trivial: fix then -> than typos in comments and documentation
[linux-2.6/verdex.git] / arch / powerpc / kernel / kprobes.c
blobb29005a5a8f5118d6c52d73336cb020cb343b839
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
39 #ifdef CONFIG_BOOKE
40 #define MSR_SINGLESTEP (MSR_DE)
41 #else
42 #define MSR_SINGLESTEP (MSR_SE)
43 #endif
45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
50 int __kprobes arch_prepare_kprobe(struct kprobe *p)
52 int ret = 0;
53 kprobe_opcode_t insn = *p->addr;
55 if ((unsigned long)p->addr & 0x03) {
56 printk("Attempt to register kprobe at an unaligned address\n");
57 ret = -EINVAL;
58 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
59 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
60 ret = -EINVAL;
63 /* insn must be on a special executable page on ppc64. This is
64 * not explicitly required on ppc32 (right now), but it doesn't hurt */
65 if (!ret) {
66 p->ainsn.insn = get_insn_slot();
67 if (!p->ainsn.insn)
68 ret = -ENOMEM;
71 if (!ret) {
72 memcpy(p->ainsn.insn, p->addr,
73 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
74 p->opcode = *p->addr;
75 flush_icache_range((unsigned long)p->ainsn.insn,
76 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
79 p->ainsn.boostable = 0;
80 return ret;
83 void __kprobes arch_arm_kprobe(struct kprobe *p)
85 *p->addr = BREAKPOINT_INSTRUCTION;
86 flush_icache_range((unsigned long) p->addr,
87 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
90 void __kprobes arch_disarm_kprobe(struct kprobe *p)
92 *p->addr = p->opcode;
93 flush_icache_range((unsigned long) p->addr,
94 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
97 void __kprobes arch_remove_kprobe(struct kprobe *p)
99 mutex_lock(&kprobe_mutex);
100 free_insn_slot(p->ainsn.insn, 0);
101 mutex_unlock(&kprobe_mutex);
104 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
106 /* We turn off async exceptions to ensure that the single step will
107 * be for the instruction we have the kprobe on, if we dont its
108 * possible we'd get the single step reported for an exception handler
109 * like Decrementer or External Interrupt */
110 regs->msr &= ~MSR_EE;
111 regs->msr |= MSR_SINGLESTEP;
112 #ifdef CONFIG_BOOKE
113 regs->msr &= ~MSR_CE;
114 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
115 #endif
118 * On powerpc we should single step on the original
119 * instruction even if the probed insn is a trap
120 * variant as values in regs could play a part in
121 * if the trap is taken or not
123 regs->nip = (unsigned long)p->ainsn.insn;
126 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
128 kcb->prev_kprobe.kp = kprobe_running();
129 kcb->prev_kprobe.status = kcb->kprobe_status;
130 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
133 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
135 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
136 kcb->kprobe_status = kcb->prev_kprobe.status;
137 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
140 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
141 struct kprobe_ctlblk *kcb)
143 __get_cpu_var(current_kprobe) = p;
144 kcb->kprobe_saved_msr = regs->msr;
147 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
148 struct pt_regs *regs)
150 ri->ret_addr = (kprobe_opcode_t *)regs->link;
152 /* Replace the return addr with trampoline addr */
153 regs->link = (unsigned long)kretprobe_trampoline;
156 static int __kprobes kprobe_handler(struct pt_regs *regs)
158 struct kprobe *p;
159 int ret = 0;
160 unsigned int *addr = (unsigned int *)regs->nip;
161 struct kprobe_ctlblk *kcb;
164 * We don't want to be preempted for the entire
165 * duration of kprobe processing
167 preempt_disable();
168 kcb = get_kprobe_ctlblk();
170 /* Check we're not actually recursing */
171 if (kprobe_running()) {
172 p = get_kprobe(addr);
173 if (p) {
174 kprobe_opcode_t insn = *p->ainsn.insn;
175 if (kcb->kprobe_status == KPROBE_HIT_SS &&
176 is_trap(insn)) {
177 /* Turn off 'trace' bits */
178 regs->msr &= ~MSR_SINGLESTEP;
179 regs->msr |= kcb->kprobe_saved_msr;
180 goto no_kprobe;
182 /* We have reentered the kprobe_handler(), since
183 * another probe was hit while within the handler.
184 * We here save the original kprobes variables and
185 * just single step on the instruction of the new probe
186 * without calling any user handlers.
188 save_previous_kprobe(kcb);
189 set_current_kprobe(p, regs, kcb);
190 kcb->kprobe_saved_msr = regs->msr;
191 kprobes_inc_nmissed_count(p);
192 prepare_singlestep(p, regs);
193 kcb->kprobe_status = KPROBE_REENTER;
194 return 1;
195 } else {
196 if (*addr != BREAKPOINT_INSTRUCTION) {
197 /* If trap variant, then it belongs not to us */
198 kprobe_opcode_t cur_insn = *addr;
199 if (is_trap(cur_insn))
200 goto no_kprobe;
201 /* The breakpoint instruction was removed by
202 * another cpu right after we hit, no further
203 * handling of this interrupt is appropriate
205 ret = 1;
206 goto no_kprobe;
208 p = __get_cpu_var(current_kprobe);
209 if (p->break_handler && p->break_handler(p, regs)) {
210 goto ss_probe;
213 goto no_kprobe;
216 p = get_kprobe(addr);
217 if (!p) {
218 if (*addr != BREAKPOINT_INSTRUCTION) {
220 * PowerPC has multiple variants of the "trap"
221 * instruction. If the current instruction is a
222 * trap variant, it could belong to someone else
224 kprobe_opcode_t cur_insn = *addr;
225 if (is_trap(cur_insn))
226 goto no_kprobe;
228 * The breakpoint instruction was removed right
229 * after we hit it. Another cpu has removed
230 * either a probepoint or a debugger breakpoint
231 * at this address. In either case, no further
232 * handling of this interrupt is appropriate.
234 ret = 1;
236 /* Not one of ours: let kernel handle it */
237 goto no_kprobe;
240 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
241 set_current_kprobe(p, regs, kcb);
242 if (p->pre_handler && p->pre_handler(p, regs))
243 /* handler has already set things up, so skip ss setup */
244 return 1;
246 ss_probe:
247 if (p->ainsn.boostable >= 0) {
248 unsigned int insn = *p->ainsn.insn;
250 /* regs->nip is also adjusted if emulate_step returns 1 */
251 ret = emulate_step(regs, insn);
252 if (ret > 0) {
254 * Once this instruction has been boosted
255 * successfully, set the boostable flag
257 if (unlikely(p->ainsn.boostable == 0))
258 p->ainsn.boostable = 1;
260 if (p->post_handler)
261 p->post_handler(p, regs, 0);
263 kcb->kprobe_status = KPROBE_HIT_SSDONE;
264 reset_current_kprobe();
265 preempt_enable_no_resched();
266 return 1;
267 } else if (ret < 0) {
269 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
270 * So, we should never get here... but, its still
271 * good to catch them, just in case...
273 printk("Can't step on instruction %x\n", insn);
274 BUG();
275 } else if (ret == 0)
276 /* This instruction can't be boosted */
277 p->ainsn.boostable = -1;
279 prepare_singlestep(p, regs);
280 kcb->kprobe_status = KPROBE_HIT_SS;
281 return 1;
283 no_kprobe:
284 preempt_enable_no_resched();
285 return ret;
289 * Function return probe trampoline:
290 * - init_kprobes() establishes a probepoint here
291 * - When the probed function returns, this probe
292 * causes the handlers to fire
294 static void __used kretprobe_trampoline_holder(void)
296 asm volatile(".global kretprobe_trampoline\n"
297 "kretprobe_trampoline:\n"
298 "nop\n");
302 * Called when the probe at kretprobe trampoline is hit
304 static int __kprobes trampoline_probe_handler(struct kprobe *p,
305 struct pt_regs *regs)
307 struct kretprobe_instance *ri = NULL;
308 struct hlist_head *head, empty_rp;
309 struct hlist_node *node, *tmp;
310 unsigned long flags, orig_ret_address = 0;
311 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
313 INIT_HLIST_HEAD(&empty_rp);
314 kretprobe_hash_lock(current, &head, &flags);
317 * It is possible to have multiple instances associated with a given
318 * task either because an multiple functions in the call path
319 * have a return probe installed on them, and/or more than one return
320 * return probe was registered for a target function.
322 * We can handle this because:
323 * - instances are always inserted at the head of the list
324 * - when multiple return probes are registered for the same
325 * function, the first instance's ret_addr will point to the
326 * real return address, and all the rest will point to
327 * kretprobe_trampoline
329 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
330 if (ri->task != current)
331 /* another task is sharing our hash bucket */
332 continue;
334 if (ri->rp && ri->rp->handler)
335 ri->rp->handler(ri, regs);
337 orig_ret_address = (unsigned long)ri->ret_addr;
338 recycle_rp_inst(ri, &empty_rp);
340 if (orig_ret_address != trampoline_address)
342 * This is the real return address. Any other
343 * instances associated with this task are for
344 * other calls deeper on the call stack
346 break;
349 kretprobe_assert(ri, orig_ret_address, trampoline_address);
350 regs->nip = orig_ret_address;
352 reset_current_kprobe();
353 kretprobe_hash_unlock(current, &flags);
354 preempt_enable_no_resched();
356 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
357 hlist_del(&ri->hlist);
358 kfree(ri);
361 * By returning a non-zero value, we are telling
362 * kprobe_handler() that we don't want the post_handler
363 * to run (and have re-enabled preemption)
365 return 1;
369 * Called after single-stepping. p->addr is the address of the
370 * instruction whose first byte has been replaced by the "breakpoint"
371 * instruction. To avoid the SMP problems that can occur when we
372 * temporarily put back the original opcode to single-step, we
373 * single-stepped a copy of the instruction. The address of this
374 * copy is p->ainsn.insn.
376 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
378 int ret;
379 unsigned int insn = *p->ainsn.insn;
381 regs->nip = (unsigned long)p->addr;
382 ret = emulate_step(regs, insn);
383 if (ret == 0)
384 regs->nip = (unsigned long)p->addr + 4;
387 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
389 struct kprobe *cur = kprobe_running();
390 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
392 if (!cur)
393 return 0;
395 /* make sure we got here for instruction we have a kprobe on */
396 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
397 return 0;
399 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
400 kcb->kprobe_status = KPROBE_HIT_SSDONE;
401 cur->post_handler(cur, regs, 0);
404 resume_execution(cur, regs);
405 regs->msr |= kcb->kprobe_saved_msr;
407 /*Restore back the original saved kprobes variables and continue. */
408 if (kcb->kprobe_status == KPROBE_REENTER) {
409 restore_previous_kprobe(kcb);
410 goto out;
412 reset_current_kprobe();
413 out:
414 preempt_enable_no_resched();
417 * if somebody else is singlestepping across a probe point, msr
418 * will have DE/SE set, in which case, continue the remaining processing
419 * of do_debug, as if this is not a probe hit.
421 if (regs->msr & MSR_SINGLESTEP)
422 return 0;
424 return 1;
427 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
429 struct kprobe *cur = kprobe_running();
430 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431 const struct exception_table_entry *entry;
433 switch(kcb->kprobe_status) {
434 case KPROBE_HIT_SS:
435 case KPROBE_REENTER:
437 * We are here because the instruction being single
438 * stepped caused a page fault. We reset the current
439 * kprobe and the nip points back to the probe address
440 * and allow the page fault handler to continue as a
441 * normal page fault.
443 regs->nip = (unsigned long)cur->addr;
444 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
445 regs->msr |= kcb->kprobe_saved_msr;
446 if (kcb->kprobe_status == KPROBE_REENTER)
447 restore_previous_kprobe(kcb);
448 else
449 reset_current_kprobe();
450 preempt_enable_no_resched();
451 break;
452 case KPROBE_HIT_ACTIVE:
453 case KPROBE_HIT_SSDONE:
455 * We increment the nmissed count for accounting,
456 * we can also use npre/npostfault count for accouting
457 * these specific fault cases.
459 kprobes_inc_nmissed_count(cur);
462 * We come here because instructions in the pre/post
463 * handler caused the page_fault, this could happen
464 * if handler tries to access user space by
465 * copy_from_user(), get_user() etc. Let the
466 * user-specified handler try to fix it first.
468 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
469 return 1;
472 * In case the user-specified fault handler returned
473 * zero, try to fix up.
475 if ((entry = search_exception_tables(regs->nip)) != NULL) {
476 regs->nip = entry->fixup;
477 return 1;
481 * fixup_exception() could not handle it,
482 * Let do_page_fault() fix it.
484 break;
485 default:
486 break;
488 return 0;
492 * Wrapper routine to for handling exceptions.
494 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
495 unsigned long val, void *data)
497 struct die_args *args = (struct die_args *)data;
498 int ret = NOTIFY_DONE;
500 if (args->regs && user_mode(args->regs))
501 return ret;
503 switch (val) {
504 case DIE_BPT:
505 if (kprobe_handler(args->regs))
506 ret = NOTIFY_STOP;
507 break;
508 case DIE_SSTEP:
509 if (post_kprobe_handler(args->regs))
510 ret = NOTIFY_STOP;
511 break;
512 default:
513 break;
515 return ret;
518 #ifdef CONFIG_PPC64
519 unsigned long arch_deref_entry_point(void *entry)
521 return ((func_descr_t *)entry)->entry;
523 #endif
525 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
527 struct jprobe *jp = container_of(p, struct jprobe, kp);
528 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
530 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
532 /* setup return addr to the jprobe handler routine */
533 regs->nip = arch_deref_entry_point(jp->entry);
534 #ifdef CONFIG_PPC64
535 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
536 #endif
538 return 1;
541 void __used __kprobes jprobe_return(void)
543 asm volatile("trap" ::: "memory");
546 static void __used __kprobes jprobe_return_end(void)
550 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
552 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
555 * FIXME - we should ideally be validating that we got here 'cos
556 * of the "trap" in jprobe_return() above, before restoring the
557 * saved regs...
559 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
560 preempt_enable_no_resched();
561 return 1;
564 static struct kprobe trampoline_p = {
565 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
566 .pre_handler = trampoline_probe_handler
569 int __init arch_init_kprobes(void)
571 return register_kprobe(&trampoline_p);
574 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
576 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
577 return 1;
579 return 0;