2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
28 * Cookies are numeric values sent with CHANGE and REMOVE
29 * uevents while resuming, removing or renaming the device.
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
34 static const char *_name
= DM_NAME
;
36 static unsigned int major
= 0;
37 static unsigned int _major
= 0;
39 static DEFINE_SPINLOCK(_minor_lock
);
42 * One of these is allocated per bio.
45 struct mapped_device
*md
;
49 unsigned long start_time
;
54 * One of these is allocated per target within a bio. Hopefully
55 * this will be simplified out one day.
64 * For request-based dm.
65 * One of these is allocated per request.
67 struct dm_rq_target_io
{
68 struct mapped_device
*md
;
70 struct request
*orig
, clone
;
76 * For request-based dm.
77 * One of these is allocated per bio.
79 struct dm_rq_clone_bio_info
{
81 struct dm_rq_target_io
*tio
;
84 union map_info
*dm_get_mapinfo(struct bio
*bio
)
86 if (bio
&& bio
->bi_private
)
87 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
91 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
93 if (rq
&& rq
->end_io_data
)
94 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
99 #define MINOR_ALLOCED ((void *)-1)
102 * Bits for the md->flags field.
104 #define DMF_BLOCK_IO_FOR_SUSPEND 0
105 #define DMF_SUSPENDED 1
107 #define DMF_FREEING 3
108 #define DMF_DELETING 4
109 #define DMF_NOFLUSH_SUSPENDING 5
110 #define DMF_QUEUE_IO_TO_THREAD 6
113 * Work processed by per-device workqueue.
115 struct mapped_device
{
116 struct rw_semaphore io_lock
;
117 struct mutex suspend_lock
;
124 struct request_queue
*queue
;
125 struct gendisk
*disk
;
131 * A list of ios that arrived while we were suspended.
134 wait_queue_head_t wait
;
135 struct work_struct work
;
136 struct bio_list deferred
;
137 spinlock_t deferred_lock
;
140 * An error from the barrier request currently being processed.
145 * Processing queue (flush/barriers)
147 struct workqueue_struct
*wq
;
150 * The current mapping.
152 struct dm_table
*map
;
155 * io objects are allocated from here.
166 wait_queue_head_t eventq
;
168 struct list_head uevent_list
;
169 spinlock_t uevent_lock
; /* Protect access to uevent_list */
172 * freeze/thaw support require holding onto a super block
174 struct super_block
*frozen_sb
;
175 struct block_device
*bdev
;
177 /* forced geometry settings */
178 struct hd_geometry geometry
;
180 /* marker of flush suspend for request-based dm */
181 struct request suspend_rq
;
183 /* For saving the address of __make_request for request based dm */
184 make_request_fn
*saved_make_request_fn
;
189 /* zero-length barrier that will be cloned and submitted to targets */
190 struct bio barrier_bio
;
194 * For mempools pre-allocation at the table loading time.
196 struct dm_md_mempools
{
203 static struct kmem_cache
*_io_cache
;
204 static struct kmem_cache
*_tio_cache
;
205 static struct kmem_cache
*_rq_tio_cache
;
206 static struct kmem_cache
*_rq_bio_info_cache
;
208 static int __init
local_init(void)
212 /* allocate a slab for the dm_ios */
213 _io_cache
= KMEM_CACHE(dm_io
, 0);
217 /* allocate a slab for the target ios */
218 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
220 goto out_free_io_cache
;
222 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
224 goto out_free_tio_cache
;
226 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
227 if (!_rq_bio_info_cache
)
228 goto out_free_rq_tio_cache
;
230 r
= dm_uevent_init();
232 goto out_free_rq_bio_info_cache
;
235 r
= register_blkdev(_major
, _name
);
237 goto out_uevent_exit
;
246 out_free_rq_bio_info_cache
:
247 kmem_cache_destroy(_rq_bio_info_cache
);
248 out_free_rq_tio_cache
:
249 kmem_cache_destroy(_rq_tio_cache
);
251 kmem_cache_destroy(_tio_cache
);
253 kmem_cache_destroy(_io_cache
);
258 static void local_exit(void)
260 kmem_cache_destroy(_rq_bio_info_cache
);
261 kmem_cache_destroy(_rq_tio_cache
);
262 kmem_cache_destroy(_tio_cache
);
263 kmem_cache_destroy(_io_cache
);
264 unregister_blkdev(_major
, _name
);
269 DMINFO("cleaned up");
272 static int (*_inits
[])(void) __initdata
= {
281 static void (*_exits
[])(void) = {
290 static int __init
dm_init(void)
292 const int count
= ARRAY_SIZE(_inits
);
296 for (i
= 0; i
< count
; i
++) {
311 static void __exit
dm_exit(void)
313 int i
= ARRAY_SIZE(_exits
);
320 * Block device functions
322 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
324 struct mapped_device
*md
;
326 spin_lock(&_minor_lock
);
328 md
= bdev
->bd_disk
->private_data
;
332 if (test_bit(DMF_FREEING
, &md
->flags
) ||
333 test_bit(DMF_DELETING
, &md
->flags
)) {
339 atomic_inc(&md
->open_count
);
342 spin_unlock(&_minor_lock
);
344 return md
? 0 : -ENXIO
;
347 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
349 struct mapped_device
*md
= disk
->private_data
;
350 atomic_dec(&md
->open_count
);
355 int dm_open_count(struct mapped_device
*md
)
357 return atomic_read(&md
->open_count
);
361 * Guarantees nothing is using the device before it's deleted.
363 int dm_lock_for_deletion(struct mapped_device
*md
)
367 spin_lock(&_minor_lock
);
369 if (dm_open_count(md
))
372 set_bit(DMF_DELETING
, &md
->flags
);
374 spin_unlock(&_minor_lock
);
379 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
381 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
383 return dm_get_geometry(md
, geo
);
386 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
387 unsigned int cmd
, unsigned long arg
)
389 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
390 struct dm_table
*map
= dm_get_table(md
);
391 struct dm_target
*tgt
;
394 if (!map
|| !dm_table_get_size(map
))
397 /* We only support devices that have a single target */
398 if (dm_table_get_num_targets(map
) != 1)
401 tgt
= dm_table_get_target(map
, 0);
403 if (dm_suspended(md
)) {
408 if (tgt
->type
->ioctl
)
409 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
417 static struct dm_io
*alloc_io(struct mapped_device
*md
)
419 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
422 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
424 mempool_free(io
, md
->io_pool
);
427 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
429 mempool_free(tio
, md
->tio_pool
);
432 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
)
434 return mempool_alloc(md
->tio_pool
, GFP_ATOMIC
);
437 static void free_rq_tio(struct dm_rq_target_io
*tio
)
439 mempool_free(tio
, tio
->md
->tio_pool
);
442 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
444 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
447 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
449 mempool_free(info
, info
->tio
->md
->io_pool
);
452 static void start_io_acct(struct dm_io
*io
)
454 struct mapped_device
*md
= io
->md
;
456 int rw
= bio_data_dir(io
->bio
);
458 io
->start_time
= jiffies
;
460 cpu
= part_stat_lock();
461 part_round_stats(cpu
, &dm_disk(md
)->part0
);
463 dm_disk(md
)->part0
.in_flight
[rw
] = atomic_inc_return(&md
->pending
[rw
]);
466 static void end_io_acct(struct dm_io
*io
)
468 struct mapped_device
*md
= io
->md
;
469 struct bio
*bio
= io
->bio
;
470 unsigned long duration
= jiffies
- io
->start_time
;
472 int rw
= bio_data_dir(bio
);
474 cpu
= part_stat_lock();
475 part_round_stats(cpu
, &dm_disk(md
)->part0
);
476 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
480 * After this is decremented the bio must not be touched if it is
483 dm_disk(md
)->part0
.in_flight
[rw
] = pending
=
484 atomic_dec_return(&md
->pending
[rw
]);
485 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
487 /* nudge anyone waiting on suspend queue */
493 * Add the bio to the list of deferred io.
495 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
497 down_write(&md
->io_lock
);
499 spin_lock_irq(&md
->deferred_lock
);
500 bio_list_add(&md
->deferred
, bio
);
501 spin_unlock_irq(&md
->deferred_lock
);
503 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
))
504 queue_work(md
->wq
, &md
->work
);
506 up_write(&md
->io_lock
);
510 * Everyone (including functions in this file), should use this
511 * function to access the md->map field, and make sure they call
512 * dm_table_put() when finished.
514 struct dm_table
*dm_get_table(struct mapped_device
*md
)
519 read_lock_irqsave(&md
->map_lock
, flags
);
523 read_unlock_irqrestore(&md
->map_lock
, flags
);
529 * Get the geometry associated with a dm device
531 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
539 * Set the geometry of a device.
541 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
543 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
545 if (geo
->start
> sz
) {
546 DMWARN("Start sector is beyond the geometry limits.");
555 /*-----------------------------------------------------------------
557 * A more elegant soln is in the works that uses the queue
558 * merge fn, unfortunately there are a couple of changes to
559 * the block layer that I want to make for this. So in the
560 * interests of getting something for people to use I give
561 * you this clearly demarcated crap.
562 *---------------------------------------------------------------*/
564 static int __noflush_suspending(struct mapped_device
*md
)
566 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
570 * Decrements the number of outstanding ios that a bio has been
571 * cloned into, completing the original io if necc.
573 static void dec_pending(struct dm_io
*io
, int error
)
578 struct mapped_device
*md
= io
->md
;
580 /* Push-back supersedes any I/O errors */
581 if (error
&& !(io
->error
> 0 && __noflush_suspending(md
)))
584 if (atomic_dec_and_test(&io
->io_count
)) {
585 if (io
->error
== DM_ENDIO_REQUEUE
) {
587 * Target requested pushing back the I/O.
589 spin_lock_irqsave(&md
->deferred_lock
, flags
);
590 if (__noflush_suspending(md
)) {
591 if (!bio_rw_flagged(io
->bio
, BIO_RW_BARRIER
))
592 bio_list_add_head(&md
->deferred
,
595 /* noflush suspend was interrupted. */
597 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
600 io_error
= io
->error
;
603 if (bio_rw_flagged(bio
, BIO_RW_BARRIER
)) {
605 * There can be just one barrier request so we use
606 * a per-device variable for error reporting.
607 * Note that you can't touch the bio after end_io_acct
609 if (!md
->barrier_error
&& io_error
!= -EOPNOTSUPP
)
610 md
->barrier_error
= io_error
;
615 if (io_error
!= DM_ENDIO_REQUEUE
) {
616 trace_block_bio_complete(md
->queue
, bio
);
618 bio_endio(bio
, io_error
);
626 static void clone_endio(struct bio
*bio
, int error
)
629 struct dm_target_io
*tio
= bio
->bi_private
;
630 struct dm_io
*io
= tio
->io
;
631 struct mapped_device
*md
= tio
->io
->md
;
632 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
634 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
638 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
639 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
641 * error and requeue request are handled
645 else if (r
== DM_ENDIO_INCOMPLETE
)
646 /* The target will handle the io */
649 DMWARN("unimplemented target endio return value: %d", r
);
655 * Store md for cleanup instead of tio which is about to get freed.
657 bio
->bi_private
= md
->bs
;
661 dec_pending(io
, error
);
665 * Partial completion handling for request-based dm
667 static void end_clone_bio(struct bio
*clone
, int error
)
669 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
670 struct dm_rq_target_io
*tio
= info
->tio
;
671 struct bio
*bio
= info
->orig
;
672 unsigned int nr_bytes
= info
->orig
->bi_size
;
678 * An error has already been detected on the request.
679 * Once error occurred, just let clone->end_io() handle
685 * Don't notice the error to the upper layer yet.
686 * The error handling decision is made by the target driver,
687 * when the request is completed.
694 * I/O for the bio successfully completed.
695 * Notice the data completion to the upper layer.
699 * bios are processed from the head of the list.
700 * So the completing bio should always be rq->bio.
701 * If it's not, something wrong is happening.
703 if (tio
->orig
->bio
!= bio
)
704 DMERR("bio completion is going in the middle of the request");
707 * Update the original request.
708 * Do not use blk_end_request() here, because it may complete
709 * the original request before the clone, and break the ordering.
711 blk_update_request(tio
->orig
, 0, nr_bytes
);
715 * Don't touch any member of the md after calling this function because
716 * the md may be freed in dm_put() at the end of this function.
717 * Or do dm_get() before calling this function and dm_put() later.
719 static void rq_completed(struct mapped_device
*md
, int run_queue
)
721 int wakeup_waiters
= 0;
722 struct request_queue
*q
= md
->queue
;
725 spin_lock_irqsave(q
->queue_lock
, flags
);
726 if (!queue_in_flight(q
))
728 spin_unlock_irqrestore(q
->queue_lock
, flags
);
730 /* nudge anyone waiting on suspend queue */
738 * dm_put() must be at the end of this function. See the comment above
743 static void free_rq_clone(struct request
*clone
)
745 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
747 blk_rq_unprep_clone(clone
);
751 static void dm_unprep_request(struct request
*rq
)
753 struct request
*clone
= rq
->special
;
756 rq
->cmd_flags
&= ~REQ_DONTPREP
;
758 free_rq_clone(clone
);
762 * Requeue the original request of a clone.
764 void dm_requeue_unmapped_request(struct request
*clone
)
766 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
767 struct mapped_device
*md
= tio
->md
;
768 struct request
*rq
= tio
->orig
;
769 struct request_queue
*q
= rq
->q
;
772 dm_unprep_request(rq
);
774 spin_lock_irqsave(q
->queue_lock
, flags
);
775 if (elv_queue_empty(q
))
777 blk_requeue_request(q
, rq
);
778 spin_unlock_irqrestore(q
->queue_lock
, flags
);
782 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
784 static void __stop_queue(struct request_queue
*q
)
789 static void stop_queue(struct request_queue
*q
)
793 spin_lock_irqsave(q
->queue_lock
, flags
);
795 spin_unlock_irqrestore(q
->queue_lock
, flags
);
798 static void __start_queue(struct request_queue
*q
)
800 if (blk_queue_stopped(q
))
804 static void start_queue(struct request_queue
*q
)
808 spin_lock_irqsave(q
->queue_lock
, flags
);
810 spin_unlock_irqrestore(q
->queue_lock
, flags
);
814 * Complete the clone and the original request.
815 * Must be called without queue lock.
817 static void dm_end_request(struct request
*clone
, int error
)
819 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
820 struct mapped_device
*md
= tio
->md
;
821 struct request
*rq
= tio
->orig
;
823 if (blk_pc_request(rq
)) {
824 rq
->errors
= clone
->errors
;
825 rq
->resid_len
= clone
->resid_len
;
829 * We are using the sense buffer of the original
831 * So setting the length of the sense data is enough.
833 rq
->sense_len
= clone
->sense_len
;
836 free_rq_clone(clone
);
838 blk_end_request_all(rq
, error
);
844 * Request completion handler for request-based dm
846 static void dm_softirq_done(struct request
*rq
)
848 struct request
*clone
= rq
->completion_data
;
849 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
850 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
851 int error
= tio
->error
;
853 if (!(rq
->cmd_flags
& REQ_FAILED
) && rq_end_io
)
854 error
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
857 /* The target wants to complete the I/O */
858 dm_end_request(clone
, error
);
859 else if (error
== DM_ENDIO_INCOMPLETE
)
860 /* The target will handle the I/O */
862 else if (error
== DM_ENDIO_REQUEUE
)
863 /* The target wants to requeue the I/O */
864 dm_requeue_unmapped_request(clone
);
866 DMWARN("unimplemented target endio return value: %d", error
);
872 * Complete the clone and the original request with the error status
873 * through softirq context.
875 static void dm_complete_request(struct request
*clone
, int error
)
877 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
878 struct request
*rq
= tio
->orig
;
881 rq
->completion_data
= clone
;
882 blk_complete_request(rq
);
886 * Complete the not-mapped clone and the original request with the error status
887 * through softirq context.
888 * Target's rq_end_io() function isn't called.
889 * This may be used when the target's map_rq() function fails.
891 void dm_kill_unmapped_request(struct request
*clone
, int error
)
893 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
894 struct request
*rq
= tio
->orig
;
896 rq
->cmd_flags
|= REQ_FAILED
;
897 dm_complete_request(clone
, error
);
899 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
902 * Called with the queue lock held
904 static void end_clone_request(struct request
*clone
, int error
)
907 * For just cleaning up the information of the queue in which
908 * the clone was dispatched.
909 * The clone is *NOT* freed actually here because it is alloced from
910 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
912 __blk_put_request(clone
->q
, clone
);
915 * Actual request completion is done in a softirq context which doesn't
916 * hold the queue lock. Otherwise, deadlock could occur because:
917 * - another request may be submitted by the upper level driver
918 * of the stacking during the completion
919 * - the submission which requires queue lock may be done
922 dm_complete_request(clone
, error
);
925 static sector_t
max_io_len(struct mapped_device
*md
,
926 sector_t sector
, struct dm_target
*ti
)
928 sector_t offset
= sector
- ti
->begin
;
929 sector_t len
= ti
->len
- offset
;
932 * Does the target need to split even further ?
936 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
945 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
946 struct dm_target_io
*tio
)
950 struct mapped_device
*md
;
952 clone
->bi_end_io
= clone_endio
;
953 clone
->bi_private
= tio
;
956 * Map the clone. If r == 0 we don't need to do
957 * anything, the target has assumed ownership of
960 atomic_inc(&tio
->io
->io_count
);
961 sector
= clone
->bi_sector
;
962 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
963 if (r
== DM_MAPIO_REMAPPED
) {
964 /* the bio has been remapped so dispatch it */
966 trace_block_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
967 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
969 generic_make_request(clone
);
970 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
971 /* error the io and bail out, or requeue it if needed */
973 dec_pending(tio
->io
, r
);
975 * Store bio_set for cleanup.
977 clone
->bi_private
= md
->bs
;
981 DMWARN("unimplemented target map return value: %d", r
);
987 struct mapped_device
*md
;
988 struct dm_table
*map
;
992 sector_t sector_count
;
996 static void dm_bio_destructor(struct bio
*bio
)
998 struct bio_set
*bs
= bio
->bi_private
;
1004 * Creates a little bio that is just does part of a bvec.
1006 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1007 unsigned short idx
, unsigned int offset
,
1008 unsigned int len
, struct bio_set
*bs
)
1011 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1013 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1014 clone
->bi_destructor
= dm_bio_destructor
;
1015 *clone
->bi_io_vec
= *bv
;
1017 clone
->bi_sector
= sector
;
1018 clone
->bi_bdev
= bio
->bi_bdev
;
1019 clone
->bi_rw
= bio
->bi_rw
& ~(1 << BIO_RW_BARRIER
);
1021 clone
->bi_size
= to_bytes(len
);
1022 clone
->bi_io_vec
->bv_offset
= offset
;
1023 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1024 clone
->bi_flags
|= 1 << BIO_CLONED
;
1026 if (bio_integrity(bio
)) {
1027 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1028 bio_integrity_trim(clone
,
1029 bio_sector_offset(bio
, idx
, offset
), len
);
1036 * Creates a bio that consists of range of complete bvecs.
1038 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1039 unsigned short idx
, unsigned short bv_count
,
1040 unsigned int len
, struct bio_set
*bs
)
1044 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1045 __bio_clone(clone
, bio
);
1046 clone
->bi_rw
&= ~(1 << BIO_RW_BARRIER
);
1047 clone
->bi_destructor
= dm_bio_destructor
;
1048 clone
->bi_sector
= sector
;
1049 clone
->bi_idx
= idx
;
1050 clone
->bi_vcnt
= idx
+ bv_count
;
1051 clone
->bi_size
= to_bytes(len
);
1052 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1054 if (bio_integrity(bio
)) {
1055 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1057 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1058 bio_integrity_trim(clone
,
1059 bio_sector_offset(bio
, idx
, 0), len
);
1065 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1066 struct dm_target
*ti
)
1068 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1072 memset(&tio
->info
, 0, sizeof(tio
->info
));
1077 static void __flush_target(struct clone_info
*ci
, struct dm_target
*ti
,
1080 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1083 tio
->info
.flush_request
= flush_nr
;
1085 clone
= bio_alloc_bioset(GFP_NOIO
, 0, ci
->md
->bs
);
1086 __bio_clone(clone
, ci
->bio
);
1087 clone
->bi_destructor
= dm_bio_destructor
;
1089 __map_bio(ti
, clone
, tio
);
1092 static int __clone_and_map_empty_barrier(struct clone_info
*ci
)
1094 unsigned target_nr
= 0, flush_nr
;
1095 struct dm_target
*ti
;
1097 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1098 for (flush_nr
= 0; flush_nr
< ti
->num_flush_requests
;
1100 __flush_target(ci
, ti
, flush_nr
);
1102 ci
->sector_count
= 0;
1107 static int __clone_and_map(struct clone_info
*ci
)
1109 struct bio
*clone
, *bio
= ci
->bio
;
1110 struct dm_target
*ti
;
1111 sector_t len
= 0, max
;
1112 struct dm_target_io
*tio
;
1114 if (unlikely(bio_empty_barrier(bio
)))
1115 return __clone_and_map_empty_barrier(ci
);
1117 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1118 if (!dm_target_is_valid(ti
))
1121 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
1124 * Allocate a target io object.
1126 tio
= alloc_tio(ci
, ti
);
1128 if (ci
->sector_count
<= max
) {
1130 * Optimise for the simple case where we can do all of
1131 * the remaining io with a single clone.
1133 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1134 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1136 __map_bio(ti
, clone
, tio
);
1137 ci
->sector_count
= 0;
1139 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1141 * There are some bvecs that don't span targets.
1142 * Do as many of these as possible.
1145 sector_t remaining
= max
;
1148 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1149 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1151 if (bv_len
> remaining
)
1154 remaining
-= bv_len
;
1158 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1160 __map_bio(ti
, clone
, tio
);
1163 ci
->sector_count
-= len
;
1168 * Handle a bvec that must be split between two or more targets.
1170 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1171 sector_t remaining
= to_sector(bv
->bv_len
);
1172 unsigned int offset
= 0;
1176 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1177 if (!dm_target_is_valid(ti
))
1180 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
1182 tio
= alloc_tio(ci
, ti
);
1185 len
= min(remaining
, max
);
1187 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1188 bv
->bv_offset
+ offset
, len
,
1191 __map_bio(ti
, clone
, tio
);
1194 ci
->sector_count
-= len
;
1195 offset
+= to_bytes(len
);
1196 } while (remaining
-= len
);
1205 * Split the bio into several clones and submit it to targets.
1207 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1209 struct clone_info ci
;
1212 ci
.map
= dm_get_table(md
);
1213 if (unlikely(!ci
.map
)) {
1214 if (!bio_rw_flagged(bio
, BIO_RW_BARRIER
))
1217 if (!md
->barrier_error
)
1218 md
->barrier_error
= -EIO
;
1224 ci
.io
= alloc_io(md
);
1226 atomic_set(&ci
.io
->io_count
, 1);
1229 ci
.sector
= bio
->bi_sector
;
1230 ci
.sector_count
= bio_sectors(bio
);
1231 if (unlikely(bio_empty_barrier(bio
)))
1232 ci
.sector_count
= 1;
1233 ci
.idx
= bio
->bi_idx
;
1235 start_io_acct(ci
.io
);
1236 while (ci
.sector_count
&& !error
)
1237 error
= __clone_and_map(&ci
);
1239 /* drop the extra reference count */
1240 dec_pending(ci
.io
, error
);
1241 dm_table_put(ci
.map
);
1243 /*-----------------------------------------------------------------
1245 *---------------------------------------------------------------*/
1247 static int dm_merge_bvec(struct request_queue
*q
,
1248 struct bvec_merge_data
*bvm
,
1249 struct bio_vec
*biovec
)
1251 struct mapped_device
*md
= q
->queuedata
;
1252 struct dm_table
*map
= dm_get_table(md
);
1253 struct dm_target
*ti
;
1254 sector_t max_sectors
;
1260 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1261 if (!dm_target_is_valid(ti
))
1265 * Find maximum amount of I/O that won't need splitting
1267 max_sectors
= min(max_io_len(md
, bvm
->bi_sector
, ti
),
1268 (sector_t
) BIO_MAX_SECTORS
);
1269 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1274 * merge_bvec_fn() returns number of bytes
1275 * it can accept at this offset
1276 * max is precomputed maximal io size
1278 if (max_size
&& ti
->type
->merge
)
1279 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1281 * If the target doesn't support merge method and some of the devices
1282 * provided their merge_bvec method (we know this by looking at
1283 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1284 * entries. So always set max_size to 0, and the code below allows
1287 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1296 * Always allow an entire first page
1298 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1299 max_size
= biovec
->bv_len
;
1305 * The request function that just remaps the bio built up by
1308 static int _dm_request(struct request_queue
*q
, struct bio
*bio
)
1310 int rw
= bio_data_dir(bio
);
1311 struct mapped_device
*md
= q
->queuedata
;
1314 down_read(&md
->io_lock
);
1316 cpu
= part_stat_lock();
1317 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1318 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1322 * If we're suspended or the thread is processing barriers
1323 * we have to queue this io for later.
1325 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
)) ||
1326 unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
))) {
1327 up_read(&md
->io_lock
);
1329 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) &&
1330 bio_rw(bio
) == READA
) {
1340 __split_and_process_bio(md
, bio
);
1341 up_read(&md
->io_lock
);
1345 static int dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1347 struct mapped_device
*md
= q
->queuedata
;
1349 if (unlikely(bio_rw_flagged(bio
, BIO_RW_BARRIER
))) {
1350 bio_endio(bio
, -EOPNOTSUPP
);
1354 return md
->saved_make_request_fn(q
, bio
); /* call __make_request() */
1357 static int dm_request_based(struct mapped_device
*md
)
1359 return blk_queue_stackable(md
->queue
);
1362 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
1364 struct mapped_device
*md
= q
->queuedata
;
1366 if (dm_request_based(md
))
1367 return dm_make_request(q
, bio
);
1369 return _dm_request(q
, bio
);
1372 void dm_dispatch_request(struct request
*rq
)
1376 if (blk_queue_io_stat(rq
->q
))
1377 rq
->cmd_flags
|= REQ_IO_STAT
;
1379 rq
->start_time
= jiffies
;
1380 r
= blk_insert_cloned_request(rq
->q
, rq
);
1382 dm_complete_request(rq
, r
);
1384 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1386 static void dm_rq_bio_destructor(struct bio
*bio
)
1388 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1389 struct mapped_device
*md
= info
->tio
->md
;
1391 free_bio_info(info
);
1392 bio_free(bio
, md
->bs
);
1395 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1398 struct dm_rq_target_io
*tio
= data
;
1399 struct mapped_device
*md
= tio
->md
;
1400 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1405 info
->orig
= bio_orig
;
1407 bio
->bi_end_io
= end_clone_bio
;
1408 bio
->bi_private
= info
;
1409 bio
->bi_destructor
= dm_rq_bio_destructor
;
1414 static int setup_clone(struct request
*clone
, struct request
*rq
,
1415 struct dm_rq_target_io
*tio
)
1417 int r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1418 dm_rq_bio_constructor
, tio
);
1423 clone
->cmd
= rq
->cmd
;
1424 clone
->cmd_len
= rq
->cmd_len
;
1425 clone
->sense
= rq
->sense
;
1426 clone
->buffer
= rq
->buffer
;
1427 clone
->end_io
= end_clone_request
;
1428 clone
->end_io_data
= tio
;
1433 static int dm_rq_flush_suspending(struct mapped_device
*md
)
1435 return !md
->suspend_rq
.special
;
1439 * Called with the queue lock held.
1441 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1443 struct mapped_device
*md
= q
->queuedata
;
1444 struct dm_rq_target_io
*tio
;
1445 struct request
*clone
;
1447 if (unlikely(rq
== &md
->suspend_rq
)) {
1448 if (dm_rq_flush_suspending(md
))
1451 /* The flush suspend was interrupted */
1452 return BLKPREP_KILL
;
1455 if (unlikely(rq
->special
)) {
1456 DMWARN("Already has something in rq->special.");
1457 return BLKPREP_KILL
;
1460 tio
= alloc_rq_tio(md
); /* Only one for each original request */
1463 return BLKPREP_DEFER
;
1469 memset(&tio
->info
, 0, sizeof(tio
->info
));
1471 clone
= &tio
->clone
;
1472 if (setup_clone(clone
, rq
, tio
)) {
1475 return BLKPREP_DEFER
;
1478 rq
->special
= clone
;
1479 rq
->cmd_flags
|= REQ_DONTPREP
;
1484 static void map_request(struct dm_target
*ti
, struct request
*rq
,
1485 struct mapped_device
*md
)
1488 struct request
*clone
= rq
->special
;
1489 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1492 * Hold the md reference here for the in-flight I/O.
1493 * We can't rely on the reference count by device opener,
1494 * because the device may be closed during the request completion
1495 * when all bios are completed.
1496 * See the comment in rq_completed() too.
1501 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1503 case DM_MAPIO_SUBMITTED
:
1504 /* The target has taken the I/O to submit by itself later */
1506 case DM_MAPIO_REMAPPED
:
1507 /* The target has remapped the I/O so dispatch it */
1508 dm_dispatch_request(clone
);
1510 case DM_MAPIO_REQUEUE
:
1511 /* The target wants to requeue the I/O */
1512 dm_requeue_unmapped_request(clone
);
1516 DMWARN("unimplemented target map return value: %d", r
);
1520 /* The target wants to complete the I/O */
1521 dm_kill_unmapped_request(clone
, r
);
1527 * q->request_fn for request-based dm.
1528 * Called with the queue lock held.
1530 static void dm_request_fn(struct request_queue
*q
)
1532 struct mapped_device
*md
= q
->queuedata
;
1533 struct dm_table
*map
= dm_get_table(md
);
1534 struct dm_target
*ti
;
1538 * For noflush suspend, check blk_queue_stopped() to immediately
1539 * quit I/O dispatching.
1541 while (!blk_queue_plugged(q
) && !blk_queue_stopped(q
)) {
1542 rq
= blk_peek_request(q
);
1546 if (unlikely(rq
== &md
->suspend_rq
)) { /* Flush suspend maker */
1547 if (queue_in_flight(q
))
1548 /* Not quiet yet. Wait more */
1551 /* This device should be quiet now */
1553 blk_start_request(rq
);
1554 __blk_end_request_all(rq
, 0);
1559 ti
= dm_table_find_target(map
, blk_rq_pos(rq
));
1560 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1563 blk_start_request(rq
);
1564 spin_unlock(q
->queue_lock
);
1565 map_request(ti
, rq
, md
);
1566 spin_lock_irq(q
->queue_lock
);
1572 if (!elv_queue_empty(q
))
1573 /* Some requests still remain, retry later */
1582 int dm_underlying_device_busy(struct request_queue
*q
)
1584 return blk_lld_busy(q
);
1586 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1588 static int dm_lld_busy(struct request_queue
*q
)
1591 struct mapped_device
*md
= q
->queuedata
;
1592 struct dm_table
*map
= dm_get_table(md
);
1594 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1597 r
= dm_table_any_busy_target(map
);
1604 static void dm_unplug_all(struct request_queue
*q
)
1606 struct mapped_device
*md
= q
->queuedata
;
1607 struct dm_table
*map
= dm_get_table(md
);
1610 if (dm_request_based(md
))
1611 generic_unplug_device(q
);
1613 dm_table_unplug_all(map
);
1618 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1621 struct mapped_device
*md
= congested_data
;
1622 struct dm_table
*map
;
1624 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1625 map
= dm_get_table(md
);
1628 * Request-based dm cares about only own queue for
1629 * the query about congestion status of request_queue
1631 if (dm_request_based(md
))
1632 r
= md
->queue
->backing_dev_info
.state
&
1635 r
= dm_table_any_congested(map
, bdi_bits
);
1644 /*-----------------------------------------------------------------
1645 * An IDR is used to keep track of allocated minor numbers.
1646 *---------------------------------------------------------------*/
1647 static DEFINE_IDR(_minor_idr
);
1649 static void free_minor(int minor
)
1651 spin_lock(&_minor_lock
);
1652 idr_remove(&_minor_idr
, minor
);
1653 spin_unlock(&_minor_lock
);
1657 * See if the device with a specific minor # is free.
1659 static int specific_minor(int minor
)
1663 if (minor
>= (1 << MINORBITS
))
1666 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1670 spin_lock(&_minor_lock
);
1672 if (idr_find(&_minor_idr
, minor
)) {
1677 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1682 idr_remove(&_minor_idr
, m
);
1688 spin_unlock(&_minor_lock
);
1692 static int next_free_minor(int *minor
)
1696 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1700 spin_lock(&_minor_lock
);
1702 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1706 if (m
>= (1 << MINORBITS
)) {
1707 idr_remove(&_minor_idr
, m
);
1715 spin_unlock(&_minor_lock
);
1719 static const struct block_device_operations dm_blk_dops
;
1721 static void dm_wq_work(struct work_struct
*work
);
1724 * Allocate and initialise a blank device with a given minor.
1726 static struct mapped_device
*alloc_dev(int minor
)
1729 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1733 DMWARN("unable to allocate device, out of memory.");
1737 if (!try_module_get(THIS_MODULE
))
1738 goto bad_module_get
;
1740 /* get a minor number for the dev */
1741 if (minor
== DM_ANY_MINOR
)
1742 r
= next_free_minor(&minor
);
1744 r
= specific_minor(minor
);
1748 init_rwsem(&md
->io_lock
);
1749 mutex_init(&md
->suspend_lock
);
1750 spin_lock_init(&md
->deferred_lock
);
1751 rwlock_init(&md
->map_lock
);
1752 atomic_set(&md
->holders
, 1);
1753 atomic_set(&md
->open_count
, 0);
1754 atomic_set(&md
->event_nr
, 0);
1755 atomic_set(&md
->uevent_seq
, 0);
1756 INIT_LIST_HEAD(&md
->uevent_list
);
1757 spin_lock_init(&md
->uevent_lock
);
1759 md
->queue
= blk_init_queue(dm_request_fn
, NULL
);
1764 * Request-based dm devices cannot be stacked on top of bio-based dm
1765 * devices. The type of this dm device has not been decided yet,
1766 * although we initialized the queue using blk_init_queue().
1767 * The type is decided at the first table loading time.
1768 * To prevent problematic device stacking, clear the queue flag
1769 * for request stacking support until then.
1771 * This queue is new, so no concurrency on the queue_flags.
1773 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1774 md
->saved_make_request_fn
= md
->queue
->make_request_fn
;
1775 md
->queue
->queuedata
= md
;
1776 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1777 md
->queue
->backing_dev_info
.congested_data
= md
;
1778 blk_queue_make_request(md
->queue
, dm_request
);
1779 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1780 md
->queue
->unplug_fn
= dm_unplug_all
;
1781 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1782 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
1783 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
1784 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
1786 md
->disk
= alloc_disk(1);
1790 atomic_set(&md
->pending
[0], 0);
1791 atomic_set(&md
->pending
[1], 0);
1792 init_waitqueue_head(&md
->wait
);
1793 INIT_WORK(&md
->work
, dm_wq_work
);
1794 init_waitqueue_head(&md
->eventq
);
1796 md
->disk
->major
= _major
;
1797 md
->disk
->first_minor
= minor
;
1798 md
->disk
->fops
= &dm_blk_dops
;
1799 md
->disk
->queue
= md
->queue
;
1800 md
->disk
->private_data
= md
;
1801 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1803 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1805 md
->wq
= create_singlethread_workqueue("kdmflush");
1809 md
->bdev
= bdget_disk(md
->disk
, 0);
1813 /* Populate the mapping, nobody knows we exist yet */
1814 spin_lock(&_minor_lock
);
1815 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1816 spin_unlock(&_minor_lock
);
1818 BUG_ON(old_md
!= MINOR_ALLOCED
);
1823 destroy_workqueue(md
->wq
);
1825 del_gendisk(md
->disk
);
1828 blk_cleanup_queue(md
->queue
);
1832 module_put(THIS_MODULE
);
1838 static void unlock_fs(struct mapped_device
*md
);
1840 static void free_dev(struct mapped_device
*md
)
1842 int minor
= MINOR(disk_devt(md
->disk
));
1846 destroy_workqueue(md
->wq
);
1848 mempool_destroy(md
->tio_pool
);
1850 mempool_destroy(md
->io_pool
);
1852 bioset_free(md
->bs
);
1853 blk_integrity_unregister(md
->disk
);
1854 del_gendisk(md
->disk
);
1857 spin_lock(&_minor_lock
);
1858 md
->disk
->private_data
= NULL
;
1859 spin_unlock(&_minor_lock
);
1862 blk_cleanup_queue(md
->queue
);
1863 module_put(THIS_MODULE
);
1867 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1869 struct dm_md_mempools
*p
;
1871 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
1872 /* the md already has necessary mempools */
1875 p
= dm_table_get_md_mempools(t
);
1876 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
1878 md
->io_pool
= p
->io_pool
;
1880 md
->tio_pool
= p
->tio_pool
;
1886 /* mempool bind completed, now no need any mempools in the table */
1887 dm_table_free_md_mempools(t
);
1891 * Bind a table to the device.
1893 static void event_callback(void *context
)
1895 unsigned long flags
;
1897 struct mapped_device
*md
= (struct mapped_device
*) context
;
1899 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1900 list_splice_init(&md
->uevent_list
, &uevents
);
1901 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1903 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1905 atomic_inc(&md
->event_nr
);
1906 wake_up(&md
->eventq
);
1909 static void __set_size(struct mapped_device
*md
, sector_t size
)
1911 set_capacity(md
->disk
, size
);
1913 mutex_lock(&md
->bdev
->bd_inode
->i_mutex
);
1914 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1915 mutex_unlock(&md
->bdev
->bd_inode
->i_mutex
);
1918 static int __bind(struct mapped_device
*md
, struct dm_table
*t
,
1919 struct queue_limits
*limits
)
1921 struct request_queue
*q
= md
->queue
;
1923 unsigned long flags
;
1925 size
= dm_table_get_size(t
);
1928 * Wipe any geometry if the size of the table changed.
1930 if (size
!= get_capacity(md
->disk
))
1931 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1933 __set_size(md
, size
);
1936 dm_table_destroy(t
);
1940 dm_table_event_callback(t
, event_callback
, md
);
1943 * The queue hasn't been stopped yet, if the old table type wasn't
1944 * for request-based during suspension. So stop it to prevent
1945 * I/O mapping before resume.
1946 * This must be done before setting the queue restrictions,
1947 * because request-based dm may be run just after the setting.
1949 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
1952 __bind_mempools(md
, t
);
1954 write_lock_irqsave(&md
->map_lock
, flags
);
1956 dm_table_set_restrictions(t
, q
, limits
);
1957 write_unlock_irqrestore(&md
->map_lock
, flags
);
1962 static void __unbind(struct mapped_device
*md
)
1964 struct dm_table
*map
= md
->map
;
1965 unsigned long flags
;
1970 dm_table_event_callback(map
, NULL
, NULL
);
1971 write_lock_irqsave(&md
->map_lock
, flags
);
1973 write_unlock_irqrestore(&md
->map_lock
, flags
);
1974 dm_table_destroy(map
);
1978 * Constructor for a new device.
1980 int dm_create(int minor
, struct mapped_device
**result
)
1982 struct mapped_device
*md
;
1984 md
= alloc_dev(minor
);
1994 static struct mapped_device
*dm_find_md(dev_t dev
)
1996 struct mapped_device
*md
;
1997 unsigned minor
= MINOR(dev
);
1999 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2002 spin_lock(&_minor_lock
);
2004 md
= idr_find(&_minor_idr
, minor
);
2005 if (md
&& (md
== MINOR_ALLOCED
||
2006 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2007 test_bit(DMF_FREEING
, &md
->flags
))) {
2013 spin_unlock(&_minor_lock
);
2018 struct mapped_device
*dm_get_md(dev_t dev
)
2020 struct mapped_device
*md
= dm_find_md(dev
);
2028 void *dm_get_mdptr(struct mapped_device
*md
)
2030 return md
->interface_ptr
;
2033 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2035 md
->interface_ptr
= ptr
;
2038 void dm_get(struct mapped_device
*md
)
2040 atomic_inc(&md
->holders
);
2043 const char *dm_device_name(struct mapped_device
*md
)
2047 EXPORT_SYMBOL_GPL(dm_device_name
);
2049 void dm_put(struct mapped_device
*md
)
2051 struct dm_table
*map
;
2053 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2055 if (atomic_dec_and_lock(&md
->holders
, &_minor_lock
)) {
2056 map
= dm_get_table(md
);
2057 idr_replace(&_minor_idr
, MINOR_ALLOCED
,
2058 MINOR(disk_devt(dm_disk(md
))));
2059 set_bit(DMF_FREEING
, &md
->flags
);
2060 spin_unlock(&_minor_lock
);
2061 if (!dm_suspended(md
)) {
2062 dm_table_presuspend_targets(map
);
2063 dm_table_postsuspend_targets(map
);
2071 EXPORT_SYMBOL_GPL(dm_put
);
2073 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2076 DECLARE_WAITQUEUE(wait
, current
);
2077 struct request_queue
*q
= md
->queue
;
2078 unsigned long flags
;
2080 dm_unplug_all(md
->queue
);
2082 add_wait_queue(&md
->wait
, &wait
);
2085 set_current_state(interruptible
);
2088 if (dm_request_based(md
)) {
2089 spin_lock_irqsave(q
->queue_lock
, flags
);
2090 if (!queue_in_flight(q
) && blk_queue_stopped(q
)) {
2091 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2094 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2095 } else if (!atomic_read(&md
->pending
[0]) &&
2096 !atomic_read(&md
->pending
[1]))
2099 if (interruptible
== TASK_INTERRUPTIBLE
&&
2100 signal_pending(current
)) {
2107 set_current_state(TASK_RUNNING
);
2109 remove_wait_queue(&md
->wait
, &wait
);
2114 static void dm_flush(struct mapped_device
*md
)
2116 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2118 bio_init(&md
->barrier_bio
);
2119 md
->barrier_bio
.bi_bdev
= md
->bdev
;
2120 md
->barrier_bio
.bi_rw
= WRITE_BARRIER
;
2121 __split_and_process_bio(md
, &md
->barrier_bio
);
2123 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2126 static void process_barrier(struct mapped_device
*md
, struct bio
*bio
)
2128 md
->barrier_error
= 0;
2132 if (!bio_empty_barrier(bio
)) {
2133 __split_and_process_bio(md
, bio
);
2137 if (md
->barrier_error
!= DM_ENDIO_REQUEUE
)
2138 bio_endio(bio
, md
->barrier_error
);
2140 spin_lock_irq(&md
->deferred_lock
);
2141 bio_list_add_head(&md
->deferred
, bio
);
2142 spin_unlock_irq(&md
->deferred_lock
);
2147 * Process the deferred bios
2149 static void dm_wq_work(struct work_struct
*work
)
2151 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2155 down_write(&md
->io_lock
);
2157 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2158 spin_lock_irq(&md
->deferred_lock
);
2159 c
= bio_list_pop(&md
->deferred
);
2160 spin_unlock_irq(&md
->deferred_lock
);
2163 clear_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
2167 up_write(&md
->io_lock
);
2169 if (dm_request_based(md
))
2170 generic_make_request(c
);
2172 if (bio_rw_flagged(c
, BIO_RW_BARRIER
))
2173 process_barrier(md
, c
);
2175 __split_and_process_bio(md
, c
);
2178 down_write(&md
->io_lock
);
2181 up_write(&md
->io_lock
);
2184 static void dm_queue_flush(struct mapped_device
*md
)
2186 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2187 smp_mb__after_clear_bit();
2188 queue_work(md
->wq
, &md
->work
);
2192 * Swap in a new table (destroying old one).
2194 int dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2196 struct queue_limits limits
;
2199 mutex_lock(&md
->suspend_lock
);
2201 /* device must be suspended */
2202 if (!dm_suspended(md
))
2205 r
= dm_calculate_queue_limits(table
, &limits
);
2209 /* cannot change the device type, once a table is bound */
2211 (dm_table_get_type(md
->map
) != dm_table_get_type(table
))) {
2212 DMWARN("can't change the device type after a table is bound");
2217 r
= __bind(md
, table
, &limits
);
2220 mutex_unlock(&md
->suspend_lock
);
2224 static void dm_rq_invalidate_suspend_marker(struct mapped_device
*md
)
2226 md
->suspend_rq
.special
= (void *)0x1;
2229 static void dm_rq_abort_suspend(struct mapped_device
*md
, int noflush
)
2231 struct request_queue
*q
= md
->queue
;
2232 unsigned long flags
;
2234 spin_lock_irqsave(q
->queue_lock
, flags
);
2236 dm_rq_invalidate_suspend_marker(md
);
2238 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2241 static void dm_rq_start_suspend(struct mapped_device
*md
, int noflush
)
2243 struct request
*rq
= &md
->suspend_rq
;
2244 struct request_queue
*q
= md
->queue
;
2250 blk_insert_request(q
, rq
, 0, NULL
);
2254 static int dm_rq_suspend_available(struct mapped_device
*md
, int noflush
)
2257 struct request
*rq
= &md
->suspend_rq
;
2258 struct request_queue
*q
= md
->queue
;
2259 unsigned long flags
;
2264 /* The marker must be protected by queue lock if it is in use */
2265 spin_lock_irqsave(q
->queue_lock
, flags
);
2266 if (unlikely(rq
->ref_count
)) {
2268 * This can happen, when the previous flush suspend was
2269 * interrupted, the marker is still in the queue and
2270 * this flush suspend has been invoked, because we don't
2271 * remove the marker at the time of suspend interruption.
2272 * We have only one marker per mapped_device, so we can't
2273 * start another flush suspend while it is in use.
2275 BUG_ON(!rq
->special
); /* The marker should be invalidated */
2276 DMWARN("Invalidating the previous flush suspend is still in"
2277 " progress. Please retry later.");
2280 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2286 * Functions to lock and unlock any filesystem running on the
2289 static int lock_fs(struct mapped_device
*md
)
2293 WARN_ON(md
->frozen_sb
);
2295 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2296 if (IS_ERR(md
->frozen_sb
)) {
2297 r
= PTR_ERR(md
->frozen_sb
);
2298 md
->frozen_sb
= NULL
;
2302 set_bit(DMF_FROZEN
, &md
->flags
);
2307 static void unlock_fs(struct mapped_device
*md
)
2309 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2312 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2313 md
->frozen_sb
= NULL
;
2314 clear_bit(DMF_FROZEN
, &md
->flags
);
2318 * We need to be able to change a mapping table under a mounted
2319 * filesystem. For example we might want to move some data in
2320 * the background. Before the table can be swapped with
2321 * dm_bind_table, dm_suspend must be called to flush any in
2322 * flight bios and ensure that any further io gets deferred.
2325 * Suspend mechanism in request-based dm.
2327 * After the suspend starts, further incoming requests are kept in
2328 * the request_queue and deferred.
2329 * Remaining requests in the request_queue at the start of suspend are flushed
2330 * if it is flush suspend.
2331 * The suspend completes when the following conditions have been satisfied,
2333 * 1. q->in_flight is 0 (which means no in_flight request)
2334 * 2. queue has been stopped (which means no request dispatching)
2339 * Noflush suspend doesn't need to dispatch remaining requests.
2340 * So stop the queue immediately. Then, wait for all in_flight requests
2341 * to be completed or requeued.
2343 * To abort noflush suspend, start the queue.
2348 * Flush suspend needs to dispatch remaining requests. So stop the queue
2349 * after the remaining requests are completed. (Requeued request must be also
2350 * re-dispatched and completed. Until then, we can't stop the queue.)
2352 * During flushing the remaining requests, further incoming requests are also
2353 * inserted to the same queue. To distinguish which requests are to be
2354 * flushed, we insert a marker request to the queue at the time of starting
2355 * flush suspend, like a barrier.
2356 * The dispatching is blocked when the marker is found on the top of the queue.
2357 * And the queue is stopped when all in_flight requests are completed, since
2358 * that means the remaining requests are completely flushed.
2359 * Then, the marker is removed from the queue.
2361 * To abort flush suspend, we also need to take care of the marker, not only
2362 * starting the queue.
2363 * We don't remove the marker forcibly from the queue since it's against
2364 * the block-layer manner. Instead, we put a invalidated mark on the marker.
2365 * When the invalidated marker is found on the top of the queue, it is
2366 * immediately removed from the queue, so it doesn't block dispatching.
2367 * Because we have only one marker per mapped_device, we can't start another
2368 * flush suspend until the invalidated marker is removed from the queue.
2369 * So fail and return with -EBUSY in such a case.
2371 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2373 struct dm_table
*map
= NULL
;
2375 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2376 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2378 mutex_lock(&md
->suspend_lock
);
2380 if (dm_suspended(md
)) {
2385 if (dm_request_based(md
) && !dm_rq_suspend_available(md
, noflush
)) {
2390 map
= dm_get_table(md
);
2393 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2394 * This flag is cleared before dm_suspend returns.
2397 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2399 /* This does not get reverted if there's an error later. */
2400 dm_table_presuspend_targets(map
);
2403 * Flush I/O to the device. noflush supersedes do_lockfs,
2404 * because lock_fs() needs to flush I/Os.
2406 if (!noflush
&& do_lockfs
) {
2413 * Here we must make sure that no processes are submitting requests
2414 * to target drivers i.e. no one may be executing
2415 * __split_and_process_bio. This is called from dm_request and
2418 * To get all processes out of __split_and_process_bio in dm_request,
2419 * we take the write lock. To prevent any process from reentering
2420 * __split_and_process_bio from dm_request, we set
2421 * DMF_QUEUE_IO_TO_THREAD.
2423 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2424 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2425 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2426 * further calls to __split_and_process_bio from dm_wq_work.
2428 down_write(&md
->io_lock
);
2429 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2430 set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
2431 up_write(&md
->io_lock
);
2433 flush_workqueue(md
->wq
);
2435 if (dm_request_based(md
))
2436 dm_rq_start_suspend(md
, noflush
);
2439 * At this point no more requests are entering target request routines.
2440 * We call dm_wait_for_completion to wait for all existing requests
2443 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2445 down_write(&md
->io_lock
);
2447 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2448 up_write(&md
->io_lock
);
2450 /* were we interrupted ? */
2454 if (dm_request_based(md
))
2455 dm_rq_abort_suspend(md
, noflush
);
2458 goto out
; /* pushback list is already flushed, so skip flush */
2462 * If dm_wait_for_completion returned 0, the device is completely
2463 * quiescent now. There is no request-processing activity. All new
2464 * requests are being added to md->deferred list.
2467 dm_table_postsuspend_targets(map
);
2469 set_bit(DMF_SUSPENDED
, &md
->flags
);
2475 mutex_unlock(&md
->suspend_lock
);
2479 int dm_resume(struct mapped_device
*md
)
2482 struct dm_table
*map
= NULL
;
2484 mutex_lock(&md
->suspend_lock
);
2485 if (!dm_suspended(md
))
2488 map
= dm_get_table(md
);
2489 if (!map
|| !dm_table_get_size(map
))
2492 r
= dm_table_resume_targets(map
);
2499 * Flushing deferred I/Os must be done after targets are resumed
2500 * so that mapping of targets can work correctly.
2501 * Request-based dm is queueing the deferred I/Os in its request_queue.
2503 if (dm_request_based(md
))
2504 start_queue(md
->queue
);
2508 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2510 dm_table_unplug_all(map
);
2514 mutex_unlock(&md
->suspend_lock
);
2519 /*-----------------------------------------------------------------
2520 * Event notification.
2521 *---------------------------------------------------------------*/
2522 void dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2525 char udev_cookie
[DM_COOKIE_LENGTH
];
2526 char *envp
[] = { udev_cookie
, NULL
};
2529 kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2531 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2532 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2533 kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
, action
, envp
);
2537 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2539 return atomic_add_return(1, &md
->uevent_seq
);
2542 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2544 return atomic_read(&md
->event_nr
);
2547 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2549 return wait_event_interruptible(md
->eventq
,
2550 (event_nr
!= atomic_read(&md
->event_nr
)));
2553 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2555 unsigned long flags
;
2557 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2558 list_add(elist
, &md
->uevent_list
);
2559 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2563 * The gendisk is only valid as long as you have a reference
2566 struct gendisk
*dm_disk(struct mapped_device
*md
)
2571 struct kobject
*dm_kobject(struct mapped_device
*md
)
2577 * struct mapped_device should not be exported outside of dm.c
2578 * so use this check to verify that kobj is part of md structure
2580 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2582 struct mapped_device
*md
;
2584 md
= container_of(kobj
, struct mapped_device
, kobj
);
2585 if (&md
->kobj
!= kobj
)
2588 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2589 test_bit(DMF_DELETING
, &md
->flags
))
2596 int dm_suspended(struct mapped_device
*md
)
2598 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2601 int dm_noflush_suspending(struct dm_target
*ti
)
2603 struct mapped_device
*md
= dm_table_get_md(ti
->table
);
2604 int r
= __noflush_suspending(md
);
2610 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2612 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
)
2614 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2619 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2620 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2621 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2622 if (!pools
->io_pool
)
2623 goto free_pools_and_out
;
2625 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2626 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2627 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2628 if (!pools
->tio_pool
)
2629 goto free_io_pool_and_out
;
2631 pools
->bs
= (type
== DM_TYPE_BIO_BASED
) ?
2632 bioset_create(16, 0) : bioset_create(MIN_IOS
, 0);
2634 goto free_tio_pool_and_out
;
2638 free_tio_pool_and_out
:
2639 mempool_destroy(pools
->tio_pool
);
2641 free_io_pool_and_out
:
2642 mempool_destroy(pools
->io_pool
);
2650 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2656 mempool_destroy(pools
->io_pool
);
2658 if (pools
->tio_pool
)
2659 mempool_destroy(pools
->tio_pool
);
2662 bioset_free(pools
->bs
);
2667 static const struct block_device_operations dm_blk_dops
= {
2668 .open
= dm_blk_open
,
2669 .release
= dm_blk_close
,
2670 .ioctl
= dm_blk_ioctl
,
2671 .getgeo
= dm_blk_getgeo
,
2672 .owner
= THIS_MODULE
2675 EXPORT_SYMBOL(dm_get_mapinfo
);
2680 module_init(dm_init
);
2681 module_exit(dm_exit
);
2683 module_param(major
, uint
, 0);
2684 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2685 MODULE_DESCRIPTION(DM_NAME
" driver");
2686 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2687 MODULE_LICENSE("GPL");