netdev: add more functions to netdevice ops
[linux-2.6/verdex.git] / drivers / net / igb / igb_main.c
blobeca5684d56555bae5ff865da15bcd0057eb3c02e
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #ifdef CONFIG_IGB_DCA
46 #include <linux/dca.h>
47 #endif
48 #include "igb.h"
50 #define DRV_VERSION "1.2.45-k2"
51 char igb_driver_name[] = "igb";
52 char igb_driver_version[] = DRV_VERSION;
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57 static const struct e1000_info *igb_info_tbl[] = {
58 [board_82575] = &e1000_82575_info,
61 static struct pci_device_id igb_pci_tbl[] = {
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68 /* required last entry */
69 {0, }
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 void igb_update_stats(struct igb_adapter *);
80 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
81 static void __devexit igb_remove(struct pci_dev *pdev);
82 static int igb_sw_init(struct igb_adapter *);
83 static int igb_open(struct net_device *);
84 static int igb_close(struct net_device *);
85 static void igb_configure_tx(struct igb_adapter *);
86 static void igb_configure_rx(struct igb_adapter *);
87 static void igb_setup_rctl(struct igb_adapter *);
88 static void igb_clean_all_tx_rings(struct igb_adapter *);
89 static void igb_clean_all_rx_rings(struct igb_adapter *);
90 static void igb_clean_tx_ring(struct igb_ring *);
91 static void igb_clean_rx_ring(struct igb_ring *);
92 static void igb_set_multi(struct net_device *);
93 static void igb_update_phy_info(unsigned long);
94 static void igb_watchdog(unsigned long);
95 static void igb_watchdog_task(struct work_struct *);
96 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
97 struct igb_ring *);
98 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
99 static struct net_device_stats *igb_get_stats(struct net_device *);
100 static int igb_change_mtu(struct net_device *, int);
101 static int igb_set_mac(struct net_device *, void *);
102 static irqreturn_t igb_intr(int irq, void *);
103 static irqreturn_t igb_intr_msi(int irq, void *);
104 static irqreturn_t igb_msix_other(int irq, void *);
105 static irqreturn_t igb_msix_rx(int irq, void *);
106 static irqreturn_t igb_msix_tx(int irq, void *);
107 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
108 #ifdef CONFIG_IGB_DCA
109 static void igb_update_rx_dca(struct igb_ring *);
110 static void igb_update_tx_dca(struct igb_ring *);
111 static void igb_setup_dca(struct igb_adapter *);
112 #endif /* CONFIG_IGB_DCA */
113 static bool igb_clean_tx_irq(struct igb_ring *);
114 static int igb_poll(struct napi_struct *, int);
115 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
116 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
117 #ifdef CONFIG_IGB_LRO
118 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
119 #endif
120 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
121 static void igb_tx_timeout(struct net_device *);
122 static void igb_reset_task(struct work_struct *);
123 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
124 static void igb_vlan_rx_add_vid(struct net_device *, u16);
125 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
126 static void igb_restore_vlan(struct igb_adapter *);
128 static int igb_suspend(struct pci_dev *, pm_message_t);
129 #ifdef CONFIG_PM
130 static int igb_resume(struct pci_dev *);
131 #endif
132 static void igb_shutdown(struct pci_dev *);
133 #ifdef CONFIG_IGB_DCA
134 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
135 static struct notifier_block dca_notifier = {
136 .notifier_call = igb_notify_dca,
137 .next = NULL,
138 .priority = 0
140 #endif
142 #ifdef CONFIG_NET_POLL_CONTROLLER
143 /* for netdump / net console */
144 static void igb_netpoll(struct net_device *);
145 #endif
147 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
148 pci_channel_state_t);
149 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
150 static void igb_io_resume(struct pci_dev *);
152 static struct pci_error_handlers igb_err_handler = {
153 .error_detected = igb_io_error_detected,
154 .slot_reset = igb_io_slot_reset,
155 .resume = igb_io_resume,
159 static struct pci_driver igb_driver = {
160 .name = igb_driver_name,
161 .id_table = igb_pci_tbl,
162 .probe = igb_probe,
163 .remove = __devexit_p(igb_remove),
164 #ifdef CONFIG_PM
165 /* Power Managment Hooks */
166 .suspend = igb_suspend,
167 .resume = igb_resume,
168 #endif
169 .shutdown = igb_shutdown,
170 .err_handler = &igb_err_handler
173 static int global_quad_port_a; /* global quad port a indication */
175 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
176 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
177 MODULE_LICENSE("GPL");
178 MODULE_VERSION(DRV_VERSION);
180 #ifdef DEBUG
182 * igb_get_hw_dev_name - return device name string
183 * used by hardware layer to print debugging information
185 char *igb_get_hw_dev_name(struct e1000_hw *hw)
187 struct igb_adapter *adapter = hw->back;
188 return adapter->netdev->name;
190 #endif
193 * igb_init_module - Driver Registration Routine
195 * igb_init_module is the first routine called when the driver is
196 * loaded. All it does is register with the PCI subsystem.
198 static int __init igb_init_module(void)
200 int ret;
201 printk(KERN_INFO "%s - version %s\n",
202 igb_driver_string, igb_driver_version);
204 printk(KERN_INFO "%s\n", igb_copyright);
206 global_quad_port_a = 0;
208 ret = pci_register_driver(&igb_driver);
209 #ifdef CONFIG_IGB_DCA
210 dca_register_notify(&dca_notifier);
211 #endif
212 return ret;
215 module_init(igb_init_module);
218 * igb_exit_module - Driver Exit Cleanup Routine
220 * igb_exit_module is called just before the driver is removed
221 * from memory.
223 static void __exit igb_exit_module(void)
225 #ifdef CONFIG_IGB_DCA
226 dca_unregister_notify(&dca_notifier);
227 #endif
228 pci_unregister_driver(&igb_driver);
231 module_exit(igb_exit_module);
234 * igb_alloc_queues - Allocate memory for all rings
235 * @adapter: board private structure to initialize
237 * We allocate one ring per queue at run-time since we don't know the
238 * number of queues at compile-time.
240 static int igb_alloc_queues(struct igb_adapter *adapter)
242 int i;
244 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
245 sizeof(struct igb_ring), GFP_KERNEL);
246 if (!adapter->tx_ring)
247 return -ENOMEM;
249 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
250 sizeof(struct igb_ring), GFP_KERNEL);
251 if (!adapter->rx_ring) {
252 kfree(adapter->tx_ring);
253 return -ENOMEM;
256 adapter->rx_ring->buddy = adapter->tx_ring;
258 for (i = 0; i < adapter->num_tx_queues; i++) {
259 struct igb_ring *ring = &(adapter->tx_ring[i]);
260 ring->count = adapter->tx_ring_count;
261 ring->adapter = adapter;
262 ring->queue_index = i;
264 for (i = 0; i < adapter->num_rx_queues; i++) {
265 struct igb_ring *ring = &(adapter->rx_ring[i]);
266 ring->count = adapter->rx_ring_count;
267 ring->adapter = adapter;
268 ring->queue_index = i;
269 ring->itr_register = E1000_ITR;
271 /* set a default napi handler for each rx_ring */
272 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
274 return 0;
277 static void igb_free_queues(struct igb_adapter *adapter)
279 int i;
281 for (i = 0; i < adapter->num_rx_queues; i++)
282 netif_napi_del(&adapter->rx_ring[i].napi);
284 kfree(adapter->tx_ring);
285 kfree(adapter->rx_ring);
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290 int tx_queue, int msix_vector)
292 u32 msixbm = 0;
293 struct e1000_hw *hw = &adapter->hw;
294 u32 ivar, index;
296 switch (hw->mac.type) {
297 case e1000_82575:
298 /* The 82575 assigns vectors using a bitmask, which matches the
299 bitmask for the EICR/EIMS/EIMC registers. To assign one
300 or more queues to a vector, we write the appropriate bits
301 into the MSIXBM register for that vector. */
302 if (rx_queue > IGB_N0_QUEUE) {
303 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304 adapter->rx_ring[rx_queue].eims_value = msixbm;
306 if (tx_queue > IGB_N0_QUEUE) {
307 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308 adapter->tx_ring[tx_queue].eims_value =
309 E1000_EICR_TX_QUEUE0 << tx_queue;
311 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312 break;
313 case e1000_82576:
314 /* The 82576 uses a table-based method for assigning vectors.
315 Each queue has a single entry in the table to which we write
316 a vector number along with a "valid" bit. Sadly, the layout
317 of the table is somewhat counterintuitive. */
318 if (rx_queue > IGB_N0_QUEUE) {
319 index = (rx_queue & 0x7);
320 ivar = array_rd32(E1000_IVAR0, index);
321 if (rx_queue < 8) {
322 /* vector goes into low byte of register */
323 ivar = ivar & 0xFFFFFF00;
324 ivar |= msix_vector | E1000_IVAR_VALID;
325 } else {
326 /* vector goes into third byte of register */
327 ivar = ivar & 0xFF00FFFF;
328 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
330 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331 array_wr32(E1000_IVAR0, index, ivar);
333 if (tx_queue > IGB_N0_QUEUE) {
334 index = (tx_queue & 0x7);
335 ivar = array_rd32(E1000_IVAR0, index);
336 if (tx_queue < 8) {
337 /* vector goes into second byte of register */
338 ivar = ivar & 0xFFFF00FF;
339 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340 } else {
341 /* vector goes into high byte of register */
342 ivar = ivar & 0x00FFFFFF;
343 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
345 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346 array_wr32(E1000_IVAR0, index, ivar);
348 break;
349 default:
350 BUG();
351 break;
356 * igb_configure_msix - Configure MSI-X hardware
358 * igb_configure_msix sets up the hardware to properly
359 * generate MSI-X interrupts.
361 static void igb_configure_msix(struct igb_adapter *adapter)
363 u32 tmp;
364 int i, vector = 0;
365 struct e1000_hw *hw = &adapter->hw;
367 adapter->eims_enable_mask = 0;
368 if (hw->mac.type == e1000_82576)
369 /* Turn on MSI-X capability first, or our settings
370 * won't stick. And it will take days to debug. */
371 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372 E1000_GPIE_PBA | E1000_GPIE_EIAME |
373 E1000_GPIE_NSICR);
375 for (i = 0; i < adapter->num_tx_queues; i++) {
376 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378 adapter->eims_enable_mask |= tx_ring->eims_value;
379 if (tx_ring->itr_val)
380 writel(tx_ring->itr_val,
381 hw->hw_addr + tx_ring->itr_register);
382 else
383 writel(1, hw->hw_addr + tx_ring->itr_register);
386 for (i = 0; i < adapter->num_rx_queues; i++) {
387 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388 rx_ring->buddy = NULL;
389 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390 adapter->eims_enable_mask |= rx_ring->eims_value;
391 if (rx_ring->itr_val)
392 writel(rx_ring->itr_val,
393 hw->hw_addr + rx_ring->itr_register);
394 else
395 writel(1, hw->hw_addr + rx_ring->itr_register);
399 /* set vector for other causes, i.e. link changes */
400 switch (hw->mac.type) {
401 case e1000_82575:
402 array_wr32(E1000_MSIXBM(0), vector++,
403 E1000_EIMS_OTHER);
405 tmp = rd32(E1000_CTRL_EXT);
406 /* enable MSI-X PBA support*/
407 tmp |= E1000_CTRL_EXT_PBA_CLR;
409 /* Auto-Mask interrupts upon ICR read. */
410 tmp |= E1000_CTRL_EXT_EIAME;
411 tmp |= E1000_CTRL_EXT_IRCA;
413 wr32(E1000_CTRL_EXT, tmp);
414 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415 adapter->eims_other = E1000_EIMS_OTHER;
417 break;
419 case e1000_82576:
420 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421 wr32(E1000_IVAR_MISC, tmp);
423 adapter->eims_enable_mask = (1 << (vector)) - 1;
424 adapter->eims_other = 1 << (vector - 1);
425 break;
426 default:
427 /* do nothing, since nothing else supports MSI-X */
428 break;
429 } /* switch (hw->mac.type) */
430 wrfl();
434 * igb_request_msix - Initialize MSI-X interrupts
436 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437 * kernel.
439 static int igb_request_msix(struct igb_adapter *adapter)
441 struct net_device *netdev = adapter->netdev;
442 int i, err = 0, vector = 0;
444 vector = 0;
446 for (i = 0; i < adapter->num_tx_queues; i++) {
447 struct igb_ring *ring = &(adapter->tx_ring[i]);
448 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449 err = request_irq(adapter->msix_entries[vector].vector,
450 &igb_msix_tx, 0, ring->name,
451 &(adapter->tx_ring[i]));
452 if (err)
453 goto out;
454 ring->itr_register = E1000_EITR(0) + (vector << 2);
455 ring->itr_val = 976; /* ~4000 ints/sec */
456 vector++;
458 for (i = 0; i < adapter->num_rx_queues; i++) {
459 struct igb_ring *ring = &(adapter->rx_ring[i]);
460 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461 sprintf(ring->name, "%s-rx%d", netdev->name, i);
462 else
463 memcpy(ring->name, netdev->name, IFNAMSIZ);
464 err = request_irq(adapter->msix_entries[vector].vector,
465 &igb_msix_rx, 0, ring->name,
466 &(adapter->rx_ring[i]));
467 if (err)
468 goto out;
469 ring->itr_register = E1000_EITR(0) + (vector << 2);
470 ring->itr_val = adapter->itr;
471 /* overwrite the poll routine for MSIX, we've already done
472 * netif_napi_add */
473 ring->napi.poll = &igb_clean_rx_ring_msix;
474 vector++;
477 err = request_irq(adapter->msix_entries[vector].vector,
478 &igb_msix_other, 0, netdev->name, netdev);
479 if (err)
480 goto out;
482 igb_configure_msix(adapter);
483 return 0;
484 out:
485 return err;
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
490 if (adapter->msix_entries) {
491 pci_disable_msix(adapter->pdev);
492 kfree(adapter->msix_entries);
493 adapter->msix_entries = NULL;
494 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495 pci_disable_msi(adapter->pdev);
496 return;
501 * igb_set_interrupt_capability - set MSI or MSI-X if supported
503 * Attempt to configure interrupts using the best available
504 * capabilities of the hardware and kernel.
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
508 int err;
509 int numvecs, i;
511 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513 GFP_KERNEL);
514 if (!adapter->msix_entries)
515 goto msi_only;
517 for (i = 0; i < numvecs; i++)
518 adapter->msix_entries[i].entry = i;
520 err = pci_enable_msix(adapter->pdev,
521 adapter->msix_entries,
522 numvecs);
523 if (err == 0)
524 goto out;
526 igb_reset_interrupt_capability(adapter);
528 /* If we can't do MSI-X, try MSI */
529 msi_only:
530 adapter->num_rx_queues = 1;
531 adapter->num_tx_queues = 1;
532 if (!pci_enable_msi(adapter->pdev))
533 adapter->flags |= IGB_FLAG_HAS_MSI;
534 out:
535 /* Notify the stack of the (possibly) reduced Tx Queue count. */
536 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
537 return;
541 * igb_request_irq - initialize interrupts
543 * Attempts to configure interrupts using the best available
544 * capabilities of the hardware and kernel.
546 static int igb_request_irq(struct igb_adapter *adapter)
548 struct net_device *netdev = adapter->netdev;
549 struct e1000_hw *hw = &adapter->hw;
550 int err = 0;
552 if (adapter->msix_entries) {
553 err = igb_request_msix(adapter);
554 if (!err)
555 goto request_done;
556 /* fall back to MSI */
557 igb_reset_interrupt_capability(adapter);
558 if (!pci_enable_msi(adapter->pdev))
559 adapter->flags |= IGB_FLAG_HAS_MSI;
560 igb_free_all_tx_resources(adapter);
561 igb_free_all_rx_resources(adapter);
562 adapter->num_rx_queues = 1;
563 igb_alloc_queues(adapter);
564 } else {
565 switch (hw->mac.type) {
566 case e1000_82575:
567 wr32(E1000_MSIXBM(0),
568 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
569 break;
570 case e1000_82576:
571 wr32(E1000_IVAR0, E1000_IVAR_VALID);
572 break;
573 default:
574 break;
578 if (adapter->flags & IGB_FLAG_HAS_MSI) {
579 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580 netdev->name, netdev);
581 if (!err)
582 goto request_done;
583 /* fall back to legacy interrupts */
584 igb_reset_interrupt_capability(adapter);
585 adapter->flags &= ~IGB_FLAG_HAS_MSI;
588 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589 netdev->name, netdev);
591 if (err)
592 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
593 err);
595 request_done:
596 return err;
599 static void igb_free_irq(struct igb_adapter *adapter)
601 struct net_device *netdev = adapter->netdev;
603 if (adapter->msix_entries) {
604 int vector = 0, i;
606 for (i = 0; i < adapter->num_tx_queues; i++)
607 free_irq(adapter->msix_entries[vector++].vector,
608 &(adapter->tx_ring[i]));
609 for (i = 0; i < adapter->num_rx_queues; i++)
610 free_irq(adapter->msix_entries[vector++].vector,
611 &(adapter->rx_ring[i]));
613 free_irq(adapter->msix_entries[vector++].vector, netdev);
614 return;
617 free_irq(adapter->pdev->irq, netdev);
621 * igb_irq_disable - Mask off interrupt generation on the NIC
622 * @adapter: board private structure
624 static void igb_irq_disable(struct igb_adapter *adapter)
626 struct e1000_hw *hw = &adapter->hw;
628 if (adapter->msix_entries) {
629 wr32(E1000_EIAM, 0);
630 wr32(E1000_EIMC, ~0);
631 wr32(E1000_EIAC, 0);
634 wr32(E1000_IAM, 0);
635 wr32(E1000_IMC, ~0);
636 wrfl();
637 synchronize_irq(adapter->pdev->irq);
641 * igb_irq_enable - Enable default interrupt generation settings
642 * @adapter: board private structure
644 static void igb_irq_enable(struct igb_adapter *adapter)
646 struct e1000_hw *hw = &adapter->hw;
648 if (adapter->msix_entries) {
649 wr32(E1000_EIAC, adapter->eims_enable_mask);
650 wr32(E1000_EIAM, adapter->eims_enable_mask);
651 wr32(E1000_EIMS, adapter->eims_enable_mask);
652 wr32(E1000_IMS, E1000_IMS_LSC);
653 } else {
654 wr32(E1000_IMS, IMS_ENABLE_MASK);
655 wr32(E1000_IAM, IMS_ENABLE_MASK);
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
661 struct net_device *netdev = adapter->netdev;
662 u16 vid = adapter->hw.mng_cookie.vlan_id;
663 u16 old_vid = adapter->mng_vlan_id;
664 if (adapter->vlgrp) {
665 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666 if (adapter->hw.mng_cookie.status &
667 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668 igb_vlan_rx_add_vid(netdev, vid);
669 adapter->mng_vlan_id = vid;
670 } else
671 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
673 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
674 (vid != old_vid) &&
675 !vlan_group_get_device(adapter->vlgrp, old_vid))
676 igb_vlan_rx_kill_vid(netdev, old_vid);
677 } else
678 adapter->mng_vlan_id = vid;
683 * igb_release_hw_control - release control of the h/w to f/w
684 * @adapter: address of board private structure
686 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687 * For ASF and Pass Through versions of f/w this means that the
688 * driver is no longer loaded.
691 static void igb_release_hw_control(struct igb_adapter *adapter)
693 struct e1000_hw *hw = &adapter->hw;
694 u32 ctrl_ext;
696 /* Let firmware take over control of h/w */
697 ctrl_ext = rd32(E1000_CTRL_EXT);
698 wr32(E1000_CTRL_EXT,
699 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
704 * igb_get_hw_control - get control of the h/w from f/w
705 * @adapter: address of board private structure
707 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708 * For ASF and Pass Through versions of f/w this means that
709 * the driver is loaded.
712 static void igb_get_hw_control(struct igb_adapter *adapter)
714 struct e1000_hw *hw = &adapter->hw;
715 u32 ctrl_ext;
717 /* Let firmware know the driver has taken over */
718 ctrl_ext = rd32(E1000_CTRL_EXT);
719 wr32(E1000_CTRL_EXT,
720 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
724 * igb_configure - configure the hardware for RX and TX
725 * @adapter: private board structure
727 static void igb_configure(struct igb_adapter *adapter)
729 struct net_device *netdev = adapter->netdev;
730 int i;
732 igb_get_hw_control(adapter);
733 igb_set_multi(netdev);
735 igb_restore_vlan(adapter);
737 igb_configure_tx(adapter);
738 igb_setup_rctl(adapter);
739 igb_configure_rx(adapter);
741 igb_rx_fifo_flush_82575(&adapter->hw);
743 /* call IGB_DESC_UNUSED which always leaves
744 * at least 1 descriptor unused to make sure
745 * next_to_use != next_to_clean */
746 for (i = 0; i < adapter->num_rx_queues; i++) {
747 struct igb_ring *ring = &adapter->rx_ring[i];
748 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
752 adapter->tx_queue_len = netdev->tx_queue_len;
757 * igb_up - Open the interface and prepare it to handle traffic
758 * @adapter: board private structure
761 int igb_up(struct igb_adapter *adapter)
763 struct e1000_hw *hw = &adapter->hw;
764 int i;
766 /* hardware has been reset, we need to reload some things */
767 igb_configure(adapter);
769 clear_bit(__IGB_DOWN, &adapter->state);
771 for (i = 0; i < adapter->num_rx_queues; i++)
772 napi_enable(&adapter->rx_ring[i].napi);
773 if (adapter->msix_entries)
774 igb_configure_msix(adapter);
776 /* Clear any pending interrupts. */
777 rd32(E1000_ICR);
778 igb_irq_enable(adapter);
780 /* Fire a link change interrupt to start the watchdog. */
781 wr32(E1000_ICS, E1000_ICS_LSC);
782 return 0;
785 void igb_down(struct igb_adapter *adapter)
787 struct e1000_hw *hw = &adapter->hw;
788 struct net_device *netdev = adapter->netdev;
789 u32 tctl, rctl;
790 int i;
792 /* signal that we're down so the interrupt handler does not
793 * reschedule our watchdog timer */
794 set_bit(__IGB_DOWN, &adapter->state);
796 /* disable receives in the hardware */
797 rctl = rd32(E1000_RCTL);
798 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
799 /* flush and sleep below */
801 netif_tx_stop_all_queues(netdev);
803 /* disable transmits in the hardware */
804 tctl = rd32(E1000_TCTL);
805 tctl &= ~E1000_TCTL_EN;
806 wr32(E1000_TCTL, tctl);
807 /* flush both disables and wait for them to finish */
808 wrfl();
809 msleep(10);
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_disable(&adapter->rx_ring[i].napi);
814 igb_irq_disable(adapter);
816 del_timer_sync(&adapter->watchdog_timer);
817 del_timer_sync(&adapter->phy_info_timer);
819 netdev->tx_queue_len = adapter->tx_queue_len;
820 netif_carrier_off(netdev);
821 adapter->link_speed = 0;
822 adapter->link_duplex = 0;
824 if (!pci_channel_offline(adapter->pdev))
825 igb_reset(adapter);
826 igb_clean_all_tx_rings(adapter);
827 igb_clean_all_rx_rings(adapter);
830 void igb_reinit_locked(struct igb_adapter *adapter)
832 WARN_ON(in_interrupt());
833 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834 msleep(1);
835 igb_down(adapter);
836 igb_up(adapter);
837 clear_bit(__IGB_RESETTING, &adapter->state);
840 void igb_reset(struct igb_adapter *adapter)
842 struct e1000_hw *hw = &adapter->hw;
843 struct e1000_mac_info *mac = &hw->mac;
844 struct e1000_fc_info *fc = &hw->fc;
845 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
846 u16 hwm;
848 /* Repartition Pba for greater than 9k mtu
849 * To take effect CTRL.RST is required.
851 if (mac->type != e1000_82576) {
852 pba = E1000_PBA_34K;
854 else {
855 pba = E1000_PBA_64K;
858 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
859 (mac->type < e1000_82576)) {
860 /* adjust PBA for jumbo frames */
861 wr32(E1000_PBA, pba);
863 /* To maintain wire speed transmits, the Tx FIFO should be
864 * large enough to accommodate two full transmit packets,
865 * rounded up to the next 1KB and expressed in KB. Likewise,
866 * the Rx FIFO should be large enough to accommodate at least
867 * one full receive packet and is similarly rounded up and
868 * expressed in KB. */
869 pba = rd32(E1000_PBA);
870 /* upper 16 bits has Tx packet buffer allocation size in KB */
871 tx_space = pba >> 16;
872 /* lower 16 bits has Rx packet buffer allocation size in KB */
873 pba &= 0xffff;
874 /* the tx fifo also stores 16 bytes of information about the tx
875 * but don't include ethernet FCS because hardware appends it */
876 min_tx_space = (adapter->max_frame_size +
877 sizeof(struct e1000_tx_desc) -
878 ETH_FCS_LEN) * 2;
879 min_tx_space = ALIGN(min_tx_space, 1024);
880 min_tx_space >>= 10;
881 /* software strips receive CRC, so leave room for it */
882 min_rx_space = adapter->max_frame_size;
883 min_rx_space = ALIGN(min_rx_space, 1024);
884 min_rx_space >>= 10;
886 /* If current Tx allocation is less than the min Tx FIFO size,
887 * and the min Tx FIFO size is less than the current Rx FIFO
888 * allocation, take space away from current Rx allocation */
889 if (tx_space < min_tx_space &&
890 ((min_tx_space - tx_space) < pba)) {
891 pba = pba - (min_tx_space - tx_space);
893 /* if short on rx space, rx wins and must trump tx
894 * adjustment */
895 if (pba < min_rx_space)
896 pba = min_rx_space;
898 wr32(E1000_PBA, pba);
901 /* flow control settings */
902 /* The high water mark must be low enough to fit one full frame
903 * (or the size used for early receive) above it in the Rx FIFO.
904 * Set it to the lower of:
905 * - 90% of the Rx FIFO size, or
906 * - the full Rx FIFO size minus one full frame */
907 hwm = min(((pba << 10) * 9 / 10),
908 ((pba << 10) - 2 * adapter->max_frame_size));
910 if (mac->type < e1000_82576) {
911 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
912 fc->low_water = fc->high_water - 8;
913 } else {
914 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
915 fc->low_water = fc->high_water - 16;
917 fc->pause_time = 0xFFFF;
918 fc->send_xon = 1;
919 fc->type = fc->original_type;
921 /* Allow time for pending master requests to run */
922 adapter->hw.mac.ops.reset_hw(&adapter->hw);
923 wr32(E1000_WUC, 0);
925 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
926 dev_err(&adapter->pdev->dev, "Hardware Error\n");
928 igb_update_mng_vlan(adapter);
930 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
931 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
933 igb_reset_adaptive(&adapter->hw);
934 if (adapter->hw.phy.ops.get_phy_info)
935 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
939 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
940 * @pdev: PCI device information struct
942 * Returns true if an adapter needs ioport resources
944 static int igb_is_need_ioport(struct pci_dev *pdev)
946 switch (pdev->device) {
947 /* Currently there are no adapters that need ioport resources */
948 default:
949 return false;
953 static const struct net_device_ops igb_netdev_ops = {
954 .ndo_open = igb_open,
955 .ndo_stop = igb_close,
956 .ndo_start_xmit = igb_xmit_frame_adv,
957 .ndo_get_stats = igb_get_stats,
958 .ndo_set_multicast_list = igb_set_multi,
959 .ndo_set_mac_address = igb_set_mac,
960 .ndo_change_mtu = igb_change_mtu,
961 .ndo_do_ioctl = igb_ioctl,
962 .ndo_tx_timeout = igb_tx_timeout,
963 .ndo_validate_addr = eth_validate_addr,
964 .ndo_vlan_rx_register = igb_vlan_rx_register,
965 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
966 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
967 #ifdef CONFIG_NET_POLL_CONTROLLER
968 .ndo_poll_controller = igb_netpoll,
969 #endif
973 * igb_probe - Device Initialization Routine
974 * @pdev: PCI device information struct
975 * @ent: entry in igb_pci_tbl
977 * Returns 0 on success, negative on failure
979 * igb_probe initializes an adapter identified by a pci_dev structure.
980 * The OS initialization, configuring of the adapter private structure,
981 * and a hardware reset occur.
983 static int __devinit igb_probe(struct pci_dev *pdev,
984 const struct pci_device_id *ent)
986 struct net_device *netdev;
987 struct igb_adapter *adapter;
988 struct e1000_hw *hw;
989 struct pci_dev *us_dev;
990 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
991 unsigned long mmio_start, mmio_len;
992 int i, err, pci_using_dac, pos;
993 u16 eeprom_data = 0, state = 0;
994 u16 eeprom_apme_mask = IGB_EEPROM_APME;
995 u32 part_num;
996 int bars, need_ioport;
998 /* do not allocate ioport bars when not needed */
999 need_ioport = igb_is_need_ioport(pdev);
1000 if (need_ioport) {
1001 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1002 err = pci_enable_device(pdev);
1003 } else {
1004 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1005 err = pci_enable_device_mem(pdev);
1007 if (err)
1008 return err;
1010 pci_using_dac = 0;
1011 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1012 if (!err) {
1013 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1014 if (!err)
1015 pci_using_dac = 1;
1016 } else {
1017 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1018 if (err) {
1019 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1020 if (err) {
1021 dev_err(&pdev->dev, "No usable DMA "
1022 "configuration, aborting\n");
1023 goto err_dma;
1028 /* 82575 requires that the pci-e link partner disable the L0s state */
1029 switch (pdev->device) {
1030 case E1000_DEV_ID_82575EB_COPPER:
1031 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1032 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1033 us_dev = pdev->bus->self;
1034 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1035 if (pos) {
1036 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1037 &state);
1038 state &= ~PCIE_LINK_STATE_L0S;
1039 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1040 state);
1041 dev_info(&pdev->dev,
1042 "Disabling ASPM L0s upstream switch port %s\n",
1043 pci_name(us_dev));
1045 default:
1046 break;
1049 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1050 if (err)
1051 goto err_pci_reg;
1053 pci_set_master(pdev);
1054 pci_save_state(pdev);
1056 err = -ENOMEM;
1057 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1058 if (!netdev)
1059 goto err_alloc_etherdev;
1061 SET_NETDEV_DEV(netdev, &pdev->dev);
1063 pci_set_drvdata(pdev, netdev);
1064 adapter = netdev_priv(netdev);
1065 adapter->netdev = netdev;
1066 adapter->pdev = pdev;
1067 hw = &adapter->hw;
1068 hw->back = adapter;
1069 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1070 adapter->bars = bars;
1071 adapter->need_ioport = need_ioport;
1073 mmio_start = pci_resource_start(pdev, 0);
1074 mmio_len = pci_resource_len(pdev, 0);
1076 err = -EIO;
1077 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1078 if (!adapter->hw.hw_addr)
1079 goto err_ioremap;
1081 netdev->netdev_ops = &igb_netdev_ops;
1082 igb_set_ethtool_ops(netdev);
1083 netdev->watchdog_timeo = 5 * HZ;
1085 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1087 netdev->mem_start = mmio_start;
1088 netdev->mem_end = mmio_start + mmio_len;
1090 /* PCI config space info */
1091 hw->vendor_id = pdev->vendor;
1092 hw->device_id = pdev->device;
1093 hw->revision_id = pdev->revision;
1094 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1095 hw->subsystem_device_id = pdev->subsystem_device;
1097 /* setup the private structure */
1098 hw->back = adapter;
1099 /* Copy the default MAC, PHY and NVM function pointers */
1100 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1101 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1102 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1103 /* Initialize skew-specific constants */
1104 err = ei->get_invariants(hw);
1105 if (err)
1106 goto err_hw_init;
1108 err = igb_sw_init(adapter);
1109 if (err)
1110 goto err_sw_init;
1112 igb_get_bus_info_pcie(hw);
1114 /* set flags */
1115 switch (hw->mac.type) {
1116 case e1000_82576:
1117 case e1000_82575:
1118 adapter->flags |= IGB_FLAG_HAS_DCA;
1119 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1120 break;
1121 default:
1122 break;
1125 hw->phy.autoneg_wait_to_complete = false;
1126 hw->mac.adaptive_ifs = true;
1128 /* Copper options */
1129 if (hw->phy.media_type == e1000_media_type_copper) {
1130 hw->phy.mdix = AUTO_ALL_MODES;
1131 hw->phy.disable_polarity_correction = false;
1132 hw->phy.ms_type = e1000_ms_hw_default;
1135 if (igb_check_reset_block(hw))
1136 dev_info(&pdev->dev,
1137 "PHY reset is blocked due to SOL/IDER session.\n");
1139 netdev->features = NETIF_F_SG |
1140 NETIF_F_HW_CSUM |
1141 NETIF_F_HW_VLAN_TX |
1142 NETIF_F_HW_VLAN_RX |
1143 NETIF_F_HW_VLAN_FILTER;
1145 netdev->features |= NETIF_F_TSO;
1146 netdev->features |= NETIF_F_TSO6;
1148 #ifdef CONFIG_IGB_LRO
1149 netdev->features |= NETIF_F_LRO;
1150 #endif
1152 netdev->vlan_features |= NETIF_F_TSO;
1153 netdev->vlan_features |= NETIF_F_TSO6;
1154 netdev->vlan_features |= NETIF_F_HW_CSUM;
1155 netdev->vlan_features |= NETIF_F_SG;
1157 if (pci_using_dac)
1158 netdev->features |= NETIF_F_HIGHDMA;
1160 netdev->features |= NETIF_F_LLTX;
1161 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1163 /* before reading the NVM, reset the controller to put the device in a
1164 * known good starting state */
1165 hw->mac.ops.reset_hw(hw);
1167 /* make sure the NVM is good */
1168 if (igb_validate_nvm_checksum(hw) < 0) {
1169 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1170 err = -EIO;
1171 goto err_eeprom;
1174 /* copy the MAC address out of the NVM */
1175 if (hw->mac.ops.read_mac_addr(hw))
1176 dev_err(&pdev->dev, "NVM Read Error\n");
1178 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1179 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1181 if (!is_valid_ether_addr(netdev->perm_addr)) {
1182 dev_err(&pdev->dev, "Invalid MAC Address\n");
1183 err = -EIO;
1184 goto err_eeprom;
1187 init_timer(&adapter->watchdog_timer);
1188 adapter->watchdog_timer.function = &igb_watchdog;
1189 adapter->watchdog_timer.data = (unsigned long) adapter;
1191 init_timer(&adapter->phy_info_timer);
1192 adapter->phy_info_timer.function = &igb_update_phy_info;
1193 adapter->phy_info_timer.data = (unsigned long) adapter;
1195 INIT_WORK(&adapter->reset_task, igb_reset_task);
1196 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1198 /* Initialize link & ring properties that are user-changeable */
1199 adapter->tx_ring->count = 256;
1200 for (i = 0; i < adapter->num_tx_queues; i++)
1201 adapter->tx_ring[i].count = adapter->tx_ring->count;
1202 adapter->rx_ring->count = 256;
1203 for (i = 0; i < adapter->num_rx_queues; i++)
1204 adapter->rx_ring[i].count = adapter->rx_ring->count;
1206 adapter->fc_autoneg = true;
1207 hw->mac.autoneg = true;
1208 hw->phy.autoneg_advertised = 0x2f;
1210 hw->fc.original_type = e1000_fc_default;
1211 hw->fc.type = e1000_fc_default;
1213 adapter->itr_setting = 3;
1214 adapter->itr = IGB_START_ITR;
1216 igb_validate_mdi_setting(hw);
1218 adapter->rx_csum = 1;
1220 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1221 * enable the ACPI Magic Packet filter
1224 if (hw->bus.func == 0 ||
1225 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1226 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1227 &eeprom_data);
1229 if (eeprom_data & eeprom_apme_mask)
1230 adapter->eeprom_wol |= E1000_WUFC_MAG;
1232 /* now that we have the eeprom settings, apply the special cases where
1233 * the eeprom may be wrong or the board simply won't support wake on
1234 * lan on a particular port */
1235 switch (pdev->device) {
1236 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1237 adapter->eeprom_wol = 0;
1238 break;
1239 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1240 case E1000_DEV_ID_82576_FIBER:
1241 case E1000_DEV_ID_82576_SERDES:
1242 /* Wake events only supported on port A for dual fiber
1243 * regardless of eeprom setting */
1244 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1245 adapter->eeprom_wol = 0;
1246 break;
1249 /* initialize the wol settings based on the eeprom settings */
1250 adapter->wol = adapter->eeprom_wol;
1251 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1253 /* reset the hardware with the new settings */
1254 igb_reset(adapter);
1256 /* let the f/w know that the h/w is now under the control of the
1257 * driver. */
1258 igb_get_hw_control(adapter);
1260 /* tell the stack to leave us alone until igb_open() is called */
1261 netif_carrier_off(netdev);
1262 netif_tx_stop_all_queues(netdev);
1264 strcpy(netdev->name, "eth%d");
1265 err = register_netdev(netdev);
1266 if (err)
1267 goto err_register;
1269 #ifdef CONFIG_IGB_DCA
1270 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1271 (dca_add_requester(&pdev->dev) == 0)) {
1272 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1273 dev_info(&pdev->dev, "DCA enabled\n");
1274 /* Always use CB2 mode, difference is masked
1275 * in the CB driver. */
1276 wr32(E1000_DCA_CTRL, 2);
1277 igb_setup_dca(adapter);
1279 #endif
1281 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1282 /* print bus type/speed/width info */
1283 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1284 netdev->name,
1285 ((hw->bus.speed == e1000_bus_speed_2500)
1286 ? "2.5Gb/s" : "unknown"),
1287 ((hw->bus.width == e1000_bus_width_pcie_x4)
1288 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1289 ? "Width x1" : "unknown"),
1290 netdev->dev_addr);
1292 igb_read_part_num(hw, &part_num);
1293 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1294 (part_num >> 8), (part_num & 0xff));
1296 dev_info(&pdev->dev,
1297 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1298 adapter->msix_entries ? "MSI-X" :
1299 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1300 adapter->num_rx_queues, adapter->num_tx_queues);
1302 return 0;
1304 err_register:
1305 igb_release_hw_control(adapter);
1306 err_eeprom:
1307 if (!igb_check_reset_block(hw))
1308 hw->phy.ops.reset_phy(hw);
1310 if (hw->flash_address)
1311 iounmap(hw->flash_address);
1313 igb_remove_device(hw);
1314 igb_free_queues(adapter);
1315 err_sw_init:
1316 err_hw_init:
1317 iounmap(hw->hw_addr);
1318 err_ioremap:
1319 free_netdev(netdev);
1320 err_alloc_etherdev:
1321 pci_release_selected_regions(pdev, bars);
1322 err_pci_reg:
1323 err_dma:
1324 pci_disable_device(pdev);
1325 return err;
1329 * igb_remove - Device Removal Routine
1330 * @pdev: PCI device information struct
1332 * igb_remove is called by the PCI subsystem to alert the driver
1333 * that it should release a PCI device. The could be caused by a
1334 * Hot-Plug event, or because the driver is going to be removed from
1335 * memory.
1337 static void __devexit igb_remove(struct pci_dev *pdev)
1339 struct net_device *netdev = pci_get_drvdata(pdev);
1340 struct igb_adapter *adapter = netdev_priv(netdev);
1341 #ifdef CONFIG_IGB_DCA
1342 struct e1000_hw *hw = &adapter->hw;
1343 #endif
1345 /* flush_scheduled work may reschedule our watchdog task, so
1346 * explicitly disable watchdog tasks from being rescheduled */
1347 set_bit(__IGB_DOWN, &adapter->state);
1348 del_timer_sync(&adapter->watchdog_timer);
1349 del_timer_sync(&adapter->phy_info_timer);
1351 flush_scheduled_work();
1353 #ifdef CONFIG_IGB_DCA
1354 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1355 dev_info(&pdev->dev, "DCA disabled\n");
1356 dca_remove_requester(&pdev->dev);
1357 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1358 wr32(E1000_DCA_CTRL, 1);
1360 #endif
1362 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1363 * would have already happened in close and is redundant. */
1364 igb_release_hw_control(adapter);
1366 unregister_netdev(netdev);
1368 if (adapter->hw.phy.ops.reset_phy &&
1369 !igb_check_reset_block(&adapter->hw))
1370 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1372 igb_remove_device(&adapter->hw);
1373 igb_reset_interrupt_capability(adapter);
1375 igb_free_queues(adapter);
1377 iounmap(adapter->hw.hw_addr);
1378 if (adapter->hw.flash_address)
1379 iounmap(adapter->hw.flash_address);
1380 pci_release_selected_regions(pdev, adapter->bars);
1382 free_netdev(netdev);
1384 pci_disable_device(pdev);
1388 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1389 * @adapter: board private structure to initialize
1391 * igb_sw_init initializes the Adapter private data structure.
1392 * Fields are initialized based on PCI device information and
1393 * OS network device settings (MTU size).
1395 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1397 struct e1000_hw *hw = &adapter->hw;
1398 struct net_device *netdev = adapter->netdev;
1399 struct pci_dev *pdev = adapter->pdev;
1401 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1403 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1404 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1405 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1406 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1407 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1408 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1410 /* Number of supported queues. */
1411 /* Having more queues than CPUs doesn't make sense. */
1412 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1413 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1415 /* This call may decrease the number of queues depending on
1416 * interrupt mode. */
1417 igb_set_interrupt_capability(adapter);
1419 if (igb_alloc_queues(adapter)) {
1420 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1421 return -ENOMEM;
1424 /* Explicitly disable IRQ since the NIC can be in any state. */
1425 igb_irq_disable(adapter);
1427 set_bit(__IGB_DOWN, &adapter->state);
1428 return 0;
1432 * igb_open - Called when a network interface is made active
1433 * @netdev: network interface device structure
1435 * Returns 0 on success, negative value on failure
1437 * The open entry point is called when a network interface is made
1438 * active by the system (IFF_UP). At this point all resources needed
1439 * for transmit and receive operations are allocated, the interrupt
1440 * handler is registered with the OS, the watchdog timer is started,
1441 * and the stack is notified that the interface is ready.
1443 static int igb_open(struct net_device *netdev)
1445 struct igb_adapter *adapter = netdev_priv(netdev);
1446 struct e1000_hw *hw = &adapter->hw;
1447 int err;
1448 int i;
1450 /* disallow open during test */
1451 if (test_bit(__IGB_TESTING, &adapter->state))
1452 return -EBUSY;
1454 /* allocate transmit descriptors */
1455 err = igb_setup_all_tx_resources(adapter);
1456 if (err)
1457 goto err_setup_tx;
1459 /* allocate receive descriptors */
1460 err = igb_setup_all_rx_resources(adapter);
1461 if (err)
1462 goto err_setup_rx;
1464 /* e1000_power_up_phy(adapter); */
1466 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1467 if ((adapter->hw.mng_cookie.status &
1468 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1469 igb_update_mng_vlan(adapter);
1471 /* before we allocate an interrupt, we must be ready to handle it.
1472 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1473 * as soon as we call pci_request_irq, so we have to setup our
1474 * clean_rx handler before we do so. */
1475 igb_configure(adapter);
1477 err = igb_request_irq(adapter);
1478 if (err)
1479 goto err_req_irq;
1481 /* From here on the code is the same as igb_up() */
1482 clear_bit(__IGB_DOWN, &adapter->state);
1484 for (i = 0; i < adapter->num_rx_queues; i++)
1485 napi_enable(&adapter->rx_ring[i].napi);
1487 /* Clear any pending interrupts. */
1488 rd32(E1000_ICR);
1490 igb_irq_enable(adapter);
1492 netif_tx_start_all_queues(netdev);
1494 /* Fire a link status change interrupt to start the watchdog. */
1495 wr32(E1000_ICS, E1000_ICS_LSC);
1497 return 0;
1499 err_req_irq:
1500 igb_release_hw_control(adapter);
1501 /* e1000_power_down_phy(adapter); */
1502 igb_free_all_rx_resources(adapter);
1503 err_setup_rx:
1504 igb_free_all_tx_resources(adapter);
1505 err_setup_tx:
1506 igb_reset(adapter);
1508 return err;
1512 * igb_close - Disables a network interface
1513 * @netdev: network interface device structure
1515 * Returns 0, this is not allowed to fail
1517 * The close entry point is called when an interface is de-activated
1518 * by the OS. The hardware is still under the driver's control, but
1519 * needs to be disabled. A global MAC reset is issued to stop the
1520 * hardware, and all transmit and receive resources are freed.
1522 static int igb_close(struct net_device *netdev)
1524 struct igb_adapter *adapter = netdev_priv(netdev);
1526 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1527 igb_down(adapter);
1529 igb_free_irq(adapter);
1531 igb_free_all_tx_resources(adapter);
1532 igb_free_all_rx_resources(adapter);
1534 /* kill manageability vlan ID if supported, but not if a vlan with
1535 * the same ID is registered on the host OS (let 8021q kill it) */
1536 if ((adapter->hw.mng_cookie.status &
1537 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1538 !(adapter->vlgrp &&
1539 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1540 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1542 return 0;
1546 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1547 * @adapter: board private structure
1548 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1550 * Return 0 on success, negative on failure
1553 int igb_setup_tx_resources(struct igb_adapter *adapter,
1554 struct igb_ring *tx_ring)
1556 struct pci_dev *pdev = adapter->pdev;
1557 int size;
1559 size = sizeof(struct igb_buffer) * tx_ring->count;
1560 tx_ring->buffer_info = vmalloc(size);
1561 if (!tx_ring->buffer_info)
1562 goto err;
1563 memset(tx_ring->buffer_info, 0, size);
1565 /* round up to nearest 4K */
1566 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1567 + sizeof(u32);
1568 tx_ring->size = ALIGN(tx_ring->size, 4096);
1570 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1571 &tx_ring->dma);
1573 if (!tx_ring->desc)
1574 goto err;
1576 tx_ring->adapter = adapter;
1577 tx_ring->next_to_use = 0;
1578 tx_ring->next_to_clean = 0;
1579 return 0;
1581 err:
1582 vfree(tx_ring->buffer_info);
1583 dev_err(&adapter->pdev->dev,
1584 "Unable to allocate memory for the transmit descriptor ring\n");
1585 return -ENOMEM;
1589 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1590 * (Descriptors) for all queues
1591 * @adapter: board private structure
1593 * Return 0 on success, negative on failure
1595 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1597 int i, err = 0;
1598 int r_idx;
1600 for (i = 0; i < adapter->num_tx_queues; i++) {
1601 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1602 if (err) {
1603 dev_err(&adapter->pdev->dev,
1604 "Allocation for Tx Queue %u failed\n", i);
1605 for (i--; i >= 0; i--)
1606 igb_free_tx_resources(&adapter->tx_ring[i]);
1607 break;
1611 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1612 r_idx = i % adapter->num_tx_queues;
1613 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1615 return err;
1619 * igb_configure_tx - Configure transmit Unit after Reset
1620 * @adapter: board private structure
1622 * Configure the Tx unit of the MAC after a reset.
1624 static void igb_configure_tx(struct igb_adapter *adapter)
1626 u64 tdba, tdwba;
1627 struct e1000_hw *hw = &adapter->hw;
1628 u32 tctl;
1629 u32 txdctl, txctrl;
1630 int i;
1632 for (i = 0; i < adapter->num_tx_queues; i++) {
1633 struct igb_ring *ring = &(adapter->tx_ring[i]);
1635 wr32(E1000_TDLEN(i),
1636 ring->count * sizeof(struct e1000_tx_desc));
1637 tdba = ring->dma;
1638 wr32(E1000_TDBAL(i),
1639 tdba & 0x00000000ffffffffULL);
1640 wr32(E1000_TDBAH(i), tdba >> 32);
1642 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1643 tdwba |= 1; /* enable head wb */
1644 wr32(E1000_TDWBAL(i),
1645 tdwba & 0x00000000ffffffffULL);
1646 wr32(E1000_TDWBAH(i), tdwba >> 32);
1648 ring->head = E1000_TDH(i);
1649 ring->tail = E1000_TDT(i);
1650 writel(0, hw->hw_addr + ring->tail);
1651 writel(0, hw->hw_addr + ring->head);
1652 txdctl = rd32(E1000_TXDCTL(i));
1653 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1654 wr32(E1000_TXDCTL(i), txdctl);
1656 /* Turn off Relaxed Ordering on head write-backs. The
1657 * writebacks MUST be delivered in order or it will
1658 * completely screw up our bookeeping.
1660 txctrl = rd32(E1000_DCA_TXCTRL(i));
1661 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1662 wr32(E1000_DCA_TXCTRL(i), txctrl);
1667 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1669 /* Program the Transmit Control Register */
1671 tctl = rd32(E1000_TCTL);
1672 tctl &= ~E1000_TCTL_CT;
1673 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1674 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1676 igb_config_collision_dist(hw);
1678 /* Setup Transmit Descriptor Settings for eop descriptor */
1679 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1681 /* Enable transmits */
1682 tctl |= E1000_TCTL_EN;
1684 wr32(E1000_TCTL, tctl);
1688 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1689 * @adapter: board private structure
1690 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1692 * Returns 0 on success, negative on failure
1695 int igb_setup_rx_resources(struct igb_adapter *adapter,
1696 struct igb_ring *rx_ring)
1698 struct pci_dev *pdev = adapter->pdev;
1699 int size, desc_len;
1701 #ifdef CONFIG_IGB_LRO
1702 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1703 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1704 if (!rx_ring->lro_mgr.lro_arr)
1705 goto err;
1706 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1707 #endif
1709 size = sizeof(struct igb_buffer) * rx_ring->count;
1710 rx_ring->buffer_info = vmalloc(size);
1711 if (!rx_ring->buffer_info)
1712 goto err;
1713 memset(rx_ring->buffer_info, 0, size);
1715 desc_len = sizeof(union e1000_adv_rx_desc);
1717 /* Round up to nearest 4K */
1718 rx_ring->size = rx_ring->count * desc_len;
1719 rx_ring->size = ALIGN(rx_ring->size, 4096);
1721 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1722 &rx_ring->dma);
1724 if (!rx_ring->desc)
1725 goto err;
1727 rx_ring->next_to_clean = 0;
1728 rx_ring->next_to_use = 0;
1730 rx_ring->adapter = adapter;
1732 return 0;
1734 err:
1735 #ifdef CONFIG_IGB_LRO
1736 vfree(rx_ring->lro_mgr.lro_arr);
1737 rx_ring->lro_mgr.lro_arr = NULL;
1738 #endif
1739 vfree(rx_ring->buffer_info);
1740 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1741 "the receive descriptor ring\n");
1742 return -ENOMEM;
1746 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1747 * (Descriptors) for all queues
1748 * @adapter: board private structure
1750 * Return 0 on success, negative on failure
1752 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1754 int i, err = 0;
1756 for (i = 0; i < adapter->num_rx_queues; i++) {
1757 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1758 if (err) {
1759 dev_err(&adapter->pdev->dev,
1760 "Allocation for Rx Queue %u failed\n", i);
1761 for (i--; i >= 0; i--)
1762 igb_free_rx_resources(&adapter->rx_ring[i]);
1763 break;
1767 return err;
1771 * igb_setup_rctl - configure the receive control registers
1772 * @adapter: Board private structure
1774 static void igb_setup_rctl(struct igb_adapter *adapter)
1776 struct e1000_hw *hw = &adapter->hw;
1777 u32 rctl;
1778 u32 srrctl = 0;
1779 int i;
1781 rctl = rd32(E1000_RCTL);
1783 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1785 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1786 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1787 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1790 * enable stripping of CRC. It's unlikely this will break BMC
1791 * redirection as it did with e1000. Newer features require
1792 * that the HW strips the CRC.
1794 rctl |= E1000_RCTL_SECRC;
1796 rctl &= ~E1000_RCTL_SBP;
1798 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1799 rctl &= ~E1000_RCTL_LPE;
1800 else
1801 rctl |= E1000_RCTL_LPE;
1802 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1803 /* Setup buffer sizes */
1804 rctl &= ~E1000_RCTL_SZ_4096;
1805 rctl |= E1000_RCTL_BSEX;
1806 switch (adapter->rx_buffer_len) {
1807 case IGB_RXBUFFER_256:
1808 rctl |= E1000_RCTL_SZ_256;
1809 rctl &= ~E1000_RCTL_BSEX;
1810 break;
1811 case IGB_RXBUFFER_512:
1812 rctl |= E1000_RCTL_SZ_512;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case IGB_RXBUFFER_1024:
1816 rctl |= E1000_RCTL_SZ_1024;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case IGB_RXBUFFER_2048:
1820 default:
1821 rctl |= E1000_RCTL_SZ_2048;
1822 rctl &= ~E1000_RCTL_BSEX;
1823 break;
1825 } else {
1826 rctl &= ~E1000_RCTL_BSEX;
1827 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1830 /* 82575 and greater support packet-split where the protocol
1831 * header is placed in skb->data and the packet data is
1832 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1833 * In the case of a non-split, skb->data is linearly filled,
1834 * followed by the page buffers. Therefore, skb->data is
1835 * sized to hold the largest protocol header.
1837 /* allocations using alloc_page take too long for regular MTU
1838 * so only enable packet split for jumbo frames */
1839 if (rctl & E1000_RCTL_LPE) {
1840 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1841 srrctl |= adapter->rx_ps_hdr_size <<
1842 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1843 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1844 } else {
1845 adapter->rx_ps_hdr_size = 0;
1846 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1849 for (i = 0; i < adapter->num_rx_queues; i++)
1850 wr32(E1000_SRRCTL(i), srrctl);
1852 wr32(E1000_RCTL, rctl);
1856 * igb_configure_rx - Configure receive Unit after Reset
1857 * @adapter: board private structure
1859 * Configure the Rx unit of the MAC after a reset.
1861 static void igb_configure_rx(struct igb_adapter *adapter)
1863 u64 rdba;
1864 struct e1000_hw *hw = &adapter->hw;
1865 u32 rctl, rxcsum;
1866 u32 rxdctl;
1867 int i;
1869 /* disable receives while setting up the descriptors */
1870 rctl = rd32(E1000_RCTL);
1871 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1872 wrfl();
1873 mdelay(10);
1875 if (adapter->itr_setting > 3)
1876 wr32(E1000_ITR, adapter->itr);
1878 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1879 * the Base and Length of the Rx Descriptor Ring */
1880 for (i = 0; i < adapter->num_rx_queues; i++) {
1881 struct igb_ring *ring = &(adapter->rx_ring[i]);
1882 rdba = ring->dma;
1883 wr32(E1000_RDBAL(i),
1884 rdba & 0x00000000ffffffffULL);
1885 wr32(E1000_RDBAH(i), rdba >> 32);
1886 wr32(E1000_RDLEN(i),
1887 ring->count * sizeof(union e1000_adv_rx_desc));
1889 ring->head = E1000_RDH(i);
1890 ring->tail = E1000_RDT(i);
1891 writel(0, hw->hw_addr + ring->tail);
1892 writel(0, hw->hw_addr + ring->head);
1894 rxdctl = rd32(E1000_RXDCTL(i));
1895 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1896 rxdctl &= 0xFFF00000;
1897 rxdctl |= IGB_RX_PTHRESH;
1898 rxdctl |= IGB_RX_HTHRESH << 8;
1899 rxdctl |= IGB_RX_WTHRESH << 16;
1900 wr32(E1000_RXDCTL(i), rxdctl);
1901 #ifdef CONFIG_IGB_LRO
1902 /* Intitial LRO Settings */
1903 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1904 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1905 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1906 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1907 ring->lro_mgr.dev = adapter->netdev;
1908 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1909 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1910 #endif
1913 if (adapter->num_rx_queues > 1) {
1914 u32 random[10];
1915 u32 mrqc;
1916 u32 j, shift;
1917 union e1000_reta {
1918 u32 dword;
1919 u8 bytes[4];
1920 } reta;
1922 get_random_bytes(&random[0], 40);
1924 if (hw->mac.type >= e1000_82576)
1925 shift = 0;
1926 else
1927 shift = 6;
1928 for (j = 0; j < (32 * 4); j++) {
1929 reta.bytes[j & 3] =
1930 (j % adapter->num_rx_queues) << shift;
1931 if ((j & 3) == 3)
1932 writel(reta.dword,
1933 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1935 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1937 /* Fill out hash function seeds */
1938 for (j = 0; j < 10; j++)
1939 array_wr32(E1000_RSSRK(0), j, random[j]);
1941 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1942 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1943 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1944 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1945 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1946 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1947 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1948 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1951 wr32(E1000_MRQC, mrqc);
1953 /* Multiqueue and raw packet checksumming are mutually
1954 * exclusive. Note that this not the same as TCP/IP
1955 * checksumming, which works fine. */
1956 rxcsum = rd32(E1000_RXCSUM);
1957 rxcsum |= E1000_RXCSUM_PCSD;
1958 wr32(E1000_RXCSUM, rxcsum);
1959 } else {
1960 /* Enable Receive Checksum Offload for TCP and UDP */
1961 rxcsum = rd32(E1000_RXCSUM);
1962 if (adapter->rx_csum) {
1963 rxcsum |= E1000_RXCSUM_TUOFL;
1965 /* Enable IPv4 payload checksum for UDP fragments
1966 * Must be used in conjunction with packet-split. */
1967 if (adapter->rx_ps_hdr_size)
1968 rxcsum |= E1000_RXCSUM_IPPCSE;
1969 } else {
1970 rxcsum &= ~E1000_RXCSUM_TUOFL;
1971 /* don't need to clear IPPCSE as it defaults to 0 */
1973 wr32(E1000_RXCSUM, rxcsum);
1976 if (adapter->vlgrp)
1977 wr32(E1000_RLPML,
1978 adapter->max_frame_size + VLAN_TAG_SIZE);
1979 else
1980 wr32(E1000_RLPML, adapter->max_frame_size);
1982 /* Enable Receives */
1983 wr32(E1000_RCTL, rctl);
1987 * igb_free_tx_resources - Free Tx Resources per Queue
1988 * @adapter: board private structure
1989 * @tx_ring: Tx descriptor ring for a specific queue
1991 * Free all transmit software resources
1993 void igb_free_tx_resources(struct igb_ring *tx_ring)
1995 struct pci_dev *pdev = tx_ring->adapter->pdev;
1997 igb_clean_tx_ring(tx_ring);
1999 vfree(tx_ring->buffer_info);
2000 tx_ring->buffer_info = NULL;
2002 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2004 tx_ring->desc = NULL;
2008 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2009 * @adapter: board private structure
2011 * Free all transmit software resources
2013 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2015 int i;
2017 for (i = 0; i < adapter->num_tx_queues; i++)
2018 igb_free_tx_resources(&adapter->tx_ring[i]);
2021 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2022 struct igb_buffer *buffer_info)
2024 if (buffer_info->dma) {
2025 pci_unmap_page(adapter->pdev,
2026 buffer_info->dma,
2027 buffer_info->length,
2028 PCI_DMA_TODEVICE);
2029 buffer_info->dma = 0;
2031 if (buffer_info->skb) {
2032 dev_kfree_skb_any(buffer_info->skb);
2033 buffer_info->skb = NULL;
2035 buffer_info->time_stamp = 0;
2036 /* buffer_info must be completely set up in the transmit path */
2040 * igb_clean_tx_ring - Free Tx Buffers
2041 * @adapter: board private structure
2042 * @tx_ring: ring to be cleaned
2044 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2046 struct igb_adapter *adapter = tx_ring->adapter;
2047 struct igb_buffer *buffer_info;
2048 unsigned long size;
2049 unsigned int i;
2051 if (!tx_ring->buffer_info)
2052 return;
2053 /* Free all the Tx ring sk_buffs */
2055 for (i = 0; i < tx_ring->count; i++) {
2056 buffer_info = &tx_ring->buffer_info[i];
2057 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2060 size = sizeof(struct igb_buffer) * tx_ring->count;
2061 memset(tx_ring->buffer_info, 0, size);
2063 /* Zero out the descriptor ring */
2065 memset(tx_ring->desc, 0, tx_ring->size);
2067 tx_ring->next_to_use = 0;
2068 tx_ring->next_to_clean = 0;
2070 writel(0, adapter->hw.hw_addr + tx_ring->head);
2071 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2075 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2076 * @adapter: board private structure
2078 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2080 int i;
2082 for (i = 0; i < adapter->num_tx_queues; i++)
2083 igb_clean_tx_ring(&adapter->tx_ring[i]);
2087 * igb_free_rx_resources - Free Rx Resources
2088 * @adapter: board private structure
2089 * @rx_ring: ring to clean the resources from
2091 * Free all receive software resources
2093 void igb_free_rx_resources(struct igb_ring *rx_ring)
2095 struct pci_dev *pdev = rx_ring->adapter->pdev;
2097 igb_clean_rx_ring(rx_ring);
2099 vfree(rx_ring->buffer_info);
2100 rx_ring->buffer_info = NULL;
2102 #ifdef CONFIG_IGB_LRO
2103 vfree(rx_ring->lro_mgr.lro_arr);
2104 rx_ring->lro_mgr.lro_arr = NULL;
2105 #endif
2107 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2109 rx_ring->desc = NULL;
2113 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2114 * @adapter: board private structure
2116 * Free all receive software resources
2118 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2120 int i;
2122 for (i = 0; i < adapter->num_rx_queues; i++)
2123 igb_free_rx_resources(&adapter->rx_ring[i]);
2127 * igb_clean_rx_ring - Free Rx Buffers per Queue
2128 * @adapter: board private structure
2129 * @rx_ring: ring to free buffers from
2131 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2133 struct igb_adapter *adapter = rx_ring->adapter;
2134 struct igb_buffer *buffer_info;
2135 struct pci_dev *pdev = adapter->pdev;
2136 unsigned long size;
2137 unsigned int i;
2139 if (!rx_ring->buffer_info)
2140 return;
2141 /* Free all the Rx ring sk_buffs */
2142 for (i = 0; i < rx_ring->count; i++) {
2143 buffer_info = &rx_ring->buffer_info[i];
2144 if (buffer_info->dma) {
2145 if (adapter->rx_ps_hdr_size)
2146 pci_unmap_single(pdev, buffer_info->dma,
2147 adapter->rx_ps_hdr_size,
2148 PCI_DMA_FROMDEVICE);
2149 else
2150 pci_unmap_single(pdev, buffer_info->dma,
2151 adapter->rx_buffer_len,
2152 PCI_DMA_FROMDEVICE);
2153 buffer_info->dma = 0;
2156 if (buffer_info->skb) {
2157 dev_kfree_skb(buffer_info->skb);
2158 buffer_info->skb = NULL;
2160 if (buffer_info->page) {
2161 if (buffer_info->page_dma)
2162 pci_unmap_page(pdev, buffer_info->page_dma,
2163 PAGE_SIZE / 2,
2164 PCI_DMA_FROMDEVICE);
2165 put_page(buffer_info->page);
2166 buffer_info->page = NULL;
2167 buffer_info->page_dma = 0;
2168 buffer_info->page_offset = 0;
2172 size = sizeof(struct igb_buffer) * rx_ring->count;
2173 memset(rx_ring->buffer_info, 0, size);
2175 /* Zero out the descriptor ring */
2176 memset(rx_ring->desc, 0, rx_ring->size);
2178 rx_ring->next_to_clean = 0;
2179 rx_ring->next_to_use = 0;
2181 writel(0, adapter->hw.hw_addr + rx_ring->head);
2182 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2186 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2187 * @adapter: board private structure
2189 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2191 int i;
2193 for (i = 0; i < adapter->num_rx_queues; i++)
2194 igb_clean_rx_ring(&adapter->rx_ring[i]);
2198 * igb_set_mac - Change the Ethernet Address of the NIC
2199 * @netdev: network interface device structure
2200 * @p: pointer to an address structure
2202 * Returns 0 on success, negative on failure
2204 static int igb_set_mac(struct net_device *netdev, void *p)
2206 struct igb_adapter *adapter = netdev_priv(netdev);
2207 struct sockaddr *addr = p;
2209 if (!is_valid_ether_addr(addr->sa_data))
2210 return -EADDRNOTAVAIL;
2212 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2213 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2215 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2217 return 0;
2221 * igb_set_multi - Multicast and Promiscuous mode set
2222 * @netdev: network interface device structure
2224 * The set_multi entry point is called whenever the multicast address
2225 * list or the network interface flags are updated. This routine is
2226 * responsible for configuring the hardware for proper multicast,
2227 * promiscuous mode, and all-multi behavior.
2229 static void igb_set_multi(struct net_device *netdev)
2231 struct igb_adapter *adapter = netdev_priv(netdev);
2232 struct e1000_hw *hw = &adapter->hw;
2233 struct e1000_mac_info *mac = &hw->mac;
2234 struct dev_mc_list *mc_ptr;
2235 u8 *mta_list;
2236 u32 rctl;
2237 int i;
2239 /* Check for Promiscuous and All Multicast modes */
2241 rctl = rd32(E1000_RCTL);
2243 if (netdev->flags & IFF_PROMISC) {
2244 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2245 rctl &= ~E1000_RCTL_VFE;
2246 } else {
2247 if (netdev->flags & IFF_ALLMULTI) {
2248 rctl |= E1000_RCTL_MPE;
2249 rctl &= ~E1000_RCTL_UPE;
2250 } else
2251 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2252 rctl |= E1000_RCTL_VFE;
2254 wr32(E1000_RCTL, rctl);
2256 if (!netdev->mc_count) {
2257 /* nothing to program, so clear mc list */
2258 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2259 mac->rar_entry_count);
2260 return;
2263 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2264 if (!mta_list)
2265 return;
2267 /* The shared function expects a packed array of only addresses. */
2268 mc_ptr = netdev->mc_list;
2270 for (i = 0; i < netdev->mc_count; i++) {
2271 if (!mc_ptr)
2272 break;
2273 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2274 mc_ptr = mc_ptr->next;
2276 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2277 mac->rar_entry_count);
2278 kfree(mta_list);
2281 /* Need to wait a few seconds after link up to get diagnostic information from
2282 * the phy */
2283 static void igb_update_phy_info(unsigned long data)
2285 struct igb_adapter *adapter = (struct igb_adapter *) data;
2286 if (adapter->hw.phy.ops.get_phy_info)
2287 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2291 * igb_watchdog - Timer Call-back
2292 * @data: pointer to adapter cast into an unsigned long
2294 static void igb_watchdog(unsigned long data)
2296 struct igb_adapter *adapter = (struct igb_adapter *)data;
2297 /* Do the rest outside of interrupt context */
2298 schedule_work(&adapter->watchdog_task);
2301 static void igb_watchdog_task(struct work_struct *work)
2303 struct igb_adapter *adapter = container_of(work,
2304 struct igb_adapter, watchdog_task);
2305 struct e1000_hw *hw = &adapter->hw;
2307 struct net_device *netdev = adapter->netdev;
2308 struct igb_ring *tx_ring = adapter->tx_ring;
2309 struct e1000_mac_info *mac = &adapter->hw.mac;
2310 u32 link;
2311 u32 eics = 0;
2312 s32 ret_val;
2313 int i;
2315 if ((netif_carrier_ok(netdev)) &&
2316 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2317 goto link_up;
2319 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2320 if ((ret_val == E1000_ERR_PHY) &&
2321 (hw->phy.type == e1000_phy_igp_3) &&
2322 (rd32(E1000_CTRL) &
2323 E1000_PHY_CTRL_GBE_DISABLE))
2324 dev_info(&adapter->pdev->dev,
2325 "Gigabit has been disabled, downgrading speed\n");
2327 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2328 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2329 link = mac->serdes_has_link;
2330 else
2331 link = rd32(E1000_STATUS) &
2332 E1000_STATUS_LU;
2334 if (link) {
2335 if (!netif_carrier_ok(netdev)) {
2336 u32 ctrl;
2337 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2338 &adapter->link_speed,
2339 &adapter->link_duplex);
2341 ctrl = rd32(E1000_CTRL);
2342 dev_info(&adapter->pdev->dev,
2343 "NIC Link is Up %d Mbps %s, "
2344 "Flow Control: %s\n",
2345 adapter->link_speed,
2346 adapter->link_duplex == FULL_DUPLEX ?
2347 "Full Duplex" : "Half Duplex",
2348 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2349 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2350 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2351 E1000_CTRL_TFCE) ? "TX" : "None")));
2353 /* tweak tx_queue_len according to speed/duplex and
2354 * adjust the timeout factor */
2355 netdev->tx_queue_len = adapter->tx_queue_len;
2356 adapter->tx_timeout_factor = 1;
2357 switch (adapter->link_speed) {
2358 case SPEED_10:
2359 netdev->tx_queue_len = 10;
2360 adapter->tx_timeout_factor = 14;
2361 break;
2362 case SPEED_100:
2363 netdev->tx_queue_len = 100;
2364 /* maybe add some timeout factor ? */
2365 break;
2368 netif_carrier_on(netdev);
2369 netif_tx_wake_all_queues(netdev);
2371 if (!test_bit(__IGB_DOWN, &adapter->state))
2372 mod_timer(&adapter->phy_info_timer,
2373 round_jiffies(jiffies + 2 * HZ));
2375 } else {
2376 if (netif_carrier_ok(netdev)) {
2377 adapter->link_speed = 0;
2378 adapter->link_duplex = 0;
2379 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2380 netif_carrier_off(netdev);
2381 netif_tx_stop_all_queues(netdev);
2382 if (!test_bit(__IGB_DOWN, &adapter->state))
2383 mod_timer(&adapter->phy_info_timer,
2384 round_jiffies(jiffies + 2 * HZ));
2388 link_up:
2389 igb_update_stats(adapter);
2391 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2392 adapter->tpt_old = adapter->stats.tpt;
2393 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2394 adapter->colc_old = adapter->stats.colc;
2396 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2397 adapter->gorc_old = adapter->stats.gorc;
2398 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2399 adapter->gotc_old = adapter->stats.gotc;
2401 igb_update_adaptive(&adapter->hw);
2403 if (!netif_carrier_ok(netdev)) {
2404 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2405 /* We've lost link, so the controller stops DMA,
2406 * but we've got queued Tx work that's never going
2407 * to get done, so reset controller to flush Tx.
2408 * (Do the reset outside of interrupt context). */
2409 adapter->tx_timeout_count++;
2410 schedule_work(&adapter->reset_task);
2414 /* Cause software interrupt to ensure rx ring is cleaned */
2415 if (adapter->msix_entries) {
2416 for (i = 0; i < adapter->num_rx_queues; i++)
2417 eics |= adapter->rx_ring[i].eims_value;
2418 wr32(E1000_EICS, eics);
2419 } else {
2420 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2423 /* Force detection of hung controller every watchdog period */
2424 tx_ring->detect_tx_hung = true;
2426 /* Reset the timer */
2427 if (!test_bit(__IGB_DOWN, &adapter->state))
2428 mod_timer(&adapter->watchdog_timer,
2429 round_jiffies(jiffies + 2 * HZ));
2432 enum latency_range {
2433 lowest_latency = 0,
2434 low_latency = 1,
2435 bulk_latency = 2,
2436 latency_invalid = 255
2441 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2443 * Stores a new ITR value based on strictly on packet size. This
2444 * algorithm is less sophisticated than that used in igb_update_itr,
2445 * due to the difficulty of synchronizing statistics across multiple
2446 * receive rings. The divisors and thresholds used by this fuction
2447 * were determined based on theoretical maximum wire speed and testing
2448 * data, in order to minimize response time while increasing bulk
2449 * throughput.
2450 * This functionality is controlled by the InterruptThrottleRate module
2451 * parameter (see igb_param.c)
2452 * NOTE: This function is called only when operating in a multiqueue
2453 * receive environment.
2454 * @rx_ring: pointer to ring
2456 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2458 int new_val = rx_ring->itr_val;
2459 int avg_wire_size = 0;
2460 struct igb_adapter *adapter = rx_ring->adapter;
2462 if (!rx_ring->total_packets)
2463 goto clear_counts; /* no packets, so don't do anything */
2465 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2466 * ints/sec - ITR timer value of 120 ticks.
2468 if (adapter->link_speed != SPEED_1000) {
2469 new_val = 120;
2470 goto set_itr_val;
2472 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2474 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2475 avg_wire_size += 24;
2477 /* Don't starve jumbo frames */
2478 avg_wire_size = min(avg_wire_size, 3000);
2480 /* Give a little boost to mid-size frames */
2481 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2482 new_val = avg_wire_size / 3;
2483 else
2484 new_val = avg_wire_size / 2;
2486 set_itr_val:
2487 if (new_val != rx_ring->itr_val) {
2488 rx_ring->itr_val = new_val;
2489 rx_ring->set_itr = 1;
2491 clear_counts:
2492 rx_ring->total_bytes = 0;
2493 rx_ring->total_packets = 0;
2497 * igb_update_itr - update the dynamic ITR value based on statistics
2498 * Stores a new ITR value based on packets and byte
2499 * counts during the last interrupt. The advantage of per interrupt
2500 * computation is faster updates and more accurate ITR for the current
2501 * traffic pattern. Constants in this function were computed
2502 * based on theoretical maximum wire speed and thresholds were set based
2503 * on testing data as well as attempting to minimize response time
2504 * while increasing bulk throughput.
2505 * this functionality is controlled by the InterruptThrottleRate module
2506 * parameter (see igb_param.c)
2507 * NOTE: These calculations are only valid when operating in a single-
2508 * queue environment.
2509 * @adapter: pointer to adapter
2510 * @itr_setting: current adapter->itr
2511 * @packets: the number of packets during this measurement interval
2512 * @bytes: the number of bytes during this measurement interval
2514 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2515 int packets, int bytes)
2517 unsigned int retval = itr_setting;
2519 if (packets == 0)
2520 goto update_itr_done;
2522 switch (itr_setting) {
2523 case lowest_latency:
2524 /* handle TSO and jumbo frames */
2525 if (bytes/packets > 8000)
2526 retval = bulk_latency;
2527 else if ((packets < 5) && (bytes > 512))
2528 retval = low_latency;
2529 break;
2530 case low_latency: /* 50 usec aka 20000 ints/s */
2531 if (bytes > 10000) {
2532 /* this if handles the TSO accounting */
2533 if (bytes/packets > 8000) {
2534 retval = bulk_latency;
2535 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2536 retval = bulk_latency;
2537 } else if ((packets > 35)) {
2538 retval = lowest_latency;
2540 } else if (bytes/packets > 2000) {
2541 retval = bulk_latency;
2542 } else if (packets <= 2 && bytes < 512) {
2543 retval = lowest_latency;
2545 break;
2546 case bulk_latency: /* 250 usec aka 4000 ints/s */
2547 if (bytes > 25000) {
2548 if (packets > 35)
2549 retval = low_latency;
2550 } else if (bytes < 6000) {
2551 retval = low_latency;
2553 break;
2556 update_itr_done:
2557 return retval;
2560 static void igb_set_itr(struct igb_adapter *adapter)
2562 u16 current_itr;
2563 u32 new_itr = adapter->itr;
2565 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2566 if (adapter->link_speed != SPEED_1000) {
2567 current_itr = 0;
2568 new_itr = 4000;
2569 goto set_itr_now;
2572 adapter->rx_itr = igb_update_itr(adapter,
2573 adapter->rx_itr,
2574 adapter->rx_ring->total_packets,
2575 adapter->rx_ring->total_bytes);
2577 if (adapter->rx_ring->buddy) {
2578 adapter->tx_itr = igb_update_itr(adapter,
2579 adapter->tx_itr,
2580 adapter->tx_ring->total_packets,
2581 adapter->tx_ring->total_bytes);
2583 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2584 } else {
2585 current_itr = adapter->rx_itr;
2588 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2589 if (adapter->itr_setting == 3 &&
2590 current_itr == lowest_latency)
2591 current_itr = low_latency;
2593 switch (current_itr) {
2594 /* counts and packets in update_itr are dependent on these numbers */
2595 case lowest_latency:
2596 new_itr = 70000;
2597 break;
2598 case low_latency:
2599 new_itr = 20000; /* aka hwitr = ~200 */
2600 break;
2601 case bulk_latency:
2602 new_itr = 4000;
2603 break;
2604 default:
2605 break;
2608 set_itr_now:
2609 adapter->rx_ring->total_bytes = 0;
2610 adapter->rx_ring->total_packets = 0;
2611 if (adapter->rx_ring->buddy) {
2612 adapter->rx_ring->buddy->total_bytes = 0;
2613 adapter->rx_ring->buddy->total_packets = 0;
2616 if (new_itr != adapter->itr) {
2617 /* this attempts to bias the interrupt rate towards Bulk
2618 * by adding intermediate steps when interrupt rate is
2619 * increasing */
2620 new_itr = new_itr > adapter->itr ?
2621 min(adapter->itr + (new_itr >> 2), new_itr) :
2622 new_itr;
2623 /* Don't write the value here; it resets the adapter's
2624 * internal timer, and causes us to delay far longer than
2625 * we should between interrupts. Instead, we write the ITR
2626 * value at the beginning of the next interrupt so the timing
2627 * ends up being correct.
2629 adapter->itr = new_itr;
2630 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2631 adapter->rx_ring->set_itr = 1;
2634 return;
2638 #define IGB_TX_FLAGS_CSUM 0x00000001
2639 #define IGB_TX_FLAGS_VLAN 0x00000002
2640 #define IGB_TX_FLAGS_TSO 0x00000004
2641 #define IGB_TX_FLAGS_IPV4 0x00000008
2642 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2643 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2645 static inline int igb_tso_adv(struct igb_adapter *adapter,
2646 struct igb_ring *tx_ring,
2647 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2649 struct e1000_adv_tx_context_desc *context_desc;
2650 unsigned int i;
2651 int err;
2652 struct igb_buffer *buffer_info;
2653 u32 info = 0, tu_cmd = 0;
2654 u32 mss_l4len_idx, l4len;
2655 *hdr_len = 0;
2657 if (skb_header_cloned(skb)) {
2658 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2659 if (err)
2660 return err;
2663 l4len = tcp_hdrlen(skb);
2664 *hdr_len += l4len;
2666 if (skb->protocol == htons(ETH_P_IP)) {
2667 struct iphdr *iph = ip_hdr(skb);
2668 iph->tot_len = 0;
2669 iph->check = 0;
2670 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2671 iph->daddr, 0,
2672 IPPROTO_TCP,
2674 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2675 ipv6_hdr(skb)->payload_len = 0;
2676 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2677 &ipv6_hdr(skb)->daddr,
2678 0, IPPROTO_TCP, 0);
2681 i = tx_ring->next_to_use;
2683 buffer_info = &tx_ring->buffer_info[i];
2684 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2685 /* VLAN MACLEN IPLEN */
2686 if (tx_flags & IGB_TX_FLAGS_VLAN)
2687 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2688 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2689 *hdr_len += skb_network_offset(skb);
2690 info |= skb_network_header_len(skb);
2691 *hdr_len += skb_network_header_len(skb);
2692 context_desc->vlan_macip_lens = cpu_to_le32(info);
2694 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2695 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2697 if (skb->protocol == htons(ETH_P_IP))
2698 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2699 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2701 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2703 /* MSS L4LEN IDX */
2704 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2705 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2707 /* Context index must be unique per ring. */
2708 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2709 mss_l4len_idx |= tx_ring->queue_index << 4;
2711 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2712 context_desc->seqnum_seed = 0;
2714 buffer_info->time_stamp = jiffies;
2715 buffer_info->dma = 0;
2716 i++;
2717 if (i == tx_ring->count)
2718 i = 0;
2720 tx_ring->next_to_use = i;
2722 return true;
2725 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2726 struct igb_ring *tx_ring,
2727 struct sk_buff *skb, u32 tx_flags)
2729 struct e1000_adv_tx_context_desc *context_desc;
2730 unsigned int i;
2731 struct igb_buffer *buffer_info;
2732 u32 info = 0, tu_cmd = 0;
2734 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2735 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2736 i = tx_ring->next_to_use;
2737 buffer_info = &tx_ring->buffer_info[i];
2738 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2740 if (tx_flags & IGB_TX_FLAGS_VLAN)
2741 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2742 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2743 if (skb->ip_summed == CHECKSUM_PARTIAL)
2744 info |= skb_network_header_len(skb);
2746 context_desc->vlan_macip_lens = cpu_to_le32(info);
2748 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2750 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2751 switch (skb->protocol) {
2752 case __constant_htons(ETH_P_IP):
2753 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2754 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2755 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2756 break;
2757 case __constant_htons(ETH_P_IPV6):
2758 /* XXX what about other V6 headers?? */
2759 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2760 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2761 break;
2762 default:
2763 if (unlikely(net_ratelimit()))
2764 dev_warn(&adapter->pdev->dev,
2765 "partial checksum but proto=%x!\n",
2766 skb->protocol);
2767 break;
2771 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2772 context_desc->seqnum_seed = 0;
2773 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2774 context_desc->mss_l4len_idx =
2775 cpu_to_le32(tx_ring->queue_index << 4);
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->dma = 0;
2780 i++;
2781 if (i == tx_ring->count)
2782 i = 0;
2783 tx_ring->next_to_use = i;
2785 return true;
2789 return false;
2792 #define IGB_MAX_TXD_PWR 16
2793 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2795 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2796 struct igb_ring *tx_ring,
2797 struct sk_buff *skb)
2799 struct igb_buffer *buffer_info;
2800 unsigned int len = skb_headlen(skb);
2801 unsigned int count = 0, i;
2802 unsigned int f;
2804 i = tx_ring->next_to_use;
2806 buffer_info = &tx_ring->buffer_info[i];
2807 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2808 buffer_info->length = len;
2809 /* set time_stamp *before* dma to help avoid a possible race */
2810 buffer_info->time_stamp = jiffies;
2811 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2812 PCI_DMA_TODEVICE);
2813 count++;
2814 i++;
2815 if (i == tx_ring->count)
2816 i = 0;
2818 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2819 struct skb_frag_struct *frag;
2821 frag = &skb_shinfo(skb)->frags[f];
2822 len = frag->size;
2824 buffer_info = &tx_ring->buffer_info[i];
2825 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2826 buffer_info->length = len;
2827 buffer_info->time_stamp = jiffies;
2828 buffer_info->dma = pci_map_page(adapter->pdev,
2829 frag->page,
2830 frag->page_offset,
2831 len,
2832 PCI_DMA_TODEVICE);
2834 count++;
2835 i++;
2836 if (i == tx_ring->count)
2837 i = 0;
2840 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2841 tx_ring->buffer_info[i].skb = skb;
2843 return count;
2846 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2847 struct igb_ring *tx_ring,
2848 int tx_flags, int count, u32 paylen,
2849 u8 hdr_len)
2851 union e1000_adv_tx_desc *tx_desc = NULL;
2852 struct igb_buffer *buffer_info;
2853 u32 olinfo_status = 0, cmd_type_len;
2854 unsigned int i;
2856 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2857 E1000_ADVTXD_DCMD_DEXT);
2859 if (tx_flags & IGB_TX_FLAGS_VLAN)
2860 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2862 if (tx_flags & IGB_TX_FLAGS_TSO) {
2863 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2865 /* insert tcp checksum */
2866 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2868 /* insert ip checksum */
2869 if (tx_flags & IGB_TX_FLAGS_IPV4)
2870 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2872 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2873 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2876 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2877 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2878 IGB_TX_FLAGS_VLAN)))
2879 olinfo_status |= tx_ring->queue_index << 4;
2881 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2883 i = tx_ring->next_to_use;
2884 while (count--) {
2885 buffer_info = &tx_ring->buffer_info[i];
2886 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2887 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2888 tx_desc->read.cmd_type_len =
2889 cpu_to_le32(cmd_type_len | buffer_info->length);
2890 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2891 i++;
2892 if (i == tx_ring->count)
2893 i = 0;
2896 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2897 /* Force memory writes to complete before letting h/w
2898 * know there are new descriptors to fetch. (Only
2899 * applicable for weak-ordered memory model archs,
2900 * such as IA-64). */
2901 wmb();
2903 tx_ring->next_to_use = i;
2904 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2905 /* we need this if more than one processor can write to our tail
2906 * at a time, it syncronizes IO on IA64/Altix systems */
2907 mmiowb();
2910 static int __igb_maybe_stop_tx(struct net_device *netdev,
2911 struct igb_ring *tx_ring, int size)
2913 struct igb_adapter *adapter = netdev_priv(netdev);
2915 netif_stop_subqueue(netdev, tx_ring->queue_index);
2917 /* Herbert's original patch had:
2918 * smp_mb__after_netif_stop_queue();
2919 * but since that doesn't exist yet, just open code it. */
2920 smp_mb();
2922 /* We need to check again in a case another CPU has just
2923 * made room available. */
2924 if (IGB_DESC_UNUSED(tx_ring) < size)
2925 return -EBUSY;
2927 /* A reprieve! */
2928 netif_wake_subqueue(netdev, tx_ring->queue_index);
2929 ++adapter->restart_queue;
2930 return 0;
2933 static int igb_maybe_stop_tx(struct net_device *netdev,
2934 struct igb_ring *tx_ring, int size)
2936 if (IGB_DESC_UNUSED(tx_ring) >= size)
2937 return 0;
2938 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2941 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2943 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2944 struct net_device *netdev,
2945 struct igb_ring *tx_ring)
2947 struct igb_adapter *adapter = netdev_priv(netdev);
2948 unsigned int tx_flags = 0;
2949 unsigned int len;
2950 u8 hdr_len = 0;
2951 int tso = 0;
2953 len = skb_headlen(skb);
2955 if (test_bit(__IGB_DOWN, &adapter->state)) {
2956 dev_kfree_skb_any(skb);
2957 return NETDEV_TX_OK;
2960 if (skb->len <= 0) {
2961 dev_kfree_skb_any(skb);
2962 return NETDEV_TX_OK;
2965 /* need: 1 descriptor per page,
2966 * + 2 desc gap to keep tail from touching head,
2967 * + 1 desc for skb->data,
2968 * + 1 desc for context descriptor,
2969 * otherwise try next time */
2970 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2971 /* this is a hard error */
2972 return NETDEV_TX_BUSY;
2974 skb_orphan(skb);
2976 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2977 tx_flags |= IGB_TX_FLAGS_VLAN;
2978 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2981 if (skb->protocol == htons(ETH_P_IP))
2982 tx_flags |= IGB_TX_FLAGS_IPV4;
2984 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2985 &hdr_len) : 0;
2987 if (tso < 0) {
2988 dev_kfree_skb_any(skb);
2989 return NETDEV_TX_OK;
2992 if (tso)
2993 tx_flags |= IGB_TX_FLAGS_TSO;
2994 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2995 if (skb->ip_summed == CHECKSUM_PARTIAL)
2996 tx_flags |= IGB_TX_FLAGS_CSUM;
2998 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2999 igb_tx_map_adv(adapter, tx_ring, skb),
3000 skb->len, hdr_len);
3002 netdev->trans_start = jiffies;
3004 /* Make sure there is space in the ring for the next send. */
3005 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3007 return NETDEV_TX_OK;
3010 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3012 struct igb_adapter *adapter = netdev_priv(netdev);
3013 struct igb_ring *tx_ring;
3015 int r_idx = 0;
3016 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3017 tx_ring = adapter->multi_tx_table[r_idx];
3019 /* This goes back to the question of how to logically map a tx queue
3020 * to a flow. Right now, performance is impacted slightly negatively
3021 * if using multiple tx queues. If the stack breaks away from a
3022 * single qdisc implementation, we can look at this again. */
3023 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3027 * igb_tx_timeout - Respond to a Tx Hang
3028 * @netdev: network interface device structure
3030 static void igb_tx_timeout(struct net_device *netdev)
3032 struct igb_adapter *adapter = netdev_priv(netdev);
3033 struct e1000_hw *hw = &adapter->hw;
3035 /* Do the reset outside of interrupt context */
3036 adapter->tx_timeout_count++;
3037 schedule_work(&adapter->reset_task);
3038 wr32(E1000_EICS, adapter->eims_enable_mask &
3039 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3042 static void igb_reset_task(struct work_struct *work)
3044 struct igb_adapter *adapter;
3045 adapter = container_of(work, struct igb_adapter, reset_task);
3047 igb_reinit_locked(adapter);
3051 * igb_get_stats - Get System Network Statistics
3052 * @netdev: network interface device structure
3054 * Returns the address of the device statistics structure.
3055 * The statistics are actually updated from the timer callback.
3057 static struct net_device_stats *
3058 igb_get_stats(struct net_device *netdev)
3060 struct igb_adapter *adapter = netdev_priv(netdev);
3062 /* only return the current stats */
3063 return &adapter->net_stats;
3067 * igb_change_mtu - Change the Maximum Transfer Unit
3068 * @netdev: network interface device structure
3069 * @new_mtu: new value for maximum frame size
3071 * Returns 0 on success, negative on failure
3073 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3075 struct igb_adapter *adapter = netdev_priv(netdev);
3076 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3078 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3079 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3080 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3081 return -EINVAL;
3084 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3085 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3086 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3087 return -EINVAL;
3090 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3091 msleep(1);
3092 /* igb_down has a dependency on max_frame_size */
3093 adapter->max_frame_size = max_frame;
3094 if (netif_running(netdev))
3095 igb_down(adapter);
3097 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3098 * means we reserve 2 more, this pushes us to allocate from the next
3099 * larger slab size.
3100 * i.e. RXBUFFER_2048 --> size-4096 slab
3103 if (max_frame <= IGB_RXBUFFER_256)
3104 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3105 else if (max_frame <= IGB_RXBUFFER_512)
3106 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3107 else if (max_frame <= IGB_RXBUFFER_1024)
3108 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3109 else if (max_frame <= IGB_RXBUFFER_2048)
3110 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3111 else
3112 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3113 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3114 #else
3115 adapter->rx_buffer_len = PAGE_SIZE / 2;
3116 #endif
3117 /* adjust allocation if LPE protects us, and we aren't using SBP */
3118 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3119 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3120 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3122 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3123 netdev->mtu, new_mtu);
3124 netdev->mtu = new_mtu;
3126 if (netif_running(netdev))
3127 igb_up(adapter);
3128 else
3129 igb_reset(adapter);
3131 clear_bit(__IGB_RESETTING, &adapter->state);
3133 return 0;
3137 * igb_update_stats - Update the board statistics counters
3138 * @adapter: board private structure
3141 void igb_update_stats(struct igb_adapter *adapter)
3143 struct e1000_hw *hw = &adapter->hw;
3144 struct pci_dev *pdev = adapter->pdev;
3145 u16 phy_tmp;
3147 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3150 * Prevent stats update while adapter is being reset, or if the pci
3151 * connection is down.
3153 if (adapter->link_speed == 0)
3154 return;
3155 if (pci_channel_offline(pdev))
3156 return;
3158 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3159 adapter->stats.gprc += rd32(E1000_GPRC);
3160 adapter->stats.gorc += rd32(E1000_GORCL);
3161 rd32(E1000_GORCH); /* clear GORCL */
3162 adapter->stats.bprc += rd32(E1000_BPRC);
3163 adapter->stats.mprc += rd32(E1000_MPRC);
3164 adapter->stats.roc += rd32(E1000_ROC);
3166 adapter->stats.prc64 += rd32(E1000_PRC64);
3167 adapter->stats.prc127 += rd32(E1000_PRC127);
3168 adapter->stats.prc255 += rd32(E1000_PRC255);
3169 adapter->stats.prc511 += rd32(E1000_PRC511);
3170 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3171 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3172 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3173 adapter->stats.sec += rd32(E1000_SEC);
3175 adapter->stats.mpc += rd32(E1000_MPC);
3176 adapter->stats.scc += rd32(E1000_SCC);
3177 adapter->stats.ecol += rd32(E1000_ECOL);
3178 adapter->stats.mcc += rd32(E1000_MCC);
3179 adapter->stats.latecol += rd32(E1000_LATECOL);
3180 adapter->stats.dc += rd32(E1000_DC);
3181 adapter->stats.rlec += rd32(E1000_RLEC);
3182 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3183 adapter->stats.xontxc += rd32(E1000_XONTXC);
3184 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3185 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3186 adapter->stats.fcruc += rd32(E1000_FCRUC);
3187 adapter->stats.gptc += rd32(E1000_GPTC);
3188 adapter->stats.gotc += rd32(E1000_GOTCL);
3189 rd32(E1000_GOTCH); /* clear GOTCL */
3190 adapter->stats.rnbc += rd32(E1000_RNBC);
3191 adapter->stats.ruc += rd32(E1000_RUC);
3192 adapter->stats.rfc += rd32(E1000_RFC);
3193 adapter->stats.rjc += rd32(E1000_RJC);
3194 adapter->stats.tor += rd32(E1000_TORH);
3195 adapter->stats.tot += rd32(E1000_TOTH);
3196 adapter->stats.tpr += rd32(E1000_TPR);
3198 adapter->stats.ptc64 += rd32(E1000_PTC64);
3199 adapter->stats.ptc127 += rd32(E1000_PTC127);
3200 adapter->stats.ptc255 += rd32(E1000_PTC255);
3201 adapter->stats.ptc511 += rd32(E1000_PTC511);
3202 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3203 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3205 adapter->stats.mptc += rd32(E1000_MPTC);
3206 adapter->stats.bptc += rd32(E1000_BPTC);
3208 /* used for adaptive IFS */
3210 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3211 adapter->stats.tpt += hw->mac.tx_packet_delta;
3212 hw->mac.collision_delta = rd32(E1000_COLC);
3213 adapter->stats.colc += hw->mac.collision_delta;
3215 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3216 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3217 adapter->stats.tncrs += rd32(E1000_TNCRS);
3218 adapter->stats.tsctc += rd32(E1000_TSCTC);
3219 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3221 adapter->stats.iac += rd32(E1000_IAC);
3222 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3223 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3224 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3225 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3226 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3227 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3228 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3229 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3231 /* Fill out the OS statistics structure */
3232 adapter->net_stats.multicast = adapter->stats.mprc;
3233 adapter->net_stats.collisions = adapter->stats.colc;
3235 /* Rx Errors */
3237 /* RLEC on some newer hardware can be incorrect so build
3238 * our own version based on RUC and ROC */
3239 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3240 adapter->stats.crcerrs + adapter->stats.algnerrc +
3241 adapter->stats.ruc + adapter->stats.roc +
3242 adapter->stats.cexterr;
3243 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3244 adapter->stats.roc;
3245 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3246 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3247 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3249 /* Tx Errors */
3250 adapter->net_stats.tx_errors = adapter->stats.ecol +
3251 adapter->stats.latecol;
3252 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3253 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3254 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3256 /* Tx Dropped needs to be maintained elsewhere */
3258 /* Phy Stats */
3259 if (hw->phy.media_type == e1000_media_type_copper) {
3260 if ((adapter->link_speed == SPEED_1000) &&
3261 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3262 &phy_tmp))) {
3263 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3264 adapter->phy_stats.idle_errors += phy_tmp;
3268 /* Management Stats */
3269 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3270 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3271 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3275 static irqreturn_t igb_msix_other(int irq, void *data)
3277 struct net_device *netdev = data;
3278 struct igb_adapter *adapter = netdev_priv(netdev);
3279 struct e1000_hw *hw = &adapter->hw;
3280 u32 icr = rd32(E1000_ICR);
3282 /* reading ICR causes bit 31 of EICR to be cleared */
3283 if (!(icr & E1000_ICR_LSC))
3284 goto no_link_interrupt;
3285 hw->mac.get_link_status = 1;
3286 /* guard against interrupt when we're going down */
3287 if (!test_bit(__IGB_DOWN, &adapter->state))
3288 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3290 no_link_interrupt:
3291 wr32(E1000_IMS, E1000_IMS_LSC);
3292 wr32(E1000_EIMS, adapter->eims_other);
3294 return IRQ_HANDLED;
3297 static irqreturn_t igb_msix_tx(int irq, void *data)
3299 struct igb_ring *tx_ring = data;
3300 struct igb_adapter *adapter = tx_ring->adapter;
3301 struct e1000_hw *hw = &adapter->hw;
3303 #ifdef CONFIG_IGB_DCA
3304 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3305 igb_update_tx_dca(tx_ring);
3306 #endif
3307 tx_ring->total_bytes = 0;
3308 tx_ring->total_packets = 0;
3310 /* auto mask will automatically reenable the interrupt when we write
3311 * EICS */
3312 if (!igb_clean_tx_irq(tx_ring))
3313 /* Ring was not completely cleaned, so fire another interrupt */
3314 wr32(E1000_EICS, tx_ring->eims_value);
3315 else
3316 wr32(E1000_EIMS, tx_ring->eims_value);
3318 return IRQ_HANDLED;
3321 static void igb_write_itr(struct igb_ring *ring)
3323 struct e1000_hw *hw = &ring->adapter->hw;
3324 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3325 switch (hw->mac.type) {
3326 case e1000_82576:
3327 wr32(ring->itr_register,
3328 ring->itr_val |
3329 0x80000000);
3330 break;
3331 default:
3332 wr32(ring->itr_register,
3333 ring->itr_val |
3334 (ring->itr_val << 16));
3335 break;
3337 ring->set_itr = 0;
3341 static irqreturn_t igb_msix_rx(int irq, void *data)
3343 struct igb_ring *rx_ring = data;
3344 struct igb_adapter *adapter = rx_ring->adapter;
3346 /* Write the ITR value calculated at the end of the
3347 * previous interrupt.
3350 igb_write_itr(rx_ring);
3352 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3353 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3355 #ifdef CONFIG_IGB_DCA
3356 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3357 igb_update_rx_dca(rx_ring);
3358 #endif
3359 return IRQ_HANDLED;
3362 #ifdef CONFIG_IGB_DCA
3363 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3365 u32 dca_rxctrl;
3366 struct igb_adapter *adapter = rx_ring->adapter;
3367 struct e1000_hw *hw = &adapter->hw;
3368 int cpu = get_cpu();
3369 int q = rx_ring - adapter->rx_ring;
3371 if (rx_ring->cpu != cpu) {
3372 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3373 if (hw->mac.type == e1000_82576) {
3374 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3375 dca_rxctrl |= dca_get_tag(cpu) <<
3376 E1000_DCA_RXCTRL_CPUID_SHIFT;
3377 } else {
3378 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3379 dca_rxctrl |= dca_get_tag(cpu);
3381 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3382 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3383 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3384 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3385 rx_ring->cpu = cpu;
3387 put_cpu();
3390 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3392 u32 dca_txctrl;
3393 struct igb_adapter *adapter = tx_ring->adapter;
3394 struct e1000_hw *hw = &adapter->hw;
3395 int cpu = get_cpu();
3396 int q = tx_ring - adapter->tx_ring;
3398 if (tx_ring->cpu != cpu) {
3399 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3400 if (hw->mac.type == e1000_82576) {
3401 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3402 dca_txctrl |= dca_get_tag(cpu) <<
3403 E1000_DCA_TXCTRL_CPUID_SHIFT;
3404 } else {
3405 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3406 dca_txctrl |= dca_get_tag(cpu);
3408 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3409 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3410 tx_ring->cpu = cpu;
3412 put_cpu();
3415 static void igb_setup_dca(struct igb_adapter *adapter)
3417 int i;
3419 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3420 return;
3422 for (i = 0; i < adapter->num_tx_queues; i++) {
3423 adapter->tx_ring[i].cpu = -1;
3424 igb_update_tx_dca(&adapter->tx_ring[i]);
3426 for (i = 0; i < adapter->num_rx_queues; i++) {
3427 adapter->rx_ring[i].cpu = -1;
3428 igb_update_rx_dca(&adapter->rx_ring[i]);
3432 static int __igb_notify_dca(struct device *dev, void *data)
3434 struct net_device *netdev = dev_get_drvdata(dev);
3435 struct igb_adapter *adapter = netdev_priv(netdev);
3436 struct e1000_hw *hw = &adapter->hw;
3437 unsigned long event = *(unsigned long *)data;
3439 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3440 goto out;
3442 switch (event) {
3443 case DCA_PROVIDER_ADD:
3444 /* if already enabled, don't do it again */
3445 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3446 break;
3447 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3448 /* Always use CB2 mode, difference is masked
3449 * in the CB driver. */
3450 wr32(E1000_DCA_CTRL, 2);
3451 if (dca_add_requester(dev) == 0) {
3452 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3453 igb_setup_dca(adapter);
3454 break;
3456 /* Fall Through since DCA is disabled. */
3457 case DCA_PROVIDER_REMOVE:
3458 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3459 /* without this a class_device is left
3460 * hanging around in the sysfs model */
3461 dca_remove_requester(dev);
3462 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3463 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3464 wr32(E1000_DCA_CTRL, 1);
3466 break;
3468 out:
3469 return 0;
3472 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3473 void *p)
3475 int ret_val;
3477 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3478 __igb_notify_dca);
3480 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3482 #endif /* CONFIG_IGB_DCA */
3485 * igb_intr_msi - Interrupt Handler
3486 * @irq: interrupt number
3487 * @data: pointer to a network interface device structure
3489 static irqreturn_t igb_intr_msi(int irq, void *data)
3491 struct net_device *netdev = data;
3492 struct igb_adapter *adapter = netdev_priv(netdev);
3493 struct e1000_hw *hw = &adapter->hw;
3494 /* read ICR disables interrupts using IAM */
3495 u32 icr = rd32(E1000_ICR);
3497 igb_write_itr(adapter->rx_ring);
3499 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3500 hw->mac.get_link_status = 1;
3501 if (!test_bit(__IGB_DOWN, &adapter->state))
3502 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3505 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3507 return IRQ_HANDLED;
3511 * igb_intr - Interrupt Handler
3512 * @irq: interrupt number
3513 * @data: pointer to a network interface device structure
3515 static irqreturn_t igb_intr(int irq, void *data)
3517 struct net_device *netdev = data;
3518 struct igb_adapter *adapter = netdev_priv(netdev);
3519 struct e1000_hw *hw = &adapter->hw;
3520 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3521 * need for the IMC write */
3522 u32 icr = rd32(E1000_ICR);
3523 u32 eicr = 0;
3524 if (!icr)
3525 return IRQ_NONE; /* Not our interrupt */
3527 igb_write_itr(adapter->rx_ring);
3529 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3530 * not set, then the adapter didn't send an interrupt */
3531 if (!(icr & E1000_ICR_INT_ASSERTED))
3532 return IRQ_NONE;
3534 eicr = rd32(E1000_EICR);
3536 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3537 hw->mac.get_link_status = 1;
3538 /* guard against interrupt when we're going down */
3539 if (!test_bit(__IGB_DOWN, &adapter->state))
3540 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3543 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3545 return IRQ_HANDLED;
3549 * igb_poll - NAPI Rx polling callback
3550 * @napi: napi polling structure
3551 * @budget: count of how many packets we should handle
3553 static int igb_poll(struct napi_struct *napi, int budget)
3555 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3556 struct igb_adapter *adapter = rx_ring->adapter;
3557 struct net_device *netdev = adapter->netdev;
3558 int tx_clean_complete, work_done = 0;
3560 /* this poll routine only supports one tx and one rx queue */
3561 #ifdef CONFIG_IGB_DCA
3562 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3563 igb_update_tx_dca(&adapter->tx_ring[0]);
3564 #endif
3565 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3567 #ifdef CONFIG_IGB_DCA
3568 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3569 igb_update_rx_dca(&adapter->rx_ring[0]);
3570 #endif
3571 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3573 /* If no Tx and not enough Rx work done, exit the polling mode */
3574 if ((tx_clean_complete && (work_done < budget)) ||
3575 !netif_running(netdev)) {
3576 if (adapter->itr_setting & 3)
3577 igb_set_itr(adapter);
3578 netif_rx_complete(netdev, napi);
3579 if (!test_bit(__IGB_DOWN, &adapter->state))
3580 igb_irq_enable(adapter);
3581 return 0;
3584 return 1;
3587 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3589 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3590 struct igb_adapter *adapter = rx_ring->adapter;
3591 struct e1000_hw *hw = &adapter->hw;
3592 struct net_device *netdev = adapter->netdev;
3593 int work_done = 0;
3595 #ifdef CONFIG_IGB_DCA
3596 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3597 igb_update_rx_dca(rx_ring);
3598 #endif
3599 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3602 /* If not enough Rx work done, exit the polling mode */
3603 if ((work_done == 0) || !netif_running(netdev)) {
3604 netif_rx_complete(netdev, napi);
3606 if (adapter->itr_setting & 3) {
3607 if (adapter->num_rx_queues == 1)
3608 igb_set_itr(adapter);
3609 else
3610 igb_update_ring_itr(rx_ring);
3613 if (!test_bit(__IGB_DOWN, &adapter->state))
3614 wr32(E1000_EIMS, rx_ring->eims_value);
3616 return 0;
3619 return 1;
3622 static inline u32 get_head(struct igb_ring *tx_ring)
3624 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3625 return le32_to_cpu(*(volatile __le32 *)end);
3629 * igb_clean_tx_irq - Reclaim resources after transmit completes
3630 * @adapter: board private structure
3631 * returns true if ring is completely cleaned
3633 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3635 struct igb_adapter *adapter = tx_ring->adapter;
3636 struct e1000_hw *hw = &adapter->hw;
3637 struct net_device *netdev = adapter->netdev;
3638 struct e1000_tx_desc *tx_desc;
3639 struct igb_buffer *buffer_info;
3640 struct sk_buff *skb;
3641 unsigned int i;
3642 u32 head, oldhead;
3643 unsigned int count = 0;
3644 unsigned int total_bytes = 0, total_packets = 0;
3645 bool retval = true;
3647 rmb();
3648 head = get_head(tx_ring);
3649 i = tx_ring->next_to_clean;
3650 while (1) {
3651 while (i != head) {
3652 tx_desc = E1000_TX_DESC(*tx_ring, i);
3653 buffer_info = &tx_ring->buffer_info[i];
3654 skb = buffer_info->skb;
3656 if (skb) {
3657 unsigned int segs, bytecount;
3658 /* gso_segs is currently only valid for tcp */
3659 segs = skb_shinfo(skb)->gso_segs ?: 1;
3660 /* multiply data chunks by size of headers */
3661 bytecount = ((segs - 1) * skb_headlen(skb)) +
3662 skb->len;
3663 total_packets += segs;
3664 total_bytes += bytecount;
3667 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3669 i++;
3670 if (i == tx_ring->count)
3671 i = 0;
3673 count++;
3674 if (count == IGB_MAX_TX_CLEAN) {
3675 retval = false;
3676 goto done_cleaning;
3679 oldhead = head;
3680 rmb();
3681 head = get_head(tx_ring);
3682 if (head == oldhead)
3683 goto done_cleaning;
3684 } /* while (1) */
3686 done_cleaning:
3687 tx_ring->next_to_clean = i;
3689 if (unlikely(count &&
3690 netif_carrier_ok(netdev) &&
3691 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3692 /* Make sure that anybody stopping the queue after this
3693 * sees the new next_to_clean.
3695 smp_mb();
3696 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3697 !(test_bit(__IGB_DOWN, &adapter->state))) {
3698 netif_wake_subqueue(netdev, tx_ring->queue_index);
3699 ++adapter->restart_queue;
3703 if (tx_ring->detect_tx_hung) {
3704 /* Detect a transmit hang in hardware, this serializes the
3705 * check with the clearing of time_stamp and movement of i */
3706 tx_ring->detect_tx_hung = false;
3707 if (tx_ring->buffer_info[i].time_stamp &&
3708 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3709 (adapter->tx_timeout_factor * HZ))
3710 && !(rd32(E1000_STATUS) &
3711 E1000_STATUS_TXOFF)) {
3713 tx_desc = E1000_TX_DESC(*tx_ring, i);
3714 /* detected Tx unit hang */
3715 dev_err(&adapter->pdev->dev,
3716 "Detected Tx Unit Hang\n"
3717 " Tx Queue <%d>\n"
3718 " TDH <%x>\n"
3719 " TDT <%x>\n"
3720 " next_to_use <%x>\n"
3721 " next_to_clean <%x>\n"
3722 " head (WB) <%x>\n"
3723 "buffer_info[next_to_clean]\n"
3724 " time_stamp <%lx>\n"
3725 " jiffies <%lx>\n"
3726 " desc.status <%x>\n",
3727 tx_ring->queue_index,
3728 readl(adapter->hw.hw_addr + tx_ring->head),
3729 readl(adapter->hw.hw_addr + tx_ring->tail),
3730 tx_ring->next_to_use,
3731 tx_ring->next_to_clean,
3732 head,
3733 tx_ring->buffer_info[i].time_stamp,
3734 jiffies,
3735 tx_desc->upper.fields.status);
3736 netif_stop_subqueue(netdev, tx_ring->queue_index);
3739 tx_ring->total_bytes += total_bytes;
3740 tx_ring->total_packets += total_packets;
3741 tx_ring->tx_stats.bytes += total_bytes;
3742 tx_ring->tx_stats.packets += total_packets;
3743 adapter->net_stats.tx_bytes += total_bytes;
3744 adapter->net_stats.tx_packets += total_packets;
3745 return retval;
3748 #ifdef CONFIG_IGB_LRO
3750 * igb_get_skb_hdr - helper function for LRO header processing
3751 * @skb: pointer to sk_buff to be added to LRO packet
3752 * @iphdr: pointer to ip header structure
3753 * @tcph: pointer to tcp header structure
3754 * @hdr_flags: pointer to header flags
3755 * @priv: pointer to the receive descriptor for the current sk_buff
3757 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3758 u64 *hdr_flags, void *priv)
3760 union e1000_adv_rx_desc *rx_desc = priv;
3761 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3762 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3764 /* Verify that this is a valid IPv4 TCP packet */
3765 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3766 E1000_RXDADV_PKTTYPE_TCP))
3767 return -1;
3769 /* Set network headers */
3770 skb_reset_network_header(skb);
3771 skb_set_transport_header(skb, ip_hdrlen(skb));
3772 *iphdr = ip_hdr(skb);
3773 *tcph = tcp_hdr(skb);
3774 *hdr_flags = LRO_IPV4 | LRO_TCP;
3776 return 0;
3779 #endif /* CONFIG_IGB_LRO */
3782 * igb_receive_skb - helper function to handle rx indications
3783 * @ring: pointer to receive ring receving this packet
3784 * @status: descriptor status field as written by hardware
3785 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3786 * @skb: pointer to sk_buff to be indicated to stack
3788 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3789 union e1000_adv_rx_desc * rx_desc,
3790 struct sk_buff *skb)
3792 struct igb_adapter * adapter = ring->adapter;
3793 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3795 #ifdef CONFIG_IGB_LRO
3796 if (adapter->netdev->features & NETIF_F_LRO &&
3797 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3798 if (vlan_extracted)
3799 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3800 adapter->vlgrp,
3801 le16_to_cpu(rx_desc->wb.upper.vlan),
3802 rx_desc);
3803 else
3804 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3805 ring->lro_used = 1;
3806 } else {
3807 #endif
3808 if (vlan_extracted)
3809 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3810 le16_to_cpu(rx_desc->wb.upper.vlan));
3811 else
3813 netif_receive_skb(skb);
3814 #ifdef CONFIG_IGB_LRO
3816 #endif
3820 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3821 u32 status_err, struct sk_buff *skb)
3823 skb->ip_summed = CHECKSUM_NONE;
3825 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3826 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3827 return;
3828 /* TCP/UDP checksum error bit is set */
3829 if (status_err &
3830 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3831 /* let the stack verify checksum errors */
3832 adapter->hw_csum_err++;
3833 return;
3835 /* It must be a TCP or UDP packet with a valid checksum */
3836 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3837 skb->ip_summed = CHECKSUM_UNNECESSARY;
3839 adapter->hw_csum_good++;
3842 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3843 int *work_done, int budget)
3845 struct igb_adapter *adapter = rx_ring->adapter;
3846 struct net_device *netdev = adapter->netdev;
3847 struct pci_dev *pdev = adapter->pdev;
3848 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3849 struct igb_buffer *buffer_info , *next_buffer;
3850 struct sk_buff *skb;
3851 unsigned int i;
3852 u32 length, hlen, staterr;
3853 bool cleaned = false;
3854 int cleaned_count = 0;
3855 unsigned int total_bytes = 0, total_packets = 0;
3857 i = rx_ring->next_to_clean;
3858 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3859 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3861 while (staterr & E1000_RXD_STAT_DD) {
3862 if (*work_done >= budget)
3863 break;
3864 (*work_done)++;
3865 buffer_info = &rx_ring->buffer_info[i];
3867 /* HW will not DMA in data larger than the given buffer, even
3868 * if it parses the (NFS, of course) header to be larger. In
3869 * that case, it fills the header buffer and spills the rest
3870 * into the page.
3872 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3873 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3874 if (hlen > adapter->rx_ps_hdr_size)
3875 hlen = adapter->rx_ps_hdr_size;
3877 length = le16_to_cpu(rx_desc->wb.upper.length);
3878 cleaned = true;
3879 cleaned_count++;
3881 skb = buffer_info->skb;
3882 prefetch(skb->data - NET_IP_ALIGN);
3883 buffer_info->skb = NULL;
3884 if (!adapter->rx_ps_hdr_size) {
3885 pci_unmap_single(pdev, buffer_info->dma,
3886 adapter->rx_buffer_len +
3887 NET_IP_ALIGN,
3888 PCI_DMA_FROMDEVICE);
3889 skb_put(skb, length);
3890 goto send_up;
3893 if (!skb_shinfo(skb)->nr_frags) {
3894 pci_unmap_single(pdev, buffer_info->dma,
3895 adapter->rx_ps_hdr_size +
3896 NET_IP_ALIGN,
3897 PCI_DMA_FROMDEVICE);
3898 skb_put(skb, hlen);
3901 if (length) {
3902 pci_unmap_page(pdev, buffer_info->page_dma,
3903 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3904 buffer_info->page_dma = 0;
3906 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3907 buffer_info->page,
3908 buffer_info->page_offset,
3909 length);
3911 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3912 (page_count(buffer_info->page) != 1))
3913 buffer_info->page = NULL;
3914 else
3915 get_page(buffer_info->page);
3917 skb->len += length;
3918 skb->data_len += length;
3920 skb->truesize += length;
3922 send_up:
3923 i++;
3924 if (i == rx_ring->count)
3925 i = 0;
3926 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3927 prefetch(next_rxd);
3928 next_buffer = &rx_ring->buffer_info[i];
3930 if (!(staterr & E1000_RXD_STAT_EOP)) {
3931 buffer_info->skb = next_buffer->skb;
3932 buffer_info->dma = next_buffer->dma;
3933 next_buffer->skb = skb;
3934 next_buffer->dma = 0;
3935 goto next_desc;
3938 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3939 dev_kfree_skb_irq(skb);
3940 goto next_desc;
3943 total_bytes += skb->len;
3944 total_packets++;
3946 igb_rx_checksum_adv(adapter, staterr, skb);
3948 skb->protocol = eth_type_trans(skb, netdev);
3950 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3952 next_desc:
3953 rx_desc->wb.upper.status_error = 0;
3955 /* return some buffers to hardware, one at a time is too slow */
3956 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3957 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3958 cleaned_count = 0;
3961 /* use prefetched values */
3962 rx_desc = next_rxd;
3963 buffer_info = next_buffer;
3965 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3968 rx_ring->next_to_clean = i;
3969 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3971 #ifdef CONFIG_IGB_LRO
3972 if (rx_ring->lro_used) {
3973 lro_flush_all(&rx_ring->lro_mgr);
3974 rx_ring->lro_used = 0;
3976 #endif
3978 if (cleaned_count)
3979 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3981 rx_ring->total_packets += total_packets;
3982 rx_ring->total_bytes += total_bytes;
3983 rx_ring->rx_stats.packets += total_packets;
3984 rx_ring->rx_stats.bytes += total_bytes;
3985 adapter->net_stats.rx_bytes += total_bytes;
3986 adapter->net_stats.rx_packets += total_packets;
3987 return cleaned;
3992 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3993 * @adapter: address of board private structure
3995 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3996 int cleaned_count)
3998 struct igb_adapter *adapter = rx_ring->adapter;
3999 struct net_device *netdev = adapter->netdev;
4000 struct pci_dev *pdev = adapter->pdev;
4001 union e1000_adv_rx_desc *rx_desc;
4002 struct igb_buffer *buffer_info;
4003 struct sk_buff *skb;
4004 unsigned int i;
4006 i = rx_ring->next_to_use;
4007 buffer_info = &rx_ring->buffer_info[i];
4009 while (cleaned_count--) {
4010 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4012 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4013 if (!buffer_info->page) {
4014 buffer_info->page = alloc_page(GFP_ATOMIC);
4015 if (!buffer_info->page) {
4016 adapter->alloc_rx_buff_failed++;
4017 goto no_buffers;
4019 buffer_info->page_offset = 0;
4020 } else {
4021 buffer_info->page_offset ^= PAGE_SIZE / 2;
4023 buffer_info->page_dma =
4024 pci_map_page(pdev,
4025 buffer_info->page,
4026 buffer_info->page_offset,
4027 PAGE_SIZE / 2,
4028 PCI_DMA_FROMDEVICE);
4031 if (!buffer_info->skb) {
4032 int bufsz;
4034 if (adapter->rx_ps_hdr_size)
4035 bufsz = adapter->rx_ps_hdr_size;
4036 else
4037 bufsz = adapter->rx_buffer_len;
4038 bufsz += NET_IP_ALIGN;
4039 skb = netdev_alloc_skb(netdev, bufsz);
4041 if (!skb) {
4042 adapter->alloc_rx_buff_failed++;
4043 goto no_buffers;
4046 /* Make buffer alignment 2 beyond a 16 byte boundary
4047 * this will result in a 16 byte aligned IP header after
4048 * the 14 byte MAC header is removed
4050 skb_reserve(skb, NET_IP_ALIGN);
4052 buffer_info->skb = skb;
4053 buffer_info->dma = pci_map_single(pdev, skb->data,
4054 bufsz,
4055 PCI_DMA_FROMDEVICE);
4058 /* Refresh the desc even if buffer_addrs didn't change because
4059 * each write-back erases this info. */
4060 if (adapter->rx_ps_hdr_size) {
4061 rx_desc->read.pkt_addr =
4062 cpu_to_le64(buffer_info->page_dma);
4063 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4064 } else {
4065 rx_desc->read.pkt_addr =
4066 cpu_to_le64(buffer_info->dma);
4067 rx_desc->read.hdr_addr = 0;
4070 i++;
4071 if (i == rx_ring->count)
4072 i = 0;
4073 buffer_info = &rx_ring->buffer_info[i];
4076 no_buffers:
4077 if (rx_ring->next_to_use != i) {
4078 rx_ring->next_to_use = i;
4079 if (i == 0)
4080 i = (rx_ring->count - 1);
4081 else
4082 i--;
4084 /* Force memory writes to complete before letting h/w
4085 * know there are new descriptors to fetch. (Only
4086 * applicable for weak-ordered memory model archs,
4087 * such as IA-64). */
4088 wmb();
4089 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4094 * igb_mii_ioctl -
4095 * @netdev:
4096 * @ifreq:
4097 * @cmd:
4099 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4101 struct igb_adapter *adapter = netdev_priv(netdev);
4102 struct mii_ioctl_data *data = if_mii(ifr);
4104 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4105 return -EOPNOTSUPP;
4107 switch (cmd) {
4108 case SIOCGMIIPHY:
4109 data->phy_id = adapter->hw.phy.addr;
4110 break;
4111 case SIOCGMIIREG:
4112 if (!capable(CAP_NET_ADMIN))
4113 return -EPERM;
4114 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4115 data->reg_num
4116 & 0x1F, &data->val_out))
4117 return -EIO;
4118 break;
4119 case SIOCSMIIREG:
4120 default:
4121 return -EOPNOTSUPP;
4123 return 0;
4127 * igb_ioctl -
4128 * @netdev:
4129 * @ifreq:
4130 * @cmd:
4132 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4134 switch (cmd) {
4135 case SIOCGMIIPHY:
4136 case SIOCGMIIREG:
4137 case SIOCSMIIREG:
4138 return igb_mii_ioctl(netdev, ifr, cmd);
4139 default:
4140 return -EOPNOTSUPP;
4144 static void igb_vlan_rx_register(struct net_device *netdev,
4145 struct vlan_group *grp)
4147 struct igb_adapter *adapter = netdev_priv(netdev);
4148 struct e1000_hw *hw = &adapter->hw;
4149 u32 ctrl, rctl;
4151 igb_irq_disable(adapter);
4152 adapter->vlgrp = grp;
4154 if (grp) {
4155 /* enable VLAN tag insert/strip */
4156 ctrl = rd32(E1000_CTRL);
4157 ctrl |= E1000_CTRL_VME;
4158 wr32(E1000_CTRL, ctrl);
4160 /* enable VLAN receive filtering */
4161 rctl = rd32(E1000_RCTL);
4162 rctl &= ~E1000_RCTL_CFIEN;
4163 wr32(E1000_RCTL, rctl);
4164 igb_update_mng_vlan(adapter);
4165 wr32(E1000_RLPML,
4166 adapter->max_frame_size + VLAN_TAG_SIZE);
4167 } else {
4168 /* disable VLAN tag insert/strip */
4169 ctrl = rd32(E1000_CTRL);
4170 ctrl &= ~E1000_CTRL_VME;
4171 wr32(E1000_CTRL, ctrl);
4173 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4174 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4175 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4177 wr32(E1000_RLPML,
4178 adapter->max_frame_size);
4181 if (!test_bit(__IGB_DOWN, &adapter->state))
4182 igb_irq_enable(adapter);
4185 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4187 struct igb_adapter *adapter = netdev_priv(netdev);
4188 struct e1000_hw *hw = &adapter->hw;
4189 u32 vfta, index;
4191 if ((adapter->hw.mng_cookie.status &
4192 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4193 (vid == adapter->mng_vlan_id))
4194 return;
4195 /* add VID to filter table */
4196 index = (vid >> 5) & 0x7F;
4197 vfta = array_rd32(E1000_VFTA, index);
4198 vfta |= (1 << (vid & 0x1F));
4199 igb_write_vfta(&adapter->hw, index, vfta);
4202 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4204 struct igb_adapter *adapter = netdev_priv(netdev);
4205 struct e1000_hw *hw = &adapter->hw;
4206 u32 vfta, index;
4208 igb_irq_disable(adapter);
4209 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4211 if (!test_bit(__IGB_DOWN, &adapter->state))
4212 igb_irq_enable(adapter);
4214 if ((adapter->hw.mng_cookie.status &
4215 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4216 (vid == adapter->mng_vlan_id)) {
4217 /* release control to f/w */
4218 igb_release_hw_control(adapter);
4219 return;
4222 /* remove VID from filter table */
4223 index = (vid >> 5) & 0x7F;
4224 vfta = array_rd32(E1000_VFTA, index);
4225 vfta &= ~(1 << (vid & 0x1F));
4226 igb_write_vfta(&adapter->hw, index, vfta);
4229 static void igb_restore_vlan(struct igb_adapter *adapter)
4231 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4233 if (adapter->vlgrp) {
4234 u16 vid;
4235 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4236 if (!vlan_group_get_device(adapter->vlgrp, vid))
4237 continue;
4238 igb_vlan_rx_add_vid(adapter->netdev, vid);
4243 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4245 struct e1000_mac_info *mac = &adapter->hw.mac;
4247 mac->autoneg = 0;
4249 /* Fiber NICs only allow 1000 gbps Full duplex */
4250 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4251 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4252 dev_err(&adapter->pdev->dev,
4253 "Unsupported Speed/Duplex configuration\n");
4254 return -EINVAL;
4257 switch (spddplx) {
4258 case SPEED_10 + DUPLEX_HALF:
4259 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4260 break;
4261 case SPEED_10 + DUPLEX_FULL:
4262 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4263 break;
4264 case SPEED_100 + DUPLEX_HALF:
4265 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4266 break;
4267 case SPEED_100 + DUPLEX_FULL:
4268 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4269 break;
4270 case SPEED_1000 + DUPLEX_FULL:
4271 mac->autoneg = 1;
4272 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4273 break;
4274 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4275 default:
4276 dev_err(&adapter->pdev->dev,
4277 "Unsupported Speed/Duplex configuration\n");
4278 return -EINVAL;
4280 return 0;
4284 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4286 struct net_device *netdev = pci_get_drvdata(pdev);
4287 struct igb_adapter *adapter = netdev_priv(netdev);
4288 struct e1000_hw *hw = &adapter->hw;
4289 u32 ctrl, rctl, status;
4290 u32 wufc = adapter->wol;
4291 #ifdef CONFIG_PM
4292 int retval = 0;
4293 #endif
4295 netif_device_detach(netdev);
4297 if (netif_running(netdev))
4298 igb_close(netdev);
4300 igb_reset_interrupt_capability(adapter);
4302 igb_free_queues(adapter);
4304 #ifdef CONFIG_PM
4305 retval = pci_save_state(pdev);
4306 if (retval)
4307 return retval;
4308 #endif
4310 status = rd32(E1000_STATUS);
4311 if (status & E1000_STATUS_LU)
4312 wufc &= ~E1000_WUFC_LNKC;
4314 if (wufc) {
4315 igb_setup_rctl(adapter);
4316 igb_set_multi(netdev);
4318 /* turn on all-multi mode if wake on multicast is enabled */
4319 if (wufc & E1000_WUFC_MC) {
4320 rctl = rd32(E1000_RCTL);
4321 rctl |= E1000_RCTL_MPE;
4322 wr32(E1000_RCTL, rctl);
4325 ctrl = rd32(E1000_CTRL);
4326 /* advertise wake from D3Cold */
4327 #define E1000_CTRL_ADVD3WUC 0x00100000
4328 /* phy power management enable */
4329 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4330 ctrl |= E1000_CTRL_ADVD3WUC;
4331 wr32(E1000_CTRL, ctrl);
4333 /* Allow time for pending master requests to run */
4334 igb_disable_pcie_master(&adapter->hw);
4336 wr32(E1000_WUC, E1000_WUC_PME_EN);
4337 wr32(E1000_WUFC, wufc);
4338 } else {
4339 wr32(E1000_WUC, 0);
4340 wr32(E1000_WUFC, 0);
4343 /* make sure adapter isn't asleep if manageability/wol is enabled */
4344 if (wufc || adapter->en_mng_pt) {
4345 pci_enable_wake(pdev, PCI_D3hot, 1);
4346 pci_enable_wake(pdev, PCI_D3cold, 1);
4347 } else {
4348 igb_shutdown_fiber_serdes_link_82575(hw);
4349 pci_enable_wake(pdev, PCI_D3hot, 0);
4350 pci_enable_wake(pdev, PCI_D3cold, 0);
4353 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4354 * would have already happened in close and is redundant. */
4355 igb_release_hw_control(adapter);
4357 pci_disable_device(pdev);
4359 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4361 return 0;
4364 #ifdef CONFIG_PM
4365 static int igb_resume(struct pci_dev *pdev)
4367 struct net_device *netdev = pci_get_drvdata(pdev);
4368 struct igb_adapter *adapter = netdev_priv(netdev);
4369 struct e1000_hw *hw = &adapter->hw;
4370 u32 err;
4372 pci_set_power_state(pdev, PCI_D0);
4373 pci_restore_state(pdev);
4375 if (adapter->need_ioport)
4376 err = pci_enable_device(pdev);
4377 else
4378 err = pci_enable_device_mem(pdev);
4379 if (err) {
4380 dev_err(&pdev->dev,
4381 "igb: Cannot enable PCI device from suspend\n");
4382 return err;
4384 pci_set_master(pdev);
4386 pci_enable_wake(pdev, PCI_D3hot, 0);
4387 pci_enable_wake(pdev, PCI_D3cold, 0);
4389 igb_set_interrupt_capability(adapter);
4391 if (igb_alloc_queues(adapter)) {
4392 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4393 return -ENOMEM;
4396 /* e1000_power_up_phy(adapter); */
4398 igb_reset(adapter);
4399 wr32(E1000_WUS, ~0);
4401 if (netif_running(netdev)) {
4402 err = igb_open(netdev);
4403 if (err)
4404 return err;
4407 netif_device_attach(netdev);
4409 /* let the f/w know that the h/w is now under the control of the
4410 * driver. */
4411 igb_get_hw_control(adapter);
4413 return 0;
4415 #endif
4417 static void igb_shutdown(struct pci_dev *pdev)
4419 igb_suspend(pdev, PMSG_SUSPEND);
4422 #ifdef CONFIG_NET_POLL_CONTROLLER
4424 * Polling 'interrupt' - used by things like netconsole to send skbs
4425 * without having to re-enable interrupts. It's not called while
4426 * the interrupt routine is executing.
4428 static void igb_netpoll(struct net_device *netdev)
4430 struct igb_adapter *adapter = netdev_priv(netdev);
4431 int i;
4432 int work_done = 0;
4434 igb_irq_disable(adapter);
4435 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4437 for (i = 0; i < adapter->num_tx_queues; i++)
4438 igb_clean_tx_irq(&adapter->tx_ring[i]);
4440 for (i = 0; i < adapter->num_rx_queues; i++)
4441 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4442 &work_done,
4443 adapter->rx_ring[i].napi.weight);
4445 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4446 igb_irq_enable(adapter);
4448 #endif /* CONFIG_NET_POLL_CONTROLLER */
4451 * igb_io_error_detected - called when PCI error is detected
4452 * @pdev: Pointer to PCI device
4453 * @state: The current pci connection state
4455 * This function is called after a PCI bus error affecting
4456 * this device has been detected.
4458 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4459 pci_channel_state_t state)
4461 struct net_device *netdev = pci_get_drvdata(pdev);
4462 struct igb_adapter *adapter = netdev_priv(netdev);
4464 netif_device_detach(netdev);
4466 if (netif_running(netdev))
4467 igb_down(adapter);
4468 pci_disable_device(pdev);
4470 /* Request a slot slot reset. */
4471 return PCI_ERS_RESULT_NEED_RESET;
4475 * igb_io_slot_reset - called after the pci bus has been reset.
4476 * @pdev: Pointer to PCI device
4478 * Restart the card from scratch, as if from a cold-boot. Implementation
4479 * resembles the first-half of the igb_resume routine.
4481 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4483 struct net_device *netdev = pci_get_drvdata(pdev);
4484 struct igb_adapter *adapter = netdev_priv(netdev);
4485 struct e1000_hw *hw = &adapter->hw;
4486 int err;
4488 if (adapter->need_ioport)
4489 err = pci_enable_device(pdev);
4490 else
4491 err = pci_enable_device_mem(pdev);
4492 if (err) {
4493 dev_err(&pdev->dev,
4494 "Cannot re-enable PCI device after reset.\n");
4495 return PCI_ERS_RESULT_DISCONNECT;
4497 pci_set_master(pdev);
4498 pci_restore_state(pdev);
4500 pci_enable_wake(pdev, PCI_D3hot, 0);
4501 pci_enable_wake(pdev, PCI_D3cold, 0);
4503 igb_reset(adapter);
4504 wr32(E1000_WUS, ~0);
4506 return PCI_ERS_RESULT_RECOVERED;
4510 * igb_io_resume - called when traffic can start flowing again.
4511 * @pdev: Pointer to PCI device
4513 * This callback is called when the error recovery driver tells us that
4514 * its OK to resume normal operation. Implementation resembles the
4515 * second-half of the igb_resume routine.
4517 static void igb_io_resume(struct pci_dev *pdev)
4519 struct net_device *netdev = pci_get_drvdata(pdev);
4520 struct igb_adapter *adapter = netdev_priv(netdev);
4522 if (netif_running(netdev)) {
4523 if (igb_up(adapter)) {
4524 dev_err(&pdev->dev, "igb_up failed after reset\n");
4525 return;
4529 netif_device_attach(netdev);
4531 /* let the f/w know that the h/w is now under the control of the
4532 * driver. */
4533 igb_get_hw_control(adapter);
4537 /* igb_main.c */