2641 if (busiest_load_per_task > this_load_per_task)
2642 imbn = 1;
2643 } else
2644 this_load_per_task = SCHED_LOAD_SCALE;
2646 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2647 busiest_load_per_task * imbn) {
2648 *imbalance = busiest_load_per_task;
2649 return busiest;
2653 * OK, we don't have enough imbalance to justify moving tasks,
2654 * however we may be able to increase total CPU power used by
2655 * moving them.
2658 pwr_now += busiest->__cpu_power *
2659 min(busiest_load_per_task, max_load);
2660 pwr_now += this->__cpu_power *
2661 min(this_load_per_task, this_load);
2662 pwr_now /= SCHED_LOAD_SCALE;
2664 /* Amount of load we'd subtract */
2665 tmp = sg_div_cpu_power(busiest,
2666 busiest_load_per_task * SCHED_LOAD_SCALE);
2667 if (max_load > tmp)
2668 pwr_move += busiest->__cpu_power *
2669 min(busiest_load_per_task, max_load - tmp);
2671 /* Amount of load we'd add */
2672 if (max_load * busiest->__cpu_power <
2673 busiest_load_per_task * SCHED_LOAD_SCALE)
2674 tmp = sg_div_cpu_power(this,
2675 max_load * busiest->__cpu_power);
2676 else
2677 tmp = sg_div_cpu_power(this,
2678 busiest_load_per_task * SCHED_LOAD_SCALE);
2679 pwr_move += this->__cpu_power *
2680 min(this_load_per_task, this_load + tmp);
2681 pwr_move /= SCHED_LOAD_SCALE;
2683 /* Move if we gain throughput */
2684 if (pwr_move > pwr_now)
2685 *imbalance = busiest_load_per_task;
2688 return busiest;
2690 out_balanced:
2691 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2692 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2693 goto ret;
2695 if (this == group_leader && group_leader != group_min) {
2696 *imbalance = min_load_per_task;
2697 return group_min;
2699 #endif
2700 ret:
2701 *imbalance = 0;
2702 return NULL;
2706 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2708 static struct rq *
2709 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2710 unsigned long imbalance, cpumask_t *cpus)
2712 struct rq *busiest = NULL, *rq;
2713 unsigned long max_load = 0;
2714 int i;
2716 for_each_cpu_mask(i, group->cpumask) {
2717 unsigned long wl;
2719 if (!cpu_isset(i, *cpus))
2720 continue;
2722 rq = cpu_rq(i);
2723 wl = weighted_cpuload(i);
2725 if (rq->nr_running == 1 && wl > imbalance)
2726 continue;
2728 if (wl > max_load) {
2729 max_load = wl;
2730 busiest = rq;
2734 return busiest;
2738 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2739 * so long as it is large enough.
2741 #define MAX_PINNED_INTERVAL 512
2744 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2745 * tasks if there is an imbalance.
2747 static int load_balance(int this_cpu, struct rq *this_rq,
2748 struct sched_domain *sd, enum cpu_idle_type idle,
2749 int *balance)
2751 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2752 struct sched_group *group;
2753 unsigned long imbalance;
2754 struct rq *busiest;
2755 cpumask_t cpus = CPU_MASK_ALL;
2756 unsigned long flags;
2759 * When power savings policy is enabled for the parent domain, idle
2760 * sibling can pick up load irrespective of busy siblings. In this case,
2761 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2762 * portraying it as CPU_NOT_IDLE.
2764 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2765 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2766 sd_idle = 1;
2768 schedstat_inc(sd, lb_count[idle]);
2770 redo:
2771 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2772 &cpus, balance);
2774 if (*balance == 0)
2775 goto out_balanced;
2777 if (!group) {
2778 schedstat_inc(sd, lb_nobusyg[idle]);
2779 goto out_balanced;
2782 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2783 if (!busiest) {
2784 schedstat_inc(sd, lb_nobusyq[idle]);
2785 goto out_balanced;
2788 BUG_ON(busiest == this_rq);
2790 schedstat_add(sd, lb_imbalance[idle], imbalance);
2792 ld_moved = 0;
2793 if (busiest->nr_running > 1) {
2795 * Attempt to move tasks. If find_busiest_group has found
2796 * an imbalance but busiest->nr_running <= 1, the group is
2797 * still unbalanced. ld_moved simply stays zero, so it is
2798 * correctly treated as an imbalance.
2800 local_irq_save(flags);
2801 double_rq_lock(this_rq, busiest);
2802 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2803 imbalance, sd, idle, &all_pinned);
2804 double_rq_unlock(this_rq, busiest);
2805 local_irq_restore(flags);
2808 * some other cpu did the load balance for us.
2810 if (ld_moved && this_cpu != smp_processor_id())
2811 resched_cpu(this_cpu);
2813 /* All tasks on this runqueue were pinned by CPU affinity */
2814 if (unlikely(all_pinned)) {
2815 cpu_clear(cpu_of(busiest), cpus);
2816 if (!cpus_empty(cpus))
2817 goto redo;
2818 goto out_balanced;
2822 if (!ld_moved) {
2823 schedstat_inc(sd, lb_failed[idle]);
2824 sd->nr_balance_failed++;
2826 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2828 spin_lock_irqsave(&busiest->lock, flags);
2830 /* don't kick the migration_thread, if the curr
2831 * task on busiest cpu can't be moved to this_cpu
2833 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2834 spin_unlock_irqrestore(&busiest->lock, flags);
2835 all_pinned = 1;
2836 goto out_one_pinned;
2839 if (!busiest->active_balance) {
2840 busiest->active_balance = 1;
2841 busiest->push_cpu = this_cpu;
2842 active_balance = 1;
2844 spin_unlock_irqrestore(&busiest->lock, flags);
2845 if (active_balance)
2846 wake_up_process(busiest->migration_thread);
2849 * We've kicked active balancing, reset the failure
2850 * counter.
2852 sd->nr_balance_failed = sd->cache_nice_tries+1;
2854 } else
2855 sd->nr_balance_failed = 0;
2857 if (likely(!active_balance)) {
2858 /* We were unbalanced, so reset the balancing interval */
2859 sd->balance_interval = sd->min_interval;
2860 } else {
2862 * If we've begun active balancing, start to back off. This
2863 * case may not be covered by the all_pinned logic if there
2864 * is only 1 task on the busy runqueue (because we don't call
2865 * move_tasks).
2867 if (sd->balance_interval < sd->max_interval)
2868 sd->balance_interval *= 2;
2871 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2872 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2873 return -1;
2874 return ld_moved;
2876 out_balanced:
2877 schedstat_inc(sd, lb_balanced[idle]);
2879 sd->nr_balance_failed = 0;
2881 out_one_pinned:
2882 /* tune up the balancing interval */
2883 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2884 (sd->balance_interval < sd->max_interval))
2885 sd->balance_interval *= 2;
2887 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2888 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2889 return -1;
2890 return 0;
2894 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2895 * tasks if there is an imbalance.
2897 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2898 * this_rq is locked.
2900 static int
2901 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2903 struct sched_group *group;
2904 struct rq *busiest = NULL;
2905 unsigned long imbalance;
2906 int ld_moved = 0;
2907 int sd_idle = 0;
2908 int all_pinned = 0;
2909 cpumask_t cpus = CPU_MASK_ALL;
2912 * When power savings policy is enabled for the parent domain, idle
2913 * sibling can pick up load irrespective of busy siblings. In this case,
2914 * let the state of idle sibling percolate up as IDLE, instead of
2915 * portraying it as CPU_NOT_IDLE.
2917 if (sd->flags & SD_SHARE_CPUPOWER &&
2918 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2919 sd_idle = 1;
2921 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2922 redo:
2923 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2924 &sd_idle, &cpus, NULL);
2925 if (!group) {
2926 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2927 goto out_balanced;
2930 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2931 &cpus);
2932 if (!busiest) {
2933 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2934 goto out_balanced;
2937 BUG_ON(busiest == this_rq);
2939 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2941 ld_moved = 0;
2942 if (busiest->nr_running > 1) {
2943 /* Attempt to move tasks */
2944 double_lock_balance(this_rq, busiest);
2945 /* this_rq->clock is already updated */
2946 update_rq_clock(busiest);
2947 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2948 imbalance, sd, CPU_NEWLY_IDLE,
2949 &all_pinned);
2950 spin_unlock(&busiest->lock);
2952 if (unlikely(all_pinned)) {
2953 cpu_clear(cpu_of(busiest), cpus);
2954 if (!cpus_empty(cpus))
2955 goto redo;
2959 if (!ld_moved) {
2960 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2961 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2962 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2963 return -1;
2964 } else
2965 sd->nr_balance_failed = 0;
2967 return ld_moved;
2969 out_balanced:
2970 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2971 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2972 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2973 return -1;
2974 sd->nr_balance_failed = 0;
2976 return 0;
2980 * idle_balance is called by schedule() if this_cpu is about to become
2981 * idle. Attempts to pull tasks from other CPUs.
2983 static void idle_balance(int this_cpu, struct rq *this_rq)
2985 struct sched_domain *sd;
2986 int pulled_task = -1;
2987 unsigned long next_balance = jiffies + HZ;
2989 for_each_domain(this_cpu, sd) {
2990 unsigned long interval;
2992 if (!(sd->flags & SD_LOAD_BALANCE))
2993 continue;
2995 if (sd->flags & SD_BALANCE_NEWIDLE)
2996 /* If we've pulled tasks over stop searching: */
2997 pulled_task = load_balance_newidle(this_cpu,
2998 this_rq, sd);
3000 interval = msecs_to_jiffies(sd->balance_interval);
3001 if (time_after(next_balance, sd->last_balance + interval))
3002 next_balance = sd->last_balance + interval;
3003 if (pulled_task)
3004 break;
3006 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3008 * We are going idle. next_balance may be set based on
3009 * a busy processor. So reset next_balance.
3011 this_rq->next_balance = next_balance;
3016 * active_load_balance is run by migration threads. It pushes running tasks
3017 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3018 * running on each physical CPU where possible, and avoids physical /
3019 * logical imbalances.
3021 * Called with busiest_rq locked.
3023 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3025 int target_cpu = busiest_rq->push_cpu;
3026 struct sched_domain *sd;
3027 struct rq *target_rq;
3029 /* Is there any task to move? */
3030 if (busiest_rq->nr_running <= 1)
3031 return;
3033 target_rq = cpu_rq(target_cpu);
3036 * This condition is "impossible", if it occurs
3037 * we need to fix it. Originally reported by
3038 * Bjorn Helgaas on a 128-cpu setup.
3040 BUG_ON(busiest_rq == target_rq);
3042 /* move a task from busiest_rq to target_rq */
3043 double_lock_balance(busiest_rq, target_rq);
3044 update_rq_clock(busiest_rq);
3045 update_rq_clock(target_rq);
3047 /* Search for an sd spanning us and the target CPU. */
3048 for_each_domain(target_cpu, sd) {
3049 if ((sd->flags & SD_LOAD_BALANCE) &&
3050 cpu_isset(busiest_cpu, sd->span))
3051 break;
3054 if (likely(sd)) {
3055 schedstat_inc(sd, alb_count);
3057 if (move_one_task(target_rq, target_cpu, busiest_rq,
3058 sd, CPU_IDLE))
3059 schedstat_inc(sd, alb_pushed);
3060 else
3061 schedstat_inc(sd, alb_failed);
3063 spin_unlock(&target_rq->lock);
3066 #ifdef CONFIG_NO_HZ
3067 static struct {
3068 atomic_t load_balancer;
3069 cpumask_t cpu_mask;
3070 } nohz ____cacheline_aligned = {
3071 .load_balancer = ATOMIC_INIT(-1),
3072 .cpu_mask = CPU_MASK_NONE,
3076 * This routine will try to nominate the ilb (idle load balancing)
3077 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3078 * load balancing on behalf of all those cpus. If all the cpus in the system
3079 * go into this tickless mode, then there will be no ilb owner (as there is
3080 * no need for one) and all the cpus will sleep till the next wakeup event
3081 * arrives...
3083 * For the ilb owner, tick is not stopped. And this tick will be used
3084 * for idle load balancing. ilb owner will still be part of
3085 * nohz.cpu_mask..
3087 * While stopping the tick, this cpu will become the ilb owner if there
3088 * is no other owner. And will be the owner till that cpu becomes busy
3089 * or if all cpus in the system stop their ticks at which point
3090 * there is no need for ilb owner.
3092 * When the ilb owner becomes busy, it nominates another owner, during the
3093 * next busy scheduler_tick()
3095 int select_nohz_load_balancer(int stop_tick)
3097 int cpu = smp_processor_id();
3099 if (stop_tick) {
3100 cpu_set(cpu, nohz.cpu_mask);
3101 cpu_rq(cpu)->in_nohz_recently = 1;
3104 * If we are going offline and still the leader, give up!
3106 if (cpu_is_offline(cpu) &&
3107 atomic_read(&nohz.load_balancer) == cpu) {
3108 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3109 BUG();
3110 return 0;
3113 /* time for ilb owner also to sleep */
3114 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3115 if (atomic_read(&nohz.load_balancer) == cpu)
3116 atomic_set(&nohz.load_balancer, -1);
3117 return 0;
3120 if (atomic_read(&nohz.load_balancer) == -1) {
3121 /* make me the ilb owner */
3122 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3123 return 1;
3124 } else if (atomic_read(&nohz.load_balancer) == cpu)
3125 return 1;
3126 } else {
3127 if (!cpu_isset(cpu, nohz.cpu_mask))
3128 return 0;
3130 cpu_clear(cpu, nohz.cpu_mask);
3132 if (atomic_read(&nohz.load_balancer) == cpu)
3133 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3134 BUG();
3136 return 0;
3138 #endif
3140 static DEFINE_SPINLOCK(balancing);
3143 * It checks each scheduling domain to see if it is due to be balanced,
3144 * and initiates a balancing operation if so.
3146 * Balancing parameters are set up in arch_init_sched_domains.
3148 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3150 int balance = 1;
3151 struct rq *rq = cpu_rq(cpu);
3152 unsigned long interval;
3153 struct sched_domain *sd;
3154 /* Earliest time when we have to do rebalance again */
3155 unsigned long next_balance = jiffies + 60*HZ;
3156 int update_next_balance = 0;
3158 for_each_domain(cpu, sd) {
3159 if (!(sd->flags & SD_LOAD_BALANCE))
3160 continue;
3162 interval = sd->balance_interval;
3163 if (idle != CPU_IDLE)
3164 interval *= sd->busy_factor;
3166 /* scale ms to jiffies */
3167 interval = msecs_to_jiffies(interval);
3168 if (unlikely(!interval))
3169 interval = 1;
3170 if (interval > HZ*NR_CPUS/10)
3171 interval = HZ*NR_CPUS/10;
3174 if (sd->flags & SD_SERIALIZE) {
3175 if (!spin_trylock(&balancing))
3176 goto out;
3179 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3180 if (load_balance(cpu, rq, sd, idle, &balance)) {
3182 * We've pulled tasks over so either we're no
3183 * longer idle, or one of our SMT siblings is
3184 * not idle.
3186 idle = CPU_NOT_IDLE;
3188 sd->last_balance = jiffies;
3190 if (sd->flags & SD_SERIALIZE)
3191 spin_unlock(&balancing);
3192 out:
3193 if (time_after(next_balance, sd->last_balance + interval)) {
3194 next_balance = sd->last_balance + interval;
3195 update_next_balance = 1;
3199 * Stop the load balance at this level. There is another
3200 * CPU in our sched group which is doing load balancing more
3201 * actively.
3203 if (!balance)
3204 break;
3208 * next_balance will be updated only when there is a need.
3209 * When the cpu is attached to null domain for ex, it will not be
3210 * updated.
3212 if (likely(update_next_balance))
3213 rq->next_balance = next_balance;
3217 * run_rebalance_domains is triggered when needed from the scheduler tick.
3218 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3219 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3221 static void run_rebalance_domains(struct softirq_action *h)
3223 int this_cpu = smp_processor_id();
3224 struct rq *this_rq = cpu_rq(this_cpu);
3225 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3226 CPU_IDLE : CPU_NOT_IDLE;
3228 rebalance_domains(this_cpu, idle);
3230 #ifdef CONFIG_NO_HZ
3232 * If this cpu is the owner for idle load balancing, then do the
3233 * balancing on behalf of the other idle cpus whose ticks are
3234 * stopped.
3236 if (this_rq->idle_at_tick &&
3237 atomic_read(&nohz.load_balancer) == this_cpu) {
3238 cpumask_t cpus = nohz.cpu_mask;
3239 struct rq *rq;
3240 int balance_cpu;
3242 cpu_clear(this_cpu, cpus);
3243 for_each_cpu_mask(balance_cpu, cpus) {
3245 * If this cpu gets work to do, stop the load balancing
3246 * work being done for other cpus. Next load
3247 * balancing owner will pick it up.
3249 if (need_resched())
3250 break;
3252 rebalance_domains(balance_cpu, CPU_IDLE);
3254 rq = cpu_rq(balance_cpu);
3255 if (time_after(this_rq->next_balance, rq->next_balance))
3256 this_rq->next_balance = rq->next_balance;
3259 #endif
3263 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3265 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3266 * idle load balancing owner or decide to stop the periodic load balancing,
3267 * if the whole system is idle.
3269 static inline void trigger_load_balance(struct rq *rq, int cpu)
3271 #ifdef CONFIG_NO_HZ
3273 * If we were in the nohz mode recently and busy at the current
3274 * scheduler tick, then check if we need to nominate new idle
3275 * load balancer.
3277 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3278 rq->in_nohz_recently = 0;
3280 if (atomic_read(&nohz.load_balancer) == cpu) {
3281 cpu_clear(cpu, nohz.cpu_mask);
3282 atomic_set(&nohz.load_balancer, -1);
3285 if (atomic_read(&nohz.load_balancer) == -1) {
3287 * simple selection for now: Nominate the
3288 * first cpu in the nohz list to be the next
3289 * ilb owner.
3291 * TBD: Traverse the sched domains and nominate
3292 * the nearest cpu in the nohz.cpu_mask.
3294 int ilb = first_cpu(nohz.cpu_mask);
3296 if (ilb != NR_CPUS)
3297 resched_cpu(ilb);
3302 * If this cpu is idle and doing idle load balancing for all the
3303 * cpus with ticks stopped, is it time for that to stop?
3305 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3306 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3307 resched_cpu(cpu);
3308 return;
3312 * If this cpu is idle and the idle load balancing is done by
3313 * someone else, then no need raise the SCHED_SOFTIRQ
3315 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3316 cpu_isset(cpu, nohz.cpu_mask))
3317 return;
3318 #endif
3319 if (time_after_eq(jiffies, rq->next_balance))
3320 raise_softirq(SCHED_SOFTIRQ);
3323 #else /* CONFIG_SMP */
3326 * on UP we do not need to balance between CPUs:
3328 static inline void idle_balance(int cpu, struct rq *rq)
3332 #endif
3334 DEFINE_PER_CPU(struct kernel_stat, kstat);
3336 EXPORT_PER_CPU_SYMBOL(kstat);
3339 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3340 * that have not yet been banked in case the task is currently running.
3342 unsigned long long task_sched_runtime(struct task_struct *p)
3344 unsigned long flags;
3345 u64 ns, delta_exec;
3346 struct rq *rq;
3348 rq = task_rq_lock(p, &flags);
3349 ns = p->se.sum_exec_runtime;
3350 if (task_current(rq, p)) {
3351 update_rq_clock(rq);
3352 delta_exec = rq->clock - p->se.exec_start;
3353 if ((s64)delta_exec > 0)
3354 ns += delta_exec;
3356 task_rq_unlock(rq, &flags);
3358 return ns;
3362 * Account user cpu time to a process.
3363 * @p: the process that the cpu time gets accounted to
3364 * @cputime: the cpu time spent in user space since the last update
3366 void account_user_time(struct task_struct *p, cputime_t cputime)
3368 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3369 cputime64_t tmp;
3371 p->utime = cputime_add(p->utime, cputime);
3373 /* Add user time to cpustat. */
3374 tmp = cputime_to_cputime64(cputime);
3375 if (TASK_NICE(p) > 0)
3376 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3377 else
3378 cpustat->user = cputime64_add(cpustat->user, tmp);
3382 * Account guest cpu time to a process.
3383 * @p: the process that the cpu time gets accounted to
3384 * @cputime: the cpu time spent in virtual machine since the last update
3386 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3388 cputime64_t tmp;
3389 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3391 tmp = cputime_to_cputime64(cputime);
3393 p->utime = cputime_add(p->utime, cputime);
3394 p->gtime = cputime_add(p->gtime, cputime);
3396 cpustat->user = cputime64_add(cpustat->user, tmp);
3397 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3401 * Account scaled user cpu time to a process.
3402 * @p: the process that the cpu time gets accounted to
3403 * @cputime: the cpu time spent in user space since the last update
3405 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3407 p->utimescaled = cputime_add(p->utimescaled, cputime);
3411 * Account system cpu time to a process.
3412 * @p: the process that the cpu time gets accounted to
3413 * @hardirq_offset: the offset to subtract from hardirq_count()
3414 * @cputime: the cpu time spent in kernel space since the last update
3416 void account_system_time(struct task_struct *p, int hardirq_offset,
3417 cputime_t cputime)
3419 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3420 struct rq *rq = this_rq();
3421 cputime64_t tmp;
3423 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3424 return account_guest_time(p, cputime);
3426 p->stime = cputime_add(p->stime, cputime);
3428 /* Add system time to cpustat. */
3429 tmp = cputime_to_cputime64(cputime);
3430 if (hardirq_count() - hardirq_offset)
3431 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3432 else if (softirq_count())
3433 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3434 else if (p != rq->idle)
3435 cpustat->system = cputime64_add(cpustat->system, tmp);
3436 else if (atomic_read(&rq->nr_iowait) > 0)
3437 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3438 else
3439 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3440 /* Account for system time used */
3441 acct_update_integrals(p);
3445 * Account scaled system cpu time to a process.
3446 * @p: the process that the cpu time gets accounted to
3447 * @hardirq_offset: the offset to subtract from hardirq_count()
3448 * @cputime: the cpu time spent in kernel space since the last update
3450 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3452 p->stimescaled = cputime_add(p->stimescaled, cputime);
3456 * Account for involuntary wait time.
3457 * @p: the process from which the cpu time has been stolen
3458 * @steal: the cpu time spent in involuntary wait
3460 void account_steal_time(struct task_struct *p, cputime_t steal)
3462 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3463 cputime64_t tmp = cputime_to_cputime64(steal);
3464 struct rq *rq = this_rq();
3466 if (p == rq->idle) {
3467 p->stime = cputime_add(p->stime, steal);
3468 if (atomic_read(&rq->nr_iowait) > 0)
3469 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3470 else
3471 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3472 } else
3473 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3477 * This function gets called by the timer code, with HZ frequency.
3478 * We call it with interrupts disabled.
3480 * It also gets called by the fork code, when changing the parent's
3481 * timeslices.
3483 void scheduler_tick(void)
3485 int cpu = smp_processor_id();
3486 struct rq *rq = cpu_rq(cpu);
3487 struct task_struct *curr = rq->curr;
3488 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3490 spin_lock(&rq->lock);
3491 __update_rq_clock(rq);
3493 * Let rq->clock advance by at least TICK_NSEC:
3495 if (unlikely(rq->clock < next_tick))
3496 rq->clock = next_tick;
3497 rq->tick_timestamp = rq->clock;
3498 update_cpu_load(rq);
3499 if (curr != rq->idle) /* FIXME: needed? */
3500 curr->sched_class->task_tick(rq, curr);
3501 spin_unlock(&rq->lock);
3503 #ifdef CONFIG_SMP
3504 rq->idle_at_tick = idle_cpu(cpu);
3505 trigger_load_balance(rq, cpu);
3506 #endif
3509 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3511 void fastcall add_preempt_count(int val)
3514 * Underflow?
3516 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3517 return;
3518 preempt_count() += val;
3520 * Spinlock count overflowing soon?
3522 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3523 PREEMPT_MASK - 10);
3525 EXPORT_SYMBOL(add_preempt_count);
3527 void fastcall sub_preempt_count(int val)
3530 * Underflow?
3532 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3533 return;
3535 * Is the spinlock portion underflowing?
3537 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3538 !(preempt_count() & PREEMPT_MASK)))
3539 return;
3541 preempt_count() -= val;
3543 EXPORT_SYMBOL(sub_preempt_count);
3545 #endif
3548 * Print scheduling while atomic bug:
3550 static noinline void __schedule_bug(struct task_struct *prev)
3552 struct pt_regs *regs = get_irq_regs();
3554 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3555 prev->comm, prev->pid, preempt_count());
3557 debug_show_held_locks(prev);
3558 if (irqs_disabled())
3559 print_irqtrace_events(prev);
3561 if (regs)
3562 show_regs(regs);
3563 else
3564 dump_stack();
3568 * Various schedule()-time debugging checks and statistics:
3570 static inline void schedule_debug(struct task_struct *prev)
3573 * Test if we are atomic. Since do_exit() needs to call into
3574 * schedule() atomically, we ignore that path for now.
3575 * Otherwise, whine if we are scheduling when we should not be.
3577 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3578 __schedule_bug(prev);
3580 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3582 schedstat_inc(this_rq(), sched_count);
3583 #ifdef CONFIG_SCHEDSTATS
3584 if (unlikely(prev->lock_depth >= 0)) {
3585 schedstat_inc(this_rq(), bkl_count);
3586 schedstat_inc(prev, sched_info.bkl_count);
3588 #endif
3592 * Pick up the highest-prio task:
3594 static inline struct task_struct *
3595 pick_next_task(struct rq *rq, struct task_struct *prev)
3597 const struct sched_class *class;
3598 struct task_struct *p;
3601 * Optimization: we know that if all tasks are in
3602 * the fair class we can call that function directly:
3604 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3605 p = fair_sched_class.pick_next_task(rq);
3606 if (likely(p))
3607 return p;
3610 class = sched_class_highest;
3611 for ( ; ; ) {
3612 p = class->pick_next_task(rq);
3613 if (p)
3614 return p;
3616 * Will never be NULL as the idle class always
3617 * returns a non-NULL p:
3619 class = class->next;
3624 * schedule() is the main scheduler function.
3626 asmlinkage void __sched schedule(void)
3628 struct task_struct *prev, *next;
3629 long *switch_count;
3630 struct rq *rq;
3631 int cpu;
3633 need_resched:
3634 preempt_disable();
3635 cpu = smp_processor_id();
3636 rq = cpu_rq(cpu);
3637 rcu_qsctr_inc(cpu);
3638 prev = rq->curr;
3639 switch_count = &prev->nivcsw;
3641 release_kernel_lock(prev);
3642 need_resched_nonpreemptible:
3644 schedule_debug(prev);
3647 * Do the rq-clock update outside the rq lock:
3649 local_irq_disable();
3650 __update_rq_clock(rq);
3651 spin_lock(&rq->lock);
3652 clear_tsk_need_resched(prev);
3654 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3655 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3656 unlikely(signal_pending(prev)))) {
3657 prev->state = TASK_RUNNING;
3658 } else {
3659 deactivate_task(rq, prev, 1);
3661 switch_count = &prev->nvcsw;
3664 #ifdef CONFIG_SMP
3665 if (prev->sched_class->pre_schedule)
3666 prev->sched_class->pre_schedule(rq, prev);
3667 #endif
3669 if (unlikely(!rq->nr_running))
3670 idle_balance(cpu, rq);
3672 prev->sched_class->put_prev_task(rq, prev);
3673 next = pick_next_task(rq, prev);
3675 sched_info_switch(prev, next);
3677 if (likely(prev != next)) {
3678 rq->nr_switches++;
3679 rq->curr = next;
3680 ++*switch_count;
3682 context_switch(rq, prev, next); /* unlocks the rq */
3683 } else
3684 spin_unlock_irq(&rq->lock);
3686 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3687 cpu = smp_processor_id();
3688 rq = cpu_rq(cpu);
3689 goto need_resched_nonpreemptible;
3691 preempt_enable_no_resched();
3692 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3693 goto need_resched;
3695 EXPORT_SYMBOL(schedule);
3697 #ifdef CONFIG_PREEMPT
3699 * this is the entry point to schedule() from in-kernel preemption
3700 * off of preempt_enable. Kernel preemptions off return from interrupt
3701 * occur there and call schedule directly.
3703 asmlinkage void __sched preempt_schedule(void)
3705 struct thread_info *ti = current_thread_info();
3706 #ifdef CONFIG_PREEMPT_BKL
3707 struct task_struct *task = current;
3708 int saved_lock_depth;
3709 #endif
3711 * If there is a non-zero preempt_count or interrupts are disabled,
3712 * we do not want to preempt the current task. Just return..
3714 if (likely(ti->preempt_count || irqs_disabled()))
3715 return;
3717 do {
3718 add_preempt_count(PREEMPT_ACTIVE);
3721 * We keep the big kernel semaphore locked, but we
3722 * clear ->lock_depth so that schedule() doesnt
3723 * auto-release the semaphore:
3725 #ifdef CONFIG_PREEMPT_BKL
3726 saved_lock_depth = task->lock_depth;
3727 task->lock_depth = -1;
3728 #endif
3729 schedule();
3730 #ifdef CONFIG_PREEMPT_BKL
3731 task->lock_depth = saved_lock_depth;
3732 #endif
3733 sub_preempt_count(PREEMPT_ACTIVE);
3736 * Check again in case we missed a preemption opportunity
3737 * between schedule and now.
3739 barrier();
3740 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3742 EXPORT_SYMBOL(preempt_schedule);
3745 * this is the entry point to schedule() from kernel preemption
3746 * off of irq context.
3747 * Note, that this is called and return with irqs disabled. This will
3748 * protect us against recursive calling from irq.
3750 asmlinkage void __sched preempt_schedule_irq(void)
3752 struct thread_info *ti = current_thread_info();
3753 #ifdef CONFIG_PREEMPT_BKL
3754 struct task_struct *task = current;
3755 int saved_lock_depth;
3756 #endif
3757 /* Catch callers which need to be fixed */
3758 BUG_ON(ti->preempt_count || !irqs_disabled());
3760 do {
3761 add_preempt_count(PREEMPT_ACTIVE);
3764 * We keep the big kernel semaphore locked, but we
3765 * clear ->lock_depth so that schedule() doesnt
3766 * auto-release the semaphore:
3768 #ifdef CONFIG_PREEMPT_BKL
3769 saved_lock_depth = task->lock_depth;
3770 task->lock_depth = -1;
3771 #endif
3772 local_irq_enable();
3773 schedule();
3774 local_irq_disable();
3775 #ifdef CONFIG_PREEMPT_BKL
3776 task->lock_depth = saved_lock_depth;
3777 #endif
3778 sub_preempt_count(PREEMPT_ACTIVE);
3781 * Check again in case we missed a preemption opportunity
3782 * between schedule and now.
3784 barrier();
3785 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3788 #endif /* CONFIG_PREEMPT */
3790 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3791 void *key)
3793 return try_to_wake_up(curr->private, mode, sync);
3795 EXPORT_SYMBOL(default_wake_function);
3798 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3799 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3800 * number) then we wake all the non-exclusive tasks and one exclusive task.
3802 * There are circumstances in which we can try to wake a task which has already
3803 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3804 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3806 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3807 int nr_exclusive, int sync, void *key)
3809 wait_queue_t *curr, *next;
3811 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3812 unsigned flags = curr->flags;
3814 if (curr->func(curr, mode, sync, key) &&
3815 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3816 break;
3821 * __wake_up - wake up threads blocked on a waitqueue.
3822 * @q: the waitqueue
3823 * @mode: which threads
3824 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3825 * @key: is directly passed to the wakeup function
3827 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3828 int nr_exclusive, void *key)
3830 unsigned long flags;
3832 spin_lock_irqsave(&q->lock, flags);
3833 __wake_up_common(q, mode, nr_exclusive, 0, key);
3834 spin_unlock_irqrestore(&q->lock, flags);
3836 EXPORT_SYMBOL(__wake_up);
3839 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3841 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3843 __wake_up_common(q, mode, 1, 0, NULL);
3847 * __wake_up_sync - wake up threads blocked on a waitqueue.
3848 * @q: the waitqueue
3849 * @mode: which threads
3850 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3852 * The sync wakeup differs that the waker knows that it will schedule
3853 * away soon, so while the target thread will be woken up, it will not
3854 * be migrated to another CPU - ie. the two threads are 'synchronized'
3855 * with each other. This can prevent needless bouncing between CPUs.
3857 * On UP it can prevent extra preemption.
3859 void fastcall
3860 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3862 unsigned long flags;
3863 int sync = 1;
3865 if (unlikely(!q))
3866 return;
3868 if (unlikely(!nr_exclusive))
3869 sync = 0;
3871 spin_lock_irqsave(&q->lock, flags);
3872 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3873 spin_unlock_irqrestore(&q->lock, flags);
3875 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3877 void complete(struct completion *x)
3879 unsigned long flags;
3881 spin_lock_irqsave(&x->wait.lock, flags);
3882 x->done++;
3883 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3884 1, 0, NULL);
3885 spin_unlock_irqrestore(&x->wait.lock, flags);
3887 EXPORT_SYMBOL(complete);
3889 void complete_all(struct completion *x)
3891 unsigned long flags;
3893 spin_lock_irqsave(&x->wait.lock, flags);
3894 x->done += UINT_MAX/2;
3895 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3896 0, 0, NULL);
3897 spin_unlock_irqrestore(&x->wait.lock, flags);
3899 EXPORT_SYMBOL(complete_all);
3901 static inline long __sched
3902 do_wait_for_common(struct completion *x, long timeout, int state)
3904 if (!x->done) {
3905 DECLARE_WAITQUEUE(wait, current);
3907 wait.flags |= WQ_FLAG_EXCLUSIVE;
3908 __add_wait_queue_tail(&x->wait, &wait);
3909 do {
3910 if (state == TASK_INTERRUPTIBLE &&
3911 signal_pending(current)) {
3912 __remove_wait_queue(&x->wait, &wait);
3913 return -ERESTARTSYS;
3915 __set_current_state(state);
3916 spin_unlock_irq(&x->wait.lock);
3917 timeout = schedule_timeout(timeout);
3918 spin_lock_irq(&x->wait.lock);
3919 if (!timeout) {
3920 __remove_wait_queue(&x->wait, &wait);
3921 return timeout;
3923 } while (!x->done);
3924 __remove_wait_queue(&x->wait, &wait);
3926 x->done--;
3927 return timeout;
3930 static long __sched
3931 wait_for_common(struct completion *x, long timeout, int state)
3933 might_sleep();
3935 spin_lock_irq(&x->wait.lock);
3936 timeout = do_wait_for_common(x, timeout, state);
3937 spin_unlock_irq(&x->wait.lock);
3938 return timeout;
3941 void __sched wait_for_completion(struct completion *x)
3943 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3945 EXPORT_SYMBOL(wait_for_completion);
3947 unsigned long __sched
3948 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3950 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3952 EXPORT_SYMBOL(wait_for_completion_timeout);
3954 int __sched wait_for_completion_interruptible(struct completion *x)
3956 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3957 if (t == -ERESTARTSYS)
3958 return t;
3959 return 0;
3961 EXPORT_SYMBOL(wait_for_completion_interruptible);
3963 unsigned long __sched
3964 wait_for_completion_interruptible_timeout(struct completion *x,
3965 unsigned long timeout)
3967 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3969 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3971 static long __sched
3972 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3974 unsigned long flags;
3975 wait_queue_t wait;
3977 init_waitqueue_entry(&wait, current);
3979 __set_current_state(state);
3981 spin_lock_irqsave(&q->lock, flags);
3982 __add_wait_queue(q, &wait);
3983 spin_unlock(&q->lock);
3984 timeout = schedule_timeout(timeout);
3985 spin_lock_irq(&q->lock);
3986 __remove_wait_queue(q, &wait);
3987 spin_unlock_irqrestore(&q->lock, flags);
3989 return timeout;
3992 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3994 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3996 EXPORT_SYMBOL(interruptible_sleep_on);
3998 long __sched
3999 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4001 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4003 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4005 void __sched sleep_on(wait_queue_head_t *q)
4007 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4009 EXPORT_SYMBOL(sleep_on);
4011 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4013 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4015 EXPORT_SYMBOL(sleep_on_timeout);
4017 #ifdef CONFIG_RT_MUTEXES
4020 * rt_mutex_setprio - set the current priority of a task
4021 * @p: task
4022 * @prio: prio value (kernel-internal form)
4024 * This function changes the 'effective' priority of a task. It does
4025 * not touch ->normal_prio like __setscheduler().
4027 * Used by the rt_mutex code to implement priority inheritance logic.
4029 void rt_mutex_setprio(struct task_struct *p, int prio)
4031 unsigned long flags;
4032 int oldprio, on_rq, running;
4033 struct rq *rq;
4034 const struct sched_class *prev_class = p->sched_class;
4036 BUG_ON(prio < 0 || prio > MAX_PRIO);
4038 rq = task_rq_lock(p, &flags);
4039 update_rq_clock(rq);
4041 oldprio = p->prio;
4042 on_rq = p->se.on_rq;
4043 running = task_current(rq, p);
4044 if (on_rq) {
4045 dequeue_task(rq, p, 0);
4046 if (running)
4047 p->sched_class->put_prev_task(rq, p);
4050 if (rt_prio(prio))
4051 p->sched_class = &rt_sched_class;
4052 else
4053 p->sched_class = &fair_sched_class;
4055 p->prio = prio;
4057 if (on_rq) {
4058 if (running)
4059 p->sched_class->set_curr_task(rq);
4061 enqueue_task(rq, p, 0);
4063 check_class_changed(rq, p, prev_class, oldprio, running);
4065 task_rq_unlock(rq, &flags);
4068 #endif
4070 void set_user_nice(struct task_struct *p, long nice)
4072 int old_prio, delta, on_rq;
4073 unsigned long flags;
4074 struct rq *rq;
4076 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4077 return;
4079 * We have to be careful, if called from sys_setpriority(),
4080 * the task might be in the middle of scheduling on another CPU.
4082 rq = task_rq_lock(p, &flags);
4083 update_rq_clock(rq);
4085 * The RT priorities are set via sched_setscheduler(), but we still
4086 * allow the 'normal' nice value to be set - but as expected
4087 * it wont have any effect on scheduling until the task is
4088 * SCHED_FIFO/SCHED_RR:
4090 if (task_has_rt_policy(p)) {
4091 p->static_prio = NICE_TO_PRIO(nice);
4092 goto out_unlock;
4094 on_rq = p->se.on_rq;
4095 if (on_rq)
4096 dequeue_task(rq, p, 0);
4098 p->static_prio = NICE_TO_PRIO(nice);
4099 set_load_weight(p);
4100 old_prio = p->prio;
4101 p->prio = effective_prio(p);
4102 delta = p->prio - old_prio;
4104 if (on_rq) {
4105 enqueue_task(rq, p, 0);
4107 * If the task increased its priority or is running and
4108 * lowered its priority, then reschedule its CPU:
4110 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4111 resched_task(rq->curr);
4113 out_unlock:
4114 task_rq_unlock(rq, &flags);
4116 EXPORT_SYMBOL(set_user_nice);
4119 * can_nice - check if a task can reduce its nice value
4120 * @p: task
4121 * @nice: nice value
4123 int can_nice(const struct task_struct *p, const int nice)
4125 /* convert nice value [19,-20] to rlimit style value [1,40] */
4126 int nice_rlim = 20 - nice;
4128 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4129 capable(CAP_SYS_NICE));
4132 #ifdef __ARCH_WANT_SYS_NICE
4135 * sys_nice - change the priority of the current process.
4136 * @increment: priority increment
4138 * sys_setpriority is a more generic, but much slower function that
4139 * does similar things.
4141 asmlinkage long sys_nice(int increment)
4143 long nice, retval;
4146 * Setpriority might change our priority at the same moment.
4147 * We don't have to worry. Conceptually one call occurs first
4148 * and we have a single winner.
4150 if (increment < -40)
4151 increment = -40;
4152 if (increment > 40)
4153 increment = 40;
4155 nice = PRIO_TO_NICE(current->static_prio) + increment;
4156 if (nice < -20)
4157 nice = -20;
4158 if (nice > 19)
4159 nice = 19;
4161 if (increment < 0 && !can_nice(current, nice))
4162 return -EPERM;
4164 retval = security_task_setnice(current, nice);
4165 if (retval)
4166 return retval;
4168 set_user_nice(current, nice);
4169 return 0;
4172 #endif
4175 * task_prio - return the priority value of a given task.
4176 * @p: the task in question.
4178 * This is the priority value as seen by users in /proc.
4179 * RT tasks are offset by -200. Normal tasks are centered
4180 * around 0, value goes from -16 to +15.
4182 int task_prio(const struct task_struct *p)
4184 return p->prio - MAX_RT_PRIO;
4188 * task_nice - return the nice value of a given task.
4189 * @p: the task in question.
4191 int task_nice(const struct task_struct *p)
4193 return TASK_NICE(p);
4195 EXPORT_SYMBOL_GPL(task_nice);
4198 * idle_cpu - is a given cpu idle currently?
4199 * @cpu: the processor in question.
4201 int idle_cpu(int cpu)
4203 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4207 * idle_task - return the idle task for a given cpu.
4208 * @cpu: the processor in question.
4210 struct task_struct *idle_task(int cpu)
4212 return cpu_rq(cpu)->idle;
4216 * find_process_by_pid - find a process with a matching PID value.
4217 * @pid: the pid in question.
4219 static struct task_struct *find_process_by_pid(pid_t pid)
4221 return pid ? find_task_by_vpid(pid) : current;
4224 /* Actually do priority change: must hold rq lock. */
4225 static void
4226 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4228 BUG_ON(p->se.on_rq);
4230 p->policy = policy;
4231 switch (p->policy) {
4232 case SCHED_NORMAL:
4233 case SCHED_BATCH:
4234 case SCHED_IDLE:
4235 p->sched_class = &fair_sched_class;
4236 break;
4237 case SCHED_FIFO:
4238 case SCHED_RR:
4239 p->sched_class = &rt_sched_class;
4240 break;
4243 p->rt_priority = prio;
4244 p->normal_prio = normal_prio(p);
4245 /* we are holding p->pi_lock already */
4246 p->prio = rt_mutex_getprio(p);
4247 set_load_weight(p);
4251 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4252 * @p: the task in question.
4253 * @policy: new policy.
4254 * @param: structure containing the new RT priority.
4256 * NOTE that the task may be already dead.
4258 int sched_setscheduler(struct task_struct *p, int policy,
4259 struct sched_param *param)
4261 int retval, oldprio, oldpolicy = -1, on_rq, running;
4262 unsigned long flags;
4263 const struct sched_class *prev_class = p->sched_class;
4264 struct rq *rq;
4266 /* may grab non-irq protected spin_locks */
4267 BUG_ON(in_interrupt());
4268 recheck:
4269 /* double check policy once rq lock held */
4270 if (policy < 0)
4271 policy = oldpolicy = p->policy;
4272 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4273 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4274 policy != SCHED_IDLE)
4275 return -EINVAL;
4277 * Valid priorities for SCHED_FIFO and SCHED_RR are
4278 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4279 * SCHED_BATCH and SCHED_IDLE is 0.
4281 if (param->sched_priority < 0 ||
4282 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4283 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4284 return -EINVAL;
4285 if (rt_policy(policy) != (param->sched_priority != 0))
4286 return -EINVAL;
4289 * Allow unprivileged RT tasks to decrease priority:
4291 if (!capable(CAP_SYS_NICE)) {
4292 if (rt_policy(policy)) {
4293 unsigned long rlim_rtprio;
4295 if (!lock_task_sighand(p, &flags))
4296 return -ESRCH;
4297 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4298 unlock_task_sighand(p, &flags);
4300 /* can't set/change the rt policy */
4301 if (policy != p->policy && !rlim_rtprio)
4302 return -EPERM;
4304 /* can't increase priority */
4305 if (param->sched_priority > p->rt_priority &&
4306 param->sched_priority > rlim_rtprio)
4307 return -EPERM;
4310 * Like positive nice levels, dont allow tasks to
4311 * move out of SCHED_IDLE either:
4313 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4314 return -EPERM;
4316 /* can't change other user's priorities */
4317 if ((current->euid != p->euid) &&
4318 (current->euid != p->uid))
4319 return -EPERM;
4322 retval = security_task_setscheduler(p, policy, param);
4323 if (retval)
4324 return retval;
4326 * make sure no PI-waiters arrive (or leave) while we are
4327 * changing the priority of the task:
4329 spin_lock_irqsave(&p->pi_lock, flags);
4331 * To be able to change p->policy safely, the apropriate
4332 * runqueue lock must be held.
4334 rq = __task_rq_lock(p);
4335 /* recheck policy now with rq lock held */
4336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4337 policy = oldpolicy = -1;
4338 __task_rq_unlock(rq);
4339 spin_unlock_irqrestore(&p->pi_lock, flags);
4340 goto recheck;
4342 update_rq_clock(rq);
4343 on_rq = p->se.on_rq;
4344 running = task_current(rq, p);
4345 if (on_rq) {
4346 deactivate_task(rq, p, 0);
4347 if (running)
4348 p->sched_class->put_prev_task(rq, p);
4351 oldprio = p->prio;
4352 __setscheduler(rq, p, policy, param->sched_priority);
4354 if (on_rq) {
4355 if (running)
4356 p->sched_class->set_curr_task(rq);
4358 activate_task(rq, p, 0);
4360 check_class_changed(rq, p, prev_class, oldprio, running);
4362 __task_rq_unlock(rq);
4363 spin_unlock_irqrestore(&p->pi_lock, flags);
4365 rt_mutex_adjust_pi(p);
4367 return 0;
4369 EXPORT_SYMBOL_GPL(sched_setscheduler);
4371 static int
4372 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4374 struct sched_param lparam;
4375 struct task_struct *p;
4376 int retval;
4378 if (!param || pid < 0)
4379 return -EINVAL;
4380 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4381 return -EFAULT;
4383 rcu_read_lock();
4384 retval = -ESRCH;
4385 p = find_process_by_pid(pid);
4386 if (p != NULL)
4387 retval = sched_setscheduler(p, policy, &lparam);
4388 rcu_read_unlock();
4390 return retval;
4394 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4395 * @pid: the pid in question.
4396 * @policy: new policy.
4397 * @param: structure containing the new RT priority.
4399 asmlinkage long
4400 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4402 /* negative values for policy are not valid */
4403 if (policy < 0)
4404 return -EINVAL;
4406 return do_sched_setscheduler(pid, policy, param);
4410 * sys_sched_setparam - set/change the RT priority of a thread
4411 * @pid: the pid in question.
4412 * @param: structure containing the new RT priority.
4414 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4416 return do_sched_setscheduler(pid, -1, param);
4420 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4421 * @pid: the pid in question.
4423 asmlinkage long sys_sched_getscheduler(pid_t pid)
4425 struct task_struct *p;
4426 int retval;
4428 if (pid < 0)
4429 return -EINVAL;
4431 retval = -ESRCH;
4432 read_lock(&tasklist_lock);
4433 p = find_process_by_pid(pid);
4434 if (p) {
4435 retval = security_task_getscheduler(p);
4436 if (!retval)
4437 retval = p->policy;
4439 read_unlock(&tasklist_lock);
4440 return retval;
4444 * sys_sched_getscheduler - get the RT priority of a thread
4445 * @pid: the pid in question.
4446 * @param: structure containing the RT priority.
4448 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4450 struct sched_param lp;
4451 struct task_struct *p;
4452 int retval;
4454 if (!param || pid < 0)
4455 return -EINVAL;
4457 read_lock(&tasklist_lock);
4458 p = find_process_by_pid(pid);
4459 retval = -ESRCH;
4460 if (!p)
4461 goto out_unlock;
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4467 lp.sched_priority = p->rt_priority;
4468 read_unlock(&tasklist_lock);
4471 * This one might sleep, we cannot do it with a spinlock held ...
4473 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4475 return retval;
4477 out_unlock:
4478 read_unlock(&tasklist_lock);
4479 return retval;
4482 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4484 cpumask_t cpus_allowed;
4485 struct task_struct *p;
4486 int retval;
4488 get_online_cpus();
4489 read_lock(&tasklist_lock);
4491 p = find_process_by_pid(pid);
4492 if (!p) {
4493 read_unlock(&tasklist_lock);
4494 put_online_cpus();
4495 return -ESRCH;
4499 * It is not safe to call set_cpus_allowed with the
4500 * tasklist_lock held. We will bump the task_struct's
4501 * usage count and then drop tasklist_lock.
4503 get_task_struct(p);
4504 read_unlock(&tasklist_lock);
4506 retval = -EPERM;
4507 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4508 !capable(CAP_SYS_NICE))
4509 goto out_unlock;
4511 retval = security_task_setscheduler(p, 0, NULL);
4512 if (retval)
4513 goto out_unlock;
4515 cpus_allowed = cpuset_cpus_allowed(p);
4516 cpus_and(new_mask, new_mask, cpus_allowed);
4517 again:
4518 retval = set_cpus_allowed(p, new_mask);
4520 if (!retval) {
4521 cpus_allowed = cpuset_cpus_allowed(p);
4522 if (!cpus_subset(new_mask, cpus_allowed)) {
4524 * We must have raced with a concurrent cpuset
4525 * update. Just reset the cpus_allowed to the
4526 * cpuset's cpus_allowed
4528 new_mask = cpus_allowed;
4529 goto again;
4532 out_unlock:
4533 put_task_struct(p);
4534 put_online_cpus();
4535 return retval;
4538 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4539 cpumask_t *new_mask)
4541 if (len < sizeof(cpumask_t)) {
4542 memset(new_mask, 0, sizeof(cpumask_t));
4543 } else if (len > sizeof(cpumask_t)) {
4544 len = sizeof(cpumask_t);
4546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4550 * sys_sched_setaffinity - set the cpu affinity of a process
4551 * @pid: pid of the process
4552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4553 * @user_mask_ptr: user-space pointer to the new cpu mask
4555 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4556 unsigned long __user *user_mask_ptr)
4558 cpumask_t new_mask;
4559 int retval;
4561 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4562 if (retval)
4563 return retval;
4565 return sched_setaffinity(pid, new_mask);
4569 * Represents all cpu's present in the system
4570 * In systems capable of hotplug, this map could dynamically grow
4571 * as new cpu's are detected in the system via any platform specific
4572 * method, such as ACPI for e.g.
4575 cpumask_t cpu_present_map __read_mostly;
4576 EXPORT_SYMBOL(cpu_present_map);
4578 #ifndef CONFIG_SMP
4579 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4580 EXPORT_SYMBOL(cpu_online_map);
4582 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4583 EXPORT_SYMBOL(cpu_possible_map);
4584 #endif
4586 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4588 struct task_struct *p;
4589 int retval;
4591 get_online_cpus();
4592 read_lock(&tasklist_lock);
4594 retval = -ESRCH;
4595 p = find_process_by_pid(pid);
4596 if (!p)
4597 goto out_unlock;
4599 retval = security_task_getscheduler(p);
4600 if (retval)
4601 goto out_unlock;
4603 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4605 out_unlock:
4606 read_unlock(&tasklist_lock);
4607 put_online_cpus();
4609 return retval;
4613 * sys_sched_getaffinity - get the cpu affinity of a process
4614 * @pid: pid of the process
4615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4616 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4618 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4619 unsigned long __user *user_mask_ptr)
4621 int ret;
4622 cpumask_t mask;
4624 if (len < sizeof(cpumask_t))
4625 return -EINVAL;
4627 ret = sched_getaffinity(pid, &mask);
4628 if (ret < 0)
4629 return ret;
4631 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4632 return -EFAULT;
4634 return sizeof(cpumask_t);
4638 * sys_sched_yield - yield the current processor to other threads.
4640 * This function yields the current CPU to other tasks. If there are no
4641 * other threads running on this CPU then this function will return.
4643 asmlinkage long sys_sched_yield(void)
4645 struct rq *rq = this_rq_lock();
4647 schedstat_inc(rq, yld_count);
4648 current->sched_class->yield_task(rq);
4651 * Since we are going to call schedule() anyway, there's
4652 * no need to preempt or enable interrupts:
4654 __release(rq->lock);
4655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4656 _raw_spin_unlock(&rq->lock);
4657 preempt_enable_no_resched();
4659 schedule();
4661 return 0;
4664 static void __cond_resched(void)
4666 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4667 __might_sleep(__FILE__, __LINE__);
4668 #endif
4670 * The BKS might be reacquired before we have dropped
4671 * PREEMPT_ACTIVE, which could trigger a second
4672 * cond_resched() call.
4674 do {
4675 add_preempt_count(PREEMPT_ACTIVE);
4676 schedule();
4677 sub_preempt_count(PREEMPT_ACTIVE);
4678 } while (need_resched());
4681 int __sched cond_resched(void)
4683 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4684 system_state == SYSTEM_RUNNING) {
4685 __cond_resched();
4686 return 1;
4688 return 0;
4690 EXPORT_SYMBOL(cond_resched);
4693 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4694 * call schedule, and on return reacquire the lock.
4696 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4697 * operations here to prevent schedule() from being called twice (once via
4698 * spin_unlock(), once by hand).
4700 int cond_resched_lock(spinlock_t *lock)
4702 int ret = 0;
4704 if (need_lockbreak(lock)) {
4705 spin_unlock(lock);
4706 cpu_relax();
4707 ret = 1;
4708 spin_lock(lock);
4710 if (need_resched() && system_state == SYSTEM_RUNNING) {
4711 spin_release(&lock->dep_map, 1, _THIS_IP_);
4712 _raw_spin_unlock(lock);
4713 preempt_enable_no_resched();
4714 __cond_resched();
4715 ret = 1;
4716 spin_lock(lock);
4718 return ret;
4720 EXPORT_SYMBOL(cond_resched_lock);
4722 int __sched cond_resched_softirq(void)
4724 BUG_ON(!in_softirq());
4726 if (need_resched() && system_state == SYSTEM_RUNNING) {
4727 local_bh_enable();
4728 __cond_resched();
4729 local_bh_disable();
4730 return 1;
4732 return 0;
4734 EXPORT_SYMBOL(cond_resched_softirq);
4737 * yield - yield the current processor to other threads.
4739 * This is a shortcut for kernel-space yielding - it marks the
4740 * thread runnable and calls sys_sched_yield().
4742 void __sched yield(void)
4744 set_current_state(TASK_RUNNING);
4745 sys_sched_yield();
4747 EXPORT_SYMBOL(yield);
4750 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4751 * that process accounting knows that this is a task in IO wait state.
4753 * But don't do that if it is a deliberate, throttling IO wait (this task
4754 * has set its backing_dev_info: the queue against which it should throttle)
4756 void __sched io_schedule(void)
4758 struct rq *rq = &__raw_get_cpu_var(runqueues);
4760 delayacct_blkio_start();
4761 atomic_inc(&rq->nr_iowait);
4762 schedule();
4763 atomic_dec(&rq->nr_iowait);
4764 delayacct_blkio_end();
4766 EXPORT_SYMBOL(io_schedule);
4768 long __sched io_schedule_timeout(long timeout)
4770 struct rq *rq = &__raw_get_cpu_var(runqueues);
4771 long ret;
4773 delayacct_blkio_start();
4774 atomic_inc(&rq->nr_iowait);
4775 ret = schedule_timeout(timeout);
4776 atomic_dec(&rq->nr_iowait);
4777 delayacct_blkio_end();
4778 return ret;
4782 * sys_sched_get_priority_max - return maximum RT priority.
4783 * @policy: scheduling class.
4785 * this syscall returns the maximum rt_priority that can be used
4786 * by a given scheduling class.
4788 asmlinkage long sys_sched_get_priority_max(int policy)
4790 int ret = -EINVAL;
4792 switch (policy) {
4793 case SCHED_FIFO:
4794 case SCHED_RR:
4795 ret = MAX_USER_RT_PRIO-1;
4796 break;
4797 case SCHED_NORMAL:
4798 case SCHED_BATCH:
4799 case SCHED_IDLE:
4800 ret = 0;
4801 break;
4803 return ret;
4807 * sys_sched_get_priority_min - return minimum RT priority.
4808 * @policy: scheduling class.
4810 * this syscall returns the minimum rt_priority that can be used
4811 * by a given scheduling class.
4813 asmlinkage long sys_sched_get_priority_min(int policy)
4815 int ret = -EINVAL;
4817 switch (policy) {
4818 case SCHED_FIFO:
4819 case SCHED_RR:
4820 ret = 1;
4821 break;
4822 case SCHED_NORMAL:
4823 case SCHED_BATCH:
4824 case SCHED_IDLE:
4825 ret = 0;
4827 return ret;
4831 * sys_sched_rr_get_interval - return the default timeslice of a process.
4832 * @pid: pid of the process.
4833 * @interval: userspace pointer to the timeslice value.
4835 * this syscall writes the default timeslice value of a given process
4836 * into the user-space timespec buffer. A value of '0' means infinity.
4838 asmlinkage
4839 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4841 struct task_struct *p;
4842 unsigned int time_slice;
4843 int retval;
4844 struct timespec t;
4846 if (pid < 0)
4847 return -EINVAL;
4849 retval = -ESRCH;
4850 read_lock(&tasklist_lock);
4851 p = find_process_by_pid(pid);
4852 if (!p)
4853 goto out_unlock;
4855 retval = security_task_getscheduler(p);
4856 if (retval)
4857 goto out_unlock;
4860 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4861 * tasks that are on an otherwise idle runqueue:
4863 time_slice = 0;
4864 if (p->policy == SCHED_RR) {
4865 time_slice = DEF_TIMESLICE;
4866 } else {
4867 struct sched_entity *se = &p->se;
4868 unsigned long flags;
4869 struct rq *rq;
4871 rq = task_rq_lock(p, &flags);
4872 if (rq->cfs.load.weight)
4873 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4874 task_rq_unlock(rq, &flags);
4876 read_unlock(&tasklist_lock);
4877 jiffies_to_timespec(time_slice, &t);
4878 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4879 return retval;
4881 out_unlock:
4882 read_unlock(&tasklist_lock);
4883 return retval;
4886 static const char stat_nam[] = "RSDTtZX";
4888 void sched_show_task(struct task_struct *p)
4890 unsigned long free = 0;
4891 unsigned state;
4893 state = p->state ? __ffs(p->state) + 1 : 0;
4894 printk(KERN_INFO "%-13.13s %c", p->comm,
4895 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4896 #if BITS_PER_LONG == 32
4897 if (state == TASK_RUNNING)
4898 printk(KERN_CONT " running ");
4899 else
4900 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4901 #else
4902 if (state == TASK_RUNNING)
4903 printk(KERN_CONT " running task ");
4904 else
4905 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4906 #endif
4907 #ifdef CONFIG_DEBUG_STACK_USAGE
4909 unsigned long *n = end_of_stack(p);
4910 while (!*n)
4911 n++;
4912 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4914 #endif
4915 printk(KERN_CONT "%5lu %5d %6d\n", free,
4916 task_pid_nr(p), task_pid_nr(p->real_parent));
4918 if (state != TASK_RUNNING)
4919 show_stack(p, NULL);
4922 void show_state_filter(unsigned long state_filter)
4924 struct task_struct *g, *p;
4926 #if BITS_PER_LONG == 32
4927 printk(KERN_INFO
4928 " task PC stack pid father\n");
4929 #else
4930 printk(KERN_INFO
4931 " task PC stack pid father\n");
4932 #endif
4933 read_lock(&tasklist_lock);
4934 do_each_thread(g, p) {
4936 * reset the NMI-timeout, listing all files on a slow
4937 * console might take alot of time:
4939 touch_nmi_watchdog();
4940 if (!state_filter || (p->state & state_filter))
4941 sched_show_task(p);
4942 } while_each_thread(g, p);
4944 touch_all_softlockup_watchdogs();
4946 #ifdef CONFIG_SCHED_DEBUG
4947 sysrq_sched_debug_show();
4948 #endif
4949 read_unlock(&tasklist_lock);
4951 * Only show locks if all tasks are dumped:
4953 if (state_filter == -1)
4954 debug_show_all_locks();
4957 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4959 idle->sched_class = &idle_sched_class;
4963 * init_idle - set up an idle thread for a given CPU
4964 * @idle: task in question
4965 * @cpu: cpu the idle task belongs to
4967 * NOTE: this function does not set the idle thread's NEED_RESCHED
4968 * flag, to make booting more robust.
4970 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4972 struct rq *rq = cpu_rq(cpu);
4973 unsigned long flags;
4975 __sched_fork(idle);
4976 idle->se.exec_start = sched_clock();
4978 idle->prio = idle->normal_prio = MAX_PRIO;
4979 idle->cpus_allowed = cpumask_of_cpu(cpu);
4980 __set_task_cpu(idle, cpu);
4982 spin_lock_irqsave(&rq->lock, flags);
4983 rq->curr = rq->idle = idle;
4984 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4985 idle->oncpu = 1;
4986 #endif
4987 spin_unlock_irqrestore(&rq->lock, flags);
4989 /* Set the preempt count _outside_ the spinlocks! */
4990 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4991 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4992 #else
4993 task_thread_info(idle)->preempt_count = 0;
4994 #endif
4996 * The idle tasks have their own, simple scheduling class:
4998 idle->sched_class = &idle_sched_class;
5002 * In a system that switches off the HZ timer nohz_cpu_mask
5003 * indicates which cpus entered this state. This is used
5004 * in the rcu update to wait only for active cpus. For system
5005 * which do not switch off the HZ timer nohz_cpu_mask should
5006 * always be CPU_MASK_NONE.
5008 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5011 * Increase the granularity value when there are more CPUs,
5012 * because with more CPUs the 'effective latency' as visible
5013 * to users decreases. But the relationship is not linear,
5014 * so pick a second-best guess by going with the log2 of the
5015 * number of CPUs.
5017 * This idea comes from the SD scheduler of Con Kolivas:
5019 static inline void sched_init_granularity(void)
5021 unsigned int factor = 1 + ilog2(num_online_cpus());
5022 const unsigned long limit = 200000000;
5024 sysctl_sched_min_granularity *= factor;
5025 if (sysctl_sched_min_granularity > limit)
5026 sysctl_sched_min_granularity = limit;
5028 sysctl_sched_latency *= factor;
5029 if (sysctl_sched_latency > limit)
5030 sysctl_sched_latency = limit;
5032 sysctl_sched_wakeup_granularity *= factor;
5033 sysctl_sched_batch_wakeup_granularity *= factor;
5036 #ifdef CONFIG_SMP
5038 * This is how migration works:
5040 * 1) we queue a struct migration_req structure in the source CPU's
5041 * runqueue and wake up that CPU's migration thread.
5042 * 2) we down() the locked semaphore => thread blocks.
5043 * 3) migration thread wakes up (implicitly it forces the migrated
5044 * thread off the CPU)
5045 * 4) it gets the migration request and checks whether the migrated
5046 * task is still in the wrong runqueue.
5047 * 5) if it's in the wrong runqueue then the migration thread removes
5048 * it and puts it into the right queue.
5049 * 6) migration thread up()s the semaphore.
5050 * 7) we wake up and the migration is done.
5054 * Change a given task's CPU affinity. Migrate the thread to a
5055 * proper CPU and schedule it away if the CPU it's executing on
5056 * is removed from the allowed bitmask.
5058 * NOTE: the caller must have a valid reference to the task, the
5059 * task must not exit() & deallocate itself prematurely. The
5060 * call is not atomic; no spinlocks may be held.
5062 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5064 struct migration_req req;
5065 unsigned long flags;
5066 struct rq *rq;
5067 int ret = 0;
5069 rq = task_rq_lock(p, &flags);
5070 if (!cpus_intersects(new_mask, cpu_online_map)) {
5071 ret = -EINVAL;
5072 goto out;
5075 if (p->sched_class->set_cpus_allowed)
5076 p->sched_class->set_cpus_allowed(p, &new_mask);
5077 else {
5078 p->cpus_allowed = new_mask;
5079 p->nr_cpus_allowed = cpus_weight(new_mask);
5082 /* Can the task run on the task's current CPU? If so, we're done */
5083 if (cpu_isset(task_cpu(p), new_mask))
5084 goto out;
5086 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5087 /* Need help from migration thread: drop lock and wait. */
5088 task_rq_unlock(rq, &flags);
5089 wake_up_process(rq->migration_thread);
5090 wait_for_completion(&req.done);
5091 tlb_migrate_finish(p->mm);
5092 return 0;
5094 out:
5095 task_rq_unlock(rq, &flags);
5097 return ret;
5099 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5102 * Move (not current) task off this cpu, onto dest cpu. We're doing
5103 * this because either it can't run here any more (set_cpus_allowed()
5104 * away from this CPU, or CPU going down), or because we're
5105 * attempting to rebalance this task on exec (sched_exec).
5107 * So we race with normal scheduler movements, but that's OK, as long
5108 * as the task is no longer on this CPU.
5110 * Returns non-zero if task was successfully migrated.
5112 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5114 struct rq *rq_dest, *rq_src;
5115 int ret = 0, on_rq;
5117 if (unlikely(cpu_is_offline(dest_cpu)))
5118 return ret;
5120 rq_src = cpu_rq(src_cpu);
5121 rq_dest = cpu_rq(dest_cpu);
5123 double_rq_lock(rq_src, rq_dest);
5124 /* Already moved. */
5125 if (task_cpu(p) != src_cpu)
5126 goto out;
5127 /* Affinity changed (again). */
5128 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5129 goto out;
5131 on_rq = p->se.on_rq;
5132 if (on_rq)
5133 deactivate_task(rq_src, p, 0);
5135 set_task_cpu(p, dest_cpu);
5136 if (on_rq) {
5137 activate_task(rq_dest, p, 0);
5138 check_preempt_curr(rq_dest, p);
5140 ret = 1;
5141 out:
5142 double_rq_unlock(rq_src, rq_dest);
5143 return ret;
5147 * migration_thread - this is a highprio system thread that performs
5148 * thread migration by bumping thread off CPU then 'pushing' onto
5149 * another runqueue.
5151 static int migration_thread(void *data)
5153 int cpu = (long)data;
5154 struct rq *rq;
5156 rq = cpu_rq(cpu);
5157 BUG_ON(rq->migration_thread != current);
5159 set_current_state(TASK_INTERRUPTIBLE);
5160 while (!kthread_should_stop()) {
5161 struct migration_req *req;
5162 struct list_head *head;
5164 spin_lock_irq(&rq->lock);
5166 if (cpu_is_offline(cpu)) {
5167 spin_unlock_irq(&rq->lock);
5168 goto wait_to_die;
5171 if (rq->active_balance) {
5172 active_load_balance(rq, cpu);
5173 rq->active_balance = 0;
5176 head = &rq->migration_queue;
5178 if (list_empty(head)) {
5179 spin_unlock_irq(&rq->lock);
5180 schedule();
5181 set_current_state(TASK_INTERRUPTIBLE);
5182 continue;
5184 req = list_entry(head->next, struct migration_req, list);
5185 list_del_init(head->next);
5187 spin_unlock(&rq->lock);
5188 __migrate_task(req->task, cpu, req->dest_cpu);
5189 local_irq_enable();
5191 complete(&req->done);
5193 __set_current_state(TASK_RUNNING);
5194 return 0;
5196 wait_to_die:
5197 /* Wait for kthread_stop */
5198 set_current_state(TASK_INTERRUPTIBLE);
5199 while (!kthread_should_stop()) {
5200 schedule();
5201 set_current_state(TASK_INTERRUPTIBLE);
5203 __set_current_state(TASK_RUNNING);
5204 return 0;
5207 #ifdef CONFIG_HOTPLUG_CPU
5209 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5211 int ret;
5213 local_irq_disable();
5214 ret = __migrate_task(p, src_cpu, dest_cpu);
5215 local_irq_enable();
5216 return ret;
5220 * Figure out where task on dead CPU should go, use force if necessary.
5221 * NOTE: interrupts should be disabled by the caller
5223 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5225 unsigned long flags;
5226 cpumask_t mask;
5227 struct rq *rq;
5228 int dest_cpu;
5230 do {
5231 /* On same node? */
5232 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5233 cpus_and(mask, mask, p->cpus_allowed);
5234 dest_cpu = any_online_cpu(mask);
5236 /* On any allowed CPU? */
5237 if (dest_cpu == NR_CPUS)
5238 dest_cpu = any_online_cpu(p->cpus_allowed);
5240 /* No more Mr. Nice Guy. */
5241 if (dest_cpu == NR_CPUS) {
5242 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5244 * Try to stay on the same cpuset, where the
5245 * current cpuset may be a subset of all cpus.
5246 * The cpuset_cpus_allowed_locked() variant of
5247 * cpuset_cpus_allowed() will not block. It must be
5248 * called within calls to cpuset_lock/cpuset_unlock.
5250 rq = task_rq_lock(p, &flags);
5251 p->cpus_allowed = cpus_allowed;
5252 dest_cpu = any_online_cpu(p->cpus_allowed);
5253 task_rq_unlock(rq, &flags);
5256 * Don't tell them about moving exiting tasks or
5257 * kernel threads (both mm NULL), since they never
5258 * leave kernel.
5260 if (p->mm && printk_ratelimit()) {
5261 printk(KERN_INFO "process %d (%s) no "
5262 "longer affine to cpu%d\n",
5263 task_pid_nr(p), p->comm, dead_cpu);
5266 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5270 * While a dead CPU has no uninterruptible tasks queued at this point,
5271 * it might still have a nonzero ->nr_uninterruptible counter, because
5272 * for performance reasons the counter is not stricly tracking tasks to
5273 * their home CPUs. So we just add the counter to another CPU's counter,
5274 * to keep the global sum constant after CPU-down:
5276 static void migrate_nr_uninterruptible(struct rq *rq_src)
5278 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5279 unsigned long flags;
5281 local_irq_save(flags);
5282 double_rq_lock(rq_src, rq_dest);
5283 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5284 rq_src->nr_uninterruptible = 0;
5285 double_rq_unlock(rq_src, rq_dest);
5286 local_irq_restore(flags);
5289 /* Run through task list and migrate tasks from the dead cpu. */
5290 static void migrate_live_tasks(int src_cpu)
5292 struct task_struct *p, *t;
5294 read_lock(&tasklist_lock);
5296 do_each_thread(t, p) {
5297 if (p == current)
5298 continue;
5300 if (task_cpu(p) == src_cpu)
5301 move_task_off_dead_cpu(src_cpu, p);
5302 } while_each_thread(t, p);
5304 read_unlock(&tasklist_lock);
5308 * Schedules idle task to be the next runnable task on current CPU.
5309 * It does so by boosting its priority to highest possible.
5310 * Used by CPU offline code.
5312 void sched_idle_next(void)
5314 int this_cpu = smp_processor_id();
5315 struct rq *rq = cpu_rq(this_cpu);
5316 struct task_struct *p = rq->idle;
5317 unsigned long flags;
5319 /* cpu has to be offline */
5320 BUG_ON(cpu_online(this_cpu));
5323 * Strictly not necessary since rest of the CPUs are stopped by now
5324 * and interrupts disabled on the current cpu.
5326 spin_lock_irqsave(&rq->lock, flags);
5328 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5330 update_rq_clock(rq);
5331 activate_task(rq, p, 0);
5333 spin_unlock_irqrestore(&rq->lock, flags);
5337 * Ensures that the idle task is using init_mm right before its cpu goes
5338 * offline.
5340 void idle_task_exit(void)
5342 struct mm_struct *mm = current->active_mm;
5344 BUG_ON(cpu_online(smp_processor_id()));
5346 if (mm != &init_mm)
5347 switch_mm(mm, &init_mm, current);
5348 mmdrop(mm);
5351 /* called under rq->lock with disabled interrupts */
5352 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5354 struct rq *rq = cpu_rq(dead_cpu);
5356 /* Must be exiting, otherwise would be on tasklist. */
5357 BUG_ON(!p->exit_state);
5359 /* Cannot have done final schedule yet: would have vanished. */
5360 BUG_ON(p->state == TASK_DEAD);
5362 get_task_struct(p);
5365 * Drop lock around migration; if someone else moves it,
5366 * that's OK. No task can be added to this CPU, so iteration is
5367 * fine.
5369 spin_unlock_irq(&rq->lock);
5370 move_task_off_dead_cpu(dead_cpu, p);
5371 spin_lock_irq(&rq->lock);
5373 put_task_struct(p);
5376 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5377 static void migrate_dead_tasks(unsigned int dead_cpu)
5379 struct rq *rq = cpu_rq(dead_cpu);
5380 struct task_struct *next;
5382 for ( ; ; ) {
5383 if (!rq->nr_running)
5384 break;
5385 update_rq_clock(rq);
5386 next = pick_next_task(rq, rq->curr);
5387 if (!next)
5388 break;
5389 migrate_dead(dead_cpu, next);
5393 #endif /* CONFIG_HOTPLUG_CPU */
5395 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5397 static struct ctl_table sd_ctl_dir[] = {
5399 .procname = "sched_domain",
5400 .mode = 0555,
5402 {0, },
5405 static struct ctl_table sd_ctl_root[] = {
5407 .ctl_name = CTL_KERN,
5408 .procname = "kernel",
5409 .mode = 0555,
5410 .child = sd_ctl_dir,
5412 {0, },
5415 static struct ctl_table *sd_alloc_ctl_entry(int n)
5417 struct ctl_table *entry =
5418 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5420 return entry;
5423 static void sd_free_ctl_entry(struct ctl_table **tablep)
5425 struct ctl_table *entry;
5428 * In the intermediate directories, both the child directory and
5429 * procname are dynamically allocated and could fail but the mode
5430 * will always be set. In the lowest directory the names are
5431 * static strings and all have proc handlers.
5433 for (entry = *tablep; entry->mode; entry++) {
5434 if (entry->child)
5435 sd_free_ctl_entry(&entry->child);
5436 if (entry->proc_handler == NULL)
5437 kfree(entry->procname);
5440 kfree(*tablep);
5441 *tablep = NULL;
5444 static void
5445 set_table_entry(struct ctl_table *entry,
5446 const char *procname, void *data, int maxlen,
5447 mode_t mode, proc_handler *proc_handler)
5449 entry->procname = procname;
5450 entry->data = data;
5451 entry->maxlen = maxlen;
5452 entry->mode = mode;
5453 entry->proc_handler = proc_handler;
5456 static struct ctl_table *
5457 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5459 struct ctl_table *table = sd_alloc_ctl_entry(12);
5461 if (table == NULL)
5462 return NULL;
5464 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5465 sizeof(long), 0644, proc_doulongvec_minmax);
5466 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5467 sizeof(long), 0644, proc_doulongvec_minmax);
5468 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5469 sizeof(int), 0644, proc_dointvec_minmax);
5470 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5471 sizeof(int), 0644, proc_dointvec_minmax);
5472 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5473 sizeof(int), 0644, proc_dointvec_minmax);
5474 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5475 sizeof(int), 0644, proc_dointvec_minmax);
5476 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5477 sizeof(int), 0644, proc_dointvec_minmax);
5478 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5479 sizeof(int), 0644, proc_dointvec_minmax);
5480 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5481 sizeof(int), 0644, proc_dointvec_minmax);
5482 set_table_entry(&table[9], "cache_nice_tries",
5483 &sd->cache_nice_tries,
5484 sizeof(int), 0644, proc_dointvec_minmax);
5485 set_table_entry(&table[10], "flags", &sd->flags,
5486 sizeof(int), 0644, proc_dointvec_minmax);
5487 /* &table[11] is terminator */
5489 return table;
5492 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5494 struct ctl_table *entry, *table;
5495 struct sched_domain *sd;
5496 int domain_num = 0, i;
5497 char buf[32];
5499 for_each_domain(cpu, sd)
5500 domain_num++;
5501 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5502 if (table == NULL)
5503 return NULL;
5505 i = 0;
5506 for_each_domain(cpu, sd) {
5507 snprintf(buf, 32, "domain%d", i);
5508 entry->procname = kstrdup(buf, GFP_KERNEL);
5509 entry->mode = 0555;
5510 entry->child = sd_alloc_ctl_domain_table(sd);
5511 entry++;
5512 i++;
5514 return table;
5517 static struct ctl_table_header *sd_sysctl_header;
5518 static void register_sched_domain_sysctl(void)
5520 int i, cpu_num = num_online_cpus();
5521 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5522 char buf[32];
5524 WARN_ON(sd_ctl_dir[0].child);
5525 sd_ctl_dir[0].child = entry;
5527 if (entry == NULL)
5528 return;
5530 for_each_online_cpu(i) {
5531 snprintf(buf, 32, "cpu%d", i);
5532 entry->procname = kstrdup(buf, GFP_KERNEL);
5533 entry->mode = 0555;
5534 entry->child = sd_alloc_ctl_cpu_table(i);
5535 entry++;
5538 WARN_ON(sd_sysctl_header);
5539 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5542 /* may be called multiple times per register */
5543 static void unregister_sched_domain_sysctl(void)
5545 if (sd_sysctl_header)
5546 unregister_sysctl_table(sd_sysctl_header);
5547 sd_sysctl_header = NULL;
5548 if (sd_ctl_dir[0].child)
5549 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5551 #else
5552 static void register_sched_domain_sysctl(void)
5555 static void unregister_sched_domain_sysctl(void)
5558 #endif
5561 * migration_call - callback that gets triggered when a CPU is added.
5562 * Here we can start up the necessary migration thread for the new CPU.
5564 static int __cpuinit
5565 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5567 struct task_struct *p;
5568 int cpu = (long)hcpu;
5569 unsigned long flags;
5570 struct rq *rq;
5572 switch (action) {
5574 case CPU_UP_PREPARE:
5575 case CPU_UP_PREPARE_FROZEN:
5576 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5577 if (IS_ERR(p))
5578 return NOTIFY_BAD;
5579 kthread_bind(p, cpu);
5580 /* Must be high prio: stop_machine expects to yield to it. */
5581 rq = task_rq_lock(p, &flags);
5582 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5583 task_rq_unlock(rq, &flags);
5584 cpu_rq(cpu)->migration_thread = p;
5585 break;
5587 case CPU_ONLINE:
5588 case CPU_ONLINE_FROZEN:
5589 /* Strictly unnecessary, as first user will wake it. */
5590 wake_up_process(cpu_rq(cpu)->migration_thread);
5592 /* Update our root-domain */
5593 rq = cpu_rq(cpu);
5594 spin_lock_irqsave(&rq->lock, flags);
5595 if (rq->rd) {
5596 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5597 cpu_set(cpu, rq->rd->online);
5599 spin_unlock_irqrestore(&rq->lock, flags);
5600 break;
5602 #ifdef CONFIG_HOTPLUG_CPU
5603 case CPU_UP_CANCELED:
5604 case CPU_UP_CANCELED_FROZEN:
5605 if (!cpu_rq(cpu)->migration_thread)
5606 break;
5607 /* Unbind it from offline cpu so it can run. Fall thru. */
5608 kthread_bind(cpu_rq(cpu)->migration_thread,
5609 any_online_cpu(cpu_online_map));
5610 kthread_stop(cpu_rq(cpu)->migration_thread);
5611 cpu_rq(cpu)->migration_thread = NULL;
5612 break;
5614 case CPU_DEAD:
5615 case CPU_DEAD_FROZEN:
5616 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5617 migrate_live_tasks(cpu);
5618 rq = cpu_rq(cpu);
5619 kthread_stop(rq->migration_thread);
5620 rq->migration_thread = NULL;
5621 /* Idle task back to normal (off runqueue, low prio) */
5622 spin_lock_irq(&rq->lock);
5623 update_rq_clock(rq);
5624 deactivate_task(rq, rq->idle, 0);
5625 rq->idle->static_prio = MAX_PRIO;
5626 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5627 rq->idle->sched_class = &idle_sched_class;
5628 migrate_dead_tasks(cpu);
5629 spin_unlock_irq(&rq->lock);
5630 cpuset_unlock();
5631 migrate_nr_uninterruptible(rq);
5632 BUG_ON(rq->nr_running != 0);
5635 * No need to migrate the tasks: it was best-effort if
5636 * they didn't take sched_hotcpu_mutex. Just wake up
5637 * the requestors.
5639 spin_lock_irq(&rq->lock);
5640 while (!list_empty(&rq->migration_queue)) {
5641 struct migration_req *req;
5643 req = list_entry(rq->migration_queue.next,
5644 struct migration_req, list);
5645 list_del_init(&req->list);
5646 complete(&req->done);
5648 spin_unlock_irq(&rq->lock);
5649 break;
5651 case CPU_DOWN_PREPARE:
5652 /* Update our root-domain */
5653 rq = cpu_rq(cpu);
5654 spin_lock_irqsave(&rq->lock, flags);
5655 if (rq->rd) {
5656 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5657 cpu_clear(cpu, rq->rd->online);
5659 spin_unlock_irqrestore(&rq->lock, flags);
5660 break;
5661 #endif
5663 return NOTIFY_OK;
5666 /* Register at highest priority so that task migration (migrate_all_tasks)
5667 * happens before everything else.
5669 static struct notifier_block __cpuinitdata migration_notifier = {
5670 .notifier_call = migration_call,
5671 .priority = 10
5674 void __init migration_init(void)
5676 void *cpu = (void *)(long)smp_processor_id();
5677 int err;
5679 /* Start one for the boot CPU: */
5680 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5681 BUG_ON(err == NOTIFY_BAD);
5682 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5683 register_cpu_notifier(&migration_notifier);
5685 #endif
5687 #ifdef CONFIG_SMP
5689 /* Number of possible processor ids */
5690 int nr_cpu_ids __read_mostly = NR_CPUS;
5691 EXPORT_SYMBOL(nr_cpu_ids);
5693 #ifdef CONFIG_SCHED_DEBUG
5695 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5697 struct sched_group *group = sd->groups;
5698 cpumask_t groupmask;
5699 char str[NR_CPUS];
5701 cpumask_scnprintf(str, NR_CPUS, sd->span);
5702 cpus_clear(groupmask);
5704 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5706 if (!(sd->flags & SD_LOAD_BALANCE)) {
5707 printk("does not load-balance\n");
5708 if (sd->parent)
5709 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5710 " has parent");
5711 return -1;
5714 printk(KERN_CONT "span %s\n", str);
5716 if (!cpu_isset(cpu, sd->span)) {
5717 printk(KERN_ERR "ERROR: domain->span does not contain "
5718 "CPU%d\n", cpu);
5720 if (!cpu_isset(cpu, group->cpumask)) {
5721 printk(KERN_ERR "ERROR: domain->groups does not contain"
5722 " CPU%d\n", cpu);
5725 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5726 do {
5727 if (!group) {
5728 printk("\n");
5729 printk(KERN_ERR "ERROR: group is NULL\n");
5730 break;
5733 if (!group->__cpu_power) {
5734 printk(KERN_CONT "\n");
5735 printk(KERN_ERR "ERROR: domain->cpu_power not "
5736 "set\n");
5737 break;
5740 if (!cpus_weight(group->cpumask)) {
5741 printk(KERN_CONT "\n");
5742 printk(KERN_ERR "ERROR: empty group\n");
5743 break;
5746 if (cpus_intersects(groupmask, group->cpumask)) {
5747 printk(KERN_CONT "\n");
5748 printk(KERN_ERR "ERROR: repeated CPUs\n");
5749 break;
5752 cpus_or(groupmask, groupmask, group->cpumask);
5754 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5755 printk(KERN_CONT " %s", str);
5757 group = group->next;
5758 } while (group != sd->groups);
5759 printk(KERN_CONT "\n");
5761 if (!cpus_equal(sd->span, groupmask))
5762 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5764 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5765 printk(KERN_ERR "ERROR: parent span is not a superset "
5766 "of domain->span\n");
5767 return 0;
5770 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5772 int level = 0;
5774 if (!sd) {
5775 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5776 return;
5779 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5781 for (;;) {
5782 if (sched_domain_debug_one(sd, cpu, level))
5783 break;
5784 level++;
5785 sd = sd->parent;
5786 if (!sd)
5787 break;
5790 #else
5791 # define sched_domain_debug(sd, cpu) do { } while (0)
5792 #endif
5794 static int sd_degenerate(struct sched_domain *sd)
5796 if (cpus_weight(sd->span) == 1)
5797 return 1;
5799 /* Following flags need at least 2 groups */
5800 if (sd->flags & (SD_LOAD_BALANCE |
5801 SD_BALANCE_NEWIDLE |
5802 SD_BALANCE_FORK |
5803 SD_BALANCE_EXEC |
5804 SD_SHARE_CPUPOWER |
5805 SD_SHARE_PKG_RESOURCES)) {
5806 if (sd->groups != sd->groups->next)
5807 return 0;
5810 /* Following flags don't use groups */
5811 if (sd->flags & (SD_WAKE_IDLE |
5812 SD_WAKE_AFFINE |
5813 SD_WAKE_BALANCE))
5814 return 0;
5816 return 1;
5819 static int
5820 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5822 unsigned long cflags = sd->flags, pflags = parent->flags;
5824 if (sd_degenerate(parent))
5825 return 1;
5827 if (!cpus_equal(sd->span, parent->span))
5828 return 0;
5830 /* Does parent contain flags not in child? */
5831 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5832 if (cflags & SD_WAKE_AFFINE)
5833 pflags &= ~SD_WAKE_BALANCE;
5834 /* Flags needing groups don't count if only 1 group in parent */
5835 if (parent->groups == parent->groups->next) {
5836 pflags &= ~(SD_LOAD_BALANCE |
5837 SD_BALANCE_NEWIDLE |
5838 SD_BALANCE_FORK |
5839 SD_BALANCE_EXEC |
5840 SD_SHARE_CPUPOWER |
5841 SD_SHARE_PKG_RESOURCES);
5843 if (~cflags & pflags)
5844 return 0;
5846 return 1;
5849 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5851 unsigned long flags;
5852 const struct sched_class *class;
5854 spin_lock_irqsave(&rq->lock, flags);
5856 if (rq->rd) {
5857 struct root_domain *old_rd = rq->rd;
5859 for (class = sched_class_highest; class; class = class->next) {
5860 if (class->leave_domain)
5861 class->leave_domain(rq);
5864 cpu_clear(rq->cpu, old_rd->span);
5865 cpu_clear(rq->cpu, old_rd->online);
5867 if (atomic_dec_and_test(&old_rd->refcount))
5868 kfree(old_rd);
5871 atomic_inc(&rd->refcount);
5872 rq->rd = rd;
5874 cpu_set(rq->cpu, rd->span);
5875 if (cpu_isset(rq->cpu, cpu_online_map))
5876 cpu_set(rq->cpu, rd->online);
5878 for (class = sched_class_highest; class; class = class->next) {
5879 if (class->join_domain)
5880 class->join_domain(rq);
5883 spin_unlock_irqrestore(&rq->lock, flags);
5886 static void init_rootdomain(struct root_domain *rd)
5888 memset(rd, 0, sizeof(*rd));
5890 cpus_clear(rd->span);
5891 cpus_clear(rd->online);
5894 static void init_defrootdomain(void)
5896 init_rootdomain(&def_root_domain);
5897 atomic_set(&def_root_domain.refcount, 1);
5900 static struct root_domain *alloc_rootdomain(void)
5902 struct root_domain *rd;
5904 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5905 if (!rd)
5906 return NULL;
5908 init_rootdomain(rd);
5910 return rd;
5914 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5915 * hold the hotplug lock.
5917 static void
5918 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5920 struct rq *rq = cpu_rq(cpu);
5921 struct sched_domain *tmp;
5923 /* Remove the sched domains which do not contribute to scheduling. */
5924 for (tmp = sd; tmp; tmp = tmp->parent) {
5925 struct sched_domain *parent = tmp->parent;
5926 if (!parent)
5927 break;
5928 if (sd_parent_degenerate(tmp, parent)) {
5929 tmp->parent = parent->parent;
5930 if (parent->parent)
5931 parent->parent->child = tmp;
5935 if (sd && sd_degenerate(sd)) {
5936 sd = sd->parent;
5937 if (sd)
5938 sd->child = NULL;
5941 sched_domain_debug(sd, cpu);
5943 rq_attach_root(rq, rd);
5944 rcu_assign_pointer(rq->sd, sd);
5947 /* cpus with isolated domains */
5948 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5950 /* Setup the mask of cpus configured for isolated domains */
5951 static int __init isolated_cpu_setup(char *str)
5953 int ints[NR_CPUS], i;
5955 str = get_options(str, ARRAY_SIZE(ints), ints);
5956 cpus_clear(cpu_isolated_map);
5957 for (i = 1; i <= ints[0]; i++)
5958 if (ints[i] < NR_CPUS)
5959 cpu_set(ints[i], cpu_isolated_map);
5960 return 1;
5963 __setup("isolcpus=", isolated_cpu_setup);
5966 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5967 * to a function which identifies what group(along with sched group) a CPU
5968 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5969 * (due to the fact that we keep track of groups covered with a cpumask_t).
5971 * init_sched_build_groups will build a circular linked list of the groups
5972 * covered by the given span, and will set each group's ->cpumask correctly,
5973 * and ->cpu_power to 0.
5975 static void
5976 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5977 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5978 struct sched_group **sg))
5980 struct sched_group *first = NULL, *last = NULL;
5981 cpumask_t covered = CPU_MASK_NONE;
5982 int i;
5984 for_each_cpu_mask(i, span) {
5985 struct sched_group *sg;
5986 int group = group_fn(i, cpu_map, &sg);
5987 int j;
5989 if (cpu_isset(i, covered))
5990 continue;
5992 sg->cpumask = CPU_MASK_NONE;
5993 sg->__cpu_power = 0;
5995 for_each_cpu_mask(j, span) {
5996 if (group_fn(j, cpu_map, NULL) != group)
5997 continue;
5999 cpu_set(j, covered);
6000 cpu_set(j, sg->cpumask);
6002 if (!first)
6003 first = sg;
6004 if (last)
6005 last->next = sg;
6006 last = sg;
6008 last->next = first;
6011 #define SD_NODES_PER_DOMAIN 16
6013 #ifdef CONFIG_NUMA
6016 * find_next_best_node - find the next node to include in a sched_domain
6017 * @node: node whose sched_domain we're building
6018 * @used_nodes: nodes already in the sched_domain
6020 * Find the next node to include in a given scheduling domain. Simply
6021 * finds the closest node not already in the @used_nodes map.
6023 * Should use nodemask_t.
6025 static int find_next_best_node(int node, unsigned long *used_nodes)
6027 int i, n, val, min_val, best_node = 0;
6029 min_val = INT_MAX;
6031 for (i = 0; i < MAX_NUMNODES; i++) {
6032 /* Start at @node */
6033 n = (node + i) % MAX_NUMNODES;
6035 if (!nr_cpus_node(n))
6036 continue;
6038 /* Skip already used nodes */
6039 if (test_bit(n, used_nodes))
6040 continue;
6042 /* Simple min distance search */
6043 val = node_distance(node, n);
6045 if (val < min_val) {
6046 min_val = val;
6047 best_node = n;
6051 set_bit(best_node, used_nodes);
6052 return best_node;
6056 * sched_domain_node_span - get a cpumask for a node's sched_domain
6057 * @node: node whose cpumask we're constructing
6058 * @size: number of nodes to include in this span
6060 * Given a node, construct a good cpumask for its sched_domain to span. It
6061 * should be one that prevents unnecessary balancing, but also spreads tasks
6062 * out optimally.
6064 static cpumask_t sched_domain_node_span(int node)
6066 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6067 cpumask_t span, nodemask;
6068 int i;
6070 cpus_clear(span);
6071 bitmap_zero(used_nodes, MAX_NUMNODES);
6073 nodemask = node_to_cpumask(node);
6074 cpus_or(span, span, nodemask);
6075 set_bit(node, used_nodes);
6077 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6078 int next_node = find_next_best_node(node, used_nodes);
6080 nodemask = node_to_cpumask(next_node);
6081 cpus_or(span, span, nodemask);
6084 return span;
6086 #endif
6088 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6091 * SMT sched-domains:
6093 #ifdef CONFIG_SCHED_SMT
6094 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6095 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6097 static int
6098 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6100 if (sg)
6101 *sg = &per_cpu(sched_group_cpus, cpu);
6102 return cpu;
6104 #endif
6107 * multi-core sched-domains:
6109 #ifdef CONFIG_SCHED_MC
6110 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6111 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6112 #endif
6114 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6115 static int
6116 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6118 int group;
6119 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6120 cpus_and(mask, mask, *cpu_map);
6121 group = first_cpu(mask);
6122 if (sg)
6123 *sg = &per_cpu(sched_group_core, group);
6124 return group;
6126 #elif defined(CONFIG_SCHED_MC)
6127 static int
6128 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6130 if (sg)
6131 *sg = &per_cpu(sched_group_core, cpu);
6132 return cpu;
6134 #endif
6136 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6137 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6139 static int
6140 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6142 int group;
6143 #ifdef CONFIG_SCHED_MC
6144 cpumask_t mask = cpu_coregroup_map(cpu);
6145 cpus_and(mask, mask, *cpu_map);
6146 group = first_cpu(mask);
6147 #elif defined(CONFIG_SCHED_SMT)
6148 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6149 cpus_and(mask, mask, *cpu_map);
6150 group = first_cpu(mask);
6151 #else
6152 group = cpu;
6153 #endif
6154 if (sg)
6155 *sg = &per_cpu(sched_group_phys, group);
6156 return group;
6159 #ifdef CONFIG_NUMA
6161 * The init_sched_build_groups can't handle what we want to do with node
6162 * groups, so roll our own. Now each node has its own list of groups which
6163 * gets dynamically allocated.
6165 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6166 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6168 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6169 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6171 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6172 struct sched_group **sg)
6174 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6175 int group;
6177 cpus_and(nodemask, nodemask, *cpu_map);
6178 group = first_cpu(nodemask);
6180 if (sg)
6181 *sg = &per_cpu(sched_group_allnodes, group);
6182 return group;
6185 static void init_numa_sched_groups_power(struct sched_group *group_head)
6187 struct sched_group *sg = group_head;
6188 int j;
6190 if (!sg)
6191 return;
6192 do {
6193 for_each_cpu_mask(j, sg->cpumask) {
6194 struct sched_domain *sd;
6196 sd = &per_cpu(phys_domains, j);
6197 if (j != first_cpu(sd->groups->cpumask)) {
6199 * Only add "power" once for each
6200 * physical package.
6202 continue;
6205 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6207 sg = sg->next;
6208 } while (sg != group_head);
6210 #endif
6212 #ifdef CONFIG_NUMA
6213 /* Free memory allocated for various sched_group structures */
6214 static void free_sched_groups(const cpumask_t *cpu_map)
6216 int cpu, i;
6218 for_each_cpu_mask(cpu, *cpu_map) {
6219 struct sched_group **sched_group_nodes
6220 = sched_group_nodes_bycpu[cpu];
6222 if (!sched_group_nodes)
6223 continue;
6225 for (i = 0; i < MAX_NUMNODES; i++) {
6226 cpumask_t nodemask = node_to_cpumask(i);
6227 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6229 cpus_and(nodemask, nodemask, *cpu_map);
6230 if (cpus_empty(nodemask))
6231 continue;
6233 if (sg == NULL)
6234 continue;
6235 sg = sg->next;
6236 next_sg:
6237 oldsg = sg;
6238 sg = sg->next;
6239 kfree(oldsg);
6240 if (oldsg != sched_group_nodes[i])
6241 goto next_sg;
6243 kfree(sched_group_nodes);
6244 sched_group_nodes_bycpu[cpu] = NULL;
6247 #else
6248 static void free_sched_groups(const cpumask_t *cpu_map)
6251 #endif
6254 * Initialize sched groups cpu_power.
6256 * cpu_power indicates the capacity of sched group, which is used while
6257 * distributing the load between different sched groups in a sched domain.
6258 * Typically cpu_power for all the groups in a sched domain will be same unless
6259 * there are asymmetries in the topology. If there are asymmetries, group
6260 * having more cpu_power will pickup more load compared to the group having
6261 * less cpu_power.
6263 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6264 * the maximum number of tasks a group can handle in the presence of other idle
6265 * or lightly loaded groups in the same sched domain.
6267 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6269 struct sched_domain *child;
6270 struct sched_group *group;
6272 WARN_ON(!sd || !sd->groups);
6274 if (cpu != first_cpu(sd->groups->cpumask))
6275 return;
6277 child = sd->child;
6279 sd->groups->__cpu_power = 0;
6282 * For perf policy, if the groups in child domain share resources
6283 * (for example cores sharing some portions of the cache hierarchy
6284 * or SMT), then set this domain groups cpu_power such that each group
6285 * can handle only one task, when there are other idle groups in the
6286 * same sched domain.
6288 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6289 (child->flags &
6290 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6291 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6292 return;
6296 * add cpu_power of each child group to this groups cpu_power
6298 group = child->groups;
6299 do {
6300 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6301 group = group->next;
6302 } while (group != child->groups);
6306 * Build sched domains for a given set of cpus and attach the sched domains
6307 * to the individual cpus
6309 static int build_sched_domains(const cpumask_t *cpu_map)
6311 int i;
6312 struct root_domain *rd;
6313 #ifdef CONFIG_NUMA
6314 struct sched_group **sched_group_nodes = NULL;
6315 int sd_allnodes = 0;
6318 * Allocate the per-node list of sched groups
6320 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6321 GFP_KERNEL);
6322 if (!sched_group_nodes) {
6323 printk(KERN_WARNING "Can not alloc sched group node list\n");
6324 return -ENOMEM;
6326 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6327 #endif
6329 rd = alloc_rootdomain();
6330 if (!rd) {
6331 printk(KERN_WARNING "Cannot alloc root domain\n");
6332 return -ENOMEM;
6336 * Set up domains for cpus specified by the cpu_map.
6338 for_each_cpu_mask(i, *cpu_map) {
6339 struct sched_domain *sd = NULL, *p;
6340 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6342 cpus_and(nodemask, nodemask, *cpu_map);
6344 #ifdef CONFIG_NUMA
6345 if (cpus_weight(*cpu_map) >
6346 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6347 sd = &per_cpu(allnodes_domains, i);
6348 *sd = SD_ALLNODES_INIT;
6349 sd->span = *cpu_map;
6350 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6351 p = sd;
6352 sd_allnodes = 1;
6353 } else
6354 p = NULL;
6356 sd = &per_cpu(node_domains, i);
6357 *sd = SD_NODE_INIT;
6358 sd->span = sched_domain_node_span(cpu_to_node(i));
6359 sd->parent = p;
6360 if (p)
6361 p->child = sd;
6362 cpus_and(sd->span, sd->span, *cpu_map);
6363 #endif
6365 p = sd;
6366 sd = &per_cpu(phys_domains, i);
6367 *sd = SD_CPU_INIT;
6368 sd->span = nodemask;
6369 sd->parent = p;
6370 if (p)
6371 p->child = sd;
6372 cpu_to_phys_group(i, cpu_map, &sd->groups);
6374 #ifdef CONFIG_SCHED_MC
6375 p = sd;
6376 sd = &per_cpu(core_domains, i);
6377 *sd = SD_MC_INIT;
6378 sd->span = cpu_coregroup_map(i);
6379 cpus_and(sd->span, sd->span, *cpu_map);
6380 sd->parent = p;
6381 p->child = sd;
6382 cpu_to_core_group(i, cpu_map, &sd->groups);
6383 #endif
6385 #ifdef CONFIG_SCHED_SMT
6386 p = sd;
6387 sd = &per_cpu(cpu_domains, i);
6388 *sd = SD_SIBLING_INIT;
6389 sd->span = per_cpu(cpu_sibling_map, i);
6390 cpus_and(sd->span, sd->span, *cpu_map);
6391 sd->parent = p;
6392 p->child = sd;
6393 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6394 #endif
6397 #ifdef CONFIG_SCHED_SMT
6398 /* Set up CPU (sibling) groups */
6399 for_each_cpu_mask(i, *cpu_map) {
6400 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6401 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6402 if (i != first_cpu(this_sibling_map))
6403 continue;
6405 init_sched_build_groups(this_sibling_map, cpu_map,
6406 &cpu_to_cpu_group);
6408 #endif
6410 #ifdef CONFIG_SCHED_MC
6411 /* Set up multi-core groups */
6412 for_each_cpu_mask(i, *cpu_map) {
6413 cpumask_t this_core_map = cpu_coregroup_map(i);
6414 cpus_and(this_core_map, this_core_map, *cpu_map);
6415 if (i != first_cpu(this_core_map))
6416 continue;
6417 init_sched_build_groups(this_core_map, cpu_map,
6418 &cpu_to_core_group);
6420 #endif
6422 /* Set up physical groups */
6423 for (i = 0; i < MAX_NUMNODES; i++) {
6424 cpumask_t nodemask = node_to_cpumask(i);
6426 cpus_and(nodemask, nodemask, *cpu_map);
6427 if (cpus_empty(nodemask))
6428 continue;
6430 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6433 #ifdef CONFIG_NUMA
6434 /* Set up node groups */
6435 if (sd_allnodes)
6436 init_sched_build_groups(*cpu_map, cpu_map,
6437 &cpu_to_allnodes_group);
6439 for (i = 0; i < MAX_NUMNODES; i++) {
6440 /* Set up node groups */
6441 struct sched_group *sg, *prev;
6442 cpumask_t nodemask = node_to_cpumask(i);
6443 cpumask_t domainspan;
6444 cpumask_t covered = CPU_MASK_NONE;
6445 int j;
6447 cpus_and(nodemask, nodemask, *cpu_map);
6448 if (cpus_empty(nodemask)) {
6449 sched_group_nodes[i] = NULL;
6450 continue;
6453 domainspan = sched_domain_node_span(i);
6454 cpus_and(domainspan, domainspan, *cpu_map);
6456 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6457 if (!sg) {
6458 printk(KERN_WARNING "Can not alloc domain group for "
6459 "node %d\n", i);
6460 goto error;
6462 sched_group_nodes[i] = sg;
6463 for_each_cpu_mask(j, nodemask) {
6464 struct sched_domain *sd;
6466 sd = &per_cpu(node_domains, j);
6467 sd->groups = sg;
6469 sg->__cpu_power = 0;
6470 sg->cpumask = nodemask;
6471 sg->next = sg;
6472 cpus_or(covered, covered, nodemask);
6473 prev = sg;
6475 for (j = 0; j < MAX_NUMNODES; j++) {
6476 cpumask_t tmp, notcovered;
6477 int n = (i + j) % MAX_NUMNODES;
6479 cpus_complement(notcovered, covered);
6480 cpus_and(tmp, notcovered, *cpu_map);
6481 cpus_and(tmp, tmp, domainspan);
6482 if (cpus_empty(tmp))
6483 break;
6485 nodemask = node_to_cpumask(n);
6486 cpus_and(tmp, tmp, nodemask);
6487 if (cpus_empty(tmp))
6488 continue;
6490 sg = kmalloc_node(sizeof(struct sched_group),
6491 GFP_KERNEL, i);
6492 if (!sg) {
6493 printk(KERN_WARNING
6494 "Can not alloc domain group for node %d\n", j);
6495 goto error;
6497 sg->__cpu_power = 0;
6498 sg->cpumask = tmp;
6499 sg->next = prev->next;
6500 cpus_or(covered, covered, tmp);
6501 prev->next = sg;
6502 prev = sg;
6505 #endif
6507 /* Calculate CPU power for physical packages and nodes */
6508 #ifdef CONFIG_SCHED_SMT
6509 for_each_cpu_mask(i, *cpu_map) {
6510 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6512 init_sched_groups_power(i, sd);
6514 #endif
6515 #ifdef CONFIG_SCHED_MC
6516 for_each_cpu_mask(i, *cpu_map) {
6517 struct sched_domain *sd = &per_cpu(core_domains, i);
6519 init_sched_groups_power(i, sd);
6521 #endif
6523 for_each_cpu_mask(i, *cpu_map) {
6524 struct sched_domain *sd = &per_cpu(phys_domains, i);
6526 init_sched_groups_power(i, sd);
6529 #ifdef CONFIG_NUMA
6530 for (i = 0; i < MAX_NUMNODES; i++)
6531 init_numa_sched_groups_power(sched_group_nodes[i]);
6533 if (sd_allnodes) {
6534 struct sched_group *sg;
6536 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6537 init_numa_sched_groups_power(sg);
6539 #endif
6541 /* Attach the domains */
6542 for_each_cpu_mask(i, *cpu_map) {
6543 struct sched_domain *sd;
6544 #ifdef CONFIG_SCHED_SMT
6545 sd = &per_cpu(cpu_domains, i);
6546 #elif defined(CONFIG_SCHED_MC)
6547 sd = &per_cpu(core_domains, i);
6548 #else
6549 sd = &per_cpu(phys_domains, i);
6550 #endif
6551 cpu_attach_domain(sd, rd, i);
6554 return 0;
6556 #ifdef CONFIG_NUMA
6557 error:
6558 free_sched_groups(cpu_map);
6559 return -ENOMEM;
6560 #endif
6563 static cpumask_t *doms_cur; /* current sched domains */
6564 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6567 * Special case: If a kmalloc of a doms_cur partition (array of
6568 * cpumask_t) fails, then fallback to a single sched domain,
6569 * as determined by the single cpumask_t fallback_doms.
6571 static cpumask_t fallback_doms;
6574 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6575 * For now this just excludes isolated cpus, but could be used to
6576 * exclude other special cases in the future.
6578 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6580 int err;
6582 ndoms_cur = 1;
6583 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6584 if (!doms_cur)
6585 doms_cur = &fallback_doms;
6586 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6587 err = build_sched_domains(doms_cur);
6588 register_sched_domain_sysctl();
6590 return err;
6593 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6595 free_sched_groups(cpu_map);
6599 * Detach sched domains from a group of cpus specified in cpu_map
6600 * These cpus will now be attached to the NULL domain
6602 static void detach_destroy_domains(const cpumask_t *cpu_map)
6604 int i;
6606 unregister_sched_domain_sysctl();
6608 for_each_cpu_mask(i, *cpu_map)
6609 cpu_attach_domain(NULL, &def_root_domain, i);
6610 synchronize_sched();
6611 arch_destroy_sched_domains(cpu_map);
6615 * Partition sched domains as specified by the 'ndoms_new'
6616 * cpumasks in the array doms_new[] of cpumasks. This compares
6617 * doms_new[] to the current sched domain partitioning, doms_cur[].
6618 * It destroys each deleted domain and builds each new domain.
6620 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6621 * The masks don't intersect (don't overlap.) We should setup one
6622 * sched domain for each mask. CPUs not in any of the cpumasks will
6623 * not be load balanced. If the same cpumask appears both in the
6624 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6625 * it as it is.
6627 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6628 * ownership of it and will kfree it when done with it. If the caller
6629 * failed the kmalloc call, then it can pass in doms_new == NULL,
6630 * and partition_sched_domains() will fallback to the single partition
6631 * 'fallback_doms'.
6633 * Call with hotplug lock held
6635 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6637 int i, j;
6639 lock_doms_cur();
6641 /* always unregister in case we don't destroy any domains */
6642 unregister_sched_domain_sysctl();
6644 if (doms_new == NULL) {
6645 ndoms_new = 1;
6646 doms_new = &fallback_doms;
6647 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6650 /* Destroy deleted domains */
6651 for (i = 0; i < ndoms_cur; i++) {
6652 for (j = 0; j < ndoms_new; j++) {
6653 if (cpus_equal(doms_cur[i], doms_new[j]))
6654 goto match1;
6656 /* no match - a current sched domain not in new doms_new[] */
6657 detach_destroy_domains(doms_cur + i);
6658 match1:
6662 /* Build new domains */
6663 for (i = 0; i < ndoms_new; i++) {
6664 for (j = 0; j < ndoms_cur; j++) {
6665 if (cpus_equal(doms_new[i], doms_cur[j]))
6666 goto match2;
6668 /* no match - add a new doms_new */
6669 build_sched_domains(doms_new + i);
6670 match2:
6674 /* Remember the new sched domains */
6675 if (doms_cur != &fallback_doms)
6676 kfree(doms_cur);
6677 doms_cur = doms_new;
6678 ndoms_cur = ndoms_new;
6680 register_sched_domain_sysctl();
6682 unlock_doms_cur();
6685 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6686 static int arch_reinit_sched_domains(void)
6688 int err;
6690 get_online_cpus();
6691 detach_destroy_domains(&cpu_online_map);
6692 err = arch_init_sched_domains(&cpu_online_map);
6693 put_online_cpus();
6695 return err;
6698 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6700 int ret;
6702 if (buf[0] != '0' && buf[0] != '1')
6703 return -EINVAL;
6705 if (smt)
6706 sched_smt_power_savings = (buf[0] == '1');
6707 else
6708 sched_mc_power_savings = (buf[0] == '1');
6710 ret = arch_reinit_sched_domains();
6712 return ret ? ret : count;
6715 #ifdef CONFIG_SCHED_MC
6716 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6718 return sprintf(page, "%u\n", sched_mc_power_savings);
6720 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6721 const char *buf, size_t count)
6723 return sched_power_savings_store(buf, count, 0);
6725 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6726 sched_mc_power_savings_store);
6727 #endif
6729 #ifdef CONFIG_SCHED_SMT
6730 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6732 return sprintf(page, "%u\n", sched_smt_power_savings);
6734 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6735 const char *buf, size_t count)
6737 return sched_power_savings_store(buf, count, 1);
6739 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6740 sched_smt_power_savings_store);
6741 #endif
6743 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6745 int err = 0;
6747 #ifdef CONFIG_SCHED_SMT
6748 if (smt_capable())
6749 err = sysfs_create_file(&cls->kset.kobj,
6750 &attr_sched_smt_power_savings.attr);
6751 #endif
6752 #ifdef CONFIG_SCHED_MC
6753 if (!err && mc_capable())
6754 err = sysfs_create_file(&cls->kset.kobj,
6755 &attr_sched_mc_power_savings.attr);
6756 #endif
6757 return err;
6759 #endif
6762 * Force a reinitialization of the sched domains hierarchy. The domains
6763 * and groups cannot be updated in place without racing with the balancing
6764 * code, so we temporarily attach all running cpus to the NULL domain
6765 * which will prevent rebalancing while the sched domains are recalculated.
6767 static int update_sched_domains(struct notifier_block *nfb,
6768 unsigned long action, void *hcpu)
6770 switch (action) {
6771 case CPU_UP_PREPARE:
6772 case CPU_UP_PREPARE_FROZEN:
6773 case CPU_DOWN_PREPARE:
6774 case CPU_DOWN_PREPARE_FROZEN:
6775 detach_destroy_domains(&cpu_online_map);
6776 return NOTIFY_OK;
6778 case CPU_UP_CANCELED:
6779 case CPU_UP_CANCELED_FROZEN:
6780 case CPU_DOWN_FAILED:
6781 case CPU_DOWN_FAILED_FROZEN:
6782 case CPU_ONLINE:
6783 case CPU_ONLINE_FROZEN:
6784 case CPU_DEAD:
6785 case CPU_DEAD_FROZEN:
6787 * Fall through and re-initialise the domains.
6789 break;
6790 default:
6791 return NOTIFY_DONE;
6794 /* The hotplug lock is already held by cpu_up/cpu_down */
6795 arch_init_sched_domains(&cpu_online_map);
6797 return NOTIFY_OK;
6800 void __init sched_init_smp(void)
6802 cpumask_t non_isolated_cpus;
6804 get_online_cpus();
6805 arch_init_sched_domains(&cpu_online_map);
6806 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6807 if (cpus_empty(non_isolated_cpus))
6808 cpu_set(smp_processor_id(), non_isolated_cpus);
6809 put_online_cpus();
6810 /* XXX: Theoretical race here - CPU may be hotplugged now */
6811 hotcpu_notifier(update_sched_domains, 0);
6813 /* Move init over to a non-isolated CPU */
6814 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6815 BUG();
6816 sched_init_granularity();
6818 #ifdef CONFIG_FAIR_GROUP_SCHED
6819 if (nr_cpu_ids == 1)
6820 return;
6822 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6823 "group_balance");
6824 if (!IS_ERR(lb_monitor_task)) {
6825 lb_monitor_task->flags |= PF_NOFREEZE;
6826 wake_up_process(lb_monitor_task);
6827 } else {
6828 printk(KERN_ERR "Could not create load balance monitor thread"
6829 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6831 #endif
6833 #else
6834 void __init sched_init_smp(void)
6836 sched_init_granularity();
6838 #endif /* CONFIG_SMP */
6840 int in_sched_functions(unsigned long addr)
6842 return in_lock_functions(addr) ||
6843 (addr >= (unsigned long)__sched_text_start
6844 && addr < (unsigned long)__sched_text_end);
6847 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6849 cfs_rq->tasks_timeline = RB_ROOT;
6850 #ifdef CONFIG_FAIR_GROUP_SCHED
6851 cfs_rq->rq = rq;
6852 #endif
6853 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6856 void __init sched_init(void)
6858 int highest_cpu = 0;
6859 int i, j;
6861 #ifdef CONFIG_SMP
6862 init_defrootdomain();
6863 #endif
6865 for_each_possible_cpu(i) {
6866 struct rt_prio_array *array;
6867 struct rq *rq;
6869 rq = cpu_rq(i);
6870 spin_lock_init(&rq->lock);
6871 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6872 rq->nr_running = 0;
6873 rq->clock = 1;
6874 init_cfs_rq(&rq->cfs, rq);
6875 #ifdef CONFIG_FAIR_GROUP_SCHED
6876 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6878 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6879 struct sched_entity *se =
6880 &per_cpu(init_sched_entity, i);
6882 init_cfs_rq_p[i] = cfs_rq;
6883 init_cfs_rq(cfs_rq, rq);
6884 cfs_rq->tg = &init_task_group;
6885 list_add(&cfs_rq->leaf_cfs_rq_list,
6886 &rq->leaf_cfs_rq_list);
6888 init_sched_entity_p[i] = se;
6889 se->cfs_rq = &rq->cfs;
6890 se->my_q = cfs_rq;
6891 se->load.weight = init_task_group_load;
6892 se->load.inv_weight =
6893 div64_64(1ULL<<32, init_task_group_load);
6894 se->parent = NULL;
6896 init_task_group.shares = init_task_group_load;
6897 #endif
6899 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6900 rq->cpu_load[j] = 0;
6901 #ifdef CONFIG_SMP
6902 rq->sd = NULL;
6903 rq->rd = NULL;
6904 rq->active_balance = 0;
6905 rq->next_balance = jiffies;
6906 rq->push_cpu = 0;
6907 rq->cpu = i;
6908 rq->migration_thread = NULL;
6909 INIT_LIST_HEAD(&rq->migration_queue);
6910 rq->rt.highest_prio = MAX_RT_PRIO;
6911 rq->rt.overloaded = 0;
6912 rq_attach_root(rq, &def_root_domain);
6913 #endif
6914 atomic_set(&rq->nr_iowait, 0);
6916 array = &rq->rt.active;
6917 for (j = 0; j < MAX_RT_PRIO; j++) {
6918 INIT_LIST_HEAD(array->queue + j);
6919 __clear_bit(j, array->bitmap);
6921 highest_cpu = i;
6922 /* delimiter for bitsearch: */
6923 __set_bit(MAX_RT_PRIO, array->bitmap);
6926 set_load_weight(&init_task);
6928 #ifdef CONFIG_PREEMPT_NOTIFIERS
6929 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6930 #endif
6932 #ifdef CONFIG_SMP
6933 nr_cpu_ids = highest_cpu + 1;
6934 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6935 #endif
6937 #ifdef CONFIG_RT_MUTEXES
6938 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6939 #endif
6942 * The boot idle thread does lazy MMU switching as well:
6944 atomic_inc(&init_mm.mm_count);
6945 enter_lazy_tlb(&init_mm, current);
6948 * Make us the idle thread. Technically, schedule() should not be
6949 * called from this thread, however somewhere below it might be,
6950 * but because we are the idle thread, we just pick up running again
6951 * when this runqueue becomes "idle".
6953 init_idle(current, smp_processor_id());
6955 * During early bootup we pretend to be a normal task:
6957 current->sched_class = &fair_sched_class;
6960 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6961 void __might_sleep(char *file, int line)
6963 #ifdef in_atomic
6964 static unsigned long prev_jiffy; /* ratelimiting */
6966 if ((in_atomic() || irqs_disabled()) &&
6967 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6968 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6969 return;
6970 prev_jiffy = jiffies;
6971 printk(KERN_ERR "BUG: sleeping function called from invalid"
6972 " context at %s:%d\n", file, line);
6973 printk("in_atomic():%d, irqs_disabled():%d\n",
6974 in_atomic(), irqs_disabled());
6975 debug_show_held_locks(current);
6976 if (irqs_disabled())
6977 print_irqtrace_events(current);
6978 dump_stack();
6980 #endif
6982 EXPORT_SYMBOL(__might_sleep);
6983 #endif
6985 #ifdef CONFIG_MAGIC_SYSRQ
6986 static void normalize_task(struct rq *rq, struct task_struct *p)
6988 int on_rq;
6989 update_rq_clock(rq);
6990 on_rq = p->se.on_rq;
6991 if (on_rq)
6992 deactivate_task(rq, p, 0);
6993 __setscheduler(rq, p, SCHED_NORMAL, 0);
6994 if (on_rq) {
6995 activate_task(rq, p, 0);
6996 resched_task(rq->curr);
7000 void normalize_rt_tasks(void)
7002 struct task_struct *g, *p;
7003 unsigned long flags;
7004 struct rq *rq;
7006 read_lock_irq(&tasklist_lock);
7007 do_each_thread(g, p) {
7009 * Only normalize user tasks:
7011 if (!p->mm)
7012 continue;
7014 p->se.exec_start = 0;
7015 #ifdef CONFIG_SCHEDSTATS
7016 p->se.wait_start = 0;
7017 p->se.sleep_start = 0;
7018 p->se.block_start = 0;
7019 #endif
7020 task_rq(p)->clock = 0;
7022 if (!rt_task(p)) {
7024 * Renice negative nice level userspace
7025 * tasks back to 0:
7027 if (TASK_NICE(p) < 0 && p->mm)
7028 set_user_nice(p, 0);
7029 continue;
7032 spin_lock_irqsave(&p->pi_lock, flags);
7033 rq = __task_rq_lock(p);
7035 normalize_task(rq, p);
7037 __task_rq_unlock(rq);
7038 spin_unlock_irqrestore(&p->pi_lock, flags);
7039 } while_each_thread(g, p);
7041 read_unlock_irq(&tasklist_lock);
7044 #endif /* CONFIG_MAGIC_SYSRQ */
7046 #ifdef CONFIG_IA64
7048 * These functions are only useful for the IA64 MCA handling.
7050 * They can only be called when the whole system has been
7051 * stopped - every CPU needs to be quiescent, and no scheduling
7052 * activity can take place. Using them for anything else would
7053 * be a serious bug, and as a result, they aren't even visible
7054 * under any other configuration.
7058 * curr_task - return the current task for a given cpu.
7059 * @cpu: the processor in question.
7061 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7063 struct task_struct *curr_task(int cpu)
7065 return cpu_curr(cpu);
7069 * set_curr_task - set the current task for a given cpu.
7070 * @cpu: the processor in question.
7071 * @p: the task pointer to set.
7073 * Description: This function must only be used when non-maskable interrupts
7074 * are serviced on a separate stack. It allows the architecture to switch the
7075 * notion of the current task on a cpu in a non-blocking manner. This function
7076 * must be called with all CPU's synchronized, and interrupts disabled, the
7077 * and caller must save the original value of the current task (see
7078 * curr_task() above) and restore that value before reenabling interrupts and
7079 * re-starting the system.
7081 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7083 void set_curr_task(int cpu, struct task_struct *p)
7085 cpu_curr(cpu) = p;
7088 #endif
7090 #ifdef CONFIG_FAIR_GROUP_SCHED
7092 #ifdef CONFIG_SMP
7094 * distribute shares of all task groups among their schedulable entities,
7095 * to reflect load distrbution across cpus.
7097 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7099 struct cfs_rq *cfs_rq;
7100 struct rq *rq = cpu_rq(this_cpu);
7101 cpumask_t sdspan = sd->span;
7102 int balanced = 1;
7104 /* Walk thr' all the task groups that we have */
7105 for_each_leaf_cfs_rq(rq, cfs_rq) {
7106 int i;
7107 unsigned long total_load = 0, total_shares;
7108 struct task_group *tg = cfs_rq->tg;
7110 /* Gather total task load of this group across cpus */
7111 for_each_cpu_mask(i, sdspan)
7112 total_load += tg->cfs_rq[i]->load.weight;
7114 /* Nothing to do if this group has no load */
7115 if (!total_load)
7116 continue;
7119 * tg->shares represents the number of cpu shares the task group
7120 * is eligible to hold on a single cpu. On N cpus, it is
7121 * eligible to hold (N * tg->shares) number of cpu shares.
7123 total_shares = tg->shares * cpus_weight(sdspan);
7126 * redistribute total_shares across cpus as per the task load
7127 * distribution.
7129 for_each_cpu_mask(i, sdspan) {
7130 unsigned long local_load, local_shares;
7132 local_load = tg->cfs_rq[i]->load.weight;
7133 local_shares = (local_load * total_shares) / total_load;
7134 if (!local_shares)
7135 local_shares = MIN_GROUP_SHARES;
7136 if (local_shares == tg->se[i]->load.weight)
7137 continue;
7139 spin_lock_irq(&cpu_rq(i)->lock);
7140 set_se_shares(tg->se[i], local_shares);
7141 spin_unlock_irq(&cpu_rq(i)->lock);
7142 balanced = 0;
7146 return balanced;
7150 * How frequently should we rebalance_shares() across cpus?
7152 * The more frequently we rebalance shares, the more accurate is the fairness
7153 * of cpu bandwidth distribution between task groups. However higher frequency
7154 * also implies increased scheduling overhead.
7156 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7157 * consecutive calls to rebalance_shares() in the same sched domain.
7159 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7160 * consecutive calls to rebalance_shares() in the same sched domain.
7162 * These settings allows for the appropriate tradeoff between accuracy of
7163 * fairness and the associated overhead.
7167 /* default: 8ms, units: milliseconds */
7168 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7170 /* default: 128ms, units: milliseconds */
7171 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7173 /* kernel thread that runs rebalance_shares() periodically */
7174 static int load_balance_monitor(void *unused)
7176 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7177 struct sched_param schedparm;
7178 int ret;
7181 * We don't want this thread's execution to be limited by the shares
7182 * assigned to default group (init_task_group). Hence make it run
7183 * as a SCHED_RR RT task at the lowest priority.
7185 schedparm.sched_priority = 1;
7186 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7187 if (ret)
7188 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7189 " monitor thread (error = %d) \n", ret);
7191 while (!kthread_should_stop()) {
7192 int i, cpu, balanced = 1;
7194 /* Prevent cpus going down or coming up */
7195 get_online_cpus();
7196 /* lockout changes to doms_cur[] array */
7197 lock_doms_cur();
7199 * Enter a rcu read-side critical section to safely walk rq->sd
7200 * chain on various cpus and to walk task group list
7201 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7203 rcu_read_lock();
7205 for (i = 0; i < ndoms_cur; i++) {
7206 cpumask_t cpumap = doms_cur[i];
7207 struct sched_domain *sd = NULL, *sd_prev = NULL;
7209 cpu = first_cpu(cpumap);
7211 /* Find the highest domain at which to balance shares */
7212 for_each_domain(cpu, sd) {
7213 if (!(sd->flags & SD_LOAD_BALANCE))
7214 continue;
7215 sd_prev = sd;
7218 sd = sd_prev;
7219 /* sd == NULL? No load balance reqd in this domain */
7220 if (!sd)
7221 continue;
7223 balanced &= rebalance_shares(sd, cpu);
7226 rcu_read_unlock();
7228 unlock_doms_cur();
7229 put_online_cpus();
7231 if (!balanced)
7232 timeout = sysctl_sched_min_bal_int_shares;
7233 else if (timeout < sysctl_sched_max_bal_int_shares)
7234 timeout *= 2;
7236 msleep_interruptible(timeout);
7239 return 0;
7241 #endif /* CONFIG_SMP */
7243 /* allocate runqueue etc for a new task group */
7244 struct task_group *sched_create_group(void)
7246 struct task_group *tg;
7247 struct cfs_rq *cfs_rq;
7248 struct sched_entity *se;
7249 struct rq *rq;
7250 int i;
7252 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7253 if (!tg)
7254 return ERR_PTR(-ENOMEM);
7256 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7257 if (!tg->cfs_rq)
7258 goto err;
7259 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7260 if (!tg->se)
7261 goto err;
7263 for_each_possible_cpu(i) {
7264 rq = cpu_rq(i);
7266 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7267 cpu_to_node(i));
7268 if (!cfs_rq)
7269 goto err;
7271 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7272 cpu_to_node(i));
7273 if (!se)
7274 goto err;
7276 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7277 memset(se, 0, sizeof(struct sched_entity));
7279 tg->cfs_rq[i] = cfs_rq;
7280 init_cfs_rq(cfs_rq, rq);
7281 cfs_rq->tg = tg;
7283 tg->se[i] = se;
7284 se->cfs_rq = &rq->cfs;
7285 se->my_q = cfs_rq;
7286 se->load.weight = NICE_0_LOAD;
7287 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7288 se->parent = NULL;
7291 tg->shares = NICE_0_LOAD;
7293 lock_task_group_list();
7294 for_each_possible_cpu(i) {
7295 rq = cpu_rq(i);
7296 cfs_rq = tg->cfs_rq[i];
7297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7299 unlock_task_group_list();
7301 return tg;
7303 err:
7304 for_each_possible_cpu(i) {
7305 if (tg->cfs_rq)
7306 kfree(tg->cfs_rq[i]);
7307 if (tg->se)
7308 kfree(tg->se[i]);
7310 kfree(tg->cfs_rq);
7311 kfree(tg->se);
7312 kfree(tg);
7314 return ERR_PTR(-ENOMEM);
7317 /* rcu callback to free various structures associated with a task group */
7318 static void free_sched_group(struct rcu_head *rhp)
7320 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7321 struct cfs_rq *cfs_rq;
7322 struct sched_entity *se;
7323 int i;
7325 /* now it should be safe to free those cfs_rqs */
7326 for_each_possible_cpu(i) {
7327 cfs_rq = tg->cfs_rq[i];
7328 kfree(cfs_rq);
7330 se = tg->se[i];
7331 kfree(se);
7334 kfree(tg->cfs_rq);
7335 kfree(tg->se);
7336 kfree(tg);
7339 /* Destroy runqueue etc associated with a task group */
7340 void sched_destroy_group(struct task_group *tg)
7342 struct cfs_rq *cfs_rq = NULL;
7343 int i;
7345 lock_task_group_list();
7346 for_each_possible_cpu(i) {
7347 cfs_rq = tg->cfs_rq[i];
7348 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7350 unlock_task_group_list();
7352 BUG_ON(!cfs_rq);
7354 /* wait for possible concurrent references to cfs_rqs complete */
7355 call_rcu(&tg->rcu, free_sched_group);
7358 /* change task's runqueue when it moves between groups.
7359 * The caller of this function should have put the task in its new group
7360 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7361 * reflect its new group.
7363 void sched_move_task(struct task_struct *tsk)
7365 int on_rq, running;
7366 unsigned long flags;
7367 struct rq *rq;
7369 rq = task_rq_lock(tsk, &flags);
7371 if (tsk->sched_class != &fair_sched_class) {
7372 set_task_cfs_rq(tsk, task_cpu(tsk));
7373 goto done;
7376 update_rq_clock(rq);
7378 running = task_current(rq, tsk);
7379 on_rq = tsk->se.on_rq;
7381 if (on_rq) {
7382 dequeue_task(rq, tsk, 0);
7383 if (unlikely(running))
7384 tsk->sched_class->put_prev_task(rq, tsk);
7387 set_task_cfs_rq(tsk, task_cpu(tsk));
7389 if (on_rq) {
7390 if (unlikely(running))
7391 tsk->sched_class->set_curr_task(rq);
7392 enqueue_task(rq, tsk, 0);
7395 done:
7396 task_rq_unlock(rq, &flags);
7399 /* rq->lock to be locked by caller */
7400 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7402 struct cfs_rq *cfs_rq = se->cfs_rq;
7403 struct rq *rq = cfs_rq->rq;
7404 int on_rq;
7406 if (!shares)
7407 shares = MIN_GROUP_SHARES;
7409 on_rq = se->on_rq;
7410 if (on_rq) {
7411 dequeue_entity(cfs_rq, se, 0);
7412 dec_cpu_load(rq, se->load.weight);
7415 se->load.weight = shares;
7416 se->load.inv_weight = div64_64((1ULL<<32), shares);
7418 if (on_rq) {
7419 enqueue_entity(cfs_rq, se, 0);
7420 inc_cpu_load(rq, se->load.weight);
7424 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7426 int i;
7427 struct cfs_rq *cfs_rq;
7428 struct rq *rq;
7430 lock_task_group_list();
7431 if (tg->shares == shares)
7432 goto done;
7434 if (shares < MIN_GROUP_SHARES)
7435 shares = MIN_GROUP_SHARES;
7438 * Prevent any load balance activity (rebalance_shares,
7439 * load_balance_fair) from referring to this group first,
7440 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7442 for_each_possible_cpu(i) {
7443 cfs_rq = tg->cfs_rq[i];
7444 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7447 /* wait for any ongoing reference to this group to finish */
7448 synchronize_sched();
7451 * Now we are free to modify the group's share on each cpu
7452 * w/o tripping rebalance_share or load_balance_fair.
7454 tg->shares = shares;
7455 for_each_possible_cpu(i) {
7456 spin_lock_irq(&cpu_rq(i)->lock);
7457 set_se_shares(tg->se[i], shares);
7458 spin_unlock_irq(&cpu_rq(i)->lock);
7462 * Enable load balance activity on this group, by inserting it back on
7463 * each cpu's rq->leaf_cfs_rq_list.
7465 for_each_possible_cpu(i) {
7466 rq = cpu_rq(i);
7467 cfs_rq = tg->cfs_rq[i];
7468 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7470 done:
7471 unlock_task_group_list();
7472 return 0;
7475 unsigned long sched_group_shares(struct task_group *tg)
7477 return tg->shares;
7480 #endif /* CONFIG_FAIR_GROUP_SCHED */
7482 #ifdef CONFIG_FAIR_CGROUP_SCHED
7484 /* return corresponding task_group object of a cgroup */
7485 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7487 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7488 struct task_group, css);
7491 static struct cgroup_subsys_state *
7492 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7494 struct task_group *tg;
7496 if (!cgrp->parent) {
7497 /* This is early initialization for the top cgroup */
7498 init_task_group.css.cgroup = cgrp;
7499 return &init_task_group.css;
7502 /* we support only 1-level deep hierarchical scheduler atm */
7503 if (cgrp->parent->parent)
7504 return ERR_PTR(-EINVAL);
7506 tg = sched_create_group();
7507 if (IS_ERR(tg))
7508 return ERR_PTR(-ENOMEM);
7510 /* Bind the cgroup to task_group object we just created */
7511 tg->css.cgroup = cgrp;
7513 return &tg->css;
7516 static void
7517 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7519 struct task_group *tg = cgroup_tg(cgrp);
7521 sched_destroy_group(tg);
7524 static int
7525 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7526 struct task_struct *tsk)
7528 /* We don't support RT-tasks being in separate groups */
7529 if (tsk->sched_class != &fair_sched_class)
7530 return -EINVAL;
7532 return 0;
7535 static void
7536 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7537 struct cgroup *old_cont, struct task_struct *tsk)
7539 sched_move_task(tsk);
7542 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7543 u64 shareval)
7545 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7548 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7550 struct task_group *tg = cgroup_tg(cgrp);
7552 return (u64) tg->shares;
7555 static struct cftype cpu_files[] = {
7557 .name = "shares",
7558 .read_uint = cpu_shares_read_uint,
7559 .write_uint = cpu_shares_write_uint,
7563 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7565 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7568 struct cgroup_subsys cpu_cgroup_subsys = {
7569 .name = "cpu",
7570 .create = cpu_cgroup_create,
7571 .destroy = cpu_cgroup_destroy,
7572 .can_attach = cpu_cgroup_can_attach,
7573 .attach = cpu_cgroup_attach,
7574 .populate = cpu_cgroup_populate,
7575 .subsys_id = cpu_cgroup_subsys_id,
7576 .early_init = 1,
7579 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7581 #ifdef CONFIG_CGROUP_CPUACCT
7584 * CPU accounting code for task groups.
7586 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7587 * (balbir@in.ibm.com).
7590 /* track cpu usage of a group of tasks */
7591 struct cpuacct {
7592 struct cgroup_subsys_state css;
7593 /* cpuusage holds pointer to a u64-type object on every cpu */
7594 u64 *cpuusage;
7597 struct cgroup_subsys cpuacct_subsys;
7599 /* return cpu accounting group corresponding to this container */
7600 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7602 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7603 struct cpuacct, css);
7606 /* return cpu accounting group to which this task belongs */
7607 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7609 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7610 struct cpuacct, css);
7613 /* create a new cpu accounting group */
7614 static struct cgroup_subsys_state *cpuacct_create(
7615 struct cgroup_subsys *ss, struct cgroup *cont)
7617 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7619 if (!ca)
7620 return ERR_PTR(-ENOMEM);
7622 ca->cpuusage = alloc_percpu(u64);
7623 if (!ca->cpuusage) {
7624 kfree(ca);
7625 return ERR_PTR(-ENOMEM);
7628 return &ca->css;
7631 /* destroy an existing cpu accounting group */
7632 static void
7633 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7635 struct cpuacct *ca = cgroup_ca(cont);
7637 free_percpu(ca->cpuusage);
7638 kfree(ca);
7641 /* return total cpu usage (in nanoseconds) of a group */
7642 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7644 struct cpuacct *ca = cgroup_ca(cont);
7645 u64 totalcpuusage = 0;
7646 int i;
7648 for_each_possible_cpu(i) {
7649 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7652 * Take rq->lock to make 64-bit addition safe on 32-bit
7653 * platforms.
7655 spin_lock_irq(&cpu_rq(i)->lock);
7656 totalcpuusage += *cpuusage;
7657 spin_unlock_irq(&cpu_rq(i)->lock);
7660 return totalcpuusage;
7663 static struct cftype files[] = {
7665 .name = "usage",
7666 .read_uint = cpuusage_read,
7670 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7672 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7676 * charge this task's execution time to its accounting group.
7678 * called with rq->lock held.
7680 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7682 struct cpuacct *ca;
7684 if (!cpuacct_subsys.active)
7685 return;
7687 ca = task_ca(tsk);
7688 if (ca) {
7689 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7691 *cpuusage += cputime;
7695 struct cgroup_subsys cpuacct_subsys = {
7696 .name = "cpuacct",
7697 .create = cpuacct_create,
7698 .destroy = cpuacct_destroy,
7699 .populate = cpuacct_populate,
7700 .subsys_id = cpuacct_subsys_id,
7702 #endif /* CONFIG_CGROUP_CPUACCT */