2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
33 * The per-CPU workqueue (if single thread, we always use the first
36 * The sequence counters are for flush_scheduled_work(). It wants to wait
37 * until until all currently-scheduled works are completed, but it doesn't
38 * want to be livelocked by new, incoming ones. So it waits until
39 * remove_sequence is >= the insert_sequence which pertained when
40 * flush_scheduled_work() was called.
42 struct cpu_workqueue_struct
{
46 long remove_sequence
; /* Least-recently added (next to run) */
47 long insert_sequence
; /* Next to add */
49 struct list_head worklist
;
50 wait_queue_head_t more_work
;
51 wait_queue_head_t work_done
;
53 struct workqueue_struct
*wq
;
54 struct task_struct
*thread
;
56 int run_depth
; /* Detect run_workqueue() recursion depth */
57 } ____cacheline_aligned
;
60 * The externally visible workqueue abstraction is an array of
63 struct workqueue_struct
{
64 struct cpu_workqueue_struct
*cpu_wq
;
66 struct list_head list
; /* Empty if single thread */
69 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
70 threads to each one as cpus come/go. */
71 static DEFINE_MUTEX(workqueue_mutex
);
72 static LIST_HEAD(workqueues
);
74 static int singlethread_cpu
;
76 /* If it's single threaded, it isn't in the list of workqueues. */
77 static inline int is_single_threaded(struct workqueue_struct
*wq
)
79 return list_empty(&wq
->list
);
82 /* Preempt must be disabled. */
83 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
84 struct work_struct
*work
)
88 spin_lock_irqsave(&cwq
->lock
, flags
);
90 list_add_tail(&work
->entry
, &cwq
->worklist
);
91 cwq
->insert_sequence
++;
92 wake_up(&cwq
->more_work
);
93 spin_unlock_irqrestore(&cwq
->lock
, flags
);
97 * queue_work - queue work on a workqueue
98 * @wq: workqueue to use
99 * @work: work to queue
101 * Returns non-zero if it was successfully added.
103 * We queue the work to the CPU it was submitted, but there is no
104 * guarantee that it will be processed by that CPU.
106 int fastcall
queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
108 int ret
= 0, cpu
= get_cpu();
110 if (!test_and_set_bit(0, &work
->pending
)) {
111 if (unlikely(is_single_threaded(wq
)))
112 cpu
= singlethread_cpu
;
113 BUG_ON(!list_empty(&work
->entry
));
114 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
120 EXPORT_SYMBOL_GPL(queue_work
);
122 static void delayed_work_timer_fn(unsigned long __data
)
124 struct work_struct
*work
= (struct work_struct
*)__data
;
125 struct workqueue_struct
*wq
= work
->wq_data
;
126 int cpu
= smp_processor_id();
128 if (unlikely(is_single_threaded(wq
)))
129 cpu
= singlethread_cpu
;
131 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
135 * queue_delayed_work - queue work on a workqueue after delay
136 * @wq: workqueue to use
137 * @work: work to queue
138 * @delay: number of jiffies to wait before queueing
140 * Returns non-zero if it was successfully added.
142 int fastcall
queue_delayed_work(struct workqueue_struct
*wq
,
143 struct work_struct
*work
, unsigned long delay
)
146 struct timer_list
*timer
= &work
->timer
;
148 if (!test_and_set_bit(0, &work
->pending
)) {
149 BUG_ON(timer_pending(timer
));
150 BUG_ON(!list_empty(&work
->entry
));
152 /* This stores wq for the moment, for the timer_fn */
154 timer
->expires
= jiffies
+ delay
;
155 timer
->data
= (unsigned long)work
;
156 timer
->function
= delayed_work_timer_fn
;
162 EXPORT_SYMBOL_GPL(queue_delayed_work
);
165 * queue_delayed_work_on - queue work on specific CPU after delay
166 * @cpu: CPU number to execute work on
167 * @wq: workqueue to use
168 * @work: work to queue
169 * @delay: number of jiffies to wait before queueing
171 * Returns non-zero if it was successfully added.
173 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
174 struct work_struct
*work
, unsigned long delay
)
177 struct timer_list
*timer
= &work
->timer
;
179 if (!test_and_set_bit(0, &work
->pending
)) {
180 BUG_ON(timer_pending(timer
));
181 BUG_ON(!list_empty(&work
->entry
));
183 /* This stores wq for the moment, for the timer_fn */
185 timer
->expires
= jiffies
+ delay
;
186 timer
->data
= (unsigned long)work
;
187 timer
->function
= delayed_work_timer_fn
;
188 add_timer_on(timer
, cpu
);
193 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
195 static void run_workqueue(struct cpu_workqueue_struct
*cwq
)
200 * Keep taking off work from the queue until
203 spin_lock_irqsave(&cwq
->lock
, flags
);
205 if (cwq
->run_depth
> 3) {
206 /* morton gets to eat his hat */
207 printk("%s: recursion depth exceeded: %d\n",
208 __FUNCTION__
, cwq
->run_depth
);
211 while (!list_empty(&cwq
->worklist
)) {
212 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
213 struct work_struct
, entry
);
214 void (*f
) (void *) = work
->func
;
215 void *data
= work
->data
;
217 list_del_init(cwq
->worklist
.next
);
218 spin_unlock_irqrestore(&cwq
->lock
, flags
);
220 BUG_ON(work
->wq_data
!= cwq
);
221 clear_bit(0, &work
->pending
);
224 spin_lock_irqsave(&cwq
->lock
, flags
);
225 cwq
->remove_sequence
++;
226 wake_up(&cwq
->work_done
);
229 spin_unlock_irqrestore(&cwq
->lock
, flags
);
232 static int worker_thread(void *__cwq
)
234 struct cpu_workqueue_struct
*cwq
= __cwq
;
235 DECLARE_WAITQUEUE(wait
, current
);
236 struct k_sigaction sa
;
239 current
->flags
|= PF_NOFREEZE
;
241 set_user_nice(current
, -5);
243 /* Block and flush all signals */
244 sigfillset(&blocked
);
245 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
246 flush_signals(current
);
248 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
249 sa
.sa
.sa_handler
= SIG_IGN
;
251 siginitset(&sa
.sa
.sa_mask
, sigmask(SIGCHLD
));
252 do_sigaction(SIGCHLD
, &sa
, (struct k_sigaction
*)0);
254 set_current_state(TASK_INTERRUPTIBLE
);
255 while (!kthread_should_stop()) {
256 add_wait_queue(&cwq
->more_work
, &wait
);
257 if (list_empty(&cwq
->worklist
))
260 __set_current_state(TASK_RUNNING
);
261 remove_wait_queue(&cwq
->more_work
, &wait
);
263 if (!list_empty(&cwq
->worklist
))
265 set_current_state(TASK_INTERRUPTIBLE
);
267 __set_current_state(TASK_RUNNING
);
271 static void flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
273 if (cwq
->thread
== current
) {
275 * Probably keventd trying to flush its own queue. So simply run
276 * it by hand rather than deadlocking.
281 long sequence_needed
;
283 spin_lock_irq(&cwq
->lock
);
284 sequence_needed
= cwq
->insert_sequence
;
286 while (sequence_needed
- cwq
->remove_sequence
> 0) {
287 prepare_to_wait(&cwq
->work_done
, &wait
,
288 TASK_UNINTERRUPTIBLE
);
289 spin_unlock_irq(&cwq
->lock
);
291 spin_lock_irq(&cwq
->lock
);
293 finish_wait(&cwq
->work_done
, &wait
);
294 spin_unlock_irq(&cwq
->lock
);
299 * flush_workqueue - ensure that any scheduled work has run to completion.
300 * @wq: workqueue to flush
302 * Forces execution of the workqueue and blocks until its completion.
303 * This is typically used in driver shutdown handlers.
305 * This function will sample each workqueue's current insert_sequence number and
306 * will sleep until the head sequence is greater than or equal to that. This
307 * means that we sleep until all works which were queued on entry have been
308 * handled, but we are not livelocked by new incoming ones.
310 * This function used to run the workqueues itself. Now we just wait for the
311 * helper threads to do it.
313 void fastcall
flush_workqueue(struct workqueue_struct
*wq
)
317 if (is_single_threaded(wq
)) {
318 /* Always use first cpu's area. */
319 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, singlethread_cpu
));
323 mutex_lock(&workqueue_mutex
);
324 for_each_online_cpu(cpu
)
325 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
326 mutex_unlock(&workqueue_mutex
);
329 EXPORT_SYMBOL_GPL(flush_workqueue
);
331 static struct task_struct
*create_workqueue_thread(struct workqueue_struct
*wq
,
334 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
335 struct task_struct
*p
;
337 spin_lock_init(&cwq
->lock
);
340 cwq
->insert_sequence
= 0;
341 cwq
->remove_sequence
= 0;
342 INIT_LIST_HEAD(&cwq
->worklist
);
343 init_waitqueue_head(&cwq
->more_work
);
344 init_waitqueue_head(&cwq
->work_done
);
346 if (is_single_threaded(wq
))
347 p
= kthread_create(worker_thread
, cwq
, "%s", wq
->name
);
349 p
= kthread_create(worker_thread
, cwq
, "%s/%d", wq
->name
, cpu
);
356 struct workqueue_struct
*__create_workqueue(const char *name
,
359 int cpu
, destroy
= 0;
360 struct workqueue_struct
*wq
;
361 struct task_struct
*p
;
363 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
367 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
374 mutex_lock(&workqueue_mutex
);
376 INIT_LIST_HEAD(&wq
->list
);
377 p
= create_workqueue_thread(wq
, singlethread_cpu
);
383 list_add(&wq
->list
, &workqueues
);
384 for_each_online_cpu(cpu
) {
385 p
= create_workqueue_thread(wq
, cpu
);
387 kthread_bind(p
, cpu
);
393 mutex_unlock(&workqueue_mutex
);
396 * Was there any error during startup? If yes then clean up:
399 destroy_workqueue(wq
);
404 EXPORT_SYMBOL_GPL(__create_workqueue
);
406 static void cleanup_workqueue_thread(struct workqueue_struct
*wq
, int cpu
)
408 struct cpu_workqueue_struct
*cwq
;
410 struct task_struct
*p
;
412 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
413 spin_lock_irqsave(&cwq
->lock
, flags
);
416 spin_unlock_irqrestore(&cwq
->lock
, flags
);
422 * destroy_workqueue - safely terminate a workqueue
423 * @wq: target workqueue
425 * Safely destroy a workqueue. All work currently pending will be done first.
427 void destroy_workqueue(struct workqueue_struct
*wq
)
433 /* We don't need the distraction of CPUs appearing and vanishing. */
434 mutex_lock(&workqueue_mutex
);
435 if (is_single_threaded(wq
))
436 cleanup_workqueue_thread(wq
, singlethread_cpu
);
438 for_each_online_cpu(cpu
)
439 cleanup_workqueue_thread(wq
, cpu
);
442 mutex_unlock(&workqueue_mutex
);
443 free_percpu(wq
->cpu_wq
);
446 EXPORT_SYMBOL_GPL(destroy_workqueue
);
448 static struct workqueue_struct
*keventd_wq
;
451 * schedule_work - put work task in global workqueue
452 * @work: job to be done
454 * This puts a job in the kernel-global workqueue.
456 int fastcall
schedule_work(struct work_struct
*work
)
458 return queue_work(keventd_wq
, work
);
460 EXPORT_SYMBOL(schedule_work
);
463 * schedule_delayed_work - put work task in global workqueue after delay
464 * @work: job to be done
465 * @delay: number of jiffies to wait
467 * After waiting for a given time this puts a job in the kernel-global
470 int fastcall
schedule_delayed_work(struct work_struct
*work
, unsigned long delay
)
472 return queue_delayed_work(keventd_wq
, work
, delay
);
474 EXPORT_SYMBOL(schedule_delayed_work
);
477 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
479 * @work: job to be done
480 * @delay: number of jiffies to wait
482 * After waiting for a given time this puts a job in the kernel-global
483 * workqueue on the specified CPU.
485 int schedule_delayed_work_on(int cpu
,
486 struct work_struct
*work
, unsigned long delay
)
488 return queue_delayed_work_on(cpu
, keventd_wq
, work
, delay
);
490 EXPORT_SYMBOL(schedule_delayed_work_on
);
493 * schedule_on_each_cpu - call a function on each online CPU from keventd
494 * @func: the function to call
495 * @info: a pointer to pass to func()
497 * Returns zero on success.
498 * Returns -ve errno on failure.
500 * Appears to be racy against CPU hotplug.
502 * schedule_on_each_cpu() is very slow.
504 int schedule_on_each_cpu(void (*func
)(void *info
), void *info
)
507 struct work_struct
*works
;
509 works
= alloc_percpu(struct work_struct
);
513 mutex_lock(&workqueue_mutex
);
514 for_each_online_cpu(cpu
) {
515 INIT_WORK(per_cpu_ptr(works
, cpu
), func
, info
);
516 __queue_work(per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
),
517 per_cpu_ptr(works
, cpu
));
519 mutex_unlock(&workqueue_mutex
);
520 flush_workqueue(keventd_wq
);
525 void flush_scheduled_work(void)
527 flush_workqueue(keventd_wq
);
529 EXPORT_SYMBOL(flush_scheduled_work
);
532 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
533 * work whose handler rearms the delayed work.
534 * @wq: the controlling workqueue structure
535 * @work: the delayed work struct
537 void cancel_rearming_delayed_workqueue(struct workqueue_struct
*wq
,
538 struct work_struct
*work
)
540 while (!cancel_delayed_work(work
))
543 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue
);
546 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
547 * work whose handler rearms the delayed work.
548 * @work: the delayed work struct
550 void cancel_rearming_delayed_work(struct work_struct
*work
)
552 cancel_rearming_delayed_workqueue(keventd_wq
, work
);
554 EXPORT_SYMBOL(cancel_rearming_delayed_work
);
557 * execute_in_process_context - reliably execute the routine with user context
558 * @fn: the function to execute
559 * @data: data to pass to the function
560 * @ew: guaranteed storage for the execute work structure (must
561 * be available when the work executes)
563 * Executes the function immediately if process context is available,
564 * otherwise schedules the function for delayed execution.
566 * Returns: 0 - function was executed
567 * 1 - function was scheduled for execution
569 int execute_in_process_context(void (*fn
)(void *data
), void *data
,
570 struct execute_work
*ew
)
572 if (!in_interrupt()) {
577 INIT_WORK(&ew
->work
, fn
, data
);
578 schedule_work(&ew
->work
);
582 EXPORT_SYMBOL_GPL(execute_in_process_context
);
586 return keventd_wq
!= NULL
;
589 int current_is_keventd(void)
591 struct cpu_workqueue_struct
*cwq
;
592 int cpu
= smp_processor_id(); /* preempt-safe: keventd is per-cpu */
597 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
598 if (current
== cwq
->thread
)
605 #ifdef CONFIG_HOTPLUG_CPU
606 /* Take the work from this (downed) CPU. */
607 static void take_over_work(struct workqueue_struct
*wq
, unsigned int cpu
)
609 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
610 struct list_head list
;
611 struct work_struct
*work
;
613 spin_lock_irq(&cwq
->lock
);
614 list_replace_init(&cwq
->worklist
, &list
);
616 while (!list_empty(&list
)) {
617 printk("Taking work for %s\n", wq
->name
);
618 work
= list_entry(list
.next
,struct work_struct
,entry
);
619 list_del(&work
->entry
);
620 __queue_work(per_cpu_ptr(wq
->cpu_wq
, smp_processor_id()), work
);
622 spin_unlock_irq(&cwq
->lock
);
625 /* We're holding the cpucontrol mutex here */
626 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
627 unsigned long action
,
630 unsigned int hotcpu
= (unsigned long)hcpu
;
631 struct workqueue_struct
*wq
;
635 mutex_lock(&workqueue_mutex
);
636 /* Create a new workqueue thread for it. */
637 list_for_each_entry(wq
, &workqueues
, list
) {
638 if (!create_workqueue_thread(wq
, hotcpu
)) {
639 printk("workqueue for %i failed\n", hotcpu
);
646 /* Kick off worker threads. */
647 list_for_each_entry(wq
, &workqueues
, list
) {
648 struct cpu_workqueue_struct
*cwq
;
650 cwq
= per_cpu_ptr(wq
->cpu_wq
, hotcpu
);
651 kthread_bind(cwq
->thread
, hotcpu
);
652 wake_up_process(cwq
->thread
);
654 mutex_unlock(&workqueue_mutex
);
657 case CPU_UP_CANCELED
:
658 list_for_each_entry(wq
, &workqueues
, list
) {
659 if (!per_cpu_ptr(wq
->cpu_wq
, hotcpu
)->thread
)
661 /* Unbind so it can run. */
662 kthread_bind(per_cpu_ptr(wq
->cpu_wq
, hotcpu
)->thread
,
663 any_online_cpu(cpu_online_map
));
664 cleanup_workqueue_thread(wq
, hotcpu
);
666 mutex_unlock(&workqueue_mutex
);
669 case CPU_DOWN_PREPARE
:
670 mutex_lock(&workqueue_mutex
);
673 case CPU_DOWN_FAILED
:
674 mutex_unlock(&workqueue_mutex
);
678 list_for_each_entry(wq
, &workqueues
, list
)
679 cleanup_workqueue_thread(wq
, hotcpu
);
680 list_for_each_entry(wq
, &workqueues
, list
)
681 take_over_work(wq
, hotcpu
);
682 mutex_unlock(&workqueue_mutex
);
690 void init_workqueues(void)
692 singlethread_cpu
= first_cpu(cpu_possible_map
);
693 hotcpu_notifier(workqueue_cpu_callback
, 0);
694 keventd_wq
= create_workqueue("events");