Update to current git.
[linux-2.6/suspend2-head.git] / kernel / timer.c
blobd948867d4f7bd644e12f6bb552b80eaa36aa17b2
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/div64.h>
43 #include <asm/timex.h>
44 #include <asm/io.h>
46 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48 EXPORT_SYMBOL(jiffies_64);
51 * per-CPU timer vector definitions:
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
60 typedef struct tvec_s {
61 struct list_head vec[TVN_SIZE];
62 } tvec_t;
64 typedef struct tvec_root_s {
65 struct list_head vec[TVR_SIZE];
66 } tvec_root_t;
68 struct tvec_t_base_s {
69 spinlock_t lock;
70 struct timer_list *running_timer;
71 unsigned long timer_jiffies;
72 tvec_root_t tv1;
73 tvec_t tv2;
74 tvec_t tv3;
75 tvec_t tv4;
76 tvec_t tv5;
77 } ____cacheline_aligned;
79 typedef struct tvec_t_base_s tvec_base_t;
81 tvec_base_t boot_tvec_bases;
82 EXPORT_SYMBOL(boot_tvec_bases);
83 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
86 * Note that all tvec_bases is 2 byte aligned and lower bit of
87 * base in timer_list is guaranteed to be zero. Use the LSB for
88 * the new flag to indicate whether the timer is deferrable
90 #define TBASE_DEFERRABLE_FLAG (0x1)
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(tvec_base_t *base)
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
98 static inline tvec_base_t *tbase_get_base(tvec_base_t *base)
100 return ((tvec_base_t *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
103 static inline void timer_set_deferrable(struct timer_list *timer)
105 timer->base = ((tvec_base_t *)((unsigned long)(timer->base) |
106 TBASE_DEFERRABLE_FLAG));
109 static inline void
110 timer_set_base(struct timer_list *timer, tvec_base_t *new_base)
112 timer->base = (tvec_base_t *)((unsigned long)(new_base) |
113 tbase_get_deferrable(timer->base));
117 * __round_jiffies - function to round jiffies to a full second
118 * @j: the time in (absolute) jiffies that should be rounded
119 * @cpu: the processor number on which the timeout will happen
121 * __round_jiffies() rounds an absolute time in the future (in jiffies)
122 * up or down to (approximately) full seconds. This is useful for timers
123 * for which the exact time they fire does not matter too much, as long as
124 * they fire approximately every X seconds.
126 * By rounding these timers to whole seconds, all such timers will fire
127 * at the same time, rather than at various times spread out. The goal
128 * of this is to have the CPU wake up less, which saves power.
130 * The exact rounding is skewed for each processor to avoid all
131 * processors firing at the exact same time, which could lead
132 * to lock contention or spurious cache line bouncing.
134 * The return value is the rounded version of the @j parameter.
136 unsigned long __round_jiffies(unsigned long j, int cpu)
138 int rem;
139 unsigned long original = j;
142 * We don't want all cpus firing their timers at once hitting the
143 * same lock or cachelines, so we skew each extra cpu with an extra
144 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
145 * already did this.
146 * The skew is done by adding 3*cpunr, then round, then subtract this
147 * extra offset again.
149 j += cpu * 3;
151 rem = j % HZ;
154 * If the target jiffie is just after a whole second (which can happen
155 * due to delays of the timer irq, long irq off times etc etc) then
156 * we should round down to the whole second, not up. Use 1/4th second
157 * as cutoff for this rounding as an extreme upper bound for this.
159 if (rem < HZ/4) /* round down */
160 j = j - rem;
161 else /* round up */
162 j = j - rem + HZ;
164 /* now that we have rounded, subtract the extra skew again */
165 j -= cpu * 3;
167 if (j <= jiffies) /* rounding ate our timeout entirely; */
168 return original;
169 return j;
171 EXPORT_SYMBOL_GPL(__round_jiffies);
174 * __round_jiffies_relative - function to round jiffies to a full second
175 * @j: the time in (relative) jiffies that should be rounded
176 * @cpu: the processor number on which the timeout will happen
178 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
179 * up or down to (approximately) full seconds. This is useful for timers
180 * for which the exact time they fire does not matter too much, as long as
181 * they fire approximately every X seconds.
183 * By rounding these timers to whole seconds, all such timers will fire
184 * at the same time, rather than at various times spread out. The goal
185 * of this is to have the CPU wake up less, which saves power.
187 * The exact rounding is skewed for each processor to avoid all
188 * processors firing at the exact same time, which could lead
189 * to lock contention or spurious cache line bouncing.
191 * The return value is the rounded version of the @j parameter.
193 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
196 * In theory the following code can skip a jiffy in case jiffies
197 * increments right between the addition and the later subtraction.
198 * However since the entire point of this function is to use approximate
199 * timeouts, it's entirely ok to not handle that.
201 return __round_jiffies(j + jiffies, cpu) - jiffies;
203 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206 * round_jiffies - function to round jiffies to a full second
207 * @j: the time in (absolute) jiffies that should be rounded
209 * round_jiffies() rounds an absolute time in the future (in jiffies)
210 * up or down to (approximately) full seconds. This is useful for timers
211 * for which the exact time they fire does not matter too much, as long as
212 * they fire approximately every X seconds.
214 * By rounding these timers to whole seconds, all such timers will fire
215 * at the same time, rather than at various times spread out. The goal
216 * of this is to have the CPU wake up less, which saves power.
218 * The return value is the rounded version of the @j parameter.
220 unsigned long round_jiffies(unsigned long j)
222 return __round_jiffies(j, raw_smp_processor_id());
224 EXPORT_SYMBOL_GPL(round_jiffies);
227 * round_jiffies_relative - function to round jiffies to a full second
228 * @j: the time in (relative) jiffies that should be rounded
230 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
231 * up or down to (approximately) full seconds. This is useful for timers
232 * for which the exact time they fire does not matter too much, as long as
233 * they fire approximately every X seconds.
235 * By rounding these timers to whole seconds, all such timers will fire
236 * at the same time, rather than at various times spread out. The goal
237 * of this is to have the CPU wake up less, which saves power.
239 * The return value is the rounded version of the @j parameter.
241 unsigned long round_jiffies_relative(unsigned long j)
243 return __round_jiffies_relative(j, raw_smp_processor_id());
245 EXPORT_SYMBOL_GPL(round_jiffies_relative);
248 static inline void set_running_timer(tvec_base_t *base,
249 struct timer_list *timer)
251 #ifdef CONFIG_SMP
252 base->running_timer = timer;
253 #endif
256 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
258 unsigned long expires = timer->expires;
259 unsigned long idx = expires - base->timer_jiffies;
260 struct list_head *vec;
262 if (idx < TVR_SIZE) {
263 int i = expires & TVR_MASK;
264 vec = base->tv1.vec + i;
265 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
266 int i = (expires >> TVR_BITS) & TVN_MASK;
267 vec = base->tv2.vec + i;
268 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
269 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
270 vec = base->tv3.vec + i;
271 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
272 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
273 vec = base->tv4.vec + i;
274 } else if ((signed long) idx < 0) {
276 * Can happen if you add a timer with expires == jiffies,
277 * or you set a timer to go off in the past
279 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
280 } else {
281 int i;
282 /* If the timeout is larger than 0xffffffff on 64-bit
283 * architectures then we use the maximum timeout:
285 if (idx > 0xffffffffUL) {
286 idx = 0xffffffffUL;
287 expires = idx + base->timer_jiffies;
289 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
290 vec = base->tv5.vec + i;
293 * Timers are FIFO:
295 list_add_tail(&timer->entry, vec);
298 #ifdef CONFIG_TIMER_STATS
299 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
301 if (timer->start_site)
302 return;
304 timer->start_site = addr;
305 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
306 timer->start_pid = current->pid;
308 #endif
311 * init_timer - initialize a timer.
312 * @timer: the timer to be initialized
314 * init_timer() must be done to a timer prior calling *any* of the
315 * other timer functions.
317 void fastcall init_timer(struct timer_list *timer)
319 timer->entry.next = NULL;
320 timer->base = __raw_get_cpu_var(tvec_bases);
321 #ifdef CONFIG_TIMER_STATS
322 timer->start_site = NULL;
323 timer->start_pid = -1;
324 memset(timer->start_comm, 0, TASK_COMM_LEN);
325 #endif
327 EXPORT_SYMBOL(init_timer);
329 void fastcall init_timer_deferrable(struct timer_list *timer)
331 init_timer(timer);
332 timer_set_deferrable(timer);
334 EXPORT_SYMBOL(init_timer_deferrable);
336 static inline void detach_timer(struct timer_list *timer,
337 int clear_pending)
339 struct list_head *entry = &timer->entry;
341 __list_del(entry->prev, entry->next);
342 if (clear_pending)
343 entry->next = NULL;
344 entry->prev = LIST_POISON2;
348 * We are using hashed locking: holding per_cpu(tvec_bases).lock
349 * means that all timers which are tied to this base via timer->base are
350 * locked, and the base itself is locked too.
352 * So __run_timers/migrate_timers can safely modify all timers which could
353 * be found on ->tvX lists.
355 * When the timer's base is locked, and the timer removed from list, it is
356 * possible to set timer->base = NULL and drop the lock: the timer remains
357 * locked.
359 static tvec_base_t *lock_timer_base(struct timer_list *timer,
360 unsigned long *flags)
361 __acquires(timer->base->lock)
363 tvec_base_t *base;
365 for (;;) {
366 tvec_base_t *prelock_base = timer->base;
367 base = tbase_get_base(prelock_base);
368 if (likely(base != NULL)) {
369 spin_lock_irqsave(&base->lock, *flags);
370 if (likely(prelock_base == timer->base))
371 return base;
372 /* The timer has migrated to another CPU */
373 spin_unlock_irqrestore(&base->lock, *flags);
375 cpu_relax();
379 int __mod_timer(struct timer_list *timer, unsigned long expires)
381 tvec_base_t *base, *new_base;
382 unsigned long flags;
383 int ret = 0;
385 timer_stats_timer_set_start_info(timer);
386 BUG_ON(!timer->function);
388 base = lock_timer_base(timer, &flags);
390 if (timer_pending(timer)) {
391 detach_timer(timer, 0);
392 ret = 1;
395 new_base = __get_cpu_var(tvec_bases);
397 if (base != new_base) {
399 * We are trying to schedule the timer on the local CPU.
400 * However we can't change timer's base while it is running,
401 * otherwise del_timer_sync() can't detect that the timer's
402 * handler yet has not finished. This also guarantees that
403 * the timer is serialized wrt itself.
405 if (likely(base->running_timer != timer)) {
406 /* See the comment in lock_timer_base() */
407 timer_set_base(timer, NULL);
408 spin_unlock(&base->lock);
409 base = new_base;
410 spin_lock(&base->lock);
411 timer_set_base(timer, base);
415 timer->expires = expires;
416 internal_add_timer(base, timer);
417 spin_unlock_irqrestore(&base->lock, flags);
419 return ret;
422 EXPORT_SYMBOL(__mod_timer);
425 * add_timer_on - start a timer on a particular CPU
426 * @timer: the timer to be added
427 * @cpu: the CPU to start it on
429 * This is not very scalable on SMP. Double adds are not possible.
431 void add_timer_on(struct timer_list *timer, int cpu)
433 tvec_base_t *base = per_cpu(tvec_bases, cpu);
434 unsigned long flags;
436 timer_stats_timer_set_start_info(timer);
437 BUG_ON(timer_pending(timer) || !timer->function);
438 spin_lock_irqsave(&base->lock, flags);
439 timer_set_base(timer, base);
440 internal_add_timer(base, timer);
441 spin_unlock_irqrestore(&base->lock, flags);
446 * mod_timer - modify a timer's timeout
447 * @timer: the timer to be modified
448 * @expires: new timeout in jiffies
450 * mod_timer() is a more efficient way to update the expire field of an
451 * active timer (if the timer is inactive it will be activated)
453 * mod_timer(timer, expires) is equivalent to:
455 * del_timer(timer); timer->expires = expires; add_timer(timer);
457 * Note that if there are multiple unserialized concurrent users of the
458 * same timer, then mod_timer() is the only safe way to modify the timeout,
459 * since add_timer() cannot modify an already running timer.
461 * The function returns whether it has modified a pending timer or not.
462 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
463 * active timer returns 1.)
465 int mod_timer(struct timer_list *timer, unsigned long expires)
467 BUG_ON(!timer->function);
469 timer_stats_timer_set_start_info(timer);
471 * This is a common optimization triggered by the
472 * networking code - if the timer is re-modified
473 * to be the same thing then just return:
475 if (timer->expires == expires && timer_pending(timer))
476 return 1;
478 return __mod_timer(timer, expires);
481 EXPORT_SYMBOL(mod_timer);
484 * del_timer - deactive a timer.
485 * @timer: the timer to be deactivated
487 * del_timer() deactivates a timer - this works on both active and inactive
488 * timers.
490 * The function returns whether it has deactivated a pending timer or not.
491 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
492 * active timer returns 1.)
494 int del_timer(struct timer_list *timer)
496 tvec_base_t *base;
497 unsigned long flags;
498 int ret = 0;
500 timer_stats_timer_clear_start_info(timer);
501 if (timer_pending(timer)) {
502 base = lock_timer_base(timer, &flags);
503 if (timer_pending(timer)) {
504 detach_timer(timer, 1);
505 ret = 1;
507 spin_unlock_irqrestore(&base->lock, flags);
510 return ret;
513 EXPORT_SYMBOL(del_timer);
515 #ifdef CONFIG_SMP
517 * try_to_del_timer_sync - Try to deactivate a timer
518 * @timer: timer do del
520 * This function tries to deactivate a timer. Upon successful (ret >= 0)
521 * exit the timer is not queued and the handler is not running on any CPU.
523 * It must not be called from interrupt contexts.
525 int try_to_del_timer_sync(struct timer_list *timer)
527 tvec_base_t *base;
528 unsigned long flags;
529 int ret = -1;
531 base = lock_timer_base(timer, &flags);
533 if (base->running_timer == timer)
534 goto out;
536 ret = 0;
537 if (timer_pending(timer)) {
538 detach_timer(timer, 1);
539 ret = 1;
541 out:
542 spin_unlock_irqrestore(&base->lock, flags);
544 return ret;
547 EXPORT_SYMBOL(try_to_del_timer_sync);
550 * del_timer_sync - deactivate a timer and wait for the handler to finish.
551 * @timer: the timer to be deactivated
553 * This function only differs from del_timer() on SMP: besides deactivating
554 * the timer it also makes sure the handler has finished executing on other
555 * CPUs.
557 * Synchronization rules: Callers must prevent restarting of the timer,
558 * otherwise this function is meaningless. It must not be called from
559 * interrupt contexts. The caller must not hold locks which would prevent
560 * completion of the timer's handler. The timer's handler must not call
561 * add_timer_on(). Upon exit the timer is not queued and the handler is
562 * not running on any CPU.
564 * The function returns whether it has deactivated a pending timer or not.
566 int del_timer_sync(struct timer_list *timer)
568 for (;;) {
569 int ret = try_to_del_timer_sync(timer);
570 if (ret >= 0)
571 return ret;
572 cpu_relax();
576 EXPORT_SYMBOL(del_timer_sync);
577 #endif
579 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
581 /* cascade all the timers from tv up one level */
582 struct timer_list *timer, *tmp;
583 struct list_head tv_list;
585 list_replace_init(tv->vec + index, &tv_list);
588 * We are removing _all_ timers from the list, so we
589 * don't have to detach them individually.
591 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
592 BUG_ON(tbase_get_base(timer->base) != base);
593 internal_add_timer(base, timer);
596 return index;
599 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
602 * __run_timers - run all expired timers (if any) on this CPU.
603 * @base: the timer vector to be processed.
605 * This function cascades all vectors and executes all expired timer
606 * vectors.
608 static inline void __run_timers(tvec_base_t *base)
610 struct timer_list *timer;
612 spin_lock_irq(&base->lock);
613 while (time_after_eq(jiffies, base->timer_jiffies)) {
614 struct list_head work_list;
615 struct list_head *head = &work_list;
616 int index = base->timer_jiffies & TVR_MASK;
619 * Cascade timers:
621 if (!index &&
622 (!cascade(base, &base->tv2, INDEX(0))) &&
623 (!cascade(base, &base->tv3, INDEX(1))) &&
624 !cascade(base, &base->tv4, INDEX(2)))
625 cascade(base, &base->tv5, INDEX(3));
626 ++base->timer_jiffies;
627 list_replace_init(base->tv1.vec + index, &work_list);
628 while (!list_empty(head)) {
629 void (*fn)(unsigned long);
630 unsigned long data;
632 timer = list_first_entry(head, struct timer_list,entry);
633 fn = timer->function;
634 data = timer->data;
636 timer_stats_account_timer(timer);
638 set_running_timer(base, timer);
639 detach_timer(timer, 1);
640 spin_unlock_irq(&base->lock);
642 int preempt_count = preempt_count();
643 fn(data);
644 if (preempt_count != preempt_count()) {
645 printk(KERN_WARNING "huh, entered %p "
646 "with preempt_count %08x, exited"
647 " with %08x?\n",
648 fn, preempt_count,
649 preempt_count());
650 BUG();
653 spin_lock_irq(&base->lock);
656 set_running_timer(base, NULL);
657 spin_unlock_irq(&base->lock);
660 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
662 * Find out when the next timer event is due to happen. This
663 * is used on S/390 to stop all activity when a cpus is idle.
664 * This functions needs to be called disabled.
666 static unsigned long __next_timer_interrupt(tvec_base_t *base)
668 unsigned long timer_jiffies = base->timer_jiffies;
669 unsigned long expires = timer_jiffies + (LONG_MAX >> 1);
670 int index, slot, array, found = 0;
671 struct timer_list *nte;
672 tvec_t *varray[4];
674 /* Look for timer events in tv1. */
675 index = slot = timer_jiffies & TVR_MASK;
676 do {
677 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
678 if (tbase_get_deferrable(nte->base))
679 continue;
681 found = 1;
682 expires = nte->expires;
683 /* Look at the cascade bucket(s)? */
684 if (!index || slot < index)
685 goto cascade;
686 return expires;
688 slot = (slot + 1) & TVR_MASK;
689 } while (slot != index);
691 cascade:
692 /* Calculate the next cascade event */
693 if (index)
694 timer_jiffies += TVR_SIZE - index;
695 timer_jiffies >>= TVR_BITS;
697 /* Check tv2-tv5. */
698 varray[0] = &base->tv2;
699 varray[1] = &base->tv3;
700 varray[2] = &base->tv4;
701 varray[3] = &base->tv5;
703 for (array = 0; array < 4; array++) {
704 tvec_t *varp = varray[array];
706 index = slot = timer_jiffies & TVN_MASK;
707 do {
708 list_for_each_entry(nte, varp->vec + slot, entry) {
709 found = 1;
710 if (time_before(nte->expires, expires))
711 expires = nte->expires;
714 * Do we still search for the first timer or are
715 * we looking up the cascade buckets ?
717 if (found) {
718 /* Look at the cascade bucket(s)? */
719 if (!index || slot < index)
720 break;
721 return expires;
723 slot = (slot + 1) & TVN_MASK;
724 } while (slot != index);
726 if (index)
727 timer_jiffies += TVN_SIZE - index;
728 timer_jiffies >>= TVN_BITS;
730 return expires;
734 * Check, if the next hrtimer event is before the next timer wheel
735 * event:
737 static unsigned long cmp_next_hrtimer_event(unsigned long now,
738 unsigned long expires)
740 ktime_t hr_delta = hrtimer_get_next_event();
741 struct timespec tsdelta;
742 unsigned long delta;
744 if (hr_delta.tv64 == KTIME_MAX)
745 return expires;
748 * Expired timer available, let it expire in the next tick
750 if (hr_delta.tv64 <= 0)
751 return now + 1;
753 tsdelta = ktime_to_timespec(hr_delta);
754 delta = timespec_to_jiffies(&tsdelta);
756 * Take rounding errors in to account and make sure, that it
757 * expires in the next tick. Otherwise we go into an endless
758 * ping pong due to tick_nohz_stop_sched_tick() retriggering
759 * the timer softirq
761 if (delta < 1)
762 delta = 1;
763 now += delta;
764 if (time_before(now, expires))
765 return now;
766 return expires;
770 * next_timer_interrupt - return the jiffy of the next pending timer
771 * @now: current time (in jiffies)
773 unsigned long get_next_timer_interrupt(unsigned long now)
775 tvec_base_t *base = __get_cpu_var(tvec_bases);
776 unsigned long expires;
778 spin_lock(&base->lock);
779 expires = __next_timer_interrupt(base);
780 spin_unlock(&base->lock);
782 if (time_before_eq(expires, now))
783 return now;
785 return cmp_next_hrtimer_event(now, expires);
788 #ifdef CONFIG_NO_IDLE_HZ
789 unsigned long next_timer_interrupt(void)
791 return get_next_timer_interrupt(jiffies);
793 #endif
795 #endif
798 * Called from the timer interrupt handler to charge one tick to the current
799 * process. user_tick is 1 if the tick is user time, 0 for system.
801 void update_process_times(int user_tick)
803 struct task_struct *p = current;
804 int cpu = smp_processor_id();
806 /* Note: this timer irq context must be accounted for as well. */
807 if (user_tick)
808 account_user_time(p, jiffies_to_cputime(1));
809 else
810 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
811 run_local_timers();
812 if (rcu_pending(cpu))
813 rcu_check_callbacks(cpu, user_tick);
814 scheduler_tick();
815 run_posix_cpu_timers(p);
819 * Nr of active tasks - counted in fixed-point numbers
821 static unsigned long count_active_tasks(void)
823 return nr_active() * FIXED_1;
827 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
828 * imply that avenrun[] is the standard name for this kind of thing.
829 * Nothing else seems to be standardized: the fractional size etc
830 * all seem to differ on different machines.
832 * Requires xtime_lock to access.
834 unsigned long avenrun[3];
836 EXPORT_SYMBOL(avenrun);
838 static unsigned long avenrun_save[3];
840 * save_avenrun - Record the values prior to starting a hibernation cycle.
841 * We do this to make the work done in hibernation invisible to userspace
842 * post-suspend. Some programs, including some MTAs, watch the load average
843 * and stop work until it lowers. Without this, they would stop working for
844 * a while post-resume, unnecessarily.
847 void save_avenrun(void)
849 avenrun_save[0] = avenrun[0];
850 avenrun_save[1] = avenrun[1];
851 avenrun_save[2] = avenrun[2];
854 EXPORT_SYMBOL_GPL(save_avenrun);
856 void restore_avenrun(void)
858 avenrun[0] = avenrun_save[0];
859 avenrun[1] = avenrun_save[1];
860 avenrun[2] = avenrun_save[2];
863 EXPORT_SYMBOL_GPL(restore_avenrun);
866 * calc_load - given tick count, update the avenrun load estimates.
867 * This is called while holding a write_lock on xtime_lock.
869 static inline void calc_load(unsigned long ticks)
871 unsigned long active_tasks; /* fixed-point */
872 static int count = LOAD_FREQ;
874 count -= ticks;
875 if (unlikely(count < 0)) {
876 active_tasks = count_active_tasks();
877 do {
878 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
879 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
880 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
881 count += LOAD_FREQ;
882 } while (count < 0);
887 * This function runs timers and the timer-tq in bottom half context.
889 static void run_timer_softirq(struct softirq_action *h)
891 tvec_base_t *base = __get_cpu_var(tvec_bases);
893 hrtimer_run_queues();
895 if (time_after_eq(jiffies, base->timer_jiffies))
896 __run_timers(base);
900 * Called by the local, per-CPU timer interrupt on SMP.
902 void run_local_timers(void)
904 raise_softirq(TIMER_SOFTIRQ);
905 softlockup_tick();
909 * Called by the timer interrupt. xtime_lock must already be taken
910 * by the timer IRQ!
912 static inline void update_times(unsigned long ticks)
914 update_wall_time();
915 calc_load(ticks);
919 * The 64-bit jiffies value is not atomic - you MUST NOT read it
920 * without sampling the sequence number in xtime_lock.
921 * jiffies is defined in the linker script...
924 void do_timer(unsigned long ticks)
926 jiffies_64 += ticks;
927 update_times(ticks);
930 #ifdef __ARCH_WANT_SYS_ALARM
933 * For backwards compatibility? This can be done in libc so Alpha
934 * and all newer ports shouldn't need it.
936 asmlinkage unsigned long sys_alarm(unsigned int seconds)
938 return alarm_setitimer(seconds);
941 #endif
943 #ifndef __alpha__
946 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
947 * should be moved into arch/i386 instead?
951 * sys_getpid - return the thread group id of the current process
953 * Note, despite the name, this returns the tgid not the pid. The tgid and
954 * the pid are identical unless CLONE_THREAD was specified on clone() in
955 * which case the tgid is the same in all threads of the same group.
957 * This is SMP safe as current->tgid does not change.
959 asmlinkage long sys_getpid(void)
961 return current->tgid;
965 * Accessing ->real_parent is not SMP-safe, it could
966 * change from under us. However, we can use a stale
967 * value of ->real_parent under rcu_read_lock(), see
968 * release_task()->call_rcu(delayed_put_task_struct).
970 asmlinkage long sys_getppid(void)
972 int pid;
974 rcu_read_lock();
975 pid = rcu_dereference(current->real_parent)->tgid;
976 rcu_read_unlock();
978 return pid;
981 asmlinkage long sys_getuid(void)
983 /* Only we change this so SMP safe */
984 return current->uid;
987 asmlinkage long sys_geteuid(void)
989 /* Only we change this so SMP safe */
990 return current->euid;
993 asmlinkage long sys_getgid(void)
995 /* Only we change this so SMP safe */
996 return current->gid;
999 asmlinkage long sys_getegid(void)
1001 /* Only we change this so SMP safe */
1002 return current->egid;
1005 #endif
1007 static void process_timeout(unsigned long __data)
1009 wake_up_process((struct task_struct *)__data);
1013 * schedule_timeout - sleep until timeout
1014 * @timeout: timeout value in jiffies
1016 * Make the current task sleep until @timeout jiffies have
1017 * elapsed. The routine will return immediately unless
1018 * the current task state has been set (see set_current_state()).
1020 * You can set the task state as follows -
1022 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1023 * pass before the routine returns. The routine will return 0
1025 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1026 * delivered to the current task. In this case the remaining time
1027 * in jiffies will be returned, or 0 if the timer expired in time
1029 * The current task state is guaranteed to be TASK_RUNNING when this
1030 * routine returns.
1032 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1033 * the CPU away without a bound on the timeout. In this case the return
1034 * value will be %MAX_SCHEDULE_TIMEOUT.
1036 * In all cases the return value is guaranteed to be non-negative.
1038 fastcall signed long __sched schedule_timeout(signed long timeout)
1040 struct timer_list timer;
1041 unsigned long expire;
1043 switch (timeout)
1045 case MAX_SCHEDULE_TIMEOUT:
1047 * These two special cases are useful to be comfortable
1048 * in the caller. Nothing more. We could take
1049 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1050 * but I' d like to return a valid offset (>=0) to allow
1051 * the caller to do everything it want with the retval.
1053 schedule();
1054 goto out;
1055 default:
1057 * Another bit of PARANOID. Note that the retval will be
1058 * 0 since no piece of kernel is supposed to do a check
1059 * for a negative retval of schedule_timeout() (since it
1060 * should never happens anyway). You just have the printk()
1061 * that will tell you if something is gone wrong and where.
1063 if (timeout < 0) {
1064 printk(KERN_ERR "schedule_timeout: wrong timeout "
1065 "value %lx\n", timeout);
1066 dump_stack();
1067 current->state = TASK_RUNNING;
1068 goto out;
1072 expire = timeout + jiffies;
1074 setup_timer(&timer, process_timeout, (unsigned long)current);
1075 __mod_timer(&timer, expire);
1076 schedule();
1077 del_singleshot_timer_sync(&timer);
1079 timeout = expire - jiffies;
1081 out:
1082 return timeout < 0 ? 0 : timeout;
1084 EXPORT_SYMBOL(schedule_timeout);
1087 * We can use __set_current_state() here because schedule_timeout() calls
1088 * schedule() unconditionally.
1090 signed long __sched schedule_timeout_interruptible(signed long timeout)
1092 __set_current_state(TASK_INTERRUPTIBLE);
1093 return schedule_timeout(timeout);
1095 EXPORT_SYMBOL(schedule_timeout_interruptible);
1097 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1099 __set_current_state(TASK_UNINTERRUPTIBLE);
1100 return schedule_timeout(timeout);
1102 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1104 /* Thread ID - the internal kernel "pid" */
1105 asmlinkage long sys_gettid(void)
1107 return current->pid;
1111 * do_sysinfo - fill in sysinfo struct
1112 * @info: pointer to buffer to fill
1114 int do_sysinfo(struct sysinfo *info)
1116 unsigned long mem_total, sav_total;
1117 unsigned int mem_unit, bitcount;
1118 unsigned long seq;
1120 memset(info, 0, sizeof(struct sysinfo));
1122 do {
1123 struct timespec tp;
1124 seq = read_seqbegin(&xtime_lock);
1127 * This is annoying. The below is the same thing
1128 * posix_get_clock_monotonic() does, but it wants to
1129 * take the lock which we want to cover the loads stuff
1130 * too.
1133 getnstimeofday(&tp);
1134 tp.tv_sec += wall_to_monotonic.tv_sec;
1135 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1136 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1137 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1138 tp.tv_sec++;
1140 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1142 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1143 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1144 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1146 info->procs = nr_threads;
1147 } while (read_seqretry(&xtime_lock, seq));
1149 si_meminfo(info);
1150 si_swapinfo(info);
1153 * If the sum of all the available memory (i.e. ram + swap)
1154 * is less than can be stored in a 32 bit unsigned long then
1155 * we can be binary compatible with 2.2.x kernels. If not,
1156 * well, in that case 2.2.x was broken anyways...
1158 * -Erik Andersen <andersee@debian.org>
1161 mem_total = info->totalram + info->totalswap;
1162 if (mem_total < info->totalram || mem_total < info->totalswap)
1163 goto out;
1164 bitcount = 0;
1165 mem_unit = info->mem_unit;
1166 while (mem_unit > 1) {
1167 bitcount++;
1168 mem_unit >>= 1;
1169 sav_total = mem_total;
1170 mem_total <<= 1;
1171 if (mem_total < sav_total)
1172 goto out;
1176 * If mem_total did not overflow, multiply all memory values by
1177 * info->mem_unit and set it to 1. This leaves things compatible
1178 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1179 * kernels...
1182 info->mem_unit = 1;
1183 info->totalram <<= bitcount;
1184 info->freeram <<= bitcount;
1185 info->sharedram <<= bitcount;
1186 info->bufferram <<= bitcount;
1187 info->totalswap <<= bitcount;
1188 info->freeswap <<= bitcount;
1189 info->totalhigh <<= bitcount;
1190 info->freehigh <<= bitcount;
1192 out:
1193 return 0;
1196 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1198 struct sysinfo val;
1200 do_sysinfo(&val);
1202 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1203 return -EFAULT;
1205 return 0;
1209 * lockdep: we want to track each per-CPU base as a separate lock-class,
1210 * but timer-bases are kmalloc()-ed, so we need to attach separate
1211 * keys to them:
1213 static struct lock_class_key base_lock_keys[NR_CPUS];
1215 static int __devinit init_timers_cpu(int cpu)
1217 int j;
1218 tvec_base_t *base;
1219 static char __devinitdata tvec_base_done[NR_CPUS];
1221 if (!tvec_base_done[cpu]) {
1222 static char boot_done;
1224 if (boot_done) {
1226 * The APs use this path later in boot
1228 base = kmalloc_node(sizeof(*base), GFP_KERNEL,
1229 cpu_to_node(cpu));
1230 if (!base)
1231 return -ENOMEM;
1233 /* Make sure that tvec_base is 2 byte aligned */
1234 if (tbase_get_deferrable(base)) {
1235 WARN_ON(1);
1236 kfree(base);
1237 return -ENOMEM;
1239 memset(base, 0, sizeof(*base));
1240 per_cpu(tvec_bases, cpu) = base;
1241 } else {
1243 * This is for the boot CPU - we use compile-time
1244 * static initialisation because per-cpu memory isn't
1245 * ready yet and because the memory allocators are not
1246 * initialised either.
1248 boot_done = 1;
1249 base = &boot_tvec_bases;
1251 tvec_base_done[cpu] = 1;
1252 } else {
1253 base = per_cpu(tvec_bases, cpu);
1256 spin_lock_init(&base->lock);
1257 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1259 for (j = 0; j < TVN_SIZE; j++) {
1260 INIT_LIST_HEAD(base->tv5.vec + j);
1261 INIT_LIST_HEAD(base->tv4.vec + j);
1262 INIT_LIST_HEAD(base->tv3.vec + j);
1263 INIT_LIST_HEAD(base->tv2.vec + j);
1265 for (j = 0; j < TVR_SIZE; j++)
1266 INIT_LIST_HEAD(base->tv1.vec + j);
1268 base->timer_jiffies = jiffies;
1269 return 0;
1272 #ifdef CONFIG_HOTPLUG_CPU
1273 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1275 struct timer_list *timer;
1277 while (!list_empty(head)) {
1278 timer = list_first_entry(head, struct timer_list, entry);
1279 detach_timer(timer, 0);
1280 timer_set_base(timer, new_base);
1281 internal_add_timer(new_base, timer);
1285 static void __devinit migrate_timers(int cpu)
1287 tvec_base_t *old_base;
1288 tvec_base_t *new_base;
1289 int i;
1291 BUG_ON(cpu_online(cpu));
1292 old_base = per_cpu(tvec_bases, cpu);
1293 new_base = get_cpu_var(tvec_bases);
1295 local_irq_disable();
1296 double_spin_lock(&new_base->lock, &old_base->lock,
1297 smp_processor_id() < cpu);
1299 BUG_ON(old_base->running_timer);
1301 for (i = 0; i < TVR_SIZE; i++)
1302 migrate_timer_list(new_base, old_base->tv1.vec + i);
1303 for (i = 0; i < TVN_SIZE; i++) {
1304 migrate_timer_list(new_base, old_base->tv2.vec + i);
1305 migrate_timer_list(new_base, old_base->tv3.vec + i);
1306 migrate_timer_list(new_base, old_base->tv4.vec + i);
1307 migrate_timer_list(new_base, old_base->tv5.vec + i);
1310 double_spin_unlock(&new_base->lock, &old_base->lock,
1311 smp_processor_id() < cpu);
1312 local_irq_enable();
1313 put_cpu_var(tvec_bases);
1315 #endif /* CONFIG_HOTPLUG_CPU */
1317 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1318 unsigned long action, void *hcpu)
1320 long cpu = (long)hcpu;
1321 switch(action) {
1322 case CPU_UP_PREPARE:
1323 case CPU_UP_PREPARE_FROZEN:
1324 if (init_timers_cpu(cpu) < 0)
1325 return NOTIFY_BAD;
1326 break;
1327 #ifdef CONFIG_HOTPLUG_CPU
1328 case CPU_DEAD:
1329 case CPU_DEAD_FROZEN:
1330 migrate_timers(cpu);
1331 break;
1332 #endif
1333 default:
1334 break;
1336 return NOTIFY_OK;
1339 static struct notifier_block __cpuinitdata timers_nb = {
1340 .notifier_call = timer_cpu_notify,
1344 void __init init_timers(void)
1346 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1347 (void *)(long)smp_processor_id());
1349 init_timer_stats();
1351 BUG_ON(err == NOTIFY_BAD);
1352 register_cpu_notifier(&timers_nb);
1353 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1356 #ifdef CONFIG_TIME_INTERPOLATION
1358 struct time_interpolator *time_interpolator __read_mostly;
1359 static struct time_interpolator *time_interpolator_list __read_mostly;
1360 static DEFINE_SPINLOCK(time_interpolator_lock);
1362 static inline cycles_t time_interpolator_get_cycles(unsigned int src)
1364 unsigned long (*x)(void);
1366 switch (src)
1368 case TIME_SOURCE_FUNCTION:
1369 x = time_interpolator->addr;
1370 return x();
1372 case TIME_SOURCE_MMIO64 :
1373 return readq_relaxed((void __iomem *)time_interpolator->addr);
1375 case TIME_SOURCE_MMIO32 :
1376 return readl_relaxed((void __iomem *)time_interpolator->addr);
1378 default: return get_cycles();
1382 static inline u64 time_interpolator_get_counter(int writelock)
1384 unsigned int src = time_interpolator->source;
1386 if (time_interpolator->jitter)
1388 cycles_t lcycle;
1389 cycles_t now;
1391 do {
1392 lcycle = time_interpolator->last_cycle;
1393 now = time_interpolator_get_cycles(src);
1394 if (lcycle && time_after(lcycle, now))
1395 return lcycle;
1397 /* When holding the xtime write lock, there's no need
1398 * to add the overhead of the cmpxchg. Readers are
1399 * force to retry until the write lock is released.
1401 if (writelock) {
1402 time_interpolator->last_cycle = now;
1403 return now;
1405 /* Keep track of the last timer value returned. The use of cmpxchg here
1406 * will cause contention in an SMP environment.
1408 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1409 return now;
1411 else
1412 return time_interpolator_get_cycles(src);
1415 void time_interpolator_reset(void)
1417 time_interpolator->offset = 0;
1418 time_interpolator->last_counter = time_interpolator_get_counter(1);
1421 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1423 unsigned long time_interpolator_get_offset(void)
1425 /* If we do not have a time interpolator set up then just return zero */
1426 if (!time_interpolator)
1427 return 0;
1429 return time_interpolator->offset +
1430 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1433 #define INTERPOLATOR_ADJUST 65536
1434 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1436 void time_interpolator_update(long delta_nsec)
1438 u64 counter;
1439 unsigned long offset;
1441 /* If there is no time interpolator set up then do nothing */
1442 if (!time_interpolator)
1443 return;
1446 * The interpolator compensates for late ticks by accumulating the late
1447 * time in time_interpolator->offset. A tick earlier than expected will
1448 * lead to a reset of the offset and a corresponding jump of the clock
1449 * forward. Again this only works if the interpolator clock is running
1450 * slightly slower than the regular clock and the tuning logic insures
1451 * that.
1454 counter = time_interpolator_get_counter(1);
1455 offset = time_interpolator->offset +
1456 GET_TI_NSECS(counter, time_interpolator);
1458 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1459 time_interpolator->offset = offset - delta_nsec;
1460 else {
1461 time_interpolator->skips++;
1462 time_interpolator->ns_skipped += delta_nsec - offset;
1463 time_interpolator->offset = 0;
1465 time_interpolator->last_counter = counter;
1467 /* Tuning logic for time interpolator invoked every minute or so.
1468 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1469 * Increase interpolator clock speed if we skip too much time.
1471 if (jiffies % INTERPOLATOR_ADJUST == 0)
1473 if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
1474 time_interpolator->nsec_per_cyc--;
1475 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1476 time_interpolator->nsec_per_cyc++;
1477 time_interpolator->skips = 0;
1478 time_interpolator->ns_skipped = 0;
1482 static inline int
1483 is_better_time_interpolator(struct time_interpolator *new)
1485 if (!time_interpolator)
1486 return 1;
1487 return new->frequency > 2*time_interpolator->frequency ||
1488 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1491 void
1492 register_time_interpolator(struct time_interpolator *ti)
1494 unsigned long flags;
1496 /* Sanity check */
1497 BUG_ON(ti->frequency == 0 || ti->mask == 0);
1499 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1500 spin_lock(&time_interpolator_lock);
1501 write_seqlock_irqsave(&xtime_lock, flags);
1502 if (is_better_time_interpolator(ti)) {
1503 time_interpolator = ti;
1504 time_interpolator_reset();
1506 write_sequnlock_irqrestore(&xtime_lock, flags);
1508 ti->next = time_interpolator_list;
1509 time_interpolator_list = ti;
1510 spin_unlock(&time_interpolator_lock);
1513 void
1514 unregister_time_interpolator(struct time_interpolator *ti)
1516 struct time_interpolator *curr, **prev;
1517 unsigned long flags;
1519 spin_lock(&time_interpolator_lock);
1520 prev = &time_interpolator_list;
1521 for (curr = *prev; curr; curr = curr->next) {
1522 if (curr == ti) {
1523 *prev = curr->next;
1524 break;
1526 prev = &curr->next;
1529 clocksource_resume();
1531 write_seqlock_irqsave(&xtime_lock, flags);
1532 if (ti == time_interpolator) {
1533 /* we lost the best time-interpolator: */
1534 time_interpolator = NULL;
1535 /* find the next-best interpolator */
1536 for (curr = time_interpolator_list; curr; curr = curr->next)
1537 if (is_better_time_interpolator(curr))
1538 time_interpolator = curr;
1539 time_interpolator_reset();
1541 write_sequnlock_irqrestore(&xtime_lock, flags);
1542 spin_unlock(&time_interpolator_lock);
1544 #endif /* CONFIG_TIME_INTERPOLATION */
1547 * msleep - sleep safely even with waitqueue interruptions
1548 * @msecs: Time in milliseconds to sleep for
1550 void msleep(unsigned int msecs)
1552 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1554 while (timeout)
1555 timeout = schedule_timeout_uninterruptible(timeout);
1558 EXPORT_SYMBOL(msleep);
1561 * msleep_interruptible - sleep waiting for signals
1562 * @msecs: Time in milliseconds to sleep for
1564 unsigned long msleep_interruptible(unsigned int msecs)
1566 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1568 while (timeout && !signal_pending(current))
1569 timeout = schedule_timeout_interruptible(timeout);
1570 return jiffies_to_msecs(timeout);
1573 EXPORT_SYMBOL(msleep_interruptible);