3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
41 int __bitmap_empty(const unsigned long *bitmap
, int bits
)
43 int k
, lim
= bits
/BITS_PER_LONG
;
44 for (k
= 0; k
< lim
; ++k
)
48 if (bits
% BITS_PER_LONG
)
49 if (bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
54 EXPORT_SYMBOL(__bitmap_empty
);
56 int __bitmap_full(const unsigned long *bitmap
, int bits
)
58 int k
, lim
= bits
/BITS_PER_LONG
;
59 for (k
= 0; k
< lim
; ++k
)
63 if (bits
% BITS_PER_LONG
)
64 if (~bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
))
69 EXPORT_SYMBOL(__bitmap_full
);
71 int __bitmap_equal(const unsigned long *bitmap1
,
72 const unsigned long *bitmap2
, int bits
)
74 int k
, lim
= bits
/BITS_PER_LONG
;
75 for (k
= 0; k
< lim
; ++k
)
76 if (bitmap1
[k
] != bitmap2
[k
])
79 if (bits
% BITS_PER_LONG
)
80 if ((bitmap1
[k
] ^ bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
85 EXPORT_SYMBOL(__bitmap_equal
);
87 void __bitmap_complement(unsigned long *dst
, const unsigned long *src
, int bits
)
89 int k
, lim
= bits
/BITS_PER_LONG
;
90 for (k
= 0; k
< lim
; ++k
)
93 if (bits
% BITS_PER_LONG
)
94 dst
[k
] = ~src
[k
] & BITMAP_LAST_WORD_MASK(bits
);
96 EXPORT_SYMBOL(__bitmap_complement
);
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 * @dst - destination bitmap
101 * @src - source bitmap
102 * @nbits - shift by this many bits
103 * @bits - bitmap size, in bits
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
109 void __bitmap_shift_right(unsigned long *dst
,
110 const unsigned long *src
, int shift
, int bits
)
112 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
113 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
114 unsigned long mask
= (1UL << left
) - 1;
115 for (k
= 0; off
+ k
< lim
; ++k
) {
116 unsigned long upper
, lower
;
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
122 if (!rem
|| off
+ k
+ 1 >= lim
)
125 upper
= src
[off
+ k
+ 1];
126 if (off
+ k
+ 1 == lim
- 1 && left
)
129 lower
= src
[off
+ k
];
130 if (left
&& off
+ k
== lim
- 1)
132 dst
[k
] = upper
<< (BITS_PER_LONG
- rem
) | lower
>> rem
;
133 if (left
&& k
== lim
- 1)
137 memset(&dst
[lim
- off
], 0, off
*sizeof(unsigned long));
139 EXPORT_SYMBOL(__bitmap_shift_right
);
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 * @dst - destination bitmap
145 * @src - source bitmap
146 * @nbits - shift by this many bits
147 * @bits - bitmap size, in bits
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
154 void __bitmap_shift_left(unsigned long *dst
,
155 const unsigned long *src
, int shift
, int bits
)
157 int k
, lim
= BITS_TO_LONGS(bits
), left
= bits
% BITS_PER_LONG
;
158 int off
= shift
/BITS_PER_LONG
, rem
= shift
% BITS_PER_LONG
;
159 for (k
= lim
- off
- 1; k
>= 0; --k
) {
160 unsigned long upper
, lower
;
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
171 if (left
&& k
== lim
- 1)
172 upper
&= (1UL << left
) - 1;
173 dst
[k
+ off
] = lower
>> (BITS_PER_LONG
- rem
) | upper
<< rem
;
174 if (left
&& k
+ off
== lim
- 1)
175 dst
[k
+ off
] &= (1UL << left
) - 1;
178 memset(dst
, 0, off
*sizeof(unsigned long));
180 EXPORT_SYMBOL(__bitmap_shift_left
);
182 void __bitmap_and(unsigned long *dst
, const unsigned long *bitmap1
,
183 const unsigned long *bitmap2
, int bits
)
186 int nr
= BITS_TO_LONGS(bits
);
188 for (k
= 0; k
< nr
; k
++)
189 dst
[k
] = bitmap1
[k
] & bitmap2
[k
];
191 EXPORT_SYMBOL(__bitmap_and
);
193 void __bitmap_or(unsigned long *dst
, const unsigned long *bitmap1
,
194 const unsigned long *bitmap2
, int bits
)
197 int nr
= BITS_TO_LONGS(bits
);
199 for (k
= 0; k
< nr
; k
++)
200 dst
[k
] = bitmap1
[k
] | bitmap2
[k
];
202 EXPORT_SYMBOL(__bitmap_or
);
204 void __bitmap_xor(unsigned long *dst
, const unsigned long *bitmap1
,
205 const unsigned long *bitmap2
, int bits
)
208 int nr
= BITS_TO_LONGS(bits
);
210 for (k
= 0; k
< nr
; k
++)
211 dst
[k
] = bitmap1
[k
] ^ bitmap2
[k
];
213 EXPORT_SYMBOL(__bitmap_xor
);
215 void __bitmap_andnot(unsigned long *dst
, const unsigned long *bitmap1
,
216 const unsigned long *bitmap2
, int bits
)
219 int nr
= BITS_TO_LONGS(bits
);
221 for (k
= 0; k
< nr
; k
++)
222 dst
[k
] = bitmap1
[k
] & ~bitmap2
[k
];
224 EXPORT_SYMBOL(__bitmap_andnot
);
226 int __bitmap_intersects(const unsigned long *bitmap1
,
227 const unsigned long *bitmap2
, int bits
)
229 int k
, lim
= bits
/BITS_PER_LONG
;
230 for (k
= 0; k
< lim
; ++k
)
231 if (bitmap1
[k
] & bitmap2
[k
])
234 if (bits
% BITS_PER_LONG
)
235 if ((bitmap1
[k
] & bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
239 EXPORT_SYMBOL(__bitmap_intersects
);
241 int __bitmap_subset(const unsigned long *bitmap1
,
242 const unsigned long *bitmap2
, int bits
)
244 int k
, lim
= bits
/BITS_PER_LONG
;
245 for (k
= 0; k
< lim
; ++k
)
246 if (bitmap1
[k
] & ~bitmap2
[k
])
249 if (bits
% BITS_PER_LONG
)
250 if ((bitmap1
[k
] & ~bitmap2
[k
]) & BITMAP_LAST_WORD_MASK(bits
))
254 EXPORT_SYMBOL(__bitmap_subset
);
256 int __bitmap_weight(const unsigned long *bitmap
, int bits
)
258 int k
, w
= 0, lim
= bits
/BITS_PER_LONG
;
260 for (k
= 0; k
< lim
; k
++)
261 w
+= hweight_long(bitmap
[k
]);
263 if (bits
% BITS_PER_LONG
)
264 w
+= hweight_long(bitmap
[k
] & BITMAP_LAST_WORD_MASK(bits
));
268 EXPORT_SYMBOL(__bitmap_weight
);
271 * Bitmap printing & parsing functions: first version by Bill Irwin,
272 * second version by Paul Jackson, third by Joe Korty.
276 #define nbits_to_hold_value(val) fls(val)
277 #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
281 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282 * @buf: byte buffer into which string is placed
283 * @buflen: reserved size of @buf, in bytes
284 * @maskp: pointer to bitmap to convert
285 * @nmaskbits: size of bitmap, in bits
287 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
288 * comma-separated sets of eight digits per set.
290 int bitmap_scnprintf(char *buf
, unsigned int buflen
,
291 const unsigned long *maskp
, int nmaskbits
)
293 int i
, word
, bit
, len
= 0;
295 const char *sep
= "";
299 chunksz
= nmaskbits
& (CHUNKSZ
- 1);
303 i
= ALIGN(nmaskbits
, CHUNKSZ
) - CHUNKSZ
;
304 for (; i
>= 0; i
-= CHUNKSZ
) {
305 chunkmask
= ((1ULL << chunksz
) - 1);
306 word
= i
/ BITS_PER_LONG
;
307 bit
= i
% BITS_PER_LONG
;
308 val
= (maskp
[word
] >> bit
) & chunkmask
;
309 len
+= scnprintf(buf
+len
, buflen
-len
, "%s%0*lx", sep
,
316 EXPORT_SYMBOL(bitmap_scnprintf
);
319 * bitmap_parse - convert an ASCII hex string into a bitmap.
320 * @ubuf: pointer to buffer in user space containing string.
321 * @ubuflen: buffer size in bytes. If string is smaller than this
322 * then it must be terminated with a \0.
323 * @maskp: pointer to bitmap array that will contain result.
324 * @nmaskbits: size of bitmap, in bits.
326 * Commas group hex digits into chunks. Each chunk defines exactly 32
327 * bits of the resultant bitmask. No chunk may specify a value larger
328 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
329 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
330 * characters and for grouping errors such as "1,,5", ",44", "," and "".
331 * Leading and trailing whitespace accepted, but not embedded whitespace.
333 int bitmap_parse(const char __user
*ubuf
, unsigned int ubuflen
,
334 unsigned long *maskp
, int nmaskbits
)
336 int c
, old_c
, totaldigits
, ndigits
, nchunks
, nbits
;
339 bitmap_zero(maskp
, nmaskbits
);
341 nchunks
= nbits
= totaldigits
= c
= 0;
345 /* Get the next chunk of the bitmap */
348 if (get_user(c
, ubuf
++))
355 * If the last character was a space and the current
356 * character isn't '\0', we've got embedded whitespace.
357 * This is a no-no, so throw an error.
359 if (totaldigits
&& c
&& isspace(old_c
))
362 /* A '\0' or a ',' signal the end of the chunk */
363 if (c
== '\0' || c
== ',')
370 * Make sure there are at least 4 free bits in 'chunk'.
371 * If not, this hexdigit will overflow 'chunk', so
374 if (chunk
& ~((1UL << (CHUNKSZ
- 4)) - 1))
377 chunk
= (chunk
<< 4) | unhex(c
);
378 ndigits
++; totaldigits
++;
382 if (nchunks
== 0 && chunk
== 0)
385 __bitmap_shift_left(maskp
, maskp
, CHUNKSZ
, nmaskbits
);
388 nbits
+= (nchunks
== 1) ? nbits_to_hold_value(chunk
) : CHUNKSZ
;
389 if (nbits
> nmaskbits
)
391 } while (ubuflen
&& c
== ',');
395 EXPORT_SYMBOL(bitmap_parse
);
398 * bscnl_emit(buf, buflen, rbot, rtop, bp)
400 * Helper routine for bitmap_scnlistprintf(). Write decimal number
401 * or range to buf, suppressing output past buf+buflen, with optional
402 * comma-prefix. Return len of what would be written to buf, if it
405 static inline int bscnl_emit(char *buf
, int buflen
, int rbot
, int rtop
, int len
)
408 len
+= scnprintf(buf
+ len
, buflen
- len
, ",");
410 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d", rbot
);
412 len
+= scnprintf(buf
+ len
, buflen
- len
, "%d-%d", rbot
, rtop
);
417 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
418 * @buf: byte buffer into which string is placed
419 * @buflen: reserved size of @buf, in bytes
420 * @maskp: pointer to bitmap to convert
421 * @nmaskbits: size of bitmap, in bits
423 * Output format is a comma-separated list of decimal numbers and
424 * ranges. Consecutively set bits are shown as two hyphen-separated
425 * decimal numbers, the smallest and largest bit numbers set in
426 * the range. Output format is compatible with the format
427 * accepted as input by bitmap_parselist().
429 * The return value is the number of characters which would be
430 * generated for the given input, excluding the trailing '\0', as
433 int bitmap_scnlistprintf(char *buf
, unsigned int buflen
,
434 const unsigned long *maskp
, int nmaskbits
)
437 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
440 rbot
= cur
= find_first_bit(maskp
, nmaskbits
);
441 while (cur
< nmaskbits
) {
443 cur
= find_next_bit(maskp
, nmaskbits
, cur
+1);
444 if (cur
>= nmaskbits
|| cur
> rtop
+ 1) {
445 len
= bscnl_emit(buf
, buflen
, rbot
, rtop
, len
);
451 EXPORT_SYMBOL(bitmap_scnlistprintf
);
454 * bitmap_parselist - convert list format ASCII string to bitmap
455 * @bp: read nul-terminated user string from this buffer
456 * @maskp: write resulting mask here
457 * @nmaskbits: number of bits in mask to be written
459 * Input format is a comma-separated list of decimal numbers and
460 * ranges. Consecutively set bits are shown as two hyphen-separated
461 * decimal numbers, the smallest and largest bit numbers set in
464 * Returns 0 on success, -errno on invalid input strings.
466 * %-EINVAL: second number in range smaller than first
467 * %-EINVAL: invalid character in string
468 * %-ERANGE: bit number specified too large for mask
470 int bitmap_parselist(const char *bp
, unsigned long *maskp
, int nmaskbits
)
474 bitmap_zero(maskp
, nmaskbits
);
478 b
= a
= simple_strtoul(bp
, (char **)&bp
, BASEDEC
);
483 b
= simple_strtoul(bp
, (char **)&bp
, BASEDEC
);
495 } while (*bp
!= '\0' && *bp
!= '\n');
498 EXPORT_SYMBOL(bitmap_parselist
);
501 * bitmap_pos_to_ord(buf, pos, bits)
502 * @buf: pointer to a bitmap
503 * @pos: a bit position in @buf (0 <= @pos < @bits)
504 * @bits: number of valid bit positions in @buf
506 * Map the bit at position @pos in @buf (of length @bits) to the
507 * ordinal of which set bit it is. If it is not set or if @pos
508 * is not a valid bit position, map to -1.
510 * If for example, just bits 4 through 7 are set in @buf, then @pos
511 * values 4 through 7 will get mapped to 0 through 3, respectively,
512 * and other @pos values will get mapped to 0. When @pos value 7
513 * gets mapped to (returns) @ord value 3 in this example, that means
514 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
516 * The bit positions 0 through @bits are valid positions in @buf.
518 static int bitmap_pos_to_ord(const unsigned long *buf
, int pos
, int bits
)
522 if (pos
< 0 || pos
>= bits
|| !test_bit(pos
, buf
))
525 i
= find_first_bit(buf
, bits
);
528 i
= find_next_bit(buf
, bits
, i
+ 1);
537 * bitmap_ord_to_pos(buf, ord, bits)
538 * @buf: pointer to bitmap
539 * @ord: ordinal bit position (n-th set bit, n >= 0)
540 * @bits: number of valid bit positions in @buf
542 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
543 * Value of @ord should be in range 0 <= @ord < weight(buf), else
544 * results are undefined.
546 * If for example, just bits 4 through 7 are set in @buf, then @ord
547 * values 0 through 3 will get mapped to 4 through 7, respectively,
548 * and all other @ord values return undefined values. When @ord value 3
549 * gets mapped to (returns) @pos value 7 in this example, that means
550 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
552 * The bit positions 0 through @bits are valid positions in @buf.
554 static int bitmap_ord_to_pos(const unsigned long *buf
, int ord
, int bits
)
558 if (ord
>= 0 && ord
< bits
) {
561 for (i
= find_first_bit(buf
, bits
);
563 i
= find_next_bit(buf
, bits
, i
+ 1))
565 if (i
< bits
&& ord
== 0)
573 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
574 * @dst: remapped result
575 * @src: subset to be remapped
576 * @old: defines domain of map
577 * @new: defines range of map
578 * @bits: number of bits in each of these bitmaps
580 * Let @old and @new define a mapping of bit positions, such that
581 * whatever position is held by the n-th set bit in @old is mapped
582 * to the n-th set bit in @new. In the more general case, allowing
583 * for the possibility that the weight 'w' of @new is less than the
584 * weight of @old, map the position of the n-th set bit in @old to
585 * the position of the m-th set bit in @new, where m == n % w.
587 * If either of the @old and @new bitmaps are empty, or if @src and
588 * @dst point to the same location, then this routine copies @src
591 * The positions of unset bits in @old are mapped to themselves
592 * (the identify map).
594 * Apply the above specified mapping to @src, placing the result in
595 * @dst, clearing any bits previously set in @dst.
597 * For example, lets say that @old has bits 4 through 7 set, and
598 * @new has bits 12 through 15 set. This defines the mapping of bit
599 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
600 * bit positions unchanged. So if say @src comes into this routine
601 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
604 void bitmap_remap(unsigned long *dst
, const unsigned long *src
,
605 const unsigned long *old
, const unsigned long *new,
610 if (dst
== src
) /* following doesn't handle inplace remaps */
612 bitmap_zero(dst
, bits
);
614 w
= bitmap_weight(new, bits
);
615 for (oldbit
= find_first_bit(src
, bits
);
617 oldbit
= find_next_bit(src
, bits
, oldbit
+ 1)) {
618 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
620 set_bit(oldbit
, dst
); /* identity map */
622 set_bit(bitmap_ord_to_pos(new, n
% w
, bits
), dst
);
625 EXPORT_SYMBOL(bitmap_remap
);
628 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
629 * @oldbit: bit position to be mapped
630 * @old: defines domain of map
631 * @new: defines range of map
632 * @bits: number of bits in each of these bitmaps
634 * Let @old and @new define a mapping of bit positions, such that
635 * whatever position is held by the n-th set bit in @old is mapped
636 * to the n-th set bit in @new. In the more general case, allowing
637 * for the possibility that the weight 'w' of @new is less than the
638 * weight of @old, map the position of the n-th set bit in @old to
639 * the position of the m-th set bit in @new, where m == n % w.
641 * The positions of unset bits in @old are mapped to themselves
642 * (the identify map).
644 * Apply the above specified mapping to bit position @oldbit, returning
645 * the new bit position.
647 * For example, lets say that @old has bits 4 through 7 set, and
648 * @new has bits 12 through 15 set. This defines the mapping of bit
649 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
650 * bit positions unchanged. So if say @oldbit is 5, then this routine
653 int bitmap_bitremap(int oldbit
, const unsigned long *old
,
654 const unsigned long *new, int bits
)
656 int w
= bitmap_weight(new, bits
);
657 int n
= bitmap_pos_to_ord(old
, oldbit
, bits
);
661 return bitmap_ord_to_pos(new, n
% w
, bits
);
663 EXPORT_SYMBOL(bitmap_bitremap
);
666 * Common code for bitmap_*_region() routines.
667 * bitmap: array of unsigned longs corresponding to the bitmap
668 * pos: the beginning of the region
669 * order: region size (log base 2 of number of bits)
670 * reg_op: operation(s) to perform on that region of bitmap
672 * Can set, verify and/or release a region of bits in a bitmap,
673 * depending on which combination of REG_OP_* flag bits is set.
675 * A region of a bitmap is a sequence of bits in the bitmap, of
676 * some size '1 << order' (a power of two), aligned to that same
677 * '1 << order' power of two.
679 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
680 * Returns 0 in all other cases and reg_ops.
684 REG_OP_ISFREE
, /* true if region is all zero bits */
685 REG_OP_ALLOC
, /* set all bits in region */
686 REG_OP_RELEASE
, /* clear all bits in region */
689 static int __reg_op(unsigned long *bitmap
, int pos
, int order
, int reg_op
)
691 int nbits_reg
; /* number of bits in region */
692 int index
; /* index first long of region in bitmap */
693 int offset
; /* bit offset region in bitmap[index] */
694 int nlongs_reg
; /* num longs spanned by region in bitmap */
695 int nbitsinlong
; /* num bits of region in each spanned long */
696 unsigned long mask
; /* bitmask for one long of region */
697 int i
; /* scans bitmap by longs */
698 int ret
= 0; /* return value */
701 * Either nlongs_reg == 1 (for small orders that fit in one long)
702 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
704 nbits_reg
= 1 << order
;
705 index
= pos
/ BITS_PER_LONG
;
706 offset
= pos
- (index
* BITS_PER_LONG
);
707 nlongs_reg
= BITS_TO_LONGS(nbits_reg
);
708 nbitsinlong
= min(nbits_reg
, BITS_PER_LONG
);
711 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
712 * overflows if nbitsinlong == BITS_PER_LONG.
714 mask
= (1UL << (nbitsinlong
- 1));
720 for (i
= 0; i
< nlongs_reg
; i
++) {
721 if (bitmap
[index
+ i
] & mask
)
724 ret
= 1; /* all bits in region free (zero) */
728 for (i
= 0; i
< nlongs_reg
; i
++)
729 bitmap
[index
+ i
] |= mask
;
733 for (i
= 0; i
< nlongs_reg
; i
++)
734 bitmap
[index
+ i
] &= ~mask
;
742 * bitmap_find_free_region - find a contiguous aligned mem region
743 * @bitmap: array of unsigned longs corresponding to the bitmap
744 * @bits: number of bits in the bitmap
745 * @order: region size (log base 2 of number of bits) to find
747 * Find a region of free (zero) bits in a @bitmap of @bits bits and
748 * allocate them (set them to one). Only consider regions of length
749 * a power (@order) of two, aligned to that power of two, which
750 * makes the search algorithm much faster.
752 * Return the bit offset in bitmap of the allocated region,
753 * or -errno on failure.
755 int bitmap_find_free_region(unsigned long *bitmap
, int bits
, int order
)
757 int pos
; /* scans bitmap by regions of size order */
759 for (pos
= 0; pos
< bits
; pos
+= (1 << order
))
760 if (__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
764 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
767 EXPORT_SYMBOL(bitmap_find_free_region
);
770 * bitmap_release_region - release allocated bitmap region
771 * @bitmap: array of unsigned longs corresponding to the bitmap
772 * @pos: beginning of bit region to release
773 * @order: region size (log base 2 of number of bits) to release
775 * This is the complement to __bitmap_find_free_region and releases
776 * the found region (by clearing it in the bitmap).
780 void bitmap_release_region(unsigned long *bitmap
, int pos
, int order
)
782 __reg_op(bitmap
, pos
, order
, REG_OP_RELEASE
);
784 EXPORT_SYMBOL(bitmap_release_region
);
787 * bitmap_allocate_region - allocate bitmap region
788 * @bitmap: array of unsigned longs corresponding to the bitmap
789 * @pos: beginning of bit region to allocate
790 * @order: region size (log base 2 of number of bits) to allocate
792 * Allocate (set bits in) a specified region of a bitmap.
794 * Return 0 on success, or %-EBUSY if specified region wasn't
795 * free (not all bits were zero).
797 int bitmap_allocate_region(unsigned long *bitmap
, int pos
, int order
)
799 if (!__reg_op(bitmap
, pos
, order
, REG_OP_ISFREE
))
801 __reg_op(bitmap
, pos
, order
, REG_OP_ALLOC
);
804 EXPORT_SYMBOL(bitmap_allocate_region
);